Причины большого расхода масла в компрессоре – 50 причин уноса масла в винтовом компрессоре

Содержание

50 причин уноса масла в винтовом компрессоре

50 причин уноса масла в винтовом компрессоре

Сепараторы воздуха / масла, используемые в роторных винтовых (и пластинчатых) компрессорах как правило имеют одни и те-же причины отказов. Часто от клиентов можно услышать, что, «сепаратор бракованный и из-за этого в компрессоре повышенный унос масла!».

Но тщательный анализ сопроводительной технической документации к компрессорам и  имеющегося мирового опыта сервиса и ремонта современных компрессоров показывает, что:
а) достаточно редко причиной повышенного уноса масла является сам сепаратор
б) «неработающий» сепаратор — это следствие, а не причина, в большинстве случаев.

Основные причины отказов сепаратора компрессора:

1) Слишком короткая дренажная трубка отвода масла
дренажная трубка не достигает внутренней чаши основания сепаратора.
Результат: повышенный  унос масла

2) Слишком длинная дренажная трубка отвода масла
Конец трубки дренажной линии упирается вплотную к основанию чаши сепаратора и и либо полностью препятствует отсасыванию масла, или улавливается совсем малое его количество. Зазор, рекомендуемый изготовителями компрессоров, как правило, составляет от 1 до 2 мм, или делается специальный срез под углом конца дренажной трубки.
Результат: повышенный  унос масла

3) Дренажная  линия, забитая грязью
Результат: повышенный  унос масла

4) Забился грязью фильтр дренажной линии

Некоторые модели компрессоров оснащены небольшим сетчатым фильтром из нержавеющей стали, устанавливаемые в какой-либо точке линии дренажа, которую необходимо регулярно чистить. Если не очистить (или не заменить на новый) фильтр,  он блокирует отвод масла из сепаратора в винтовой блок.

Результат: повышенный  унос масла.

 

5) Дренажная трубка имеет трещины / повреждения

Это приводит к поглощению ею атмосферного воздуха, и недостаточно, или совсем не выводить масло из сепаратора.
Результат: повышенный  унос масла.

6) Дренажная трубка помята
Это ограничивает ее эффективность и не позволяет удалить достаточное количество масла.
Результат: повышенный  унос масла.

7) Повреждение дренажной линии из-за неправильного обращения
Будьте осторожны, чтобы не перегнуть трубку при снятии крышки сосуда маслоотделителя и его установки ее на пол. Погнутая трубка не сможет удалить масло из сепаратора.
Результат: повышенный  унос масла.

8) Прочистите наконечник трубопровода на крышке сосуда маслоотделителя
Если наконечник не образует плотного уплотнения, воздух, а не масло, будет всасываться линией продувки.
Результат: повышенный  унос масла
9) Ограничивающее отверстие для линии продувки
Некоторые, но не все, компрессоры имеют специальные ограничивающие отверстия (жиклеры) и диафрагмы, установленные в определенной точке дренажной линии. Это — маленькие предметы, и в тёмных компрессорных помещениях при разборке дренажной линии можно нечаянно их сбросить или потерять.

10) Неправильный подбор дренажного клапана
Для компрессоров даже одного и того-же производителя, для разных моделей  применяются дренажные трубки и клапаны разного диаметра. Те трубки, у кого меньше внутренний диаметр, будут меньше отсасывать масло, чем те, у которых внутренний диаметр больше.

В современных компрессорах все более популярными становятся дренажные клапаны-глазки, которые позволяют визуально определить происходит-ли отсос масла после сепаратора обратно в винтовой блок.
Внутри клапана имеется сетчатый фильтр и небольшой шарик, который пропускает масло-воздушную смесь только в одном направлении. По своей сути это обратный клапан.
Для разных по производительности компрессоров устанавливются клапаны с разными диаметрами пропускных отверстий (см.фото).

Основные типоразмеры (диаметры отверстий в мм) дренажных клапанов-глазков:
0,6 мм — Fini Cube SD10 — 1000 л мин
0,7 мм — Remeza ВК15 — 20 — 1400 л — 2150 в мин
0,9 мм — Remeza ВК30 — 3500 л в мин
1,0 мм — Fini BSC2008 —  2040 л в мин
1,2 мм — Remeza ВК40 (2 шт на 8 бар, 1 шт на 10 бар) — 6000 л в мин
1,2 мм — Remeza ВК75 — 100 — 2 шт (тк 2 сепаратора) — 8500 — 12800 л в мин

Если не очистить (или не заменить на новый) сетчатый фильтр внутри такого клапана, он блокирует отвод масла из сепаратора в винтовой блок.
Также не забывайте правильно устанавливать клапан по направлению стрелки на его корпусе (по потоку масла).
Результат: более повышенный  унос масла.

11) Линия многоканального отвода масла
Некоторые модели компрессоров имеют две линии продувки с встроенными  мелкими фильтрами из спеченной бронзы . Когда один фильтр блокируется, его часто
удаляют, что создает дисбаланс давления между линиями продувки, что приводит к уносу масла. Примечание: если фильтры заменяются пластинами с отверстиями,
то оба отверстия должны быть одного диаметра.
Результат: повышенный  унос масла и загрязнение сепаратора, если давление в таких дренажных линиях не одинаковое.

12) дренажная трубка неправильно подключена
После неправильного ремонта компрессора выпускной конец дренажной трубки  может быть присоединен к винтовому блоку по ошибке не со стороны всасывания, а со стороны подачи сжатого воздуха. Усугублением такой ошибки может быть наличие в линии обратного клапана.
Результат: повышенный  унос масла.

13) Шлак, пыль, грязь или другие частицы в масляном контуре
Обычно воздушный фильтр компрессора имеет 25-микронный порог пропускания частиц, масляный фильтр 10 микрон и воздушно-масляный сепаратор пропускает частицы размером 3 мкм. В сильно загрязненной окружающей среде из-за тонкости фильтрующего материала сепаратора он становится приемником для частиц, не захваченных воздушным или масляным фильтром и сепаратор засорится.
Результат: быстрое увеличение перепада давления может привести к имплозии (внутреннему взрыву) сепаратора.

14) Хранение и обращение с новым маслом
Масло следует хранить вдали от источников промышленного загрязнения. Дозирующее оборудование (воронка и канистры) должны быть чистыми. Частично опорожненные канистры не должны загрязняться. Загрязнение нового масла блокирует сепаратор.
Результат: высокое дифференциальное давление.

15) Пенообразующее масло
Масло, которое имеет тенденцию к пенообразованию или нормальное компрессорное масло, которое пенообразуется по какой-то другой причине, заставляет излишек масла проходить через сепаратор. Вспенивание делает сепаратор перенасыщенным маслом и он имеет более высокий перепад давления.
Результат: повышенный  унос масла и повышенноый перепад давления

16) Смешанные масла
Это часто происходит по ошибке и может также возникать при переходе от одной марки масла к другой, когда не все исходное масло сливается с компрессора. На некоторых компрессорах имеется до 5 точек слива! Сливать только из сосуда маслоотделителя и маслоохладителя, безусловно, недостаточно для моделей где имеются точки слива масла в редукторном винтовом блоке, обратном клапане и масляном запорном клапане. Смешение масел вызывает вспенивание (и часто приводят к поломкам). Избегайте
использования одной и той же воронки и канистр для различных масел.
В результате: повышенный  унос масла вплоть до блокировки сепаратора

17) Смешанные масла одного производителя. Производители некоторых компрессоров продают различные фирменные масла для своих стационарных и мобильных
компрессоров. Если они смешиваются по ошибке, при дозаправке или по другой причине, произойдет вспенивание.
Результат: повышенный  унос масла.

18) Испорченное масло
Новое масло даже правильного типа и вязкости может быть химически изменено в проржавевших канистрах или бочках, что приводит к его вспениванию.
Результат: повышенный унос, чрезмерное и быстрое повышение дифференциального давления.

19) Неправильно подобранное масло
блокирует сепаратор или проходит через сепаратор в неконтролируемом объеме.
Результат: быстрое повышение дифференциального давления,
приводящее к сжатию сепаратора или уносу масла.

20) Компрессор слишком много заполнен маслом.
Это уменьшает расстояние между верхней частью уровня масла и нижней частью сепаратора.
Результат: повышенный  унос масла.

21) Положение указателя уровня масла
В некоторых моделях компрессоров можно по ошибке установить смотровое окно «вверх ногами». В таких случаях маркировка на смотровом стекле будет находиться в неправильном положении, и компрессор будет переполнен маслом.
Результат: повышенный  унос масла

22) Уровень масла — смотровое стекло
Если смотровое стекло заполнено маслом на всю его высоту-длину, то компрессор также переполнен маслом. Это обычное явление с мобильными компрессорами.
Результат: повышенный  унос масла.

23) Мобильный компрессор — угол наклона во время работы
Все компрессоры сконструированы для работы в горизонтальном положении. Некоторые производители допускают рабочий угол до 15 градусов (например морские установки или мобильные). Необходимо следить за тем, чтобы максимальный угол наклона, рекомендованный заводом-изготовителем не превышался.
Это не только негативно повлияет на срок службы дизельного двигателя, но также может привести к увеличению уноса масла.

24)  Синтетическое масло, используемое в компрессорах, ранее работавших на минеральном масле.
Суперсинтетика и другие синтетические масла оказывают очищающее действие
на компрессоры, ранее использовавшие минеральное масло (включая фирменные специализированные масла для винтовых и пластинчатых компрессоров на основе
минеральных масел). Очищающий эффект синтетики быстро образует осадок, который блокирует как масляный фильтр, так и сепаратор. Обратитесь за консультацией к
процедуре промывки, начальному и последующему интервалу смены фильтров и так далее от поставщика синтетического масла до смены типа масла в компрессоре. Например,
возможно, будет целесообразно заменить масляный фильтр через 100 и 250 часов после первого заполнения синтетическими материалами, а затем вернуться к стандартным
интервалам замены. Также может быть целесообразным не менять сепаратор при первоначальной заливке синтетическими, а через 100 или 250 часов, так как в
любом случае сепаратор будет заблокирован отложениями. Это позволит сэкономить затраты на покупку еще одного сепаратора (но это при условии, что поставщик синтетических масел удостоверился в том, что остаточное минеральное масло в сепараторе не будет оказывать неблагоприятного воздействия на синтетическую жидкость).
В результате получается: блокированный сепаратор, в некоторых случаях — сплющенный сепаратор.

25)  Использование неправильного синтетического масла в роторных компрессорах, предназначенного для поршневых компрессоров вызывает образование осадка.
Как правило, винтовые компрессоры с масляным впрыском используют масло вязкости марки 46, в то время как поршневые и пластинчатые компрессоры обычно используют вязкость класса 100. Результат: увеличение перепада давления, приводящего к заблокированному сепаратору.

26) Использование правильного синтетического масла
Однажды был зафиксирован случай необъяснимого явления с резким износом синтетического масла в компрессоре. Несмотря на преимущества синтетики во всех отношениях в сравнении с минеральным маслом и несмотря на постоянные лабораторные испытания образцов масла у клиента росло число заблокированных сепараторов.
Масло было рассчитано на интервал замены через 8000 часов, образцы подвергались лабораторному тестированию каждые 1000 часов, масляный фильтр менялся каждые 2000 часов. Первоначальный (установленный на заводе) сепаратор был заменен на новый. Срок службы сепаратора с новым маслом обычно рассчитан на 4000 ч, но он загрязнялся раньше этого срока и цикл повторялся. Все сепараторы были оригинальные и получены от производителя компрессора… Позднее, когда конечный пользователь намеренно пытался скрыть информацию, стало известно, что атмосфера была загрязнена неизвестными бактериями, которые отрицательно повлияли на минеральное масло в соседних компрессорах другого производства, но без видимого влияния на синтетическую смазку. Возможно, был еще один неизвестный внешний фактор.

27) Интервал замены масла
Не возможно переоценить важность интервала замены масла. Рекомендованный производителем компрессор интервал замены не должен быть превышен. Фактически, когда происходят повышенные рабочие температуры или работа производится в запыленных и загрязненных средах или там, где имеются газообразные загрязнители, масло следует менять с более короткими интервалами, чем рекомендуется в чистых условиях. Например, срок службы минерального масла сокращается наполовину при работе при температуре 110 ºC. Особенно к этому чувствительны пластинчатые компрессоры, изношенное и грязное масло блокирует сепаратор.
Результат: высокое дифференциальное давление и уменьшенный ресурс сепаратора.

28) Образцы масла.
Прежде, чем брать пробу масла для анализа необходимо слить от 2 до 3 литров масла из маслоохладителя или маслоотделителя. Масло в сливном шланге не циркулирует в компрессоре, поэтому анализ будет неточным. Образец должен быть взят в течение 10 минут после остановки компрессора.
Результат: по мере того как сепаратор и масляный фильтр блокируются загрязненным маслом, увеличивается дифференциальное давление. Также рекомендуется
анализировать новые поставки масла, чтобы сравнить их со стандартной спецификацией поставщиков.

29) Рабочая температура
Вращающиеся компрессоры, работающие на синтетическом масле, работают при температуре примерно на 10ºС ниже, чем при использовании минерального масла. Чем выше рабочая температура, тем выше уносится масло.
Результат: более короткий срок службы сепаратора и более повышенный  унос масла
при высокой рабочей температуре.

30) Конденсат
В масляной системе накопление конденсированной воды в компрессорной смазочной системе загрязняет и ускоряет разложение масла, что приводит к блокировке сепаратора. Нарастание конденсата особенно заметно в жарких и влажных прибрежных зонах (например с морским климатом) при частичной загрузке компрессора или при отсутствии загрузки.
Результат: увеличение перепада давления в блокированном сепараторе.

31)  Звуковое отверстие на выходе сжатого воздуха из  сосуда маслоотделителя на некоторых моделях компрессоров и при определенных обстоятельствах приводит к появлению высокого перепада давления — даже при запуске с новым сепаратором.
Результат: резкое появление высокого дифференциального давления.

32)  Брызгозащитная плита в сосуде маслоотделителя
В зависимости от конструкции некоторые модели компрессоров имеют брызгозащитные или каплеотбойные плиты / щитки, как неотъемлемые части сепаратора или встроенные в сепаратор. Их нельзя удалять.
Результат: повышенный  унос масла и / или преждевременный отказ сепаратора, если каплеотбойник неправильно установлен или опущен слишком низко.

33) Установка клапана минимального давления

В некоторых моделях компрессоров было замечено, что масло уносится, когда компрессор работает даже при нормальном рабочем давлении. При повышении порога открывания клапана минимального давления с 3 бар до 5,8 бар унос масла прекращается.
Результат: повышенный  степень уноса масла в некоторых моделях при слишком низком заданном давлении открывания клапана минимального давления.

34) Длительные периоды холостого хода.
Это часто бывает, например при использовании мобильных компрессоров и стационарных компрессоров с длительными периодами нагрузки, приводящими к перенасыщению сепаратора маслом.
Результат: повышенный  кратковременный уноса масла на короткий период, когда компрессор входит в режим нагрузки.

35)  Длительные периоды нагрузки
В случаях, когда расход сжатого воздуха настолько высок, что компрессор не в состоянии поддерживать в нормальном режиме рабочее давление (например, манометрическое давление находится в пределах от 3 до 5,5 бар) через короткое время около 15 мин будет замечено, что имеется унос масла. После того, как компрессор начнет работать при нормальном рабочем давлении, унос масла прекратится.
Результат: повышенный унос масла при слишком низком рабочем давлении компрессора.

36. Вибрация / гармоники / кавитация масла — центробежные сепараторы
Нельзя использовать в роторных винтовых компрессорах мощностью 37 кВт и более
сепараторов воздушно-масляного вкручиваемого типа «spin-on». Причиной этого является вибрация самого сепаратора в некоторых случаях приводящая к разрыву его оболочки.
Поскольку в вкручиваемом сепараторе нет движущихся частей, то причиной этого является внешнее воздействие. Современные сепараторы учитывают это явление.  Такой эффект не был замечен при использовании ротационных пластинчатых компрессоров.

37)  Воздухораспределительные устройства.
Некоторые пневмопотребители, такие, например, как кузнечные молотки, резко и с перерывами потребляют значительные объемы воздуха.
Это приводит к тому, что сепаратор становится перенасыщенным маслом и это может привести к разрыву сепаратора (а в течение длительного времени и к поломке клапана минимального давления).
Результат: высокий уровень уноса масла, разрушение или разрыв сепаратора.

38) Рабочие — изолирующие клапаны
Создание быстрого перепада давления путем слишком быстрого открытия выпускного клапана может привести к взрыву или разрыву сепаратора.
В результате: повышенный  унос масла или крупный разлив масла .

39) Эксплуатация  — остановка компрессора.
Нужно использовать для выключения компрессора только кнопку остановки на панели управления компрессором. Для большинства компрессоров, остановка производится с задержкой в ​​30 секунд, позволяющая компрессору сначала разгружаться, а затем частично снизить давление сжатого воздуха в баке сепаратора воздуха / масла. Когда компрессор выключен с помощью кнопки аварийного останова сепаратор будет затоплен мслом.

Результат:высокий уровень уноса масла, сплющенный или разрушенный сепаратор.

40) Сбой электропитания.
Это будет иметь тот же эффект, что и описанный выше но на работающем компрессоре.

41) Испытание системы регулирования на неработающих компрессорах
Быстрое открытие и закрытие выпускного вентиля сжатого воздуха приведут к насыщению (или в худшем случае — разрыву) сепаратора.
Результат: повышенный  унос масла.

42)  Заземление — обязательное
Сепараторы, спроектированные с заземлением, но неправильно заземленные в «полевых» условиях, могут привести к внутренней вспышке и возгоранию.
Результат: сгоревший сепаратор, сажа (толстое зерно) в резервуаре сепаратора и, возможно, другие механические повреждения.

43) Заземление — необязательно.
Некоторые роторно-пластинчатые компрессоры в стандартном исполнении не имеют заземления. Проблем с их алюминиевыми корпусами не возникает, но вспышки могут возникать в компрессорах с корпусом из чугуна.
В результате: если не заземлить, можно ожидать выгорания сепаратора в чугунном корпусе
роторно-пластинчатого  компрессора. Сепараторы с уплотнительным кольцом предпочтительнее, чем уплотнительные кольца. Для обеспечения правильной установки уплотнительных колец требуется больше усилий, чтобы избежать уноса масла.

44) Неправильный сепаратор
В некоторых случаях может быть использован неправильный сепаратор. Например, два сепаратора имеют одинаковые размеры, но один из которых имеет правильную конструкцию для конкретной модели компрессора, а другой — нет. Неправильная конструкция влияет на характеристики потока воздушно-масляной смеси после входа в резервуар сепаратора и вызывает загрязнение сепараторного элемента маслом.
Результат: повышенный  унос масла и высокое дифференциальное давление.

45) Неправильная емкость сепаратора.
В сборе с сосудом маслоотделителя он становится недостаточного размера.
Результат: повышенный унос масла.

46) Измерение дифференциального давления сепаратора
Это можно измерить только, когда компрессор находится в режиме нагрузки. Он не должен превышать 1 бар. Перепад давления равен нулю в режиме холостого хода, так что состояние сепаратора не возможно будет определить.

47) Срок службы сепаратора  / модель компрессора
Часто отдельный сепаратор подходит для целой серии моделей компрессоров. В идентичных условиях срок службы сепаратора больше в меньшей модели, чем в более крупной модели. Например, срок службы разделителя в GA8-08 будет больше, чем в GA14-08. Аналогично, срок службы будет больше в ML90, чем в ML150 и т.д…

48) Срок службы сепаратора / компактность компрессора.
В зависимости от стоимости продукции, сокращения монтажного пространства, а в некоторых случаях, установки рефрижераторного осушителя внутри корпуса компрессора наблюдается тенденция к увеличению использования конструкторами меньших по размерам сепараторов. Это означает, что физически меньшие сепараторы используются в поздних моделях компрессоров, чем в компрессорах той же мощности прошлых лет.
Пропускная способность сепаратора определяется его площадью поверхности. При одном и том же потоке воздуха физически меньший сепаратор имеет более короткий
срок службы. Что и происходит в «полевых» условиях работы некоторых компактных конструкций.
Результат: сокращение срока службы сепараторов в «компактных» по сравнению с предыдущими моделями компрессоров с одинаковой пропускной способностью.

49)  Загрязнение окружающей среды — аммиак.
Некоторые сепараторы снабжены наружной оболочкой, которая, как правило, разрушается при воздействии определенных загрязняющих веществ и засоряет внутреннюю фильтрующую среду сепаратора. Аналогично, загрязняющие вещества могут разрушать слои такой среды.
Результат: высокое перепад давления или повышенный  унос масла.

50) Загрязнение окружающей среды — агрессивные / коррозионные химикаты и  чистящие жидкости
Агрессивные химические пары, попадающие в компрессор, вызывают ухудшение и разрушение фильтрующих материалов.
Выбросы из аммиака и жидкостей на основе хлора, используемых для очистки компрессорных помещений, попадают в компрессор, что приводит к разложению масла и закупорке сепаратора.
Результатом является повышенный  унос масла.

51) Другие случаи взрывов / вспышек
Насколько нам известно, в компрессорах, которые не используют медные и латунные компоненты, — маслопроводы, подшипниковые сепараторы и т. д… взрывы не были не наблюдались.
Взрыв при запуске, обычно в холодное утро, происходит из-за увеличения вязкости масла, препятствующего поступлению масла в воздушный контур, где температура резко возрастает в течение нескольких оборотов винтовой пары.
При запуске может произойти взрыв / внезапный пожар если выпускной воздушный клапан закрыт, а система регулирования слишком слабая, чтобы отключить нагрузку компрессора. Обычно этому явлению подвержены более крупные компрессоры.
Также такой взрыв может быть во время работы с повышенной рабочей температурой из-за низкого уровня масла или воздуха, ограниченного всасывающим воздушным фильтром, или увеличение перепада давления, или из-за неисправного масляного термостатического клапана. В некоторых моделях засорение масляных фильтров может заблокировать поступление масла к редуктору винтовой пары, когда компрессор не загружен, что вызывает внезапный пожар или ухудшает работу компрессора.
Результат: сгоревший сепаратор не является причиной взрыва. Было отмечено, что суперсинтетические смазки значительно снижают частоту взрывов и внезапных пожаров.

Анализ «сбоев» сепаратора (для моделей с сепараторами погружного «шляпного» типа)

Путем несложной диагностики можно определить причину неисправности и состояние сепаратора.

1) Масляный остаток внутри сепаратора.
Более 5 мм масла во внутреннем основании / чаше сепаратора обусловлено сбоем в дренаже-очистке остаточного масла. Определите причину неисправности, выпрямите и повторно используйте сепаратор, если он не поврежден, не заблокирован или не был изношен.

2) Насыщенный маслом сепаратор.
В нормальных условиях влажная маслянистая «лента», более легко различается на внешней поверхности белого фильтрующего материала, чем внутренняя, смоченная маслом. Обозначается такая полоска золотисто-желтым цветом если не используется окрашенное минеральное масло. Высота такой полоски-ленты не должна быть более 25-50 мм от нижнего основания сепаратора. Если влажная полоса при исследовании проходит от основания к верху (фланцу) или почти до верха, то сепаратор перенасыщен маслом.
Необходимо определить причина неисправности, исправить и повторно использовать сепаратор, если он не поврежден, заблокирован или изношен. При запуске компрессора с перенасыщенным сепаратором масляный туман уносится (может быть замечен, если сжатый воздух выдувается в атмосферу) в течение нескольких минут, в то время как сепаратор избавляется от избыточного масла. В течение этого периода перепад давления в сепараторе будет ниже. Если в течение 10 минут перепад давления не снижается до 0,2-0,3 бар, а компрессор находится в режиме нагрузки, тогда следует заменить сепаратор.

3) Разноцветный сепаратор — темный янтарный / коричневый.
Указывает окисленное минеральное масло. Определите неисправность  компрессора /вентиляции компрессорного помещения / загрязняющего вещества и устраните неисправность, затем замените масло, масляный фильтр и сепаратор.

4) Разноцветный сепаратор — серый и черный.
Это указывает на сохранение грязи и / или сильную карбонизацию масла. Проверьте герметичность и целостность воздушного фильтра и замените их.
Проверьте условия окружающей среды и устраните, где это возможно. Если компрессор звучит по-другому, чем обычно, в холостом ходу или на нагрузке или в обоих случаях,
это указывает на износ винтового блока и /или редуктора. Сравнить звуковые вибропоказатели с записанными ранее и максимально допустимыми значениями. Устранить причину неисправности. Не используйте повторно сепаратор.

5) Обесцвеченный сепаратор с высоким перепадом давления
в нормальном режиме во время рекомендованного интервала замены компрессора или за его пределами (это может быть до 3000 часов для горячих компрессоров с малым (минеральным) заполнением маслом, для холодных компрессоров или с большим (минеральным) заполнением маслом это может быть от 6000 до 8000 часов). Высокий перепад давления до нормального ожидаемого срока службы сепаратора  может быть обусловлен многими причинами (см выше). Например мелкие частицы пыли и расширенные молекулярные нити, вызывающие засорение, как правило, не приводят к обесцвечиванию наружного фильтрующего материала.

6) Сплющенный сепаратор и отсутствие окраски.
Определите причину высокого перепада давления, которое привело к такой поломке епаратора. Это может быть механическая неисправность компрессора, клапан минимального давления или другая причина, эксплуатационная неисправность — слишком быстрое открытие или закрытие выпускного воздушного клапана. Определите механическую или эксплуатационную неисправность и устраните ее.

7) Свернутый сепаратор — ограниченное обесцвечивание.
Определите причину высокого перепада давления, которое приведет к разрушению сепаратора. Возможные причины: накопление шлака, грязи или других частиц, смешанных масел.

8) Сплющенный сепаратор — серый к черному.
Определите причину высокого перепада давления, который приводит к разрушению сепаратора. Возможные причины: неправильное масло, образование осадка, загрязнение, повреждение или плохая посадка воздушного фильтра.

9) Сплющенный сепаратор — черный с отложением углерода.
Взрыв или разрыв; Изучите цвет и зернистость сажи: сажа, покрытая мелким зерном и сероватым цветом, указывает на взрыв и обычно сопровождается механическим повреждением компонентов между корпусом и корпусом сепаратора и включением в него, а сажевый слой зернистый и черноватый указывает на внезапный пожар. Определите причину, отремонтировать / провести капитальный ремонт компрессора, сменить сепаратор, воздушный и масляный фильтр и масло.

 

 

Копирование даного текста разрешается только с указанием источника

Перейти в раздел

compressor.net.ru

Расход масел на цилиндры компрессоров





    Значительно уменьшает образование нагаромасляных отложений правильный выбор норм расхода масла. Как правило, рекомендации заводов-изготовителей компрессоров по расходу масла для смазки цилиндров завышены. В некоторых случаях эксплуатационники опытным путем приходят к уменьшенным нормам расхода масла [17, 45]. К. С. Борисенко [17] отмечает, что уменьшение в 2 раза количества подаваемого масла снижает количество нагаромасляных отложений в 20—30 раз. Однако во многих случаях расследования взрывов компрессорных станций приходится сталкиваться с недооценкой обслуживающим персоналом вопросов нормирования расхода смазочного масла [81, 159]. [c.73]








    Перед вводом в нормальную эксплуатацию вновь смонтированный компрессор обкатывают и налаживают. Обкатка компрессора производится вхолостую (без клапанов цилиндров) в течение 6—8 час. Во время обкатки и наладки увеличивают норму расхода масла для смазки цилиндров и чаще заменяют масло для смазки кривошипно-шатунного механизма. После обкатки в цилиндры компрессора устанавливают клапаны и постепенно начинают поднимать давление нагнетания, доведя его примерно через 6 час. до нормального. За этот период проверяются работа всех механизмов и плотность всех соединений, регулируется подача смазки. Поэтому этот период называют наладкой компрессора. После наладки и шестичасовой работы под полной нагрузкой компрессор может быть введен в нормальную эксплуатацию. [c.344]

    Расход масла для смазки цилиндров воздушных компрессоров низкого и среднего давлений определяют исходя из следующих норм (рекомендованных Страсбургским конгрессом по маслам) 1 г на каждые 400 смазываемой поверхности для горизонтальных, компрессоров и 1 г на каждые 500 для вертикальных. [c.457]

    Смазка цилиндров разбрызгиванием масла из картера применяется в компрессорах бескрейцкопфного типа. Масло захватывается из картера противовесами коренного вала и разбрызгивается по поверхности цилиндра, открываемой поршнем. При следующих оборотах вала масло увлекается поршнем и наносится на остальную часть рабочей поверхности цилиндра. Основным недостатком этого способа является отсутствие регулирования расхода масла. [c.220]

    Зазоры в сопряжении поршень—цилиндр должны выбираться из условия обеспечения оптимальных показателей работы компрессора производительности, конечного давления сжатия, затрачиваемой мошности на единицу производительности, расхода масла на смазку в г/ч, расхода воды на охлаждение рубашек цилиндров, отнесенного к единице производительности и износостойкости деталей, т. е. к долговечности работы компрессора без капитального ремонта. [c.73]

    Излишнее количество масла в цилиндре нежелательно, так как, чем больше масла контактирует с горячим газом, тем больше образуется нагара. Поэтому следует строго нормировать количество подаваемого в цилиндры масла. Расход масла определяют, исходя из допустимого на 1 м смазываемой поверхности г/м ( рекомендуется выбирать для компрессоров низкого и среднего давления в пределах 0,002—0,0025 г/м , а для компрессоров высокого давления по рис. 10.2). Нормы расхода масла на 1 м смазываемой поверхности в сальниках в два-три раза больше. [c.270]








    В компрессорах без смазки цилиндров смазывается только механизм движения, вследствие чего общий расход масла снижается в 30—40 раз. Отсутствие лубрикатора упрощает конструкцию этих компрессоров. [c.645]

    Воздухоразделительные установки, работающие по циклу высокого давления, укомплектовывают многоступенчатыми воздушными компрессорами, к которым предъявляют повышенные эксплуатационные требования. Для смазывания цилиндров и сальников воздушных компрессоров следует применять только масла П-28 (ГОСТ 6480—78) или К-28 (ТУ 38—1—6—66), обладающие высокой термической стабильностью. Расход масла, подаваемого к каждой смазывающей точке цилиндров и сальников компрессора, должен быть строго регламентирован в соответствии с указаниями завода-изготовителя и инструкциями по обслуживанию. Недостаточное смазывание цилиндрово-поршневой группы вызывает преждевременное изнашивание, а слишком обильное смазывание приводит к отложению масла на клапанах, стенках клапанных коробок и в трубопров

www.chem21.info

Нормы расхода компрессорного масла — Справочник химика 21





    Нормы расхода компрессорного масла 19 (Т) приведены в табл. 24. [c.100]

    Компрессорные установки. Норма расхода масла в г на 1 ч работы установлена для компрессоров следующих марок  [c.262]

    Нормы расхода компрессорного масла марки 19 (Т) на смазку цилиндров [20] [c.100]








    НОРМЫ РАСХОДА КОМПРЕССОРНОГО МАСЛА [c.335]

    Значительно уменьшает образование нагаромасляных отложений правильный выбор норм расхода масла. Как правило, рекомендации заводов-изготовителей компрессоров по расходу масла для смазки цилиндров завышены. В некоторых случаях эксплуатационники опытным путем приходят к уменьшенным нормам расхода масла [17, 45]. К. С. Борисенко [17] отмечает, что уменьшение в 2 раза количества подаваемого масла снижает количество нагаромасляных отложений в 20—30 раз. Однако во многих случаях расследования взрывов компрессорных станций приходится сталкиваться с недооценкой обслуживающим персоналом вопросов нормирования расхода смазочного масла [81, 159]. [c.73]

    Во время работы компрессорной установки обслуживающий персонал должен обеспечить контроль за температурой и давлением сжатого воздуха и за нормой расхода смазочного масла, а также за температурой охлаждающей воды и непрерывным ее поступлением к компрессорам. Показания приборов через установленные инструкцией промежутки времени должны записываться в сменный журнал учета работы ко.мпрессора [c.344]

    Для Компрессоров новых или с заново расточенными втулками цилиндров и новыми поршневыми кольцами в период приработки, а также и для сильно изношенных компрессоров нормы расхода масла должны быть увеличены в 1,5- 2 раза. В многоступенчатых машинах высокого давления, смазываемых компрессорным маслом 19, авиационными маслами МК-22 или брайтстоком, нормы смазки должны быть увеличены в 4—6 раз по сравнению с данными табл. 19. Ориентировочно можно также считать, что в компрессорах с хорошо приработавшимися поверхностями необходим 1 г масла на 400 пройденной поверхности трения цилиндра низкого давления, [c.339]

    Машинист воздушно-компрессорной, станции обязан экономить топливо и смазочные масла, так как эти материалы являются дефицитными. Норму расхода бензина, дизельного топлива и смазочных материалов устанавливают с учетом местности, времени года и условий работы станции. [c.168]

www.chem21.info

Девятнадцать причин повышенного расхода масла

Нормы расхода масла

Для начала обратимся к документации производителя, которая регламентирует расход масла. Приведённые ниже данные справедливы для всех бензиновых двигателей с 2012 года и по сегодня с пробегом не более 80 тысяч километров. Допустимый уровень «жора» составляет литр на 3200 километров при не агрессивном стиле вождения и обслуживании автомобиля согласно регламента. Данные нормы не применяются для нагруженных автомобилей, при передвижении на высокой скорости или при высоких оборотах, а также при агрессивном стиле вождения, при чём есть отдельный пункт про МКПП, которые только увеличивают расход из-за неоптимального переключения передач. В таком случае допускается расход литр на 800 километров.

Отдельной строкой выделен пункт о машинах с пробегом менее 12 тысяч километров, этот интервал отводится для обкатки двигателя и указанные выше цифры к нему не применяются. Ну и не забываем, про очевидные вещи: несоответствие вязкости и отсутствие допусков сильно влияют на конечный результат, равно как и износ двигателя с возрастом и увеличением пробега.

Стоит отметить, что расход масла и его течь это не одно и то же. Капля на километр в пересчёте на тысячу выливается в ощутимую маслопотерю. В идеале уровень нужно проверять на горячую через 15 минут после остановки двигателя, машина стоит на поверхности без уклона.

Причины расхода масла

  1. Овальность и конусность цилиндров. Вследствие увеличения зазоров поршни работают в изношенных цилиндрах, даже при незначительном наклоне масло обходит уплотнительные кольца и на каждом такте поступает в камеру сгорания.
  2. Деформация цилиндров. Может быть вызвана неравномерным распределением тепла или неравномерно затянутыми болтами головки блока цилиндров. Вследствие этого маслосъёмные кольца не полностью прилегают к деформированной поверхности и не снимают излишки масла.
  3. Неправильная работа системы PCV. Основная задача системы вентиляции картера (PCV) – отвод газов из области картера для удаления несгоревших углеводородов. В системе используются клапан и резиновые шланги, которые соединяют картер с впускным коллектором. Вакуум, образующийся во впускном коллекторе, втягивает газы из картера и выводит их в камеру сгорания вместе с обычным воздухом и горючей смесью. Система PCV может засориться, газы не будут эффективно выводиться из картера, что повлияет на масло, способствуя формированию дополнительных загрязнений. Грязь оседает на маслосъёмных кольцах, что приводит к их ускоренному износу. Не забываем про повреждение прокладок и уплотнений в связи с повышением давления в картере.
  4. Изношенные канавки поршневых колец. Для формирования хорошего уплотнения канавки должны быть ровными и плоскими. У поршневых колец в конических канавках и в канавках неправильной формы не будет надлежащей герметизации, что опять приводит к маслу в камере сгорания.
  5. Изношенные, повреждённые или залёгшие поршневые кольца. Масло проникает в камеру сгорания на такте впуска и горячие газы будут просачиваются через зазоры на такте рабочего хода. Все это приведет к сгоранию масла и образованию налёта на цилиндрах, поршнях и кольцах.
  6. Повреждения перемычек/поясов поршня. Кольца начинают гулять, переставая выполнять свою функцию. Лечится только заменой поршней.
  7. Изношенные стержни и направляющие клапанов. Если стержни и направляющие клапанов изнашиваются, образующийся во впускной системе вакуум будет засасывать масло и масляные пары в цилиндр между стержнем впускного клапана и направляющими.
  8. Погнутые или смещенные шатуны. Погнутые или смещённые шатуны не позволят поршням ходить в цилиндрах ровно. Таким образом поршни и кольца не достигают должного эффекта уплотнения, что приводит к увеличению расхода масла.
  9. Разжижение топлива. Если подобное топливо попадает в систему смазки, масло становится более жидким и испаряется быстрее, что опять же приводит к увеличению расхода масла.
  10. Засорённая система охлаждения. Коррозия, ржавчина, накипь, осадок или другие образования в водяной рубашке и радиаторе не позволяют системе охлаждения эффективно отводить тепло. Эти факторы могут вызвать деформацию цилиндров (см. п. 2).
  11. Вязкость масла. Использование масла с недостаточной вязкостью, а также не соответствующее допускам, может привести к увеличению его расхода. Стоит учитывать регион эксплуатации и температурный режим окружающей среды.
  12. Загрязнённое масло. Без регулярной замены фильтра и масла, оно может загрязниться настолько, что пропускная способность масляных каналов поршневых колец и поршней уменьшится в результате скопления грязи и образования налёта.
  13. Переполнение картера. Вследствие неправильной установки масляного щупа в гнезде, щуп покажет низкий уровень. При добавлении масла до «нормальной» отметки фактический уровень станет слишком высоким. Если уровень масла настолько высок, что нижние концы шатунов касаются, на стенки цилиндров подаётся избыточное количество масла, в результате чего оно попадает в камеру сгорания.
  14. Чрезмерно высокое давление масла. Из-за неисправного клапана сброса давления в двигатель поступает избыточное количество масла.
  15. Чиптюнинг и мощностные модификации. Двигатель работает в неоптимальных условиях, отличных от заложенных производителем.
  16. Перегрузка двигателя. Перегрузка или «захлёбывание» двигателя происходит, когда он работает на пониженных оборотах в тех ситуациях, когда должен работать на более высоких. Чаще всего возникает на машинах с МКПП при некорректном выборе соотношения передачи и оборотов.
  17. Двигатели с турбонаддувом. В результате повышенного давления в системе PCV, что характерно для турбированных двигателей, масло попадает во впускной коллектор, оттуда в интеркулер, далее в двигатель и вылетает сизым дымом через трубу.
  18. Затруднённый впуск воздуха. Из-за забитого воздушного фильтра увеличивается вакуум двигателя.
  19. Сальники впускного коллектора. V-образные двигатели с поддоном картера мокрого типа (3.3/3.8L) могут засасывать масло во впускные отверстия из-за ненадлежащего уплотнения между портами впускного коллектора и головкой блока цилиндров. Причиной служат неправильный момент затяжки болтов впускного коллектора, коррозия (алюминиевые впускные коллекторы) и/или коробление уплотнения.

Если целиком довериться официальной документации, складывается ощущение, что двигатель у нас не бензиновый, а очень даже масляный. Большинство автомобилей давно перешагнули отметку в 80К километров, многие откатали уже по триста и четыреста тысяч, но всего перечисленного выше ужаса не наблюдают, многие вообще не доливают от замены до замены. Владельцев без повышенного расхода масла объединяют следующие черты: спокойная езда, своевременное обслуживание и выбор корректного масла. Собранная за последние восемь лет статистика говорит одно: если ваш двигатель «жрёт» масло, значит с ним что-то не так и пора на диагностику. Для американцев это в целом не характерно.



trs-motors.ru

Пять основных причин расхода масла в двигателе.

Добрый день. В сегодняшней статье мы поговорим про причины расхода масла в двигателе внутреннего сгорания. Мы рассмотрим бензиновые и дизельные двигатели в атмосферном и наддувном исполнении. Традиционно для нашего сайта, статья написана простым языком и содержит множество фото и видео материалов.

 

На самом деле, причины расхода масла у бензиновых и дизельных двигателей ничем не отличаются, поэтому отдельно рассматривать их нет смысла.

 

 

Куда пропадает масло из двигателя?

После того как масло залито в картер двигателя у него всего три варианта — сгореть попав в камеру сгорания, вытечь наружу через неплотности в прокладках и сальниках, или отработать свой ресурс и дождаться замены.

Когда мы говорим про расход масла, мы подразумеваем течь и угар.

 

 

 

Как обнаружить расход масла на течь?

 

При незначительных протечках, особенно если двигатель давно не приводился в порядок, течь масла будет видна визуально:

 

При значительных утечках, под машиной будут появляться масляные пятна, а подтеки масла будут визуально заметны даже на чистом двигателе.

Договорились — течи масла легко обнаруживаются визуальным осмотром.

 

 

Как найти причину расхода масла на угар?

 

О расходе масла на угар говорит быстрое снижение его уровня и наличие копоти на свечах, при условии отсутствия течей.

Как правило, двигатель, обладающий повышенным расходом масла, дымит сизым дымом:

Важно понимать – двигатель, даже при запредельном расходе масла, может не дымить, при условии, что в него залито качественное масло с низким содержанием серы, ну или присадка-загуститель, но вот свечи не обманешь. Если вы вывернули свечу и увидели черную сажу, а расход толива в норме, можете быть уверены – двигатель расходует масло. Выглядит свеча при повышенном расходе масла вот так:

 

Вообще расход масла до 0.2% от расхода топлива считается нормальным. Т.е при расходе 10 литров топлива на 100 км пути за 10000 км пробега (стандартный интервал замены масла) вы потратите 1000 литров бензина. И считается допустимым за этот пробег долить 2 литра масла!

 

 

 

Топ 5 причин повышенного расхода масла, в порядке уменьшения вероятности возникновения.

 

Проблемы с системой вентиляции картера.

 

Из экологических соображений, на всех современных двигателях применяется т.н. закрытая система вентиляции картера.

Раньше картер двигателя сообщался с атмосферой, выглядело это вот так:

При повышенном износе двигателя, чтобы снизить расход масла, опытные шоферы выводили сапун под машину. Это позволяло дольше сохранять чистым воздушный фильтр и снижало расход масла. Может быть вы помните висящие под старыми машинами и дымящие шланги?

 

Система вентиляции картера служит для удаления газов попавших из цилиндров в картер двигателя. Проблема в том, что удаляет она не только картерные газы, но и масло. Производители исхитряются и применяют различные маслоотделители, но при малейших проблемах с ними начинается запредельный расход масла.

 

 

Типичные неисправности системы вентиляции картера:
Неисправности маслоотделителя.

При неисправности маслоотделителя за дросселем все будет в масле. На некоторых машинах маслом закидает даже воздушный фильтр.

 

 

 

Неисправность клапана вентиляции картера.

На некоторых машинах кроме маслоотделителя установлен клапан вентиляции картера. Он срабатывает только при повышении давления в картере. Когда он забивается нагаром, он перестает срабатывать, а после или рвет мембрану и двигатель начинает активно кушать масло, или его давит через все прокладки и сальники.

Проверяется эта неисправность очень просто – при работающем двигателе открутите маслоналивную пробку и положите на нее руку,  если вы чувствуете, что двигатель сосет воздух внутрь – клапан вентиляции картера исправен (или не предусмотрен конструкцией).

 

 

 

Проблемы с маслосъемными колпачками.

 

На автомобилях с пробегом, это одна из самых распространенных проблем. Дело в том, что по мере старения у автомобиля высыхают все уплотнители.

При работе атмосферного двигателя,  во впускном коллекторе поддерживается разрежение. Масло, по штокам клапанов, стекает в цилиндры, где и сгорает. Наибольший расход масла при износе маслосъемных колпачков происходит при работе на холостом ходу.

Диагностируется эта неисправность просто – если, после того как двигатель продолжительное время работал на холостом ходу, резко увеличить обороты — 30-60 секунд наблюдается сизый дым, а после, выхлоп приобретает обычный цвет.

Вот видео как проявляются проблемы с маслосъемными колпачками:

Решить проблему можно только посредством замены маслосъемных колпачков. Кстати, у нас на сайте есть статья о том, как осуществляется замена маслосъемных колпачков без снятия головки блока цилиндров.

 

 

 

 

Проблемы с маслосъемными кольцами.

Помните устройств цилиндропоршневой группы?

На каждом поршне установлены 3 кольца — два компрессионных и одно маслосъемное.

Когда маслосъемное кольцо залегает, оно перестает удалять масло со стенок цилиндра и, естественно, оно остается в камере сгорания и сгорает во время рабочего хода.

 

Занятно — у такого двигателя будут отличные показатели компрессии, так как она поддерживается за счет масляного клина.

 

Диагностируется залегание поршневых колец очень просто — двигатель дымит сизым дымом всегда. Зависимость количества дыма от оборотов линейная — чем выше обороты тем больше дыма. Как правило, при залегании маслосьемных колец, двигатель дымит гораздо сильнее чем при проблемах с маслосъемными колпачками.

 

Внимание – на автомобилях оборудованных катализатором, дымность проявится только после того как катализатор выйдет из строя.

 

Вот небольшое видео про то, как проявляется неисправность:

 

Решение проблемы — для начала попробовать раскоксовку, но, как правило, при залегании маслосъемных колец раскоксовка практически ничего не дает.

 

 

 

 

 

Проблемы с турбиной.

 

При неисправности турбины, двигатель будет постоянно дымить сизым дымом.

Диагностика турбины выполняется очень просто — снимаем выходной патрубок и проверяем наличие в нем масла. Если масло есть, проверяем люфт оси турбины. С большой долей вероятности вал турбины будет болтаться.

Вот небольшое видео с демонстрацией этой неисправности (правда на дизельном двигателе т.к. большинство турбированных двигателей это дизеля):

 

Если люфта нет, турбина проворачивается и не закусывает, проверьте наличие масла до турбины, весьма вероятно, что вы пропустили неисправность системы вентиляции картера.

 

 

 

Проблемы с прокладкой ГБЦ.

 

С попаданием масла в камеру сгорания по причине неисправности прокладки ГБЦ я столкнулся всего 1 раз.

Это реально очень  маловероятный сценарий и, скорее всего, дело было в браке самой прокладки.

Конкретно в моем случае это было на инжекторной «ниве», канал для смазки ГБЦ продавило в 3 цилиндр, но двигатель при этом троил, и масло натурально капало из выхлопной трубы!

 

 

 

Заключение.

На этом у меня сегодня все. Если вы знаете другие причины расхода масла в двигателе, или если у вас остались вопросы, пишите комментарии.

 

С уважением, администратор https://life-with-cars.ru

life-with-cars.ru

Проблема возврата масла

Масло, применяемое для смазки холодильных компрессоров, очень хорошо смешивается с обычными хладагентами.

Сильная близость свойств масла и хладагентов является причиной многочисленных и, как правило, малоизученных проблем, которые могут вызывать механические (разрушение клапанов, заклинивание компрессора…), электрические (перегорание двигателя) и термодинамические (недостаток холодопроизводительности, нежелательные срабатывания предохранительных систем…) неисправности и поломки.

Предметом настоящего раздела является получение ответов на многочисленные вопросы, встающие перед большинством ремонтников.

А) Почему масло увлекается хладагентом?

Все подвижные части поршневого компрессора (кривошипы, шатуны, цапфы, поршни…) требуют постоянной смазки, в противном случае они прижиrаются друr к друry, вызывая полное заклинивание.

В частности, в смазке нуждаются трущиеся между собой поршни и цилиндры (точнее, поршневые кольца и цилиндры). Напомним, что при скорости двиеателя 1450 об/мин поршни совершают более 24 возвратно-поступательных движений в секунду. При этом внутри цилиндров вместе с хладагентом обязательно должно находиться масло.
В процессе нормальной работы, даже если компрессор новый или имеет безупречное механическое состояние, это неизбежно приводит к тому, что каждый раз вместе со сжатыми газами из цилиндра уходит в виде масляноrо тумана, состоящеrо из мельчайших капелек, какое-то очень небольшое количество масла (см. рис. 37.1).

Дополнительно к этому в периоды, когда компрессор стоит, масло, находящееся в eгo картере, неизбежно поглощает какое-то количество хладагента в зависимости от температуры масла и процедуры остановки компрессора.

Когда компрессор вновь запускается, резкое падение давления в картере вызывает быстрое вскипание хладагента, растворённомго в масле и, следовательно, образование газомасляной эмульсии (т. н. эффект «вспенивания»).

Такая эмульсия всасывается поршнями и нагнетается в конденсатор. В результате в момент запуска из компрессора в контур уходит самое большое количество масла.

В) Какие проблемы возникают из за увлечения масла хладагентом?

Прежде всего, поскольку масло предназначено для смазки подвижных узлов компрессора, оно должно находиться не в контуре, а в картере.

Однако из за большой схожести свойств масла и хладагента невозможно воспрепятствовать тому, что какое-то количество масла регулярно проходит в нагнетающий патрубок компрессора.

Таким образом, с одной стороны необходимо по возможности максимально ограничить выброс масла из компрессора, а с другой стороны обеспечить, чтобы масло, которое ушло из компрессора, могло беспрепятственно возвратиться в картер для выполнения своих функций смазывающее о агента.

В самом деле, если количество вышедшеrо через нагнетающий патрубок масла будет превышать количество масла, вернувшегося через всасывающий патрубок (масло будет задерживаться в неудачно спроектированном контуре), то через какое-то время уровень масла в картере понизится до опасноrо предела, за которым нормальная смазка компрессора будет невозможной.

С другой стороны, если вместе с маслом в картер будет возвращаться аномально большое количество хладагента, его количество, растворенное в масле может стать очень большим. При запуске бурная дегазация масла, обусловленная резким падением давления в картере, приведет к образованию большоrо количества газомасляной эмульсии, что может вызвать срыв подпитки масляноrо насоса. Кроме тогo, образование большоrо количества эмульсии может привести к такому интенсивному выходу масла из компрессора, что к концу пускового режима картер окажется совершенно «пустым» и в течение более или менее продолжительноrо периода компрессор будет оставаться без нормальной смазки (характерное «вспенивание», которое сопровождает образование эмульсии, легко наблюдается в стекле указателя уровня масла). Поэтому настройка ТРВ на небольшой nepeгрев, уrрожая возможностью появления периодических гидроударов (самых легких), уrрожает также опасностью аномальных выбросов масла в контур.

Работа компрессора с повышенной частотой включений и выключении (либо в результате срабатывания предохранительных систем, либо по командам от системы регyлирования) также создает уrрозу опасного понижения уровня масла, поскольку при запусках оно выводится в контур наиболее интенсивно, а короткое время работы не дает ему возможности нормального возврата.

Заметим, что в этом случае положение не спасет даже предохранительный прессостат давления масла, который может быть установлен в компрессоре, поскольку он очень медленно реагирует на изменение давления, (собственное время eгo инерционности составляет около 2 минут), и повреждения, обусловленные плохой смазкой при каждом очередном запуске, могут накапливаться, приводя через более или менее длительный промежуток времени к непоправимым механическим разрушениям подвижных деталей компрессора.

Другая проблема возникает при неудачно спроектированной конструкции или прокладке трубопроводов, главным образом,всасывания. Действительно, вместо тогo, чтобы регyлярно возвращаться в картер компрессора, масло может накапливаться в застойных зонах или участках с отрицательным уклоном.
При опорожнении застойных зон масляная пробка может быть резко всосана компрессором, что приводит к сильному гидроудару, порождающему те же повреждения, что и обычный гидроудар.

Так, например, на рис. 37.2 вверху показано, что слишком большая длина L застойной зоны, в основном на всасывающей магистрали. приводит к тому, что в ней обязательно будет накапливаться значительное количество масла.
По мере накопления масла в застойной зоне eгo уровень в трубе повышается, приводя к уменьшению проходного сечения для газа и, следовательно, повышению потерь давления (Р1>Р2).

Давление Р2 будет падать до тех пор, пока разность давлений Р1 и Р2 не окажется достаточной для тогo, чтобы протолкнуть масляную пробку во всасывающую полость головки блока.

В этот момент в полость резко поступит большое количество масла. Такой прилив масла создает опасность возникновения сильногo гидроудара, последствия которого строго идентичны последствиям обычноrо гидроудара.

Очевидно, точно такие же проблемы могут возникнуть, если масло накапливается на участке трубопровода всасывания с отрицательным уклоном (см. рис. 37.2 внизу).

3аметим, однако, что опасность возникновения перечисленных проблем снижается, если всасывание производится через картер компрессора, а также если он оборудован эффективным устройством демпфирования гидроударов (отделителем жидкости).

Наконец, присутствие масла внутри трубопроводов создает на их внутренней поверхности тонкую изолирующую масляную пленку, что препятствует нормальному теплообмену между воздухом и хладагентом и снижает коэффициент теплоотдачи для конденсатора и испарителя.

Такое снижение интенсивности теплообмена особенно заметно в испарителе, где холодильное масло и хладагент легко разделяются из за низкой температуры.

Если в результате каких то проблем в холодильном контуре в негo попадает слишком многo масла, это может повлечь за собой снижение холодопроизводительности испарителя.
Причем потери холодопроизводительности могут быть столь значительными, что окажутся достаточными для тогo, чтобы появились признаки неисправности типа «слишком слабый испаритель» (в некоторых крайних случаях потери холодопроизводительности испарителя могут достигать 20%).

С) Влияние скорости газа в трубопроводах на процесс возврата масла

Вначале нужно напомнить, что в результате отличного перемешивания масла с хладагентом в жидком состоянии, циркуляция масла в конденсаторе и в жидкостной магистрали проходит без всяких проблем

Однако в магистралях всасывания и нагнетания хладагент находится в паровой (газовой) фазе, поэтому масло и хладагент склонны к разделению.

Следовательно, в этих магистралях могут возникнуть серьезные проблемы с перемещением масла, так как для eгo возврата в картер компрессора необходимо добиться свободноrо перемещения масла по холодильному контуру.

Проблема возврата масла имеет различную остроту в зависимости от расположения участков трубопроводов.

В горизонтальных участках (см. рис. 37.3) основная часть масла течет естественным образом в направлении наклона (если он существует). В отсутствие наклона, если скорость газа в трубопроводе низкая, масло стремиться под действием силы тяжести осесть на дно трубы и застаивается там.

Точно также, как скорость ветра порождает волны на поверхности моря, скорость хладагента над слоем масла порождает возникновение маленьких волн, которые перемещаются в направлении движения хладагента даже в отсутствие наклона, если скорость газа превышает 2,5 м /с

В вертикальных участках (см. рис. 37.4) проблема возврата масла немного осложняется действием силы тяжести, которая заставляет масляную пленку двиеаться вниз. Лоrично предположить, что на
вертикальных участках трубопроводов для преодоления силы тяжести и подъема масла в трубопроводе механическое воздействие газа на масло должно быть гораздо более значительным, чем на горизонтальных участках.

Действительно, эксперименты показывают, что масло легко поднимается в вертикальных трубопроводах, как всасывания, так и нагнетания, если скорость газа в них превышает примерно 5 м/с. С друrой стороны, если в какой то момент скорость газа в вертикальной трубке падает ниже 5 м/с, масло очень быстро остановится и начнет стекать вниз под действием силы тяжести.

ВНИМАНИЕ! Если диаметр вертикальной трубы больше 2 дюймов или если температура испарения
ниже 10° C, минимальная скорость газа, необходимая для подъема масла во всасывающих трубопроводах, расположенных вертикально, становится равной 8…9 м /с

3аметим также, что для всех горизонтальных трубопроводов рекомендуется минимальный наклон 12 мм/м в направлении движения потока.

Кроме тогo в общем случае считается, что скорость газа в трубопроводах не должна превышать 20 м/с с тем, чтобы сохранить в разумных пределах потери давления и уровень шума.

D) Влияние разности уровней на возврат масла

Первая проблема возникает, если конденсатор расположен над компрессором с разностью уровней более 3 метров.

При каждой остановке компрессора движение газа в маrистралях прекращается и масло, находящееся в вертикальном участке, под действием силы тяжести стекает вниз, создавая опасность ero накопления в нагнетающей полости головки блока.

Если высота компрессора над конденсатором превышает 3 метра (см. рис. 37.5), количество масла, которое может скопиться в этой полости, становится весьма значимым. Дополнительно к этому, из за тогo, что окружающая температура по сравнению с температурой нагнетания относительно невысока, при остановке компрессора может сконденсироваться более или менее значительное количество находящихся в магистрали нагнетания паров хладагента, и образовавшаяся жидкость также может стечь в полость нагнетания головки блока компрессора. Скопление там жидкоrо хладагента и масла создает опасность того, что при очередном запуске компрессора произойдет сильный гидроудар.

Точно такая же проблема возникает, если испаритель расположен ниже компрессора, поскольку при остановках последнеrо, масло, находящееся в восходящем трубопроводе, также стекает в нижнюю часть (см. рис. 37.6). Как и в случае нагнетающеrо трубопровода, количество накапливающеrося внизу масла становится значительным, если высота Н трубопровода превышает 3 метра.
Ситуация может еще более ухудшиться, если в застойную зону в нижней части восходящего трубопровода будет стекать масло, выходящее из испарителя, что в целом приведет к накоплению там значительного количества жидкости.

При запуске компрессора образовавшаяся в застойной зоне масляная пробка может попасть во всасывающую полость головки блока и спровоцировать возникновение сильного гидроудара.

Во избежание подобных гидроударов, являющихся причиной многочисленных поломок
клапанов, в тех случаях, когда разность уровней превышает 3 метра, необходимо в нижней части каждой восходящей трубы устанавливать маслоподъемную петлю, а горизонтальные участки прокладывать с наклоном в направлении движения потока.

На выходе из испарителя может возникнуть еще одна проблема, если жидкость, находящаяся в застойной зоне, представляет собой смесь масла с хладагентом (для получения такой смеси достаточно совсем немногo жидкоrо хладагента, вытекающеrо из испарителя в застойную зону при остановках компрессора). В момент запуска резкое падение давления во всасывающей магистрали вызывает очень бурное вскипание смеси в результате испарения хладагента, растворённого в масле.

При испарении хладагент поглощает тепло!

Необходимое тепло в значительной степени отбирается от трубопровода, что приводит к резкому падению eгo температуры. Иногда такое заметное охлаждение трубопровода может дойти до термобаллона ТРВ (см. рис. 37.6).

Тогда в момент запуска термобаллон может среагировать на резкое падение температуры и, следовательно, обусловить резкое закрытие ТРВ в особенно критический момент (в момент запуска давление конденсации понижено, также как и производительность ТРВ, и для тогo, чтобы как можно лучше запитать испаритель, необходимо, напротив. полное открытие ТРВ).

Таким образом, ТРВ аномально закрывается, пропуская ничтожно малое количество жидкости, и отключение компрессора предохранительным пресостатом НД обеспечено (неисправность легко обнаружить, дотронувшись до всасывающеrо трубопровода в месте установки термобаллона ТРВ).

Чтобы избежать таких проблем, настоятельно рекомендуется внизу любой восходящей магистрали всасывания, высота которой превышает 3 метра, устанавливать жидкостную ловушку (т. е. маслоподъемную петлю), и быть очень внимательным при прокладке трубопроводов, на которых будет установлен термобаллон, особенно тщательно соблюдая уклоны.

Мы уже увидели, что для обеспечения подъема масла по вертикальным участкам трубопроводов, скорость газа в них постоянно должна быть выше 5 м/с, какими бы ни были условия работы
Однако если разность уровней (высота Н на рис. 37.7) превышает примерно 7,5 м, проблема усложняется еще больше.

Начиная с этой высоты как на магистралях всасывания, так и на магистралях нагнетания, масляная пленка, поднимающаяся по стенкам трубопроводов, разрушается и отрывается от стенок, падая вниз под действием силы тяжести, даже если скорость газа выше 5 м/с.

Дополнительно к этому при нормальной работе каждый погонный метр трубопровода содержит какое-то количество масла.

Но чем больше растет разность уровней, тем больше повышается длина труб и тем больше возрастает содержание масла в этой трубе.

При большой разности уровней количество масла, стекающее вниз при каждой остановке компрессора, может оказаться настолько значительным, что полностью зальет маслоподъемную петлю, расположенную в нижней части восходящей трубы.

На восходящем трубопроводе нагнетания подобный наплыв масла при остановке компрессора создает опасность возврата масла в нагнетающую полость головки блока, если маслоподъемная петля окажется переполненной (см. схему на рис. 37.8).

Попадание масла в полость головки блока при очередном запуске компрессора может вызвать гидроудар, причем если существует опасность конденсации хладагента внутри трубопровода во время остановки компрессора, ситуация еще более ухудшается.

В восходящих трубопроводах всасывания, имеющих большую высоту, значительное количество масла, скапливающееся в маслоподъемной петле при остановке компрессора, во время очередноrо запуска может быть засосано в компрессор в виде масляной пробки и тоже привести к возникновению сильного гидроудара, смертельно опасноrо для клапанов (ситуация также может ухудшиться из за натекания в маслоподъемную петлю хладагента, выходящеrо из испарителя).

Во избежание перечисленных неприятностей, способных спровоцировать серьезные механические повреждения компрессора, в том случае, когда разность уровней очень большая, маслоподъемные петли необходимо устанавливать не более чем через каждые 7,5 метров восходящих трубопроводов как на всасывающей, так и на нагнетающей магистралях (см. рис. 37.9).

Такая конструкция позволяет маслу при работе установки подниматься от петли к петле и исключает
возможность возврата масла из верхней маслоподъемной петли в нижнюю.

Во время остановки в каждой маслоподъемной петле масло накапливается в разумных пределах, не переполняя ее.

3аметим, что разность уровней более 30 м совершенно не рекомендуется так как потери давления в трубопроводах такой высоты с 4-мя последовательно установленными маслоподъемными петлями становятся совершенно неприемлемыми (вообще-то соворя, всегда рекомендуется иметь как можно меньшую разность уровней).

Наконец, заметим, что установка маслоотделителя в нагнетающем трубопроводе компрессора (это техническое решение очень редко используется в воздушных кондиционерах) полностью не решает проблему возврата масла.

Действительно, даже тщательно подобранный и смонтированный маслоотделитель, несмотря ни на что будет пропускать от 1 до 2% масла, выходящеrо из нагнетающей полости компрессора.

Следовательно, все равно нужно обеспечить возврат этого масла в компрессор, и описанные выше требования к подбору и прокладке трубопроводов остаются в силе и для установок, оснащенных маслоотделителями.

Е ) Как изготовить маслоподъемную петлю?

Напомним, что маслоподъемная петля, обеспечивая улучшение процесса циркуляции масла в холодильном контуре, служит для удержания жидкости (масла или сконденсированноrо хладагента) в нижней части всех вертикальных трубопроводов, по которым хладагент циркулирует снизу вверх и длина которых превышает 3 метра.

Маслоподъемная петля не является емкостью для хранения жидкости и очень важно, что ее размеры должны быть как можно меньше с тем, чтобы уменьшить количество удерживаемой жидкости (место масла не в петле, а в картере компрессора) и избежать появления в контуре значительных масляных пробок, которые будут перемещаться по контуру (особенно во всасывающей магистрали компрессора).
Чтобы изrотовить маслоподъемную петлю, лучше всегo использовать покупной U-образный патрубок, если это возможно (радиус закругления очень небольшой), или два 90 градусных уrольника (но в любом случае сторона L должна быть как можно меньше, см. рис. 37.10).

Необходимо также всегда пунктуально соблюдать направление уклона (не менее 12 мм/м).

По мере накопления масла в маслоподъемной петле, eгo уровень
поднимается, снижая проходное сечение для газа, что вызывает
плавное повышение скорости газа.

Повышение скорости газа и eгo воздействие на поверхность масла способствуют разрушению этой поверхности (см. рис. 37.11) с образованием очень мелких капелек и увлечению масла в вертикальный трубопровод в виде масляноrо тумана и масляной пленки, которая продвиrается вперед по длине стенок трубопровода в результате механическоrо воздействия на нее проходящеrо газа (если eгo скорость не ниже 5м/с).

F) Проблема установок с переменной холодопроизводительностью

Эта проблема относится к установкам, в которых в процессе эксплуатации расход хладагента в контуре может меняться, например, когда имеется несколько параллельно работающих компрессоров, или когда может меняться число оборотов компрессора, или если регyлирование производительности осуществляется за счет исключения из работы отдельных цилиндров путем воздействия на всасывающие клапаны.
Действительно, если расход хладагента в контуре переменный и зависит от режима работы установки, скорость газа в трубопроводах также будет меняться. Для лучшего понимания рассмотрим в качестве примера установку, оборудованную двумя одинаковыми компрессорами, смонтированными в параллель, то есть установку с двумя ступенями мощности (100% или 50%).

Допустим, что диаметр восходящей магистрали этой установки с длиной 7 м был выбран из условия, чтобы при работе обоих компрессоров (при 100% расхода хладагента) скорость газового потока в магистрали была равна 6 м/с (см. рис. 37.12).

При полной мощности скорость газа выше 5 м/с и масло поднимается вполне нормально.

Однако, коrда один из двух компрессоров остановлен, расход хладагента вполовину уменьшается и падает примерно до 50% полного расхода. Поскольку диаметр трубы остался прежним, скорость газа в вертикальной трубе упадет примерно до 3 м/с, что не позволит маслу подниматься надлежащим образом.

Масло начнет накапливаться в маслоподъемной петле, закупоривая проходное сечение так, как если бы труба перекрывалась постепенно закрывающимся краном.

Разность давлений с одной и с другой стороны петли будет при этом обусловливать периодический подъем в трубе масляной пробки со всеми вытекающими из этоrо нежелательными последствиями, главным образом, если речь идет о всасывающей магистрали компрессора (опасность гидроудара, особенно на запуске).

Когда установка имеет несколько ступеней производительности, обусловливающих изменение расхода, диаметр трубопроводов, в которых хпадагент циркулирует снизу вверх, должен подбираться таким образом, чтобы обеспечь минимальную скорость газа не ниже 5 м/с при наименьшем расходе хладагента.

Однако в дальнейшем потребуется обеспечить более высокий расход, коrда установка начнет работать на 100% мощности. При этом нужно обеспечить следующие условия:

* Полные потери давления в трубопроводах (длина вертикальных участков + длина горизонтальных участков + местные сопротивления) не должны быть слишком высокими, то есть не выше перепада, эквивалентного температуре примерно 1 С, как для магистралей всасывания, так и нагнетания;
* Скорость газа никогда не должна превышать 20 м/с, так как это создает опасность возникновения в трубопроводах очень сильного шума.

Если диаметр трубопровода, выбранный исходя из условия обеспечения минимальной скорости газового потока не ниже 5 м/с при наименьшей мощности, становится слишком малым и приводит к значительным потерям давления при работе на полной мощности, возникает необходимость использования сдвоенных трубопроводов с тем, чтобы обеспечить бесперебойный подъем масла при любых условиях работы и при любом расходе хладагента.

При монтаже сдвоенных трубопроводов (см. рис. 37.13) диаметр малой трубы выбирается из условия обеспечения в ней скорости выше 5 м/с для минимальное о расхода хладагента.

Действительно, при пониженной мощности скорость газа в обеих трубах настолько мала, что масло не может подниматься и накапливается в маслоподъемной петле вплоть до полного перекрытия большой трубы.

С этого момента газ начинает проходить через малую трубу со скоростью, достаточной для нормального подъема масла. Обратная петля в верхней части трубопровода (поз.1 на рис. 37.13) предотвращает проход масла, поднявшегося по малой трубе, в большую трубу.

Когда мощность установки возрастет, повышение расхода хладагента протолкнет масло, собравшееся в ловушке, и газ вновь начнет циркулировать по обеим трубам.

Когда разность уровней большая, нужно устанавливать сдвоенные трубопроводы на каждом участке длиной не более 7,5 м, тщательно соблюдая изложенные выше требования и направления уклонов.

Тем не менее, несмотря на все, можно столкнуться с проблемой понижения уровня масла в картере компрессора установок с переменным расходом хладагента, даже если выбор диаметров и прокладка трубопроводов произведены по всем правилам.

Чтобы понять причину этоrо явления, рассмотрим в качестве примера 6 цилиндровый компрессор с тремя ступенями производительности (100%, 66% и 33%), обеспечиваемыми изменением числа действующих цилиндров, который расположен над испарителем.

Допустим, что при максимальной мощности (100%, задействовано 6 цилиндров) через нагнетающую магистраль компрессора вместе с хладагентом выходит 1,5 литра масла в час.

Поскольку конструкция установки и ее монтаж выполнены по всем правилам, вместе с хладагентом в компрессор возвращается такое же количество масла (то есть 1,5 л/час) и уровень масла по указателю уровня (см. рис. 37.14) находится в норме.

В какойто момент температура в охлаждаемом объеме падает и система реryлирования снижает производительность компрессора до 66% от номинала, исключая из работы 2 цилиндра (1 блок). Всасываемое компрессором количество хладаrента уменьшается и расход через компрессор падает до 66%

Но каждый килоrрамм приходящеrо в компрессор хладагента может содержать только cтpoгo определенное количество масла, которое не зависит от расхода, следовательно приход масла тоже упадет пропорционально падению расхода, то есть до 66% или примерно до 1 л/час (также, как и расход масла из компрессора).

Следовательно, через всасывающую магистраль в компрессор будет поступать с этого момента только 1 л/час масла, в то время как перед этим через магистраль нагнетания уходило 1,5л/час. Это значит, что количество масла, эквивалентное расходу 0,5 л/час, остается в контуре

Если компрессор расположен над испарителем, масло не может возвратиться в картер под действием силы тяжести. Следовательно, количество масла, эквивалентное расходу 0,5 л/час, остается в контуре, елавным образом, в испарителе, где падение температуры приводит к разделению масла и хладагента, и уровень масла в компрессоре падает (см. рис. 37.15).

Если система регyлирования переводит теперь компрессор на уровень 33% производительности, повторится точно такая же картина, поскольку расход хладагента станет еще меньше и будет уносить из компрессора еще меньше масла, однако и поступление масла во всасывающий патрубок тоже уменьшится.

В результате в контуре опять останется количество масла, эквивалентное eгo расходу 0,5 л/час, и уровень масла в картере вновь понизится (см. рис. 37.16).

Таким образом, если компрессор будет работать с мощностью 33% от наминала, количество масла, оставшееся в испарителе, окажется достаточным, чтобы уровень масла в картере заметно понизился. В этот момент, если задающий термостат отключит компрессор, ничто не позволит больше маслу, находящемуся в испарителе, возвратиться в картер.
При последующем запуске такая же картина будет повторяться всякий раз, когда компрессор будет переходить на режим пониженной производительности, а опасность понижения уровня масла будет еще более значительной вплоть до тогo, что обусловит либо серьезную механическую аварию из за плохой смазки, либо отключение компрессора датчиком давления масла (если он существует либо прохождение во всасывающую магистраль огромной масляной пробки (гyбительной для клапанов всасывания вследствие сильноrо гидроудара), если испаритель окажется слишком переполненным маслом.

Во избежание перечисленных явлений необходимо перед каждой остановкой компрессора по команде от регулятора каждый раз возвращать накопившееся в испарителе масло с тем, чтобы приеотовиться к последующему запуску.

Для этоrо остановки компрессора должны обязательно производиться с использованием метода
предварительного вакуумирования (см. раздел 29. Остановка холодильных компрессоров).

Замечание 1. В каждой маслоподъемной петле всегда остается более или менее значительное количество масла. Поэтому при первом запуске вновь собранной установки с большим числом ловушек считается допустимым понижение уровня масла в компрессоре.

Можно также перед запуском установки предварительно заполнить ловушки тем же маслом, что используется для смазки компрессоров.

Замечание 2. Постепенное исключение из обращения хлорфторуrлеродов CFC (RI2, R502…) и появление новых хладагентов серии фторуrлеводородов HFC (R134a, R404A…) с эфирными маслами вместо минеральных приводит к возникновению новых проблем в вопросах возврата масла (см. раздел 56. Проблемы, возникшие с появлением новых хладагентов).

 

 

www.newhk.ru

От чего большой расход масла в двигателе. Основные причины.

В идеальном случае в двигатель никогда бы не пришлось доливать масло, сливая при замене тот же объем, что и был залит ранее. Однако даже новый мотор будет в любом случае расходовать мизерное количество масла, и по мере износа потребление будет увеличиваться.


Ряд моторов благодаря просчетам конструкторов уже изначально обречен на большой угар масла – к таким «масложоркам», например, относится двигатель N52, про который сами владельцы BMW шутят «всего литр доливки между сменами? Да он же как новый!». Казалось бы, с учетом более чем векового мирового опыта конструирования ДВС подобных просчетов можно было бы избежать, но на практике сочетание нескольких по отдельности малозначимых факторов может значительно повысить «жор» масла мотором.

Почему двигатель расходует масла больше нормы?

Содержание статьи

Причина №1: Цилиндропоршневая группа

Источник основных проблем с расходом масла – это состояние цилиндров, поршней и поршневых колец. В исправном двигателе после прогрева до рабочей температуры зазор между поршнем и стенками цилиндра минимален, кольца плотно прилегают к цилиндрам по всей окружности: в этом случае в камеру сгорания попадает только масло, задержавшееся в микроскопических канавках, оставшихся от хонинговки цилиндра. Однако даже здесь возможны проблемы – на мотоциклетных моторах Yamaha часто отмечается высокий расход масла, и связывают его с традиционно глубоким хонингованием.

По мере износа форма цилиндра изменяется – в середине цилиндра, где линейная скорость движения поршня максимальна, его диаметр увеличивается, при этом из-за боковой нагрузки от шатунов износ неравномерен: цилиндр приобретает овально-бочкообразную форму. Кольца, и сами к этому моменту изношенные, теряют возможность отслеживания формы стенок цилиндров, масло проникает в камеру сгорания, особенно на высоких оборотах. Если двигатель длительно эксплуатировался на низкокачественном масле, то «жор» масла может появиться внезапно – когда канавки маслосъемных колец забиваются нагаром, закоксованные кольца перестают работать.

Закоксовка колец поршня

В наиболее тяжелых случаях причиной перерасхода масла через цилиндропоршневую группу становится следствием тяжелых повреждений – например, лопнувшее кольцо или выскочивший из канавки стопор поршневого пальца продирают в стенках цилиндра вертикальные канавки — задиры, которые становятся легким путем для проникновения масла в камеру сгорания.


Пятна на поршнях означают контакт поршней с цилиндром

Еще одна возможная причина почему двигатель ест масло – коробление самого блока цилиндров, как правило вследствие перегрева мотора. Это характерно для моторов с полностью алюминиевым блоком с никасилевым или алюсиловым покрытием стенок цилиндров, где рабочая температура двигателя задрана выше 100 градусов, как, например, уже упоминавшийся N52.

Причина №2: Головка блока цилиндров

Единственное место, через которое на исправном двигателе масло может попадать в камеру сгорания из головки блока – это направляющие втулки клапанов. Для работы этой пары трения в нее должно подаваться масло, хотя современные металлокерамические и бронзовые втулки способны работать при минимальной смазке. За ограничение количества масла, остающегося на стебле клапана, отвечают маслосъемные колпачки, со временем изнашивающиеся и стареющие. В результате количество масла, остающегося на клапанах, все увеличивается. Но если на выпускных клапанах это не так заметно, то со впускных потоком воздуха оно увлекается в камеру сгорания.

Симптомы износа маслосъемных колпачков типичны – дым усиливается на перегазовке: когда дроссельная заслонка закрывается на высоких оборотах, разрежение во впускном коллекторе достигает максимума, и масло буквально высасывается через направляющие клапанов в цилиндры.

Люфт клапана

Со временем даже новые маслосъемные колпачки могут не решать проблему, так как из-за износа самих направляющих возникает поперечный люфт клапана – между колпачком и стеблем клапана возникают зазоры. Скорость износа направляющих зависит от конструкции привода – на моторах, где на клапан давит коромысло, присутствует значительная боковая нагрузка на клапан, в то время как на моторах, где клапан приводится через толкатель, движущийся в расточке головки, вектор силы направлен строго вдоль стержня клапана, и даже при больших пробегах износ направляющих минимален.

При перегреве головки блока возможна ситуация, когда нарушается герметичность уплотнения масляных каналов, подающих смазку в головку. В этом случае при работе мотора масло начинает попадать в цилиндры по прокладке ГБЦ, дымление увеличивается при наборе оборотов и особенно – на перегазовках, когда давление в системе смазки высоко, а разрежение в цилиндрах максимально.

Причина №3: Вентиляция картера

Система вентиляции картера призвана поддерживать в нем пониженное давление, чтобы снизить до минимума утечки масла через уплотнения. Суть ее проста – пространство внутри картера соединено с пространством под клапанной крышкой, а оттуда патрубок выведен во впуск. Работая, двигатель забирает излишнее давление из картера, но вместе с картерными газами выносится и масляный туман – взвесь микроскопических капель масла.

Для снижения расхода масла через вентиляцию картера в ней устанавливаются маслоотделители – устройства, призванные осаждать в себе капли масла, возвращая его обратно в двигатель. Однако с ростом износа двигателя увеличивается прорыв выхлопных газов в картер и, соответственно, объем и скорость газов, которые приходится пропускать через себя системе вентиляции. В таких условиях маслоотделитель уже не может эффективно работать, и часть масла проникает во впуск.

На угар масла через вентиляцию картера влияют и свойства самого масла. Попадая на днище поршня изнутри (это самая горячая точка внутри картера), оно неизбежно частично испаряется. Та часть паров, что не успевает сконденсироваться в вентиляции картера, уходит во впуск и сгорает. Именно в этом кроется причина внезапного роста угара масла после смены марки – новое моторное масло, имеющее большую испаряемость в сравнении с залитым ранее, станет и сильнее расходоваться.

Зимой причиной повышенного расхода масла может стать замерзание конденсата в системе вентиляции картера. До момента прогрева двигателя, когда маслоотделитель оттает, в картере создается повышенное давление, затем резко стравливаемое во впуск. В этот момент мотор может буквально «выплюнуть» порцию масла во впуск.

В более сложных системах вентиляции (так называемая положительная вентиляция картера, или PCV) разрежение в картере регулируется системой клапанов – в этом случае впуск не постоянно подсасывает картерные газы, а лишь забирает их до достижения нужной разницы давлений, заданной тарировкой клапанов. На таких моторах неисправности клапанов также могут вызвать рост угара масла – засорение или подклинивание клапана приведет к накоплению давления с последующим «плевком» масла во впуск аналогично тому, что происходит при обмерзании вентиляции.

Ещё кое-что полезное для Вас:

Видео: И еще одна очень интересная причина почему современные двигатели жрут масло, которой нет в тексте?

Причина №4:Несоответствие вязкости масла

Следуя за требованиями экологов, двигателисты вынуждены бороться за каждый процент снижения механических потерь в двигателе, чтобы уменьшить расход топлива. В цилиндропоршневой группе это вылилось в переход на тонкие поршневые кольца с малой упругостью – это позволило снизить трение и износ, но потребовало применения исключительно «энергосберегающих» масел с низкой вязкостью.

Чем выше вязкость масла, тем при прочих равных условиях прочнее и толще создаваемая им масляная пленка. В результате при заливке более вязкого масла в мотор, рассчитанный исключительно на маловязкие, тонкие поршневые кольца становятся просто неспособны полностью счищать масло со стенок цилиндра. В результате возникает «жор» масла, по симптомам абсолютно идентичный тому, что возникает при износе элементов цилиндропоршневой группы.

В моторах же классической конструкции, напротив, по мере износа становится более логичным использование масла с увеличенной высокотемпературной вязкостью. Тут дело в том, что более вязкое масло меньше разбрызгивается, и тем самым уменьшается вынос масла через вентиляцию картера. Со стенок цилиндров же оно снимается нормально, так как хонинговка к этому моменту стирается уже практически полностью, а упругости даже изношенных колец хватает, чтобы удалять масло со стенок.

avtomotoprof.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о