Лямбда в машине: Что такое лямбда зонд в машине, что будет если отключить датчик кислорода

Содержание

Для чего нужен лямбда-зонд и как его отремонтировать?

В любой современной машине имеется лямбда-зонд и многие водители не придают ему (и выходу его из строя) значения, а зря. И дело даже не в чистоте воздуха, который от роста количества автомобилей не становится чище, а в том, что без лябда-зонда, двигатель автомобиля уже не работает как надо, и уже не экономичен. Поэтому очень важно при выходе из строя лямбда-зонда, уметь восстановить его как можно раньше. Как это сделать самому, мы и разберёмся в этой статье.

Нормы токсичности выхлопа автомобилей с каждым годом стремительно ужесточаются (особенно в европейских странах), и конструкторы постоянно под это подстраивают двигатели современных автомобилей (под экономичность и чистый выхлоп). От этого теряется часть мощности и усложняется двигатель. А делать выхлоп максимально чистым, каталитический нейтрализатор может только при соблюдении ряда условий. И одно из них — это соотношение топливной смеси, когда на каждую часть бензина приходится 14,7 части воздуха (на карбюраторных машинах немного другое соотношение).

У хорошо настроенного исправного двигателя впрыскового автомобиля, расход бензина зависит в основном от длительности импульсов форсунок. Эту длительность (время в открытом состоянии) задаёт электронный блок управления двигателем, так называемая «эфишка», название у ремонтников появилось от заглавных букв блока — EFI. Когда двигатель впрысковой машины запущен и работает, блок управления считывает необходимую информацию с датчиков, затем обрабатывает её, и исходя из этих показателей открывает форсунки. Но определить точное количество впрыснутого топлива не просто — инжекторы засоряются, может поменяться давление топлива в магистрали или плотность воздуха и много чего ещё. Поэтому для очень точной работы системы и чёткой работы мотора, электронному мозгу (блоку управления) нужна обратная связь. То есть просто необходимо знать, как прошло сгорание топлива в цилиндрах мотора. Вот за эту важную информацию и отвечает лямбда-зонд или как его ещё называют — датчик кислорода.

И если сигнал на нём слабый, то в выхлопных газах машины переизбыток кислорода, это значит, что топливо-воздушная смесь бедная. От этого блок управления моментально увеличит время открытия форсунок и этим естественно обогатит смесь до нужного соотношения. Ну и наоборот, при чрезмерно богатой топливо-воздушной смеси, время открытия форсунок снизится. Так работает исправная система впрыска современных машин, то есть состав топливо-воздушной смеси в работающем моторе корректируется каждую долю секунды.

Более того, на многих современных автомобилях и мотоциклах, на заводе устанавливают несколько лямбда-датчиков (в выпускном коллекторе каждого цилиндра). В этом случае, электронный мозг системы впрыска не просто изменяет длительность открытия всех форсунок, но и контролирует состав горючей смеси в каждом цилиндре отдельно. К тому же блок управления следит за состоянием каталитического нейтрализатора или катализаторов, так как их тоже бывает несколько. Таким образом, на многих современных автомобилях, может быть установлено более десятка лямбда-зондов (чем больше цилиндров в моторе, тем лямбда-датчиков больше). И выходят из строя они примерно одновременно. Но переживать по этому поводу небогатому автовладельцу не стоит, так как на большинстве рядовых и не новых иномарок, которыми пользуется у нас в стране рядовой водитель, лямбда-зонд всего один.

Из-за чего может выйти из строя лямбда-зонд, стоимостью в 200 -300 долларов, за считаные километры. Это и изношенные поршневые кольца (а тем более поршневая группа), изношенные сальники клапанов и их направляющие, этилированный или некачественный бензин, а так же всевозможные непроверенные составы из бутылочек с яркими этикетками, которые водители-чайники так любят заливать в бензобак своей машины. От этих неблагоприятных факторов, уровень сигнала с лямбда-зонда снижается с каждым пройденным километром, а электронный блок решает, что смесь обедняется и соответственно обогащает её (как мы уже знаем, увеличивая длительность импульса открытия форсунок). От этого расход топлива стремительно растёт, а катализатор постепенно забивается.

Многие Кулибины (в кавычках) с толкнувшись с острой проблемой неуёмного аппетита двигателя, догадываются, что виноват датчик кислорода, ну и поступают весьма просто (зачем им думать) : сдёргивают с датчика провод. И теперь сигнала с датчика естественно нет вообще!!! Электронный блок управления «видит», что датчик якобы вышел из строя, зажигает лампочку на панели приборов (Check — но не на всех моделях) и подключает обходную программу. Отмечу особо (особенно для Кулибиных), что основная функция (задача) этой программы, несмотря ни на что, даже на большой расход топлива, помочь автомобилю добраться до ремонтного сервиса. При попытке сымитировать сигнал от датчика, электронный мозг обнаружит, что сигнал с датчика не меняется со временем, и тоже решит, что он вышел из строя, и естественно включит обходную программу. Произойдёт то же самое, как и с обрывом проводов. Теперь держите бумажник всегда наготове, так как вам потребуется для каждой поездки довольно много бензина.

Любой водитель в такой ситуации, задастся вполне естественным вопросом: что же делать, если расход бензина резко повысился? Для начала, если у вас нет своего газоанализатора, съездить в автосервис и замерить уровень СО (во всех режимах работы мотора). И если уровень укладывается в нормы именно вашей машины, а не ГОСТа (для впрысковых машин технические требования ГОСТа по СО не очень то подходят), то мотор вашего автомобиля в перерасходе топлива невиновен. Ищите другие причины, например расход топлива может повысится, если заклинены тормозные колодки, или вы просто ездите на недостаточно накачанных шинах. Многие водители довольно резко стартуют с каждого светофора, а потом удивляются, почему их автомобиль так прожорлив.

Но часто, поездка за замером СО не нужна, так как и так видно всё, как говорится невооружённым глазом. Например если холодный двигатель неустойчиво работает на холостом ходу, постоянно пытаясь заглохнуть, свечи чёрного цвета, но прогревшись мотор начинает работать нормально, то виноват в большинстве случаев наш пресловутый лямбда-зонд. Прогреваясь, он начинает работать нормально. Реже, но всё же могут быть и другие причины описанной неисправности двигателя. И убедиться в чём дело (в датчике или в чем то другом) можно только проверив сам лямбда-зонд. А для этого необходимы специальные приборы, так как сигнал с датчика слишком слаб, и измерить его обычным тестером невозможно. Как проверить работоспособность других датчиков впрысковой машины, причём с помощью обыкновенного тестера, я уже писал и почитать об этом весьма желательно вот в этой статье. 

В развитых странах обеспеченные водители поступают очень просто: покупают новый лямбда-зонд, а это как я уже говорил примерно в пределах трёхсот долларов, и выкинув старый, устанавливают на его место новый. У наших отечественных водителей, особенно не богатых, имеются как всегда другие пути решения распространённой проблемы. Например можно приобрести датчик подешевле (от другого автомобиля, например от отечественного). Ведь устройство всех лямбда-зондов одинаковое, и один от другого может отличаться только посадочными размерами да ещё и электро-разъёмом. Главное при покупке учесть посадочный размер (что бы был одинаковый), а электро-разъём можно переделать (продаётся великое множество различных клемм и колодок).

Многие покупают на разборке оригинальный (родной) датчик, но бэушный, что делать не советую, так как неизвестно сколько времени он проработал на машине доноре, и в любой момент он может выйти из строя.

Но есть всё таки способ, как оживить ваш родной, но неисправный лямбда-зонд. И описать этот способ для меня (ну и естественно для вас) на этом блоге просто необходимо, так как блог рассчитан на людей, которые …. . Впрочем чего это я, на кого рассчитан этот блог, можно прочитать на страничке «обо мне». Не будем отвлекаться, а идём дальше.

Во многих крупных городах, технология восстановления лямбда-зонда уже давно отработана и не отличается сложностью. Ведь чтобы вернуть работоспособность датчика, достаточно подержать его всего десять минут в ортофосфорной кислоте (она входит в состав преобразователя ржавчины) при обычной комнатной температуре, а затем хорошенько промыть его водой с мягкой колонковой кисточкой и можно устанавливать его на место — он снова готов к работе.

Естественно сигнал восстановится не сразу, а через час или полтора работы мотора (электронному мозгу надо адаптироваться).

Для более тщательной промывки, лямбда-зонд нужно будет вскрыть. Аккуратно (через алюминиевую фольгу) зажав датчик в патрон токарного станка, тонким резцом срезаем у самого основания защитный колпачок (с отверстиями). Далее уже оголённый датчик, который представляет собой керамический стержень (на стержень напыленны платиновые полоски, отсюда его немалая цена) окунаем на 10 минут в кислоту. Ортофосфорная кислота разрушает свинцовую плёнку и нагар на поверхности керамического стержня. Как я уже говорил, держим его в кислоте не более 10 минут, так как если передержать, то могут испортиться токопроводящие платиновые электроды. По этой же причине ни в коем случае нельзя зачищать стержень наждачной бумагой или надфилем. Далее, когда кислота очистит стержень от токопроводящей плёнки, остаётся промыть его в воде и вернуть на место колпачок. Теперь аккуратно капнув аргоновой сваркой, закрепляем колпачок на своём родном месте.

Есть ещё более сложный способ, который недоступен обычному автомобилисту, и я его опишу лишь для общего развития. Ну и для того — вдруг он появится в автосервисе вашего города, и кто-то захочет им воспользоваться, так как он очень эффективен и его можно использовать многократно. Его удалось разработать учёным из дальневосточного РАН отделения. Суть его известна из физики — плотность тока в различных газах определяется концентрацией ионов, величиной их заряда, а так же из подвижностью. А в отработанных газах автомобиля ионы образуются от повышения температуры. И если температура, а от неё и подвижность ионов известны (напряжённость поля тоже известна, так как на неё подаётся 1 вольт), то выходные характеристики зависят только от концентрации ионов. Их измеряют частотомером и осциллографом. Затем на ультрозвуковом стенде в эмульсионном моющем растворе проводят отчистку загрязнённых электродов. При этом возможен электролиз вязких металлов осевших на поверхности (например свинца). При очистке учитывается материал стержня (металлокерамика или фарфор) с напылением металлов, таких как платина, цирконий, барий и др. В итоге восстановленный лямбда-зонд испытывают специальными приборами и устанавливают на машину. И самое главное, как я уже говорил, операцию восстановления можно проводить многократно.

Это ещё раз подтверждает, что наши учёные на много превосходят забугорных, для которых основная идея — это как что-то разработать, а вот как восстановить какую то деталь, им с нашими не сравниться.

 

 

 

 

Что такое лямбда зонд в машине и как его проверить

В современных автомобилях используются специальные устройства, которые позволяют транспортному средству соответствовать экологическим нормам. Среди таких устройств – датчик лямбда-зонд.

Рассмотрим, зачем он нужен в машине, где он расположен, как определить его неисправность, а также как его заменить.

Что такое лямбда зонд?

Греческая «лямбда» в машиностроительной промышленности используется для обозначения коэффициента. В данном случае это концентрация кислорода в отработанных газах. Если быть точнее, то это коэффициент избытка воздуха в топливно-воздушной смеси.

Для определения этого параметра используется специальный зонд, который оценивает состояние продуктов сгорания топлива. Этот элемент используется в автомобилях с электронной подачей топлива. Также он устанавливается в машинах, выхлопная система которых оснащена катализатором.

Для чего нужен лямбда зонд?

Датчик используется для более эффективной подачи воздушно-топливной смеси. Его работа влияет на исправность катализатора, который нейтрализует в выхлопных газах вредные для окружающей среды вещества. Он замеряет концентрацию кислорода в выхлопе и корректирует работу топливной системы.

Для эффективности работы мотора воздушно-топливная смесь должна подаваться в цилиндры в правильной пропорции. Если кислорода будет недостаточно, то смесь будет переобогащенная. В результате свечи в бензиновом моторе может залить, а процесс горения не будет высвобождать достаточное количество энергии для вращения коленвала. Также недостаток кислорода приведет к частичному сгоранию топлива. В результате этого в выхлопе образуется не углекислый, а угарный газ.

С другой стороны, если воздуха в воздушно-топливной смеси будет больше, чем необходимо, то она будет обедненной. В результате чего – снижение мощности двигателя, превышение температурных норм для деталей цилиндропоршневого механизма. Из-за этого некоторые элементы быстрее изнашиваются. Если кислорода в выхлопе много, то в катализаторе не произойдет нейтрализация газа NOx. Это тоже ведет к загрязнению окружающей среды.

Так как образование ядовитых газов невозможно заметить визуально, требуется специальный датчик, который контролировал бы даже незначительные изменения в выхлопе двигателя.

Особенно полезным данная деталь оказывается в условиях увеличенного дымообразования (когда мотор испытывает серьезные нагрузки). Это помогает сохранить катализатор от загрязнения, а также немного сэкономить топливо.

Конструкция лямбда-зонда

Датчик зоны катализатора состоит из таких элементов:

  • Корпус из металла. На нем сделана резьба с гранями под ключ, чтобы легче было его установить или снять.
  • Уплотнительное кольцо, предотвращающее выброс выхлопных газов через микро щель.
  • Теплосъемник.
  • Керамический изолятор.
  • Электроды, к которым подсоединяется проводка.
  • Уплотнитель проводки.
  • Нагревательный элемент (в модификациях с подогревом).
  • Корпус. В нем сделано отверстие, через которое в полость поступает чистый воздух.
  • Спираль подогрева.
  • Диэлектрический наконечник. Изготавливается из керамики.
  • Защитная металлическая трубка с перфорацией.

Основным элементом конструкции является керамический наконечник. Он изготавливается из оксида циркония. На нем нанесено покрытие из платины. Когда наконечник нагревается (температура 350-400 градусов), он становится проводником, и напряжение передается с его наружной части на внутреннюю.

Принцип работы лямбда зонда

Чтобы понять, в чем могут быть неисправности лямбда зонда, необходимо понимать принцип его работы. Когда автомобиль находится на производственном конвейере, все его системы настраиваются так, чтобы они работали идеально. Однако со временем детали мотора изнашиваются, в электронном блоке управления могут возникать незначительные ошибки, которые могут влиять на функции разных систем, в том числе и топливной.

Прибор является элементом системы так называемой «обратной связи». ЭБУ рассчитывает, сколько топлива и воздуха подать во впускной коллектор, чтобы в цилиндре смесь качественно сгорала, и высвобождалось достаточно энергии. Так как мотор постепенно изнашивается, со временем стандартных настроек электроники недостаточно – их нужно подкорректировать в соответствии с состоянием силового агрегата.

Эту функцию выполняет зонд лямбда. В случае обогащенной смеси он подает на блок управления напряжение, соответствующее показателю -1. Если смесь обедненная, то этот показатель будет +1. Благодаря такой корректировке ЭБУ подстраивает систему впрыска под изменившиеся параметры двигателя.

Устройство работает по следующему принципу. Внутренняя часть керамического наконечника контактирует с чистым воздухом, наружная (находится внутри выхлопной трубы) – с отработанным газами (через перфорацию защитного экрана), передвигающимися по выхлопной системе. Когда он нагревается, ионы кислорода беспрепятственно проникают с внутренней поверхности на наружную.

В полости датчика кислорода больше, чем в трубе выхлопной системы. Разница в этих параметрах создает соответствующее напряжение, которое по проводам передается на ЭБУ. В зависимости от изменения параметров блок управления корректирует подачу топлива или воздуха в цилиндры.

Где устанавливают лямбда-зонд?

Датчик не зря назван зондом, так как он устанавливается внутрь выхлопной системы, и фиксирует показатели, которые невозможно проанализировать при разгерметизации системы. Для большей эффективности в современных автомобилях устанавливается два датчика. Один вкручивается в трубу перед катализатором, а второй – за нейтрализатором.

Если зонд не оснащен подогревом, тогда он устанавливается максимально близко к мотору, чтобы быстрей нагревался. Если в машине установлено два датчика, то они позволяют корректировать топливную систему, а также анализировать эффективность каталитического анализатора.

Виды и конструктивные особенности

Существует две категории датчиков лямбда-зонд:

  • Без подогрева;
  • С подогревом.

Первая категория относится к более старым разновидностям. Для их активации требуется время. Полый сердечник должен нагреться до рабочей температуры, когда диэлектрик станет проводником. Пока он не нагреется до 350-400 градусов, он не будет работать. В этот момент воздушно-топливная смесь не корректируется, от чего в катализатор может попадать несгоревшее топливо. Это постепенно сокращает рабочий ресурс устройства.

По этой причине все современные автомобили оснащаются модификациями с подогревом. Также все датчики классифицируют по трем разновидностям:

  • Двухточечные без подогрева;
  • Двухточечные с подогревом;
  • Широкополосные.

Модификации без подогрева мы уже рассмотрели. Они могут быть с одним проводом (сигнал подается сразу на ЭБУ) или с двумя (второй отвечает за заземление корпуса). Стоит уделить немного внимания двум другим категориям, так как они имеют более сложное строение.

Двухточечные с подогревом

В двухточечных модификациях с подогревом будет три или четыре провода. В первом случае это будет плюс и минус для нагрева спирали, а третий (черный) – сигнальный. Второй тип датчиков имеет такую же схему, за исключением четвертого провода. Это заземляющий элемент.

Широкополосные

Широкополосные зонды имеют самую сложную из всех схему подключения к системе автомобиля. В нем имеется пять проводов. Каждый производитель использует свою маркировку, чтобы обозначить, какой из них за что отвечает. Чаще всего черный – сигнальный, а серый – заземляющий.

Два других кабеля – питание подогрева. Еще один провод – это сигнальный провод закачки. Этот элемент регулирует концентрацию воздуха в датчике. Закачивание происходит за счет изменения силы тока в данном элементе.

Признаки неисправности лямбда зонда

Самый первый признак неисправного датчика – увеличение расхода топлива (при этом условия эксплуатации машины не меняются). В этом случае будет наблюдаться снижение динамических характеристик. Однако этот параметр не должен быть единственным мерилом.

Вот еще некоторые «симптомы» неисправного зонда:

  • Увеличенная концентрация СО. Этот параметр измеряется специальным устройством.
  • На приборной панели загорелся сигнал CHECK мотора. Но в этом случае следует обратиться в сервис. Предупреждение может не касаться этого датчика.

Датчик кислорода выходит из строя по следующим причинам:

  • Естественный износ.
  • На него попал тосол.
  • Неправильно чистили корпус.
  • Некачественное топливо (большое содержание свинца).
  • Перегрелся.

Методы проверки лямбда-зонда

Чтобы проверить исправность лямбда зонда, достаточно мультиметра. Работа выполняется в такой очередности:

  • Проводится внешний осмотр. Сажа на его корпусе указывает на то, что он мог сгореть.
  • Отключается датчик от электрической цепи, мотор заводится.
  • Наконечник необходимо нагреть до рабочей температуры. Для этого нужно держать обороты двигателя в пределах 2-3 тысячи оборотов.
  • Контакты мультиметра подсоединяются к проводам датчика. Плюсовой стержень прибора – на сигнальный провод (черного цвета). Минусовый – на массу (серый провод, если его нет, то просто на кузов авто).
  • Если датчик исправный, то показатели мультиметра будут колебаться в пределах 0,2-0,8 В. Неисправный лямбда-зонд выдаст показатели от 0,3 до 0,7 В. Если на экране показатель стабилен, то это означает, что датчик не функционирует.

Замена и ремонт лямбда-зонда

Что делать, если датчик вышел из строя? Его необходимо заменить. Он не ремонтируется. Правда, некоторые мастера используют обманки или отключают датчик. Однако такие методы чреваты неисправностями катализатора и снижением эффективности ДВС.

Менять датчик необходимо на аналогичный. Дело в том, что ЭБУ подстраивается под параметры конкретного устройства. Если установить другую модификацию, есть большая вероятность подачи неправильных сигналов. Это может привести к разным неприятным последствиям, включая быстрый выход из строя катализатора.

Замена лямбда-зонда должна производиться на холодном моторе. Покупая новый датчик кислорода, крайне важно убедиться, что был куплен оригинал, а не аналог, подходящий к данному автомобилю. Неисправность сразу не будет заметна, но впоследствии устройство снова перестанет работать.

Процедура установки нового датчика очень проста:

  • Отключаются провода со старого зонда.
  • Выкручивается неисправный датчик.
  • На его место вкручивается новый.
  • Надеваются провода в соответствии с маркировкой.

Выполняя замену датчика кислорода, необходимо быть аккуратным, чтобы не сорвать резьбу ни на нем, ни в выхлопной трубе. После замены мотор заводят и проверяют работоспособность устройства (при помощи мультиметра, как это описано выше).

Как видно, от параметров, поступающих с лямбда-зонда на ЭБУ, зависит эффективность двигателя автомобиля. Важность датчика увеличивается, если выхлопная система оснащена каталитическим нейтрализатором.

4.8 / 5 ( 92 голоса )

ПОХОЖИЕ СТАТЬИ

Что такое лямбда-зонд в машине: для чего нужен

Автомобили, выпускаемые прогрессивными мировыми компаниями, тяжело представить без всевозможных датчиков и устройств, считывающих сигналы. Подобный инженерный подход обеспечивает слаженную работу всех систем. Не последнее место в иерархии важности занимает оборудование, контролирующее выхлопы. Чтобы разбираться в его работе, необходимо знать, что такое лямбда-зонд в машине.

Каким образом происходит его функционирование

В специализированной литературе встречается несколько разных названий одного и того же устройства. В частности, у лямбда-зонда есть еще имена-синонимы:

  • датчик кислорода;
  • oxygen sensor;
  • lambda probe.

Чтобы понять, для чего нужен лямбда-зонд, стоит в первую очередь разобраться с тем, каким образом он работает. Основной задачей этого датчика является замер количества кислорода в выхлопных газах транспортного средства. Корректное измерение он может начинать после прогрева корпуса до оптимальных рабочих значений в 300–380С. В такой ситуации электролит, находящийся внутри блока, получает свойство проводимости.

Подобные условия, к которым относится еще и разница процентного объема атмосферного кислорода и аналогичного газа внутри выхлопной трубы, обеспечивают появление выходного напряжения на встроенных электродах прибора. Стоит учитывать, что на стадии прогрева и старта холодного мотора расчет впрыскиваемого топлива не согласовывается с данными, получаемыми электронным блоком управления от кислородного датчика. Компьютерная система основывается лишь на показаниях таких параметров:

  • количество оборотов коленвала в минуту;
  • позиция дроссельной заслонки;
  • температурное значение охлаждающей жидкости.

Для увеличения чувствительности встроенных oxygen sensor в условиях пониженной окружающей температуры и после запуска холодного мотора используется принудительное прогревание. Керамический датчик в своей конструкции обладает нагревательным элементом, который имеет подключение к автомобильной электросети.

За что отвечает лямбда-зонд

В число основных задач датчика входит поддержание оптимального пропорционального состава топливовоздушной смеси, используемой для работы мотора. Наиболее приемлемым принято считать состав, у которого на одну часть распыленного форсунками топлива приходится 14,5–14,8 частей воздуха. Подобную точность удастся получить лишь в случае эксплуатации системы питания с электронным впрыском и встроенным в сеть лямбда-зондом.

Мониторинг избытка воздуха в составе проводится весьма оригинальным способом. Для этого осуществляется замер остаточного кислорода в выхлопных отработанных газах. Данный факт вынудил конструкторов монтировать датчик в выпускной коллектор непосредственно перед катализатором.

Отправленный сигнал в ЭБУ расшифровывается, и на его основании компьютер принимает решение по встроенным алгоритмам корректировать состав воздушной смеси. Для этого варьируется подача топлива, предназначенного для отправки в цилиндры.

В определенных случаях на выходе из катализатора инженеры предусматривают встроенный второй лямбда-зонд. Такой подход обеспечивает больше точности в подготовке воздушной смеси. Также в полной мере работает функция контроля эффективности катализатора.

Предусматривается два типа датчиков:

  • широкополосный тип – актуален в виде входного инструмента;
  • двухточечный – имеет возможность установки как на входе, так и на выходе из катализатора.

Внимание! Принцип работы двухточечных экземпляров подразумевает кислородные замеры в выхлопных газах и атмосфере.

Что собой представляет кислородный датчик

Визуально лямбда-зонд похож на обычную автомобильную свечу, лишившуюся керамического изолятора. Корпус цилиндра оснащен резьбой для ввинчивания в выхлопную систему. В верхнюю часть выведено от одного до четырех проводов, в зависимости от модели прибора.

Внутренняя часть содержит следующие элементы:

  • полая камера, внутри которой располагается атмосферный воздух;
  • гальванический элемент, включающий в себя керамическую часть и твердый электролитический состав;
  • методом напыления на две стороны гальванического элемента нанесен платиновый слой;
  • встроены контакты с основным и заземляющим проводом.

Для современных датчиков обязательным элементом является встроенный подогреватель, контактирующий с автомобильной электросетью.

Принцип работы лямбда-зонда с элементами из титана значительно похож на работу термисторов. Запросы от электронного блока управления отправляются на датчик в количестве нескольких штук за секунду. Параллельно идет фиксация ответов в виде измерения сопротивления. Исходя из получаемых данных вносится изменение для образования топливовоздушной смеси.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Что будет, если отключить лямбда-зонд в автомобиле?

Автомобили в наше время оснащаются большим количеством электронных устройств и датчиков, без которых уже невозможно обойтись. Сегодня будет идти речь о датчике кислорода или лямбда-зонде. Вы узнаете, как он работает и что будет, если отключить его в случае выхода из строя.

Уже само название этого датчика многим непонятно. Рассмотрим детальнее назначение датчика кислорода, что поможет понять, можно ли эксплуатировать автомобиль без него.

Принцип работы

Лямбда-зонд помогает оптимизировать состав топливовоздушной смеси, необходимой для работы двигателя. В идеале эта смесь должна состоять из 1 части бензина и 14,6-14,8 части воздуха. Для этого электронный блок управления анализирует показатели разных датчиков, среди которых и наш лямбда-зонд.

Этот датчик замеряет количество остаточного кислорода в выхлопных газах. В связи с этим лямбда-зонд устанавливается после выпускного коллектора или в нём, но перед каталитическим нейтрализатором. На некоторых автомобилях после катализатора устанавливается ещё один аналогичный датчик. Он необходим для получения ещё более точного результата, а также проверки функциональности каталитического нейтрализатора.

Проверка лямбда-зонда

Если компьютер получает неправильные данные с кислородного датчика, на панели приборов загорается индикатор Check Engine. При считывании ошибок диагностика может показать неисправность лямбда-зонда. Но не всегда всё настолько однозначно. Иногда датчик показывает неверные значения, так как в двигатель попадает слишком много воздуха или бензина. Виновником может быть банальный подсос воздуха (кстати, мы писали о том, как его искать и устранять – http://avtopub.com/kak-najti-podsos-vozduxa-v-dvigatele-i-ustranit-ego/).

Один из простейших способов проверки – отключение лямбда-зонда и проверка поведения автомобиля во время движения. Если датчик работает нормально, его отключение приведет к ухудшению динамики и значительному росту расхода топлива. Если же датчик неисправен, всё будет, как и раньше.

Подробная статья о том, как проверить датчик кислорода (лямбда-зонд) мультиметром — http://avtopub.com/proverka-lyambda-zonda-datchika-kisloroda-multimetrom/

Можно ли отключить лямбда-зонд и ездить без него?

Отметим, что этот вопрос зачастую возникает потому, что датчик кислорода – запчасть недешевая. Необходимо просто всё взвесить и проанализировать целесообразность такой «экономии». Вы уже знаете, что эксплуатация автомобиля без датчика кислорода обязательно приводит к существенному увеличению расхода бензина. Причина состоит в том, что электронный блок управления в такой ситуации переходит в аварийный режим, регулируя состав смеси по средним показателям. Также автомобиль будет «тупить», поэтому вы будете сильнее давить на газ.

В результате всего этого сэкономить явно не удастся. Очень быстро вы потратите на топливо деньги, которые лучше использовать для покупки нового лямбда-зонда. Конечно, иногда приобрести новый датчик просто нет возможности. В таких случаях некоторое время можно ездить и без него.

Причины выхода из строя датчика и обманки

Лямбда-зонд, как и все детали автомобиля, имеет определенный срок службы. Но ускорить его износ может использование некачественного топлива. Кроме этого, его расположение внизу автомобиля делает датчик кислорода уязвимым к механическим повреждениям. Нередки случаи повреждения проводки или разъема датчика.

Некоторые водители вместо лямбда-зонда устанавливают так называемые «обманки». Эти устройства отличаются более низкой ценой и передают информацию на электронный блок управления двигателем. В результате этого улучшается работа двигателя, а ошибки при диагностике отсутствуют.

А если неисправен лямбда-зонд — Автоцентр.ua

Лямбда-зонд – один из элементов системы питания инжекторных автомобилей, который в наших условиях эксплуатации может создавать проблемы. Как их избежать?

Лямбда-зонд – один из элементов системы питания инжекторных автомобилей, который в наших условиях эксплуатации может создавать проблемы. Как их избежать?

Назначение

Греческая лямбда в автомобилестроении обозначает коэффициент избытка воздуха в топливовоздушной смеси. Отсюда и пошло название датчика, который измеряет этот коэффициент, а точнее – остаточный кислород (О2) в отработавших газах (другое название – датчик кислорода). Назначение датчика – предоставить ЭБУ двигателя информацию, позволяющую определить характер сгорания топлива. Это необходимо для создания нормальных условий работы каталитического нейтрализатора отработавших газов. Дело в том, что «окно» эффективной работы катализатора очень узкое, когда в цилиндрах сгорает 14,6–14,8 части воздуха и 1 часть топлива (при сгорании такой смеси лямбда = 1±0,01). Обеспечить такое точное регулирование состава топливо-воздушной смеси возможно только с помощью систем питания с электронным впрыском топлива. Лямбда-зонд в этих системах выполняет функцию контролера в выпускном тракте.

Лямбда-зонд: причины и симптомы поломок

Нарушения в работе или даже отказ лямбда-зонда может произойти из-за:

Сильно сокращают срок службы лямбда-зонда плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливо-воздушная смесь.

При неисправном лямбда-зонде содержание СО в выхлопе возрастает с 0,1–0,3% до 3–7%. Уменьшить его значение в большинстве старых моторов без замены датчика сложно, т. к. запаса хода регулятора качества смеси потенциометра может не хватить. В автомобилях с двумя лямбда-зондами в случае отказа второго датчика добиться нормальной работы двигателя без серьезного вмешательства в электронику невозможно.

Лямбда-зонд: лечение неисправности

Технологии ремонта неисправных лямбда-зондов не существует – в случае поломки они подлежат замене. Однако наши «дяди Васи» все-таки разработали методику восстановления этих датчиков, но эффективна она не во всех случаях. Чаще всего он перестает работать из-за отложений нагара на чувствительном элементе под защитным колпачком. Если налет удалить, работоспособность «лямбды» восстанавливается. Очистить чувствительный элемент датчика можно, промыв его в ортофосфорной кислоте, которая за 10–20 минут разъедает загрязнения, не уничтожая электроды с редкоземельными металлами. Эффективнее чистить лямбда-зонд после снятия защитного колпачка на токарном станке и мойки с использованием тонкой кисточки. Но делать это целесообразно, если есть возможность закрепить колпачок с помощью аргоновой сварки. После промывки датчик следует ополоснуть водой и просушить. Если мойка не помогает, значит, «лямбду» нужно менять. Стоимость мойки значительно меньше, чем стоимость нового лямбда-зонда (от 300 грн.). Можно заменить неподогреваемый датчик на подогреваемый (но не наоборот!). При несовместимости разъемов недостающую электроцепь подогрева проложите самостоятельно, а вместо разъема используйте универсальные автомобильные контакты.

Лямбда-зонд: диагностика

Специалисты Bosch рекомендуют проверять лямбда-зонд и систему регулирования топливной смеси каждые 30 тыс. км пробега.

Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после его разогрева до температуры 300–400°С. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения. Поэтому сигнал лямбда-зонда проверяется при включенном и прогретом двигателе. Для измерения лучше подходит осциллограф, чем мультиметр, поскольку с его помощью наиболее точно оценивается форма и частота сигнала.

Затем измеряется сопротивление нагревателя датчика (при отсоединенном штекере), составляющее при комнатной температуре от 2 до 14 Ом (согласно требованиям производителя). Далее проверяется напряжение, подведенное к нагревателю: при включенном зажигании и подсоединенном разъеме зонда оно должно составлять не менее 10,5 В. Если это значение ниже, необходимо тщательно проверить напряжение батареи, кабели и соединения.

Лямбда-зонд: тонкости монтажа


 Мнение   

Вадим Долгий
Технический консультант компании «Роберт Бош Лтд. »

При выходе лямбда-зонда из строя возникает вопрос, где купить новый. Это не проблема, так как созданы универсальные лямбда-зонды для установки на любой автомобиль. Они отличаются от «обычных» только способом подключения. Для подключения универсального лямбда-зонда компания Bosch разработала специальный переходник, который подключается к штатной проводке штекера старого зонда. Переходник обеспечивает точный и устойчивый сигнал, водонепроницаем, не подвержен влиянию перепадов температур и вибрации, обеспечивает поступление чистого воздуха на измерительный элемент.

Юрий Дацык
Фото Bosch, GM

Что такое кислородный датчик в автомобиле (лямбда зонд)

Главная » Советы по ремонту » Что такое кислородный датчик в автомобиле (лямбда зонд)

просмотров 2 741

Размеры кислородного датчика не самые великие, устройство механизма также не отличается сложным исполнением, тем не менее, его функции в работе двигателя играют важную роль. В связи с этим, износ кислородного датчика, особенным образом отразится на работе всей моторной системы. Данная неполадка существует с того момента, как появились инжекторные двигатели, поэтому для владельцев подобных автомобилей это постоянная, непримиримая борьба. Ниже постараемся разобраться, что входит в основные задачи механизма, как провести диагностику поломки и заменить изношенный кислородный датчик.

Принцип действия кислородного датчика. Его основные функции

Кислородный датчик носит название, не соответствующее его реальным функциям. Он реагирует совсем не на то вещество, в честь которого был назван. Монтаж устройства осуществляется в области системы выхлопов, в непосредственной близости от катализатора. Оборудован электродом, местоположение которого определяется внутренней полостью системы выхлопа.

Газы, выделяемые в результате сгорания топлива, направляются в выхлопную систему, где кислородный датчик, захватывая частицы не израсходованного горючего вещества, заряжается электричеством, сигнализируя об этом контроллеру, по средствам передачи напряжения незначительного размера. Блок управления двигателем, в свою очередь, проанализировав полученную информацию, определяет решение, в соответствии с которым устанавливается соотношение и регулировка состава горючей смеси и выбранного режима работы двигателя, в настоящий момент.

В задачи кислородного датчика входят постоянный контроль данного соотношения, чтобы добиться идеального состава горючей жидкости. Таким образом, он, на постоянной основе, осуществляет мониторинг соотношения горючего и воздуха, в соответствующем режиме эксплуатации автомобиля.

При нарушении работоспособности кислородного датчика, прекращается поступление сигналов о происходящей ситуации, контроллер больше не снабжается сведениями касающиеся состояния выхлопов, за этим следует установление режима аварийной работы двигателя. Состав топливной смеси больше не поддается контролю, следовательно, его транспортировка осуществляется исключительно для поддержания работоспособности ДВС.

В результате, потребление горючей жидкости повышается (увеличивается расход топлива), при этом условия функционирования двигателя становятся не самыми благоприятными. Передвигаться в дальнейшем, в подобных условиях, чревато нарушением работы силовой системы. Этот режим позволяет доехать до станции техобслуживания, не больше.

Нарушение работоспособности кислородного датчика

Все детали автомобиля имеют свой срок годности или срок износостойкости. Кислородный датчик не исключение. На случай выхода его из строя, на приборной панели имеется специальный индикатор, сигнализирующий об этом CheckEngine. Он дает ясно понять, что двигатель находится в режиме аварийного функционирования.

Для конкретизации проблематики, осуществляются мероприятия по выявлению проблемы при помощи диагностики, по средствам бортового компьютера. Аппаратура должна определить наименование ошибки, получив которую, можно воспользоваться техническими документами, прилагаемыми с автомобилем, для понимания причины нарушения. Если это был кислородный датчик, проводится безотлагательная замена.

В чем причина износа?

Смесь газов, которая выделяется при обработке горючей жидкости, является достаточно сложной структурой, с богатым составом. Данный состав может содержать элементы, влияющие, на электроды датчика, негативным образом. Природа появления подобных примесей может быть различной, но основная причина — это покупка бензина, изначально не качественного, на станциях, не проверенных долгим использованием.

К сожалению, подобных заправок не так мало. В результате длительной эксплуатации, большое воздействие оказывают процессы окисления, что влечет к снижению работоспособности, выражаемое в передаче данных, не устраивающих нормальную работу двигателя. Осуществляется переход на аварийный режим эксплуатации.

Но это не единственная причина, по которой перестает функционировать кислородный датчик. Распространенным источником является изношенная прокладка головки блока цилиндров. В результате этого, в камере сгорания образуется антифриз, что не приемлемо. Неизвестное химическое соединение, впервые попавшее в систему выхлопа, снижает износостойкость, приводя к быстрой потере работоспособности датчика.

Установка нового кислородного датчика

В общем, установка нового кислородного датчика не представляется сложным мероприятием. В работе потребуется эстакада или смотровая яма, в зависимости от возможностей. Особое значение играет плотная фиксация транспортного средства, так как безопасность, при любой работе, является самым главным направлением. В противном случае, непредвиденное перемещение, может привести к серьезным травмам.

  • Далее проводится работа с аккумулятором. От нее отсоединяют «минусовой» провод. Такие мероприятия являются неотъемлемой частью работы с электроникой. Если этого не сделать, то возможно образование короткого замыкания. Провод контакта датчика с основным компьютером требуется отсоединить. Проведя данные мероприятия, можно говорить о готовности к замене.

 

  • Крепеж датчика ослабляется соответствующим ключом. Чтобы избежать получения ожогов, все мероприятия проводятся на двигателе в холостом режиме. В случае отсутствия продвижения в демонтаже, прикладывать излишние усилия не следует, иначе можно повредить катализатор, что только повысит расходы на ремонт системы выхлопа.

Здесь велика вероятность появления прикипевших соединений, удаление которых целесообразнее проводить с помощью тормозной жидкости или керосина. Как правило, такие процессы сопровождаются образованием ржавчины, которая под воздействием данных веществ, частично растворяется, что позволяет выкрутить кислородный датчик. Как правило, подобный подход решает проблему.

Открутив датчик, он извлекается вместе со штекером из-под капота. Далее, устанавливается новое устройство, с последующим подключением. Закручивание элемента должно быть максимально плотным, иначе возможна низкая герметизация, которая станет причиной образования отверстия, являющееся источником постороннего звука, при работе двигателя.

Видео

В общем, это все что нужно знать о кислородном датчике и его замене.

Проголосуйте, понравилась ли вам статья? Загрузка…

за что отвечает кислородный датчик, как он работает, его чистка и распиновка

Лямбда-зонд отвечает за качество, а также пропорции топлива и воздуха при создании воздушной смеси. От работы этого устройства зависит корректное функционирование автомобильного мотора.

Содержание

Открытьполное содержание

[ Скрыть]

Для чего нужен кислородный датчик в автомобиле?

Данный контроллер в авто — такое устройство сопротивления, которое предназначено для определения объема оставшегося кислорода в отработанных газах. В соответствии с сигналами, которые отправляются датчиком, микропроцессорный модуль силового агрегата оценивает, на каком типе горючей смеси работает мотор. Он может быть нормальным, обедненными либо обогащенным. С учетом полученных показаний и необходимого режима функционирования, блок управления выполняет корректировку объема горючего, которое подается в цилиндры двигателя.

В ходе прогрева силового агрегата импульсы, которые отправляет лямбда-зонд, игнорируются микропроцессорным модулем. Это происходит до момента, пока температура мотора машины не увеличится до необходимой. Контроллеры применяются для дополнительной регулировки состава горючей смеси, а также контроля исправности работы каталитического нейтрализатора.

Канал «Kanistra» подробно рассказал о необходимости использовании кислородного контроллера в автомобиле.

Что будет, если отключить датчик?

Игнорировать работу датчика кислорода возможно, но выполнять его отключение нежелательно, поскольку из-за этого ЭБУ запустит автономный режим подачи горючей смеси. Это станет причиной большего расхода бензина, а в отработавших газах возрастет объем токсических элементов.

Помимо этого, возникнут такие проблемы:

  1. На электродах свечей зажигания появится черный нагар. Из-за этого ухудшится запуск силового агрегата, в частности, при первом старте после стоянки. Горючая смесь будет хуже воспламеняться, а также уменьшится зазор свечи.
  2. На клапанах появится нагар. Из-за этого снизится продуваемость всасывающих, а также выхлопных магистралей головки блока цилиндров. Постепенно забьются впускное и выпускное коллекторные устройства, что приведет к падению величины мощности транспортного средства.
  3. Начнет образовываться нагар на катализаторе. Со временем это станет причиной его расплавления. В результате силовой агрегат будет останавливаться сразу после старта.
  4. Образуется нагар на поршнях. В конечном счете это приведет к необходимости осуществления капитального ремонта.

Об отключении контроллера без последствий рассказал канал «Жизнь в гараже».

Где находится лямбда-зонд?

Чтобы понять, где находится этот элемент на авто, надо знать год выпуска транспортного средства. В машинах, произведенных до 2000 года, в большинстве случаев используется один контроллер кислорода, но их может быть и два, расположенных в разных местах. Во всех транспортных средствах, выпущенных после 2000 года, имеется от двух до четырех кислородных регуляторов. В плане конструкции они не имеют между собой отличий, но могут выполнять различные функции.

Количество кислородных контроллеров в автомобиле зависит от объема силового агрегата. Если этот параметр составляет менее двух литров, то в машине установлено для датчика — один верхний, другой нижний. Первый можно найти в моторном отсеке, он легко заменяем, а второй располагается под днищем машины.

Для определения места установки первого регулятора надо сделать следующее:

  1. Открывается моторный отсек транспортного средства.
  2. Находится сам силовой агрегат, он располагается в центре подкапотного пространства и на более современных авто скрыт пластмассовой крышкой. На ней должна указываться марка авто. Если крышка закрывает не только силовой агрегат, но и весь моторный отсек, ее надо демонтировать.
  3. Производится визуальный осмотр пространства вокруг мотора машины. Необходимо определить металлические магистрали, которые идут к двигателю от пространства в глубине отсека. Это и есть впускной коллектор. По данным магистралям из силового агрегата отводятся выхлопные газы. Коллекторное устройство может закрываться специальным теплозащитным экраном, выполненным из металлизированного материала, при его наличии придется произвести демонтаж защиты.
  4. Производится визуальная диагностика узла. На нем должна располагаться деталь, выполненная в цилиндрическом корпусе длиной около 5-7 см. Одна часть данного устройства установлена в коллекторный узел, а к другой подсоединен толстый кабель, это кислородный контроллер.
  5. Если эти действия не помогли обнаружить датчик, то надо проследить за магистралью, которая идет от выпускного коллектора. Контроллер должен располагаться на ней.

Устройство и принцип работы лямбда-зонда

Элементы, из которых состоит универсальный регулятор, расположенный перед катализатором либо после него:

  1. Корпус кислородного датчика. Регулятор комплектуется устройством, выполненным из металла и оборудованным нарезной резьбой, которая позволяет его установить.
  2. Изолятор, сделанный из керамики.
  3. Уплотнительный элемент, обеспечивающий герметизацию устройства при монтаже.
  4. Наконечник устройства, выполненный из керамики.
  5. Кабели с манжетами, обеспечивающими качественное уплотнение.
  6. Для эффективной вентиляции контроллера используется специальный корпус, оборудованный дополнительным отверстием.
  7. Контактный элемент, по нему проходит напряжение.
  8. Дополнительный защитный щиток. Он оборудуется отверстием, которое требуется для выпуска отработавших газов.
  9. Универсальный лямбда-зонд может оборудоваться спиралью, которая монтируется в отдельном резервуаре.

Канал «Chevrolet Aveo» рассказал об устройстве контроллера.

Основная особенность кислородного регулятора заключается в том, что для производства устройства применяется термостойкая база. Использование подобных материалов дает возможность работать контроллеру в системах, где присутствуют повышенные температуры. В зависимости от датчика к нему может подключаться разъем с количеством проводников, составляющих от одного до четырех.

Регулятор концентрации объема кислорода — это элемент обратной связи, который функционирует так:

  1. Два электрода, наружный и внутренний. На первом есть платиновое напыление, имеющее высокую чувствительность по отношению к содержанию кислорода.
  2. Внутренний контроллер выполнен из циркониевого сплава. Его электрод функционирует под воздействием отработавших газов, а внешний предназначен для контакта с атмосферным воздухом.
  3. Когда внутренний контроллер разогревается, в его керамической основе появляется разница потенциалов. Это способствует образованию электрического напряжения.
  4. В соответствии с этим параметром определяется объем кислорода в отработавших газах.

Распиновка

Схема контактов лямбда-зонда

Рассмотрен пример обозначения проводов на кислородном устройстве от ВАЗ 2110, оснащенном четырьмя контактами:

  1. Кабель в черной оболочке является сигнальным выходом. Он подсоединяется к микропроцессорному блоку. ЭБУ используется для считывания и обработки поступающих импульсов об объеме кислорода, содержащегося в выхлопных газах.
  2. Два контакта белого цвета используются для подключения к обогревательному компоненту, расположенному в контроллере. При подсоединении неважно, куда подключать конкретный кабель — к положительному или отрицательному выходу.
  3. Четвертый проводник устройства выполнен в серой оболочке. Это масса или заземление.

Виды лямбда-зондов

Типы кислородных контроллеров различаются между собой по следующим параметрам:

  • конструкции и устройству;
  • методу крепления на трубе;
  • параметру ширины измерения лямбды.
Узкополосные

Такие устройства считаются двухуровневыми и являются самыми простыми в плане конструкции. Узкополосные регуляторы, по сути, это генераторы волнообразных импульсов. Такой датчик представляет собой простой гальванический компонент, но вместо электролита здесь используются керамические соты. Они свободно пронизывают ионы кислорода, а чтобы сделать их проводимыми, необходим обогрев до температуры около 400 градусов. Основная особенность узкополосного регулятора состоит в том, что он может монтироваться перед нейтрализаторным устройством либо после него.

Титановые

Для наконечника кислородного регулятора керамическая часть может быть выполнена из оксида циркония либо титана. Принцип работы данного типа устройств немного отличается от универсальных. Регулятор производит замер не величины напряжения, а параметра электрического сопротивления кислорода на выхлопе. Чем выше будет концентрация кислорода, то есть горючая смесь обедненная, тем меньше рабочая величина. Сопротивление увеличивается при снижении кислородного объема.

На изменения, которые происходят в составе выхлопа, титановые устройства реагируют оперативнее. Они характеризуются более высоким ресурсом эксплуатации и выдачей точных показаний. По сравнению с циркониевыми устройствами их стоимость более высокая. Первые хоть и уступают титановым в плане точности и срока службы, но спрос на них более высокий.

Широкополосные

Конструкция такого устройства более сложная. Основная особенность кислородного регулятора заключается в том, что он может изменять образование смеси для каждого отдельного цилиндра силового агрегата. На изменение происходящих внутри двигателя процессов датчик реагирует мгновенно. В целом это положительно отражается на функционировании мотора и способствует снижению объема вредных элементов в отработанных газах. Широкополосные типа устройств используются в качестве входных контроллеров каталитического нейтрализаторного устройства.

Сергей Л подробно рассказал об одном из популярных фирменных лямбда-зондов широкополосного типа.

Без нагревателя

Устройства, в которых нет обогревателя, считаются наиболее ранним типом. Если по конструкции регулятор относится к однопроводным, то в нем имеется один сигнальный кабель. В двухпроводных используется общий проводник и он подключается к заземлению со стороны электрики машины.

Контроллеры, не оборудованные нагревателем, устанавливаются в близости к выхлопным отверстиям силового агрегата. Такое место монтажа считается не самым оптимальным для выполнения замеров, поэтому сигналы, отправляющиеся с датчика, могут быть неточными. Основной минус устройства заключается в том, что для достижения необходимой температуры, когда он будет работать более точно, ему потребуется время.

С нагревателем

Кислородные контроллеры с обогревательным элементом бывают трех- и четырехполосными. Их использование дает возможность быстрее достичь необходимой температуры, что обеспечит корректную работу регулятора. Сам нагреватель выполнен в виде внутреннего резистора, который прогревается, когда через него проходит ток.

Такие устройства могут устанавливаться на системе выхлопа ниже по потоку отработанных газов. Они функционируют в более щадящем режиме в плане температуры, если сравнивать с датчиками без нагревателей. Все современные устройства, имеющиеся в продаже, обязательно оборудуются обогревательными элементами. Но время прогрева может отличаться в зависимости от модели.

Универсальные

Монтаж такого типа регуляторов допускается на любой тип транспортного средства, но при подборе важно правильно определить вид ДВС. Иногда для установки требуется внести изменения в электропроводку машины и колодку подключения контроллера. Универсальные датчики хоть и называются так, то тип силового агрегата очень важен, иначе мотор может функционировать некорректно.

Об установке такого типа лямбда-зондов рассказал пользователь Denis Marian.

С быстрым разогревом

Такие устройства еще называются кислородными регуляторами типа FLO либо UFLO. В основе конструкции контроллера применяется низкоомное высокотемпературное нагревательное устройство, позволяющее снизить время прогрева. Для достижения необходимого уровня температуры регулятору может потребоваться менее двадцати секунд. Вредные вещества, находящиеся в составе отработавших газов, наиболее опасны при запуске силового агрегата «на холодную». Поэтому устройства с быстрым нагревом позволяют снизить уровень загрязнения в момент первоначального запуска ДВС.

Причины и признаки неисправности датчика

Работа контроллера может быть нарушена из-за таких причин:

  1. Использование некачественного либо этилированного топлива. В частности, для любого двигателя опасно горючее с высоким содержанием свинца.
  2. Ошибки, допущенные автовладельцем. При установке кислородного контроллера мог использоваться нетермостойкий герметичный клей. Либо средство, в составе которого используется силикон.
  3. Перегрев кислородного регулятора. Причин такой проблемы может быть множество. К основным относятся неверно выставленный момент опережения зажигания и обогащение горючей смеси. Иногда устройство перегревается в результате сбоев в работе системы зажигания.
  4. Неудачные и многократные попытки старта силового агрегата. Из-за этого в выхлопную систему попадает большой объем горючего. Есть вероятность воспламенения смеси с детонацией.
  5. Отсутствие герметичности в системе выхлопа.
  6. Износ маслосъемных колпачков. Это приводит к попаданию моторной жидкости в систему выхлопа.
  7. Проблемы с контактом в выходной электроцепи кислородного регулятора. Неисправность может заключаться в обрыве либо замыкании на массу. Возможен плохой контакт устройства с бортовой сетью машины.
  8. Попадание охлаждающего вещества в систему выхлопа.
  9. Нарушение герметизации корпуса кислородного регулятора.
  10. Неверное либо нестабильное питание в электросети машины. В частности, речь идет об участке цепи от кислородного датчика к микропроцессорному блоку управления двигателем.

Подробнее о причинах неисправностей лямбда-зондов рассказал канал «Интернет магазин автозапчастей».

О выходе из строя регулятора могут сообщить следующие признаки:

  1. Транспортное средство при езде по ровной дороге без причины начинает двигаться рывками.
  2. Значительно повысилось потребление топлива двигателем.
  3. Автомобиль плохо едет, практически не набирает скорость. При нажатии на педаль газа ощущаются «провалы», мощность силового агрегата не увеличивается.
  4. Двигатель машины функционирует неустойчиво при работе на холостых оборотах.
  5. Когда силовой агрегат остановлен, из-под капота доносится треск. Нехарактерный для нормальной работы двигателя звук можно услышать в районе установки кислородного датчика.
  6. Корпус регулятора покраснел, это можно оценить визуально. Такая проблема говорит о перегреве устройства.

Диагностика датчика

Для определения работоспособности контроллера можно проверять следующие параметры:

  • величину напряжения в электроцепи подогрева, если регулятор оборудован обогревателем;
  • работоспособность нагревательного элемента внутри конструкции;
  • величину опорного напряжения;
  • сигнал, поступающий с устройства, но для этого потребуется осциллограф либо стрелочный вольтметр.

Для диагностики регулятора потребуется именно такой тип тестера, поскольку он оперативнее реагирует на смену показаний. Перед выполнением тестирования надо произвести визуальную проверку устройства. Требуется убедиться в отсутствии механических дефектов и повреждений электропроводки, подключенной к контроллеру.

Если лямбда-зонд покрыт сажей или другими веществами, диагностика не потребуется, поскольку регулятор уже необходимо менять.

Проверка напряжения в электроцепи обогрева

Тестирование выполняется с использованием цифрового либо стрелочного вольтметра, процедура производится так:

  1. Ключ устанавливается в замок, выполняется активация зажигания. На этом этапе важно не отключить колодку от контроллера. Это приведет к тому, что микропроцессорный модуль мотора определит это как ошибку. Соответствующая информация о неисправности лямбда-зонда будет занесена в память блока управления.
  2. Острые щупы тестера надо установить на контакты, подключенные к обогревательному элементу. Контроллер не отключается, выводами вольтметра именно протыкается колодка. Можно использовать разъем со стороны проводников.
  3. Значение напряжения на контактах должно соответствовать аналогичному параметру АКБ. Для легковых авто и внедорожников — 12 вольт и 24 — для микроавтобусов. Если двигатель не запущен, напряжение с микропроцессорного модуля может не идти на контроллер. Из-за этого потребуется запуск силового агрегата. Но в большинстве случаев достаточно просто активировать зажигание.

Положительный сигнал идет на нагревательный элемент напрямую через предохранительное устройство. А отрицательный импульс подается с микропроцессорного модуля управления мотором. Поэтому, если положительный сигнал отсутствует, надо произвести более детальную диагностику электроцепи на участке от батареи до предохранительного устройства и регулятора. В некоторых автомобилях этот проводник оснащается реле. Если отсутствует отрицательный сигнал, производится проверка проводки до микропроцессорного модуля, есть вероятность, что контакт «потерялся» в одном из штекеров.

Канал «Все по теме» рассказал о нескольких методах тестирования контроллера, в том числе о проверке напряжения.

Диагностика исправности нагревательного элемента

Для проверки этого устройства потребуется омметр, который надо заранее настроить в режим замера величины сопротивления.

Процесс диагностики выполняется так:

  1. От кислородного контроллера отключается колодка с проводами.
  2. Производится замер параметра сопротивления. Эту величину надо измерить между проводниками нагревательного устройства. Сюда устанавливаются щупы тестера.
  3. Значение сопротивления в зависимости от контроллера может быть разным. Как правило, этот параметр составляет от 2 до 10 Ом.

Если тестер не показал сопротивление вовсе, это говорит об обрыве внутри регулятора. Потребуется замена устройства.

Диагностика опорного напряжения кислородного регулятора

Для проверки этого параметра понадобится тестер (возможно использование мультиметра), настроенный в режим вольтметра.

Процесс диагностики:

  1. Ключ устанавливается в замок, выполняется активация зажигания.
  2. Производится замер величины напряжения, для этого щупы тестера надо подключить между сигнальным кабелем и массой.
  3. На большинстве транспортных средств полученный параметр должен составить около 0,45 В. Если значение отклоняется в большую или меньшую сторону более, чем на 0,2 вольта, надо детальнее проверять сигнальную цепь контроллера. Возможны проблемы в контакте устройства с массой.

Пользователь Игорь Белов рассказал о нескольких методах диагностики лямбда-зонда, в том числе проверке опорного напряжения.

Диагностика сигнала кислородного регулятора

Этот вариант тестирования считается наиболее сложным в плане реализации и самым ответственным. Для его выполнения потребуется осциллограф либо стрелочный вольтметр. При их отсутствии допускается использование специального прибора — мотор-тестера. Если имеется осциллограф, то необязательно использовать оборудование, допускается применение компьютерных программ. Но к ПК дополнительно необходимо подключить специальную приставку с щупами.

Процедура проверки выполняется так:

  1. Ключ устанавливается в замок, производится запуск силового агрегата. Двигатель необходимо прогреть до рабочей температуры. Кислородный регулятор не будет оптимально функционировать, пока не нагреется.
  2. Затем щупы диагностирующего прибора подключаются между сигнальным кабелем, а также проводником массы устройства.
  3. Путем нажатия на педаль газа обороты коленвала силового агрегата увеличиваются приблизительно до трех тысяч в минуту.
  4. После этого выполняется проверка показаний контроллера кислорода.

Сигнал с регулятора должен меняться в диапазоне от 0,1 до 0,9 вольт. Если диагностическое устройство точное и полученные значения составляют от 0,2 В до 0,7 В, то кислородный контроллер вышел из строя. Затем надо засечь, в течение какого времени параметры изменяются от большего значения к меньшему. За десять секунд лямбда-зонд должен поменять около 9-10 значений. Если процедура изменения осуществляется реже, то есть вероятность появления ошибки в плане медленного отклика устройства.

Как устранить неисправности лямбда-зонда

Если проблемы в работе кислородного контроллера не связаны с самим регулятором, но его работу можно попытаться восстановить:

  1. Производится диагностика проводов на участке от датчика к микропроцессорному блоку. Если имеется обрыв или повреждение изоляции, кабель надо менять. Процедура замены выполняется с помощью перепайки. Место спайки необходимо обмотать изолентой либо установить в специальную термоусадочную трубку.
  2. Выполняется очистка контактных элементов на разъеме цепи, к которой подключен датчик. Проблема может заключаться в их загрязнении, из-за этого устройство будет передавать некорректные сигналы. Процедура очистки выполняется путем продувки разъема или использованием специальной железной щетки.
  3. Если контактные элементы повреждены, то саму колодку надо перепаять. Для этого на разборке авто ищется б/у датчик, от него отрезается разъем. Можно найти штекер в автомагазине. Процедура пайки выполняется посредством разрезания кабеля с колодкой и установкой нового разъема.

Пользователь Олег Донской рассказал о выполнении ремонта лямбда-зонда в гаражных условиях.

Чистка датчика кислорода

Есть два варианта почистить контроллер. Независимо от метода, перед выполнением процедуры устройство надо демонтировать из посадочного места. Для этого используется специальный съемник либо гаечный ключ соответствующего размера.

Первый способ

Данный вариант не является наиболее простым и быстрым, поскольку потребителю необходимо получить доступ к керамической составляющей регулятора. А эта основа расположена за защитным стальным колпачком, который демонтировать самостоятельно бывает проблематично. Для выполнения задачи придется использовать ножовку по металлу, но действовать надо аккуратно, чтобы не повредить поверхность. Поэтому более целесообразно использовать токарный станок — с его помощью у основания регулятора можно срезать колпачок рядом с резьбой, используя резцу.

При отсутствии соответствующего оборудования допускается воспользоваться напильником. Полностью демонтировать колпачок таким инструментом не выйдет, но можно сделать небольшие отверстия длиной около 5 мм. Когда будет обеспечен доступ к основанию кислородного регулятора, можно чистить устройство, для выполнения задачи потребуется ортофосфорная кислота.

Процесс очистки:

  1. Берется около 100 мл очистительного средства. При отсутствии ортофосфорной кислоты можно использовать флюс для пайки либо преобразователь ржавчины.
  2. Средство очистки наливается в стеклянную емкость, для этого можно использовать обычную банку либо рюмку. В нее опускается сердечник кислородного датчика. Полностью класть регулятор в емкость нельзя.
  3. Через 15-20 минут выполняется промывка основания контроллера с помощью дистиллированной воды. Затем датчик необходимо полностью высушить.
  4. Процедура прочистки может повторяться несколько раз, пока налет не исчезнет с металлического основания сердечника. Если удалить загрязнения не получилось, то воздействие очистительного средства можно усилить, используя кисть, которой необходимо обрабатывать и прочищать основание.
  5. Если ранее удалось демонтировать защитный колпачок, то вместо кисти допускается применение зубной щетки. Когда процедура завершена, регулятор промывается и высушивается. Вернуть колпачок на место можно, используя аргонную сварку.

При реализации этого метода надо учитывать нюансы:

  1. Ортофосфорная кислота представляет собой агрессивное и химически опасное средство. При работе с ней необходимо соблюдать все правила техники безопасности. Нельзя допустить ее попадания на слизистые оболочки или внутрь организма.
  2. Если кислородный контроллер сильно загрязнен, то 20 минут для его качественной прочистки будет недостаточно. Поэтому нужно подождать несколько часов, пока датчик лежит в емкости с кислотой. В запущенных случаях воздействие очистительного средства можно увеличить до 8 ч.
  3. Чтобы убедиться в том, что процедура ремонта была выполнена правильно, может понадобиться определенное время. Это позволит автовладельцу оценить качество работы транспортного средства и произвести замер расхода горючего. Если на приборной панели после очистки продолжает гореть индикатор «Чек Энджин», это говорит о том, что восстановить работу регулятора не получилось.
  4. В случае когда кислородный контроллер оборудован защитным колпачком с двойной оболочкой, сделать отверстия с помощью напильника не выйдет. Оптимальным вариантом будет прочистка сердечника путем его замачивания в кислоте с защитным компонентом.

Второй способ

Для реализации этого метода понадобится то же очистительное средство. Процедура восстановления будет выполняться с использованием газовой плиты либо горелки. В первом случае рекомендуется использование самой маленькой конфорки, этот вариант более удобный. С нее необходимо заранее демонтировать крышку, после чего перевернуть ее и положить, сместив в сторону и установив так, чтобы она закрывала газовую трубу от попадания кислоты внутрь.

Затем огонь зажигается, сердечник лямбда-зонда обрабатывается кислотой, а потом разогревается на конфорке. После того как кислота начнет брызгать и кипеть, на поверхности устройства появится сине-зеленая соль. Необходимо дождаться, пока очистительное средство полностью не выкипит, а затем обмыть регулятор дистиллированной водой. После этого процедура обработки кислотой и прогрева повторяется еще несколько раз до момента, пока датчик не заблестит. Прежде чем устанавливать на место резьбу, ее рекомендуется смазать графитовым средством. Затем регулятор ставится на место.

Как обойти лямбда-зонд?

Для обхода кислородного регулятора можно использовать обманку — механическую либо электронную. В первом случае речь идет об установке так называемой проставки или втулки вместо катализаторного устройства. Этот элемент монтируется между самим контроллером и выхлопной трубой. Размеры устройства должны быть определенными и соответствовать конкретной марке авто. Для более качественной работы важно, чтобы втулка была изготовлена из теплоустойчивой стали либо бронзы.

В самой проставке необходимо сделать отверстие сверлом на 2 мм, через него отработанные газы будут проходить в обманку. Во втулку ставится керамическая крошка, ее надо заранее обработать каталитическим спреем. Химическое воздействие выхлопных газов с этим материалом приведет к окислению, соответственно, будет снижена концентрация вредоносных элементов на выходе. В итоге это станет причиной того, что информация с двух контроллеров будет разной, а микропроцессорный модуль воспримет это как штатную работу катализаторного устройства.

Пример схемы для создания механической обманки лямбды

Для монтажа обманки выполняются следующие действия:

  1. Автомобиль загоняется в гараж с ямой либо на эстакаду.
  2. От АКБ отключается клеммный зажим.
  3. Производится демонтаж кислородного контроллера.
  4. Устанавливается проставка, подключается аккумуляторная клемма.
  5. Производится запуск мотора. Если микропроцессорный модуль выдает ошибку, процедура демонтажа и установки повторяется.

Этот тип обманки самый экономичный, он оптимально подойдет для использования в любом типе авто. Реализация электронных обманок более сложная.

Чтобы соорудить такое устройство, потребуются следующие детали:

  • неполярный конденсаторный элемент К10-17Б, емкость устройства должна составить 1 мкФ;
  • резисторный элемент С1-4, он должен быть рассчитан на 0,25 Вт, 5%;
  • паяльник с припоем и канифолью;
  • изолента;
  • канцелярский нож.

Монтаж обманки производится на проводники, идущие от контроллера к колодке. Сам разъем в некоторых моделях авто может располагаться в тоннеле между креслами водителя и пассажиром. Его место установки может быть в подкапотном отсеке или под центральной консолью, этот момент надо уточнить. Конденсаторное устройство рекомендуется монтировать сразу от коннектора перед резисторным элементом. Прежде чем выполнять задачу, необходимо отсоединить отрицательную клемму от АКБ.

Схема электронной обманки для кислородного регулятора

После осуществления подключений все компоненты надо качественно заизолировать. Оптимальнее всего установить всю схему в пластмассовый корпус и эффективно закрыть коробку, для этого залить эпоксидной смолой. Соединение проводников рекомендуется сделать там, где гофра отключается. Затем закрыть место изоляции.

Также допускается использование специальных приборов — эмуляторов. Но это не обманка. Такое устройство позволит обеспечить качественную работу микропроцессорного модуля, но не обойти его. Блок управления, установленный внутри эмулятора, позволит оценить качество отработавших газов и проанализировать работу первого контроллера. Затем устройство формирует импульс, соответствующий сигналу со второго контроллера.

Для решения проблемы можно перепрошить микропроцессорный модуль. Принцип заключается в том, что после выполнения задачи управляющий блок не станет учитывать импульсы от контроллера за катализаторным устройством. Модуль будет ориентироваться на сигналы регулятора, расположенного перед ним. Проблема состоит в том, что найти заводскую прошивку почти невозможно.

 Загрузка …

Видео «Обзор обманок для кислородного контроллера»

Пользователь Виктор Токарь в своем ролике рассказал об устройствах для обхода лямбда-зондов с описанием основных особенностей и недостатков.

Лямбда-диагностика: быстрое решение проблем бережливого производства | 2014-06-06

Крейг Труглиа — сертифицированный техник ASE A6 и A8, который в настоящее время работает сервисным писателем в ремонтной мастерской Patterson Autobody в Паттерсоне, штат Нью-Йорк. -Мировой опыт, который он видит ежедневно в сфере ремонта автомобилей.

Диагностика проблем бережливого производства с годами становится все более сложной.Раньше все, что нужно было сделать, это настроить карбюратор. Теперь, благодаря возросшей компьютеризации и одновременному отсутствию стандартизации в автомобильной промышленности, это требует владения несколькими различными системами, причем многие производители имеют разные нюансы.

Однако одно остается неизменным с годами: лямбда. Лямбда никогда не меняется и всегда представляет собой совершенство топливной системы. Если мы поймем лямбду, независимо от того, насколько сильно изменятся технологии обратной связи с датчиками, мы сможем настраивать и диагностировать автомобили.

Что такое лямбда? Лямбда — это идеальное соотношение воздух-топливо, при котором в топливе практически отсутствуют неизрасходованные углеводороды (УВ). В действительности, ни один двигатель не будет работать абсолютно идеально, что является большой причиной того, что даже в «хороших» работающих двигателях будет больше HC pre-cat, чем post-cat, но мы говорим о разнице в несколько частей на миллион (PPM) HC.

Во всех смыслах и целях, если у вас лямбда 1.0, у вас идеальный работающий двигатель.Если вы опускаетесь ниже 1, вы начинаете разбогатеть. Если вы подниметесь выше 1, вы бежите на худой конец. Все, что находится в пределах от 0,97 до 1,03, является нормальным, но если вы превысите эти значения и у транспортного средства есть код для корректировки топливоподачи или проблема с преобразователем, стоит присмотреться. Однако не будьте слишком чувствительны. Если автомобиль работает нормально и имеет лямбда 1,08 или 0,95, этого может быть «достаточно хорошо».

Просто запомните, как это работает: выше 1 — скудно, а ниже 1 — богато.

[PAGEBREAK]

Лямбда- и кислородный датчики

Большинство техников старой школы знакомы со старым методом кислородного датчика Bosch с обратной связью по лямбда.Затем кислородный датчик перед каталитическим нейтрализатором по существу дал компьютеру представление о соотношении воздух-топливо в двигателе. Очевидно, идея состоит в том, чтобы сделать его идеальным, то есть 1.00 лямбда.

Идеальная лямбда в системе датчика кислорода составляет 450 мВ. Тем не менее, PCM постоянно корректирует топливную смесь, чтобы добиться нужного результата. Таким образом, у хороших кислородных датчиков есть ровные волны в диапазоне от 150 мВ до 850 мВ при подъеме или спуске в пределах 100 мс или меньше, когда система находится в замкнутом контуре. Теперь, если среднее значение формы волны превышает 450 мВ, автомобиль работает на богатой смеси.Если среднее значение меньше 450 мВ, это отражает бедное состояние.

Например, нередки случаи, когда длительная утечка вакуума или утечка выхлопных газов вынуждают датчик накачивать настолько долго, что даже когда эти условия исправлены, датчик будет постоянно показывать 0 В, заставляя двигатель постоянно работать на обедненной смеси. Если добавление пропана в топливную смесь или открытие дроссельной заслонки не приводит к обогащению датчика и он остается на прежнем месте, датчик необходимо заменить.

Многие техники находят кислородные датчики довольно простыми для понимания, потому что их напряжение повышается по мере увеличения количества топлива и напряжение падает, когда топливо уменьшается.Концептуально это просто, но имейте в виду, что это противоположность Lambda.

Лямбда- и воздушный топливный датчик

В отличие от кислородных датчиков, воздушные топливные датчики делают все правильно. Они повышаются по напряжению, когда топливная смесь выходит наружу, и опускаются, когда топливная смесь становится богаче.

Чтобы точно знать, на что вы смотрите, вам необходимо знать спецификации напряжения для топливовоздушного датчика на вашем сканирующем приборе. На новых автомобилях идентификатор параметра O2 Sensor B1 в потоке данных даст нам точное значение напряжения.В предыдущей статье Auto Service Professional были приведены следующие характеристики: 3,3 В (Toyota), 2,8 В (Honda), 1,9 В (Hyundai), 2,44 В (Subaru), 1,47 В (Nissan), 1,00 Lambda (все европейские модели). производители).

Однако по мере того, как мы приближаемся к представлению автомобилей 2015 года, некоторые из этих технических характеристик будут устаревать. Что может сделать техник в этой ситуации?

Ответ — проверенный и надежный инструмент: анализатор выбросов. Хотя спецификации датчика состава топливовоздушной смеси могут меняться с годами, что значительно затрудняет вашу работу по определению того, работает ли автомобиль на богатой или обедненной смеси, анализатор выбросов всегда будет иметь одни и те же известные хорошие характеристики: 1.00 Лямбда.

Ваш анализатор выбросов не солгает. Его можно откалибровать, в отличие от бортовых датчиков соотношения воздух-топливо. Кроме того, он не выходит из строя из-за неисправностей, связанных с температурой. Мы увидим, насколько это актуально, чуть позже.

Испытательный автомобиль: 2007 Hyundai Elantra

2.0L P0170, P0171, P2195 и P2414 коды неисправности

Этот автомобиль было нелегко диагностировать, потому что он «нарушал все правила».”

Берни Томпсон из Automotive Test Solutions во время работы над Hyundais заметил, что это единственные автомобили на дороге, датчики массового расхода воздуха в которых не соответствуют норме 1 грамм на литр на холостом ходу. Например, автомобиль с двигателем 2,4 л и хорошим датчиком массового расхода воздуха должен показывать около 2,4 грамма в секунду (GPS) воздуха или немного больше. Если есть более низкое показание, скажем, 2.1 GPS, это может отражать проблему с объемной эффективностью, такую ​​как загрязненный датчик массового расхода воздуха, не улавливающий весь воздух, поступающий в двигатель.

Теперь дело в том, что на Хюндаисе чтение 2,4 GPS не рубило бы. Фактически, хотя в отличие от всех автомобилей от Ford до Mercedes такие показания были бы хорошими (хотя показания часто могут быть выше), Hyundai должен иметь значительно более высокие показания, такие как 4.0 GPS.

Автомобиль приехал с очень плохим расходом топлива. Цель заключалась в том, чтобы исправить это с минимальными затратами времени и денег.

Как и в случае любой другой проблемы с обедненной смесью, первое, на что должен обратить внимание техник, — это корректировка топливоподачи и сравнение ее с передним датчиком топливовоздушной смеси.Однако на этом автомобиле это фактически сбило нас с пути.

На этой Elantra автомобиль при запуске имел бы STFT 48,4+, а датчик воздух-топливо показывал 4,9 В.

Не нужно быть ученым-ракетчиком, чтобы понять, что это транспортное средство ехало на очень низком уровне. При полностью открытой дроссельной заслонке расчетная нагрузка составляет 100%, что свидетельствует о хорошем датчике массового расхода воздуха. Кроме того, напряжение переднего датчика подачи топлива в воздух будет резко снижаться, когда форсунки сливают топливо.

[PAGEBREAK]

В конце концов, когда автомобиль стал более горячим, напряжение на STFT и переднем датчике воздушно-топливного отношения снизилось до точки, где STFT стало 0.

Далее датчик топлива передний расположился на 2,8В. LTFT был 25+, что неплохо, но STFT был хорош! Мне показалось, что автомобиль действительно наклонился, заводился и работал нормально, когда становился горячим.

В этот момент мой разум начал со мной шутки. Я знал правильную спецификацию для Хюндайса, но хорошо известная спецификация была от Hyundai Elantra 2008 года выпуска.«Может быть, — сказал я себе, — спецификация Hyundai 2007 года иная. STFT равен 0, когда показание воздух-топливо составляет 2,8 В! »

Быстрый просмотр каталога запчастей мог бы подтвердить, что датчики Elantra AFR 2007 и 2008 годов имеют одинаковый номер детали. Однако, учитывая, что в то время у меня был доступ только к стандартному диагностическому прибору OBD II, а не к сканеру Carman Scan, который имеет возможности оригинального оборудования на Hyundais в течение модельных лет вплоть до начала этого десятилетия, откуда я узнал, что мой сканер дает мне правильное чтение? Возможно, как и на более старых моделях, общий OBD II давал мне неточные показания напряжения переднего датчика AFR.

Определение объема переднего датчика воздух-топливо в любом случае дало бы нам правильные показания, но эй, мы были ленивы. Мы посчитали, что если STFT равен 0%, то стабильное напряжение воздушно-топливной смеси должно быть хорошим.

При холодном двигателе воздухозаборник был задымлен и нигде не было обнаружено утечек вакуума. Датчик станет бедным и богатым из-за создания утечки вакуума и добавления пропана. Однако во время такого тестирования мы заметили, что датчик воздух-топливо работал, но STFT не соответствовал изменениям в топливовоздушной смеси, когда автомобиль был горячим.Когда автомобиль был холодным, STFT работал нормально.

Без анализатора выбросов и должного уважения к сумасшествию, присущему Hyundais, автомобиль, похоже, нарушал закон краткосрочной корректировки топлива: STFT всегда реагирует на движения датчика кислорода / воздуха-топлива.

Сначала мы выполнили программный сброс PCM, соприкоснув кабели аккумулятора друг с другом перемычкой в ​​течение нескольких минут. Когда это не помогло, мы решили купить дешевый бывший в употреблении PCM и подключить его.Его не нужно было перепрограммировать, и угадайте, что, машина по-прежнему делает то же самое.

К счастью, мы только что получили анализатор выбросов от ANSED и смогли проверить выбросы. Выбросы были действительно чистыми, но нас это не беспокоило. Когда автомобиль был холодным, лямбда была значительно выше 1, отражая состояние бедной смеси. Когда он нагрелся, даже при том, что STFT застрял на нуле, топливная смесь сообщила о бедной смеси, около 1,235 лямбда.Анализатор выбросов ANSED показал показания 100 HC и 1,235 лямбда, когда автомобиль был прогрет. В холодном состоянии конвертер будет убирать меньше углеводородов, и их количество будет исчисляться сотнями. Поскольку в системе нет утечек вакуума, утечек выхлопных газов и хорошего датчика массового расхода воздуха, мы снова обратили внимание на то, что передний датчик воздух-топливо застрял в обедненном состоянии. Новый датчик снизил напряжение AFR до 2,0 В, и через несколько дней автомобиль прошел государственный техосмотр. Кроме того, датчик расхода топлива сообщил о росте!

Заключение: хотя понимание топливной коррекции может позволить провести некоторую быструю диагностику, в конечном итоге, если мы не умеем считывать лямбда и не располагаем анализатором выбросов, не будет транспортных средств, которые мы не сможем диагностировать, если у нас нет спецификаций. мы полностью уверены в заводском диагностическом приборе.Поскольку эти спецификации часто проходят годы, чтобы попасть в наши руки, и часто нереально, что мы можем протестировать каждый новый автомобиль, который появляется в наших магазинах для них, знание Lambda и способность ее измерять будут необходимы. на долгие годы. ●

Хотите прочитать больше технических статей? См. Весь выпуск Auto Service Professional за май / июнь 2014 г., щелкнув нашу цифровую версию здесь.

Разница между лямбдой и AFR

По мере того, как энтузиасты производительности и гонщики работают с более сложными инструментами настройки, особенно с теми, которые разработаны для двигателей EFI, все чаще возникают споры о том, следует ли использовать соотношение воздух-топливо или лямбда при калибровках и динамометрических испытаниях.Водители также могут иметь выбор между ними во время наблюдения в режиме реального времени на своем манометре.

Для ясности: двигатель не знает разницы между AFR и Lambda. Это просто два разных термина, которые тюнеры используют для эффективного измерения количества воздуха и топлива, используемых в циклах сгорания двигателя. Тем не менее, различие в просторечии не такое уж случайное, как, скажем, сходство между «долларом» и «долларом». В определенных ситуациях есть явные преимущества использования A / F или Lambda.

Посмотреть все 13 фотоЭтот Innovate Motorsports ECB-1 контролирует лямбда, содержание этанола и наддува. Этот двигатель работает на холостом ходу на уровне .97 лямбда, что соответствует почти стехиометрическому значению AFR 14,2.

Лямбда, греческая буква, обозначаемая символом?, Представляет стехиометрическое значение всего топлива как 1,00. Бережливые условия будут представлять собой значение выше 1,00, а богатые условия — ниже. Эти обедненные (более высокие) и богатые (более низкие) значения рассчитываются для лямбда-шкалы путем деления наблюдаемого отношения A / F на стехификацию конкретного топлива.Например: полученное значение 12,8: 1 для бензина разделить на 14,7, чтобы получить значение лямбда 0,87.

КАК РАССЧИТЫВАЕТСЯ ЛЯМБДА?

Широкополосный датчик вычисляет лямбду, сравнивая кислород, оставшийся в выхлопе, с эталонной насосной ячейкой датчика, что соответствует стех. Поскольку датчик считывает содержание кислорода, он не зависит от типа используемого топлива. Если двигатель сжигает топливо с определенным стехиометрическим соотношением, весь кислород потребляется во время сгорания.Когда датчик определяет это стехиометрическое состояние (отсутствие кислорода в потоке выхлопных газов), лямбда-датчик будет отображать 1.

См. Все 13 фотографий Датчик кислорода на самом деле является лямбда-датчиком, и необходимо уравнение (лямбда, считывающая стехиометрическое отношение X для топлива. измеряется) для расчета AFR.

СООТНОШЕНИЕ ВОЗДУШНОГО ТОПЛИВА, МОЩНОСТЬ И СТОХИОМЕТРИЯ

Как большинство из нас узнали на раннем этапе обучения хот-родам, соотношение воздух-топливо (A / F) рассчитывается путем деления количества вдыхаемого двигателем количества воздуха на фунты топлива. доставляется за час до двигателя.Поскольку количество топлива, сжигаемого двигателем, напрямую зависит от производимой мощности, этот уровень топлива требует достаточного количества воздуха для сгорания. Другими словами, A / F — это настраиваемое свойство, которое напрямую влияет на мощность и эффективность двигателя.

Возможно, первое громкое, труднопроизносимое слово, которое мы когда-либо встретили в гараже, было «стехиометрический». По определению, это оптимальная смесь воздуха и топлива, и эта формула меняется для каждого типа топлива. Для насосного бензина ученые определили, что 14.7 частей кислорода необходимы для того, чтобы один фунт топлива полностью сгорел до точки, при которой не осталось ни кислорода, ни топлива — только обычные побочные продукты сгорания, которые включают воду и углекислый газ.

Посмотреть все 13 фотографий Лямбда, обозначает ли символ? Греческую букву? И означает многое в различных областях науки. При настройке двигателя это отношение количества кислорода, фактически присутствующего в камере сгорания, к количеству, которое должно было присутствовать для достижения идеального сгорания.

Это соотношение 14,7: 1 является стехиометрическим для бензина, обычно сокращается до «stoich» (произносится как «stow-ick») на гусеничном сленге. Если кислорода меньше, а топлива больше — скажем, соотношение 12: 1 — тогда смесь считается богатой. Если там больше кислорода и меньше топлива — скажем, соотношение 16: 1 — тогда смесь считается бедной. Stoich — это, по сути, 50-ярдовая граница между богатой и бедной.

Если топливо несет в себе собственный кислород или энергосодержание топливо меняется, затем меняется стех. Метанол имеет в своей формуле один атом кислорода, поэтому стоик равен 6.45: 1. То есть для эффективного сгорания одного фунта топлива требуется всего 6,45 частей воздуха.

Посмотреть все 13 фотоСмотреть все 13 фото Лямбда и AFR являются индикаторами смеси сгорания двигателя. Однако AFR зависит от типа используемого топлива, а лямбда — нет.

Нитрометан, этот замечательный углеводород, несущий два атома кислорода, имеет стоик 1,7: 1. На треке двигатель Top Fuel может иметь мощность 1: 1, и именно поэтому ему требуется более 80 галлонов топлива в минуту, чтобы не отставать от всего воздуха, проталкиваемого массивным нагнетателем 14-71, работающим более 60 фунтов. увеличение.

LAMBDA И АЛЬТЕРНАТИВНАЯ НАСТРОЙКА ТОПЛИВА

Lambda уже давно используется для настройки на дорогах высокого класса и у производителей комплектного оборудования, особенно в странах с метрической системой. Он так и не начал ломаться в бытовом мышлении, пока не стало доступно новое высокоэффективное топливо на заправке.

Посмотреть все 13 фотоСмотреть все 13 фотоСтехиометрическое соотношение E85 составляет 9,765. Однако E85 редко бывает 85% этанолом, как утверждают, 15% бензиновой смеси. По этой причине его стех может значительно колебаться.Это делает Lambda лучшим инструментом настройки, поскольку он не зависит от типа топлива или смеси.

Проблемы с настройкой с использованием AFR начались, когда E85 стал популярным, — говорит Фелипе Саез, технический консультант по обслуживанию клиентов Innovate Motorsports. — E85, определяемый как ровно 85 процентов этанола и 15 процентов бензина, имеет стехиометрическое соотношение 9,8: 1. Проблема в том, что E85 редко является смесью этанола и бензина 85/15, когда вы получаете его на заправке. Для каждой смеси необходимо рассчитывать разные стехиометрические соотношения.»

В отличие от метанола, производимого из природного газа, этанол производят из кукурузы или других сельскохозяйственных продуктов. Оба содержат один атом кислорода в своем химическом составе. Чистый этанол с прочностью 200 имеет стехиологическое соотношение 9,0: 1 и при смешивании с Для производства бензина E85 он имеет вышеупомянутую формулу 9,8: 1.

Посмотреть все 13 фотографий Широкополосный датчик Innovate Motorsports MTX-L может отображать как AFR, так и Lambda. разные смеси на насосе — проблема, но многие уличные энтузиасты переключились с бензина на круизный режим и на E85 для гонок.Калибровка ECM с использованием A / F или наблюдения за манометром, чтобы убедиться, что вы не наклонили двигатель, стала довольно запутанной и граничащей с непрактичной.

«Решение этой проблемы состоит в том, чтобы просто использовать лямбда в качестве единицы измерения, поскольку она не меняется независимо от используемого топлива или топливной смеси», — советует Саез. «Я рекомендую использовать Lambda всем, кто использует E85 или тюнеры, которые настраивают разные виды топлива. В конце концов, вы хотите, чтобы все было единообразно, чтобы сделать интерпретацию данных как можно проще.

Посмотреть все 13 фотографийСтехиометрическое соотношение, или «стехи» на гоночном жаргоне, меняется от топлива к топливу в зависимости от его химического состава. Уникальный стеич бензина — 14,7.

«При обсуждении или сравнении мелодий важно, чтобы сравниваемые единицы измерения были одинаковыми, — продолжает Саез. «Я помню один сценарий, когда пользователь снимал для AFR 7,6, когда он работал на шкале бензина. Число, по которому он снимал, было дано ему кем-то, у которого была установка AFR на шкале E85.7,6 E85 AFR = 11,5 бензин AFR = 0,8 лямбда.

В гоночных приложениях стехиометрические характеристики встречаются очень редко. Под нагрузкой двигатель обычно настраивается на 15-25% богаче стехиометрического. Они будут делать топливо жирнее или богаче. смесь, чтобы добавить немного больше энергии в двигатель. Ключом к наблюдению за точной топливной смесью является использование качественного широкополосного датчика O2, соединенного с цифровым датчиком, например MTX-L Plus от Innovate Motorsports. Широкополосный датчик обычно читается в лямбде, то есть измеряется свободный воздух в отработанных газах и вычисляется соотношение.Заводской узкополосный O2 не будет работать в высокопроизводительных приложениях.

Посмотреть все 13 фотографий Это топливо VP C9 имеет стехнику 14,82. Еще больше пострадает кислородсодержащее гоночное топливо.

«Узкополосный датчик не передает необходимые данные, которые ищет гонщик», — сказал Саез. «Узкополосный датчик будет считывать только более богатые или худые, чем стехиометрические. Широкополосный датчик будет считывать конкретные значения в гораздо более широком диапазоне.«

» Узкополосный считывает узкий диапазон, более богатый или слабый, чем стехиометрический, — говорит Саез. «Широкополосный считывает весь спектр. Линия широкополосных датчиков Innovate позволяет выполнять измерения в диапазоне от 0,5 до 1,5 лямбда. Широкополосный диапазон не может точно определить, какое топливо вы используете, потому что он только считывает кислород или его недостаток. Широкополосный дисплей отображает AFR путем вычисления значения лямбда по выбранному стехиометрическому соотношению ».

Согласно общепринятому мнению, неплохо было бы использовать и то, и другое, но наиболее эффективный способ действий — выбрать наиболее удобное для вас измерение и узнать об этом все, что можно »Стратегия должна заключаться в том, чтобы выбрать единицу измерения и придерживаться ее.Худшее, что может сделать пользователь, — это использовать AFR и изменить стехиометрическое соотношение для каждого типа топлива, так как это затруднит интерпретацию данных », — призывает Саез.

Просмотреть все 13 фотографий Топливные драгстеры доставляют две собственные молекулы кислорода к стороне сгорания. По этой причине его стехиометрическое соотношение составляет чрезвычайно низкое 1,7: 1. Когда двигатель Top Fuel работает, цилиндр в ВМТ почти полностью заполнен топливом.

Боязнь лямбды, безусловно, была смягчена с большим упором на преимущества E85 в дополнение к датчикам, таким как MTX-L Plus, которые могут быстро переключаться между обоими измерениями.«Лямбда не получила широкого распространения в Соединенных Штатах, и поэтому для большинства она звучит чуждо», — резюмирует Саез. «E85 получил более широкое распространение».

Когда следует заменять лямбда-зонд?

Лямбда-зонд или датчик кислорода — это компонент, который измеряет уровень кислорода в выхлопных газах, выходящих из двигателя автомобиля. Это помогает двигателю точно настроить воздухо-топливную смесь, поступающую в двигатель, обеспечивая плавную работу двигателя. Это также помогает снизить расход топлива.Деталь не требует регулярного ухода, но со временем может прийти в негодность.

МГНОВЕННАЯ ЦИТАТА

Признаки неисправности лямбда-датчика

В конце концов лямбда-зонд неизбежно выйдет из строя. Поскольку датчик установлен на вашем выхлопе, он подвергается воздействию всех выхлопных газов, проходящих мимо. При этом он может засориться или пострадать от постоянных перепадов температуры в выхлопе. Симптомы часто следующие:

    1. Неисправность выхлопных газов
      Часто неисправный лямбда-зонд обнаруживается во время проверки выхлопных газов.Если выбросы слишком высоки, это часто происходит из-за того, что в двигателе сжигается слишком много топлива. Поскольку датчик помогает регулировать количество топлива, поступающего в двигатель, из этого следует, что неисправный лямбда-датчик часто является причиной слишком высоких выбросов.

    1. Низкий расход топлива
      Увеличение расхода топлива вашего автомобиля часто может указывать на неисправный лямбда-зонд. В конце концов, если датчик не работает должным образом, это может позволить слишком большому количеству топлива поступить в двигатель.

  1. Контрольная лампа двигателя
    Неисправный лямбда-зонд на самом деле является одной из наиболее частых причин загорающейся лампы «Проверьте двигатель». Ваш автомобиль стоит проверить с помощью подключаемого диагностического прибора.
ЗАБРОНИРОВАТЬ

Как узнать, требуется ли замена лямбда-датчика

Иногда может быть не сразу очевидно, действительно ли ваш лямбда-зонд нуждается в замене. Однако необходимо предпринять ряд шагов, которые помогут выяснить, нуждается ли он в замене.

Самый быстрый способ узнать, что с датчиком что-то не так, — это считать компьютер автомобиля и коды неисправностей. Если есть неисправность, будет указан код неисправности. Механик сможет проверить это во время диагностической проверки плагина. Часто это не заканчивается подключением диагностического сканера, поскольку в некоторых автомобилях установлено более одного лямбда-зонда. Только физический осмотр сможет показать, какой из них действительно необходим.

Помимо проверки, неисправный лямбда-зонд часто выявляется во время проверки ТО.Текущий тест MOT включает проверку выбросов, о любых проблемах с выбросами будет сообщено, и будут даны рекомендации о том, что заменить.

Помните, рекомендуется периодически проверять датчик, чтобы убедиться, что он работает нормально. Это может спасти ваш автомобиль от отказа при ТО и снизить расход топлива.

30 лет революционному лямбда-зонду Volvo

В 1976 году Volvo Cars представила первый в мире в области защиты окружающей среды трехкомпонентный каталитический нейтрализатор с лямбда-зондом для контроля выбросов выхлопных газов.Сегодня, 30 лет спустя, практически все автомобили с бензиновым двигателем, выпускаемые по всему миру, оснащены этим оригинальным и экологически безопасным компонентом. Еще одно нововведение Volvo — трехточечный ремень безопасности, необходимый для защиты окружающей среды.

«Самый значительный прорыв, когда-либо сделанный в области контроля выбросов выхлопных газов транспортных средств». Так сказал Том Куинн, председатель Совета по воздушным ресурсам Калифорнии (CARB), когда модель Volvo 244 1977 года была оснащена лямбда-датчиком. Система была запущена на американский рынок осенью 1976 года, и его слова остаются верными по сей день.
Это был первый действительно эффективный ответ на проблему очистки выхлопных газов транспортных средств, особенно от оксидов азота, и принцип, используемый в современных автомобилях, остается прежним. Но это был долгий путь, и необходимая работа была трудоемкой.

Volvo обещает принять меры
Еще в конце 1960-х люди начали задумываться о выбросах выхлопных газов автомобилей. Увеличивая количество воздуха, поступающего в двигатель, и предварительно нагревая всасываемый воздух, можно было немного уменьшить количество вредных веществ, но далеко не так, как хотелось бы.Например, использовались ранние формы окислительных каталитических нейтрализаторов.

В 1972 году большой и смелый шаг сделал Пер Джилленхаммар, в то время генеральный директор AB Volvo, который на всемирной экологической конференции в Стокгольме признал, что автомобили внесли большой вклад в неуклонно растущее загрязнение окружающей среды.

Результатом этой встречи стала экологическая декларация Volvo, которая действует и по сей день и гласит:
— Volvo не намерена защищать автомобили и автомобили любой ценой и в любом контексте.
— Однако автомобили — неотъемлемая часть нашей повседневной транспортной системы.
— В интересах Volvo, чтобы автомобили не причиняли травм или повреждений.
— Volvo отвечает не только за то, чтобы ее продукты были хорошо работающими видами транспорта, но и за то, что они работают в более широком контексте — в нашей среде, которую мы сегодня называем устойчивой мобильностью.

Примерно в то же время инженеры Volvo обнаружили, что нерегулируемый окислительный каталитический нейтрализатор, который должен был быть запущен, при определенных обстоятельствах можно заставить бесконечно обрабатывать углеводороды (HC), монооксид углерода (CO) и оксиды азота (NOx). эффективнее, чем раньше.

Начались работы по увеличению этой способности путем регулирования топливно-воздушной смеси в узком диапазоне, в котором соотношение для каталитического нейтрализатора было оптимальным.
Стивен Уоллман, создатель системы лямбда-зондов Volvo, вспоминает:
«Компоненты, которые мы использовали в техническом решении, уже существовали, но использовались по-другому и в других областях. Хитрость заключалась в том, чтобы связать их в единую систему и заставить работать в автомобиле с бензиновым двигателем ».

Эффективный прорыв
Ключом ко всему была маленькая вещь размером с палец.Датчик кислорода был расположен в выхлопной трубе между двигателем и каталитическим нейтрализатором. Он довольно просто измерил содержание кислорода в выхлопных газах и отправил эту информацию в систему управления двигателем, которая, в свою очередь, отрегулировала топливно-воздушную смесь так, чтобы она оставалась в узком «окне», которое около лямбда = 1 — примерно 14,3: 1 — дает оптимальная эффективность каталитического нейтрализатора. В этом диапазоне преобразование выхлопных газов двигателя в каталитическом нейтрализаторе настолько эффективно, что более 90 процентов вредных газов, углеводородов, монооксида углерода и оксидов азота, образующихся при сгорании, удаляются в каталитическом нейтрализаторе.

В 1977 году Калифорния ввела новые строгие ограничения на выбросы выхлопных газов для трех вредных газов на уровнях: углеводороды 0,41 г / милю; окись углерода 9,0 г / милю; оксиды азота 1,5 г / милю. В то время это было самое строгое в мире законодательство по выбросам вредных веществ, и с тех пор Калифорния продвигает требования по выбросам выхлопных газов все ниже и ниже.
В автомобилях Volvo с трехкомпонентными каталитическими нейтрализаторами и лямбда-датчиками измерено содержание углеводородов 0.2 г / милю; окись углерода 3,0 г / милю; оксиды азота 0,2 г / милю! Другими словами, удивительно низкие значения и хорошая маржа. В частности, низкие выбросы оксидов азота были сенсационными, и эта работа была должным образом отмечена. Volvo получила экологическую награду от экологического совета президента Картера.

Незаменим сегодня
Для того, чтобы лямбда-зонд работал, необходимо было иметь исправный каталитический нейтрализатор и неэтилированный бензин, как и сегодня.Когда был представлен лямбда-зонд, неэтилированный бензин был доступен только в Северной Америке и Японии. Сегодня его можно найти повсюду, и он так же незаменим, как лямбда-зонд и каталитический нейтрализатор.
Оригинальная система лямбда-зонда была усовершенствована за последние 30 лет, чтобы еще больше снизить выбросы выхлопных газов. Как правильно сказал Том Куинн, именно такие изобретения продвигают вперед промышленность и человечество. С 1976 года стало возможным предпринять еще много мелких шагов в области борьбы с выбросами выхлопных газов, и современный двигатель Volvo устраняет более 95% вредных выбросов.
Сегодня автомобильная промышленность больше сосредоточена на сокращении выбросов углекислого газа.

«Несмотря на то, что мы должны были соответствовать установленным требованиям, именно стремление Volvo и наша собственная цель — добиться настоящего прорыва, который привел нас к этому очень успешному решению», — заключает Уоллман, «отец» датчика.

50245 / CR

Ключевые слова:

Безопасность, окружающая среда

Описания и факты в этом материале для прессы относятся к международной линейке автомобилей Volvo Cars.Описанные функции могут быть необязательными. Технические характеристики автомобилей могут отличаться от страны к стране и могут быть изменены без предварительного уведомления.

Соотношение воздух-топливо, лямбда и характеристики двигателя — x-engineer.org

Тепловые двигатели используют топливо и кислород (из воздуха) для производства энергии путем сгорания. Чтобы гарантировать процесс сгорания, в камеру сгорания необходимо подавать определенное количество топлива и воздуха. Полное сгорание происходит, когда все топливо сгорает, в выхлопных газах не будет несгоревшего количества топлива. Соотношение воздух-топливо (AF или AFR) — это соотношение между массой воздуха m a и массой топлива m f , используемой двигателем при работе:

\ [\ bbox [# FFFF9D ] {AFR = \ frac {m_a} {m_f}} \ tag {1} \]

Обратное соотношение называется топливно-воздушным соотношением (FA или FAR) и рассчитывается как:

\ [FAR = \ frac {m_f} {m_a} = \ frac {1} {AFR} \ tag {1} \]

Идеальное (теоретическое) соотношение воздух-топливо для полного сгорания называется стехиометрическим соотношением воздух-топливо .Для бензинового (бензинового) двигателя стехиометрическое соотношение воздух-топливо составляет около 14,7: 1. Это означает, что для полного сжигания 1 кг топлива нам необходимо 14,7 кг воздуха. Возгорание возможно даже в том случае, если AFR отличается от стехиометрического. Для процесса сгорания в бензиновом двигателе минимальное значение AFR составляет около 6: 1, а максимальное может достигать 20: 1.

Когда соотношение воздух-топливо выше стехиометрического отношения, топливовоздушная смесь называется обедненной .Когда воздушно-топливное соотношение ниже стехиометрического, воздушно-топливная смесь называется богатая . Например, для бензинового двигателя AFR 16,5: 1 — обедненный, а 13,7: 1 — богатый.

В таблице ниже мы можем увидеть стехиометрическое соотношение воздух-топливо для нескольких видов ископаемого топлива.

Топливо Химическая формула AFR
Метанол CH 3 OH 6.47: 1
Этанол C 2 H 5 OH 9: 1
Бутанол C 4 H 9 OH
11,2: C 12 H 23 14,5: 1
Бензин C 8 H 18 14,7: 1
9027 9027 9027 9027 15.67: 1
Метан CH 4 17.19: 1
Водород H 2 34.3: 1
9000ia2.org Пример: 9000ia2.org Чтобы полностью сжечь 1 кг этанола, нам нужно 9 кг воздуха, а чтобы сжечь 1 кг дизельного топлива, нам нужно 14,5 кг воздуха.

Двигатели с искровым зажиганием (SI) обычно работают на бензине (бензине). AFR двигателей SI варьируется в пределах от 12: 1 (богатая) до 20: 1 (бедная), в зависимости от условий эксплуатации двигателя (температура, скорость, нагрузка и т. Д.).). Современные двигатели внутреннего сгорания работают в максимально возможной степени со стехиометрическим AFR (в основном по причинам доочистки газа). В таблице ниже вы можете увидеть пример AFR двигателя SI, функцию частоты вращения и крутящего момента двигателя.

Изображение: Пример функции воздушно-топливного отношения (AFR) частоты вращения и крутящего момента двигателя

Компрессионное зажигание (CI) Двигатели обычно работают на дизельном топливе. Из-за характера процесса сгорания двигатели CI всегда работают на обедненных смесях с AFR от 18: 1 до 70: 1.Основное отличие от двигателей SI заключается в том, что двигатели CI работают на слоистых (негомогенных) воздушно-топливных смесях, в то время как SI работают на гомогенных смесях (в случае двигателей с распределенным впрыском).

Приведенная выше таблица вводится в скрипт Scilab и создается контурный график.

 EngSpd_rpm_X = [500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500];
EngTq_Nm_Y = [10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120; 130; 140];
EngAFR_rat_Z = [14 14,7 16.4 17,5 19,8 19,8 18,8 18,1 18,1 18,1 18,1 18,1 18,1;
                14 14,7 14,7 16,4 16,4 16,4 16,5 16,8 16,8 16,8 16,8 16,8 16,8;
                14 14,7 14,7 14,7 14,7 14,7 14,7 15,7 15,7 15,3 14,9 14,9 14,9;
                14,2 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 13,9 13,3 13,3 13,3;
                14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,5 12,9 12,9 12,9;
                14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,3 13,3 12,6 12,1 11,8;
                14,7 14,7 14,7 14,7 14,7 14.7 14,7 14,7 13,6 12,9 12,2 11,8 11,3;
                14,1 14,2 14,7 14,7 14,7 14,7 14,7 14,7 13,3 12,5 11,9 11,4 10,9;
                13,4 13,4 13,8 14,3 14,3 14,7 14,7 13,6 13,1 12,2 11,5 11,1 10,7;
                13,4 13,4 13,4 13,4 13,4 13,6 13,6 12,1 12,1 11,6 11,2 10,8 10,5;
                13,4 13,4 13,4 13,4 13,1 13,1 13,1 11,8 11,8 11,2 10,7 10,5 10,3;
                13,4 13,4 13,4 13,4 12,9 12,9 12,5 11,6 11,3 10,5 10,4 10,3 10,2;
                13,4 13,4 13,4 13,4 12,9 12,9 12,5 11.6 11,3 10,5 10,4 10,3 10,2;
                13,4 13,4 13,4 13,4 12,9 12,9 12,5 11,6 11,3 10,5 10,4 10,3 10,2];
контур (EngSpd_rpm_X, EngTq_Nm_Y, EngAFR_rat_Z ', 30)
xgrid ()
xlabel ('Скорость двигателя [об / мин]')
ylabel ('Крутящий момент двигателя [Нм]')
название ('x-engineer.org')
 

Выполнение приведенных выше инструкций Scilab сгенерирует следующий контурный график:

Изображение: контурный график воздух-топливо с помощью Scilab

Как рассчитывается стехиометрическое соотношение воздух-топливо

Чтобы понять, как рассчитывается стехиометрическое соотношение воздух-топливо , нам нужно посмотреть на процесс сгорания топлива.Горение — это в основном химическая реакция (называемая окислением ), в которой топливо смешивается с кислородом и производит углекислый газ (CO 2 ), воду (H 2 O) и энергию (тепло). Учтите, что для протекания реакции окисления нам нужна энергия активации (искра или высокая температура). Кроме того, результирующая реакция сильно экзотермична (с выделением тепла).

\ [\ text {Топливо} + \ text {Кислород} \ xrightarrow [высокая \ text {} температура \ text {(CI)}] {искра \ text {(SI)}} \ text {Углекислый газ} + \ text {Water} + \ text {Energy} \]
Пример 1.

Для лучшего понимания давайте посмотрим на реакцию окисления метана . Это довольно распространенная химическая реакция, поскольку метан является основным компонентом природного газа (примерно 94%).

Шаг 1 . Запишите химическую реакцию (окисление)

\ [CH_4 + O_2 \ rightarrow CO_2 + H_2O \]

Шаг 2 . Сбалансируйте уравнение

\ [CH_4 + {\ color {Red} 2} \ cdot O_2 \ rightarrow CO_2 + {\ color {Red} 2} \ cdot H_2O \]

Шаг 3 .Запишите стандартный атомный вес для каждого атома.

\ [\ begin {split}
\ text {Hydrogen} & = 1.008 \ text {amu} \\
\ text {Carbon} & = 12.011 \ text {amu} \\
\ text {Oxygen} & = 15.999 \ text {amu}
\ end {split} \]

Шаг 4 . Вычислите массу топлива, равную 1 моль метана, состоящему из 1 атома углерода и 4 атомов водорода.

\ [m_f = 12.011 + 4 \ cdot 1.008 = 16.043 \ text {g} \]

Шаг 5 . Вычислите массу кислорода, состоящую из 2 моль, каждый моль состоит из 2 атомов кислорода.

\ [m_o = 2 \ cdot 15.999 \ cdot 2 = 63.996 \ text {g} \]

Шаг 6 . Вычислите необходимую массу воздуха, который содержит расчетную массу кислорода, учитывая, что воздух содержит около 21% кислорода.

\ [m_a = \ frac {100} {21} \ cdot m_o = \ frac {100} {21} \ cdot 63.996 = 304.743 \ text {g} \]

Шаг 7 . Рассчитайте соотношение воздух-топливо, используя уравнение (1)

\ [AFR = \ frac {m_a} {m_f} = \ frac {304.743} {16.043} = 18.995 \]

Расчетный AFR для метана не совсем такой, как указано в литература.Разница может быть связана с тем, что в нашем примере мы сделали несколько предположений (воздух содержит только 21% кислорода, продуктами сгорания являются только углекислый газ и вода).

Пример 2.

Тот же метод можно применить для сжигания бензина. Учитывая, что бензин состоит из изооктана (C 8 H 18 ), рассчитайте стехиометрическое соотношение воздух-топливо для бензина .

Шаг 1 . Запишите химическую реакцию (окисление)

\ [C_ {8} H_ {18} + O_2 \ rightarrow CO_2 + H_2O \]

Шаг 2 .Сбалансируйте уравнение

\ [C_ {8} H_ {18} + {\ color {Red} {12.5}} \ cdot O_2 \ rightarrow {\ color {Red} 8} \ cdot CO_2 + {\ color {Red} 9} \ cdot H_2O \]

Шаг 3 . Запишите стандартный атомный вес для каждого атома.

\ [\ begin {split}
\ text {Hydrogen} & = 1.008 \ text {amu} \\
\ text {Carbon} & = 12.011 \ text {amu} \\
\ text {Oxygen} & = 15.999 \ text {amu}
\ end {split} \]

Шаг 4 . Вычислите массу топлива, которая представляет собой 1 моль изооктана, состоящего из 8 атомов углерода и 18 атомов водорода.

\ [m_f = 8 \ cdot 12.011 + 18 \ cdot 1.008 = 114.232 \ text {g} \]

Шаг 5 . Вычислите массу кислорода, которая состоит из 12,5 моль, каждый моль состоит из 2 атомов кислорода.

\ [m_o = 12,5 \ cdot 15,999 \ cdot 2 = 399,975 \ text {g} \]

Шаг 6 . Вычислите необходимую массу воздуха, который содержит расчетную массу кислорода, учитывая, что воздух содержит около 21% кислорода.

\ [m_a = \ frac {100} {21} \ cdot m_o = \ frac {100} {21} \ cdot 399.975 = 1904.643 \ text {g} \]

Шаг 7 . Рассчитайте соотношение воздух-топливо, используя уравнение (1)

\ [AFR = \ frac {m_a} {m_f} = \ frac {1904.643} {114.232} = 16.673 \]

Опять же, рассчитанное стехиметрическое соотношение воздух-топливо для бензина равно немного отличается от приведенного в литературе. Таким образом, результат приемлем, поскольку мы сделали множество предположений (бензин содержит только изооктан, воздух содержит только кислород в пропорции 21%, единственными продуктами сгорания являются углекислый газ и вода, сгорание идеальное).

Коэффициент эквивалентности воздушно-топливного отношения — лямбда

Мы видели, что такое стехиометрическое (идеальное) соотношение воздух-топливо и как рассчитать его. На самом деле двигатели внутреннего сгорания работают не с идеальным AFR, а с близкими к нему значениями. Таким образом, у нас будет идеальный и реальный АСО на воздушном топливе. Соотношение между фактическим соотношением воздух-топливо (AFR , фактическое ) и идеальным / стехиометрическим соотношением воздух-топливо (AFR , идеальный ) называется эквивалентным соотношением воздух-топливо или лямбда (λ).

\ [\ bbox [# FFFF9D] {\ lambda = \ frac {AFR_ {actual}} {AFR_ {ideal}}} \ tag {3} \]

Например, идеальное соотношение воздух-топливо для бензина (бензин ) двигатель 14,7: 1. Если фактический / реальный AFR равен 13,5, лямбда-коэффициент эквивалентности будет:

\ [\ lambda = \ frac {13.5} {14.7} = 0,92 \]

В зависимости от значения лямбда двигателю предлагается работать с бережливым двигателем. , стехиометрическая или богатая топливовоздушная смесь.

Коэффициент эквивалентности Тип топливовоздушной смеси Описание
λ Rich Недостаточно воздуха для полного сжигания топлива; после сгорания в выхлопных газах остается несгоревшее топливо
λ = 1,00 Стехиометрический (идеальный) Масса воздуха точна для полного сгорания топлива; после сгорания в выхлопе нет избытка кислорода и несгоревшего топлива
λ> 1,00 Бедная Кислорода больше, чем требуется для полного сжигания топлива; после сгорания в выхлопных газах присутствует избыток кислорода

В зависимости от типа топлива (бензин или дизельное топливо) и типа впрыска (прямой или непрямой) двигатель внутреннего сгорания может работать с обедненным, стехиометрическим или богатым воздухом -топливные смеси.

Изображение: 3-цилиндровый бензиновый двигатель Ecoboost с прямым впрыском (лямбда-карта)
Кредит: Ford

Например, 3-цилиндровый двигатель Ford Ecoboost работает со стехиометрическим соотношением воздух-топливо для холостых и средних оборотов двигателя и полного диапазона нагрузок. и с богатой топливовоздушной смесью на высоких оборотах и ​​нагрузках. Причина, по которой он работает на богатой смеси при высоких оборотах двигателя и нагрузке, охлаждения двигателя . Дополнительное топливо (которое останется несгоревшим) впрыскивается для поглощения тепла (за счет испарения), таким образом снижая температуру в камере сгорания.

Изображение: Дизельный двигатель (лямбда-карта)
Кредит: wtz.de

Двигатель с воспламенением от сжатия (дизельный) постоянно работает на обедненной топливовоздушной смеси , значение коэффициента эквивалентности (λ) зависит от рабочая точка двигателя (частота вращения и крутящий момент). Причина этого — принцип работы дизельного двигателя: управление нагрузкой не через массу воздуха (которая всегда в избытке), а через массу топлива (время впрыска).

Помните, что коэффициент стехиометрической эквивалентности (λ = 1.00) означает соотношение воздух-топливо 14,7: 1 для бензиновых двигателей и 14,5: 1 для дизельных двигателей.

Влияние воздушно-топливного отношения на характеристики двигателя

Характеристики двигателя с точки зрения мощности и расхода топлива в значительной степени зависят от соотношения воздух-топливо. Для бензинового двигателя наименьший расход топлива достигается при обедненном AFR. Основная причина в том, что имеется достаточно кислорода, чтобы полностью сжечь все топливо, что переводится в механическую работу. С другой стороны, максимальная мощность получается на богатых топливовоздушных смесях.Как объяснялось ранее, подача большего количества топлива в цилиндр при высокой нагрузке и скорости двигателя охлаждает камеру сгорания (за счет испарения топлива и поглощения тепла), что позволяет двигателю создавать максимальный крутящий момент двигателя, а значит, максимальную мощность.

Изображение: мощность двигателя и функция расхода топлива воздушно-топливного отношения (лямбда)

На рисунке выше мы видим, что мы не можем получить максимальную мощность двигателя и самый низкий расход топлива при том же соотношении воздух-топливо. . Самый низкий расход топлива (лучшая экономия топлива) достигается при использовании обедненных топливовоздушных смесей с AFR 15.4: 1 и коэффициент эквивалентности (λ) 1,05. Максимальная мощность двигателя достигается при использовании богатых топливовоздушных смесей с AFR 12,6: 1 и коэффициентом эквивалентности (λ) 0,86. При стехиометрической топливовоздушной смеси (λ = 1) существует компромисс между максимальной мощностью двигателя и минимальным расходом топлива.

Двигатели с воспламенением от сжатия (дизельные) всегда работают на обедненных топливовоздушных смесях (λ> 1,00). Большинство современных дизельных двигателей работают с λ от 1,65 до 1,10. Максимальный КПД (наименьший расход топлива) достигается около λ = 1.65. Увеличение количества топлива выше этого значения (до 1,10) приведет к образованию большего количества сажи (несгоревших частиц топлива).

Р. Дуглас провел интересное исследование двухтактных двигателей. В своей докторской диссертации «Исследования замкнутого цикла двухтактного двигателя » Р. Дуглас дает математическое выражение функции коэффициента эквивалентности (λ) полноты сгорания λ ).

Для искрового зажигания (бензиновый двигатель) с коэффициентом эквивалентности от 0.3; сюжет (lmbd_g, eff_lmbd_g, ‘b’, ‘LineWidth’, 2) держать сюжет (lmbd_d, eff_lmbd_d, ‘r’, ‘LineWidth’, 2) xgrid () xlabel (‘$ \ lambda \ text {[-]} $’) ylabel (‘$ \ eta _ {\ lambda} \ text {[-]} $’) название (‘x-engineer.org’) легенда (‘бензин’, ‘дизель’, 4)

При выполнении приведенных выше инструкций Scilab выводится следующее графическое окно.

Изображение: Функция эффективности сгорания от коэффициента эквивалентности

Как вы можете видеть, двигатель с воспламенением от сжатия (дизельный) при стехиометрическом соотношении воздух-топливо имеет очень низкую эффективность сгорания.Наилучшая полнота сгорания достигается при λ = 2,00 для дизельных двигателей и λ = 1,12 для двигателей с искровым зажиганием (бензиновых).

Калькулятор соотношения воздух-топливо (лямбда)

Наблюдение : КПД сгорания рассчитывается только для дизельного и бензинового (бензинового) топлива с использованием уравнений (4) и (5). Для других видов топлива расчет эффективности сгорания недоступен (NA).

Влияние воздушно-топливного отношения на выбросы выхлопных газов двигателя

Выбросы выхлопных газов двигателя внутреннего сгорания сильно зависят от воздушно-топливного отношения (коэффициента эквивалентности).Основные выбросы выхлопных газов в ДВС сведены в таблицу ниже.

Выбросы выхлопных газов Описание
CO монооксид углерода
HC hidrocarbon
оксид азота частицы

Для бензиновых двигателей выбросы CO, HC и NOx в выхлопных газах сильно зависят от соотношения воздух-топливо .CO и HC образуются в основном из богатой топливовоздушной смеси, а NOx — из бедных. Таким образом, не существует фиксированной воздушно-топливной смеси, для которой мы можем получить минимум для всех выбросов выхлопных газов.

Изображение: функция эффективности катализатора бензинового двигателя в соотношении воздух-топливо

Трехкомпонентный катализатор (TWC), используемый для бензиновых двигателей, имеет наивысшую эффективность, когда двигатель работает в узком диапазоне около стехиометрического отношения воздух-топливо. TWC преобразует от 50… 90% углеводородов до 90… 99% окиси углерода и окислов азота, когда двигатель работает с λ = 1.00.

Лямбда-регулирование сгорания с обратной связью

Чтобы соответствовать требованиям по выбросам выхлопных газов, для двигателей внутреннего сгорания (особенно бензиновых) критически важно иметь точное управление воздушно-топливным соотношением. Таким образом, все современные двигатели внутреннего сгорания имеют замкнутый контур управления воздушно-топливным соотношением (лямбда) .

Изображение: Лямбда-регулирование с обратной связью двигателя внутреннего сгорания (бензиновые двигатели)

  1. датчик массового расхода воздуха
  2. первичный катализатор
  3. вторичный катализатор
  4. топливная форсунка
  5. передний лямбда-зонд
  6. нижний лямбда-датчик (кислород) датчик
  7. цепь подачи топлива
  8. впускной коллектор
  9. выпускной коллектор

Критическим компонентом для работы системы является лямбда-зонд (кислород) .Этот датчик измеряет уровень молекул кислорода в выхлопных газах и отправляет информацию в электронный блок управления двигателем (ЭБУ). На основании значения показания кислородного датчика ЭБУ бензинового двигателя регулирует уровень массы топлива, чтобы поддерживать соотношение воздух-топливо около стехиметрического уровня (λ = 1,00).

Например (бензиновые двигатели), если уровень молекул кислорода выше порогового значения для стехиметрического уровня (следовательно, у нас бедная смесь), при следующем цикле впрыска количество впрыскиваемого топлива будет увеличено, чтобы использовать избыток воздуха.Имейте в виду, что двигатель всегда будет переходить с бедной смеси на богатой смеси между циклами впрыска, что будет давать «среднее» стехиометрическое соотношение топливовоздушных смесей.

Для дизельных двигателей, поскольку они всегда работают на обедненной смеси воздух-топливо, лямбда-регулирование выполняется по-другому. Конечная цель остается прежней — контроль выбросов выхлопных газов.

Для любых вопросов или замечаний относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

функциональное программирование — Использование лямбда с cdr и car на схеме

Когда вы это сделаете:

  (определить x '(лямбда (n) (+ n 1)))
  

Вы делаете привязку x , чтобы указать на структуру списка (lambda (n) (+ n 1)) . Это не имеет ничего общего с лямбда форм, таких как:

  (определить x2 (лямбда (n) (+ n 1)))
  

Где можно подать заявку (x2 1); ==> 2 , поскольку его значение является закрытием / процедурой / функцией, поскольку вычисляется лямбда-форма.

(lambda (cadr x) (caddr e)) не оценивает (cadr x) , а создает замыкание с формальным параметром cadr и x , так что вы можете применить результат (( лямбда (cadr x) ...) 1 2) , так что оценка cadr в закрытии становится 1 , а x становится 2 . Оценка (caddr e) происходит, когда вы применяете таким образом, если вы вызываете ((lambda (cadr x) (caddr e)) 'ignored1' ignored2) , он вернет то же самое, что и оценка (caddr e) в среда, в которой было создано закрытие.Было бы невозможно получить (eval `(lambda, (cadr x), (caddr e))) , так как у вас не будет возможности обрабатывать свободные переменные, поскольку вы смешиваете свой хост с гостем.

Поскольку вы создаете интерпретатор, ваши пользовательские процедуры будут структурами данных, и ваше приложение будет знать, что с ним делать. Оценка формы должна возвращать что-то, что может быть идентифицировано как закрытие, и вы не можете использовать какой-либо другой код в своем интерпретаторе, чтобы обмануть его, имеет ссылку на лексическую область места, где она была оценена, и каждую часть cdr если лямбда.

Один из моих делает это:

  (определить закрывающий тег (закрытие списка)); сделать что-нибудь, кроме `eq?`, с чем-то еще
(определить (закрытие? выражение)
  (и (пара? выражение)
       (eq? closure-tag (car expr))))
(определить (лямбда-> закрытие expr env)
  `(, закрывающий-тег, env, @ (cdr expr)))
  

Итак, оценка лямбда (лямбда (n) (+ n 1)) становится ((закрытие) ((#t. #T) ...) (n) (+ n 1)) и подать заявку на ((lambda (n) (+ n 1)) 2) будет оценивать (+ n 1) с окружением ((n.2) (#t. #T) ...) . Выбор структуры не имеет значения, поскольку структура является соглашением между оценкой лямбда-формы и вашим приложением.

Вы можете сделать лямбда-форм процедурами, но это все еще не хост-версия гостевого источника, а скорее своего рода оптимизация. Один из моих последних eval делал это и всегда принимал 2 аргумента. Список аргументов неоценен и окружение. В жаргоне eval примитивы были каррированы с evlis и apply .Большинство вариантов дизайна, которые вы сделаете, будут иметь как преимущества, так и недостатки, с которыми интересно поиграть.

SACK Region — Lambda Car Club (LCCI)

При присоединении или продлении необходимо выбрать хотя бы один регион. Если вы хотите присоединиться только к международной организации, выберите «z Только международная — без региона».

Существует два типа членства — «Участники / Продление — Только информационный бюллетень» ИЛИ «Участники / Продления — Электронный и бумажный бюллетень». Выберите один при присоединении или продлении.

Buckeye Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

CCCC Austin Events
Обратите внимание: чтобы зарегистрироваться на мероприятие только для участников, вы должны войти на сайт.

CCCC Dallas Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

CCCC Houston Events
Обратите внимание: чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

CCCC San Antonio Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Central Arizona Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Cumberland Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для участников, вы должны войти на сайт.

Delaware Valley Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Detroit Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Dogwood Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Empire Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Sunshine Auto Club of Central Florida Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Flamingo Auto Group Gulf Coast Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Flamingo Auto Group South Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

События автомобильного клуба фламинго Западной Флориды
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

События в Великих озерах Огайо
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Hernando de Soto Midsouth Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Indiana Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

События на озере Мичиган
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Michiana Dunes Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

События Rainbow Roadrunner в Нью-Мексико
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Nutmeg Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Пьюджет-Саунд — События в Сиэтле
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

SACK Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Show Me Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Straight Eights Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для участников, вы должны войти на сайт.

Tidewater Taillights Events
Обратите внимание: чтобы зарегистрироваться на мероприятие только для участников, вы должны войти на сайт.

Tri Valley Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Great Northern Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Vegas Heat Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Yankee Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Приглашающие мероприятия
Обратите внимание: чтобы зарегистрироваться на мероприятие только для участников, вы должны войти на сайт.

Twister Alley Events
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Bluegrass of Kentucky
Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

Обратите внимание, чтобы зарегистрироваться на мероприятие только для членов, вы должны войти на сайт.

.

Добавить комментарий

Ваш адрес email не будет опубликован.