Чтение электросхем: Чтение электрических схем — Энциклопедия по машиностроению XXL

Содержание

Чтение электрических схем — Энциклопедия по машиностроению XXL

Техника чтения электрических схем — знание условных обозначений, знание электротехники, знание порядка чтения схемы, знание приемов проверки правильности сделанных предположений, условия неразрывности процесса чтения и ан иза.  [c.321]

Для упрощения чтения электрической схемы каждой из ее составных частей присвоен буквенный индекс. Сопровождающие текст индексы в скобках указывают на те части электрической схемы, где находятся рассматриваемые элементы. Действие одного из проставленных в тексте индексов распространяется до следующего индекса. Рассмотрим электросхему с ее исходного положения, когда оба лифта готовы к работе, но находятся в неподвижном положении.  [c.240]


ПОТОЧНЫЕ МЕХАНИЗИРОВАННЫЕ И АВТОМАТИЧЕСКИЕ СБОРОЧНО-СВАРОЧНЫЕ ЛИНИИ ЧТЕНИЕ ЭЛЕКТРИЧЕСКИХ СХЕМ  [c.
234]

Чтение электрических схем  [c.293]

Помощь в чтении электрических схем окажет нижеприведенный рисунок  [c.252]

Последовательность работы элементов электрической схемы лифта. Для сокращения записей и упрощения чтения электросхемы введены следующие обозначения.  [c.220]

При проектировании и изучении электрических схем лифтов или других машин пользуются принципиальными схемами. Основной метод построения принципиальных схем заключается в том, что отдельные элементы одного и того же электрического аппарата, кинематически связанные между собой или расположенные в непосредственной близости один от другого, на схеме изображают в разных местах. Это значительно облегчает чтение схемы и способствует наглядному изучению последовательности работы аппаратов, составляющих схему, в принципиальных схемах все элементы одного аппарата обозначаются одними и теми же буквами. Например, катушка контактора  

[c. 132]

Выявление неисправностей в электрических схемах лифтов я причин, вызвавших эти неисправности, возможно только при условии четкого знания электросхем и свободного чтения их.  [c.42]

При проектировании и анализе электроприводов строятся развернутые электрические схемы (развертки). Положенный в основу их построения принцип состоит в том, что элементы изделий изображаются на схеме условно в тех электрических цепях, в которых они работают, и по расположению они не связываются с изделием, к которому принадлежат. Так, элементы одного и того же аппарата, кинематически связанные друг с другом, в развернутой схеме располагаются в разных местах. Такое расположение элементов намного облегчает чтение схемы, позволяет наглядно видеть взаимосвязь между элементами и понять последовательность действия аппаратуры. В развернутых схемах всем элементам одного изделия присваивается одно и то же буквенное или цифровое обозначение.  

[c.308]

Принципиальная электрическая схема той же машины приведена на фиг. 120, Принципиальная схема показывает взаимодействие всех электрических узлов машины, однако сами узлы изображаются условно и размещаются на схеме так, чтобы обеспечить легкое ее чтение. Принципиальная схема служит для изучения и анализа работы машины.  [c.173]

Чтение и квалифицированный анализ электрической схемы требуют достаточных для этого знаний из электротехники и практических навыков.  [c.42]

Для правильного чтения электрической принципиальной схемы необходимо хорошо знать условные графические обозначения электрических машин, аппаратов различного назначения и нх элементов.  

[c.253]


Диагностика системы управления двигателем с электронным впрыском топлива достаточно проста, при условии знания базовых понятий электротехники и наличия навыка чтения простых электрических схем. Кроме того, необходимо иметь опыт работы с цифровым мультиметром. Разумеется, необходимо понимание основ работы двигателя.  [c.227]

Для уяснения преимуществ систем электрического управления станками-автоматами, прежде чем приступить к чтению схем таких устройств, рассмотрим конструктивную схему станка с полуавтоматическим управлением. На рис. 242 показана схема копировального станка с полуавтоматическим управлением.  

[c.333]

На рис. 238 представлена электрическая принципиальная схема (для упражнений в чтении).  [c.281]

После вычерчивания условных изображений обмоток всех реле и простановки контактов реле памяти дальнейшее построение схемы управления сводится к последовательному включению в электрическую цепь каждого реле тех нормально разомкнутых выключателей Х, хд, Хз, Xi, Х2 и Хз, которые входят в соответствующие формулы включения. Для удобства чтения схемы одноименные выключатели располагаются на одной вертикали и соединяются пунктирной линией. Кроме того, в цепь каждого реле управления распределителями дополнительно вводятся нормально замкнутые выключатели, размыкающие цепь реле, как только кончится соответствующий ход поршня.

[c.542]

Размещение УГО элементов, устройств на схеме должно определяться удобством чтения схемы, а также необходимостью изображения электрических связей линиями минимальной длины и наименьшим количеством пересечений.  [c.253]

Электрические соединения. Для удобства вычерчивания, чтения и монтажа схемы провода цепей управления и силовых цепей соединяются в пучки и вычерчиваются жирной линией. От этой жирной линии ответвляются провода к клеммам аппаратов. Ответвления цепей управления вычерчиваются тонкими линиями, лиловых цепей — толстыми.  

[c.106]

В данном случае речь идет не о физическом разрыве электрической цепи, а об условном изображении на схеме, когда линия, изображающая цепь, разрывается и возобновляется в другом месте схемы. А если схема выполнена на нескольких листах, то продолжение цепи может быть выполнено на любом листе. Такое упрощение делается в основном, чтобы не тащить относительно длинные цепи через лист (или листы), что упрощает рисование и чтение схемы и, согласно ГОСТ 2.

721—74, должно выполняться с соблюдением ряда требований.  [c.192]

Допускается линии, изображающие провода, группы проводов, жгуты и кабели (многожильные провода, электрические шнуры), не проводить или обрывать их около мест присоединения, если их изображение затрудняет чтение схемы.  [c.851]

Пфядок чтения электрических схем такой же, как и кинематических. При чтении электрических схем надо иметь в виду следующее  [c.293]

Другой пример — сканирующее устройство для чтения чертежей [9]. Применение средств ИИ в совокупности с растровой телевизионной камерой позволило фирме «Siemens AG» создать установку, которая способна вводить в систему автоматического проектирования (САПР) даже черновые наброски чертежей. Кроме того, высокое быстродействие установки дает возможность вводить графическую информацию за время, составляющее 10-20% времени необходимого для ввода графики традиционными средствами. Экспериментальная установка может считывать черновой набросок электрической схемы, не очень старательно нарисованный от руки, и преобразовывать его в набор символьных элементов.

Символы схемы не нужно точно вычерчивать и тщательно ориентировать на рисунке, а линии не обязательно должны быть прямыми и иметь четкие окончания. Вспомогательный текст, например обозначения элементов и спецификации, также может быть написан от руки в заданном формате.  
[c.122]

При составлении и чтении схем важно знать принятые условные обозначения для кинематических схем — ГОСТ 2.770—68 для электрических, гидравлических и пневматических схем, обозначения, установленные комплексом соответствующих стандартов ЕСКД (см. 6R, 66),  [c.301]

Элементы и устройства изoбpaяfaют на электрических принципиальных схемах совмещенным (рис. 2.23) или разнесенным (рис. 2.24) способом. По совмещенному способу составные части элементов изображают совместно, т. е. в непосредственной близости друг к другу. Для упрощения начертания схем и их чтения элементы изображаются разнесенным способом, т. е. один и тот 52  

[c.52]


На рис. 7.13 приведен фрагмент чертежа многослойной платы. За главный вид платы принято изображение платы после нанесения последнего слоя. Элементы, расположенные в разных слоях, условно выделены различ1юй штриховкой, которая пояснена в таблице, помещенной в нижней части чертежа. Форма, размеры и количество граф таблицы не регламентируются. Пленочные элементы, имеющие на чертеже ширину 2 мм и менее, изображают сплошной утолщенной линией (2х). Местоположение навесных элементов указывают на чертежах плат условными знаками на рис. 7.13 такими знаками являются два уголка, помещенные между резистором КЗ и конденсатором С1. Все микроэлементы на чертеже платы обозначают в соответствии с обозначениями на электрической принципиальной схеме. На чертеже платы пленочной микросхемы допускается помещать электрическую принципиальную схему — это облегчает чтение чертежа.  
[c.318]

I контактном методе перфорированная бумажная карта или лента / (рис. 60, а) лежит на поверхности контактной пластины 3. Контактные, щетки 2, представляющие собой пучок стальных проволок, торцовая поверхность которых отшлифована под углом, опираются на поверхность. ленты. При чтении программы перфокарта или перфолента перемещается, м и ее строчки подводятся к щеткам. Щетки, совмещенные с отверстиями у. перфоленты, соприкасаются с контактной пластиной, к которой подведен к ток, и через эти щетки подаются электрические сигналы. Более совер- шенной является схема с ощупывающим штифтом. При бесконтактном фотоэлектрическом методе (рис. 60, б) с одной стороны перфоленты или  [c.161]


Как научиться читать электрические схемы часть 1 | Энергофиксик

Вступив на очень увлекательный и тернистый путь изучения электроники, все радиолюбители сталкиваются с такой проблемой как чтение электрических схем. Этому процессу посвящено множество научных статей и еще больше книг, но зачастую в них информация подается путано и непонятно. Начиная с этой статьи, я хочу вместе с вами пройти обучение правильному чтению схем от самых простейших и заканчивая сложными и объемными.

yandex.ru

yandex.ru

Условное обозначение элементов

Но прежде чем изучать даже самую простую схему нужно познакомиться с основными элементами и их условными обозначениями.

Как обозначаются источники питания

Любая схема, насколько бы она ни была сложна или наоборот проста не будет работать без электропитания. Принципиально различают два вида источника питания:

1. Постоянный ток;

2. Переменный ток.

На данном этапе мы будем рассматривать с вами исключительно источники постоянного тока, к которым относятся: батарейки, аккумуляторы, разнообразные блоки питания и т. д.

Несмотря на все разнообразие существующих элементов на схемах они имеют практически идентичное обозначение (есть некоторые различия).

Батарейка (единичный гальванический элемент)

Итак, батарейка. Причем не имеет значения какого она будет типа (АА, ААА и т.д.) обозначается двумя черточками разной длины. Причем линия большей длины обозначает «+», а меньшей «-».

Батарейка имеет стандартное буквенное обозначение “G

yandex.ru

yandex.ru

Но многие радиолюбители вместо «G» используют обозначение «Е». Это указывает на то, что данный элемент является источником ЭДС (электродвижущей силы).

Если используется гальваническая группа элементов, то источник питания обозначается так:

yandex.ru

yandex.ru

И уже батарея будет иметь следующее буквенное обозначение: «GB».

Обозначение проводов и их соединения на схеме

Электрические провода выполняют самую главную функцию: соединяют все элементы в единую сеть и по факту заставляют работать всю нашу схему.

У проводов есть множество характеристик: сечение, материал, изоляция, и т. д.

Но в схемах чаще всего используются монтажные гибкие провода.

yandex.ru

yandex.ru

На печатных платах роль проводов выполняют токопроводящие дорожки. При этом на чертежах, что дорожки, что провода обозначаются одинаково – прямыми линиями.

Давайте рассмотрим простейший пример. Для того, чтобы зажечь самую простую лампу накаливания на 12 Вольт,

необходимо при помощи соединительных проводов, напряжение от аккумулятора подать на лампочку. И тогда по замкнутой цепи от плюса к минусу потечет ток и, проходя через лампу, спровоцирует нагрев спирали, и лампа загорится.

В сложных и многоэлементных цепях проводники довольно часто пересекаются. При этом если в месте пересечения не образуется электрическая связь, то на схеме точка не ставится.

А если в месте пересечения образуется электрическая связь, то тогда на чертеже ставится точка и это соединение теперь является электрическим узлом .

yandex.ru

yandex.ru

В таком узле вполне могут пересекаться сразу несколько проводников.

Как обозначается общий провод

В достаточно сложных схемах, чтобы улучшить читаемость и не перегружать чертеж, очень часто проводники, соединяемые с общим «минусом» не обозначают. А в место них используют специальные знаки.

yandex.ru

yandex.ru

Так же в иностранных схемах с таким знаком встречается надпись GND или GRAUND, что переводится как «земля».

Но учтите следующий момент, что не во всех схемах общий провод «минус». Если вы будете читать старые советские схемы, то там часто общим проводом является «плюс».

Давайте рассмотрим следующую схему

yandex.ru

yandex.ru

Когда речь заходит о том, что потенциал в точке «1» равен, например, 10 Вольтам, это значит, что напряжение нужно измерять между данной точкой и «землей»(минусом элемента питания). Метод указывания всего одной точки удобен с практической стороны.

Как обозначаются радиодетали на схемах

Радиодетали — это фундамент любого устройства и к ним относятся: резисторы, транзисторы, светодиоды, конденсаторы, диодные мосты и т. д.

Для того, чтобы читать схемы, вы просто обязаны знать условное графическое обозначение базовых радиодеталей:

yandex.ru

yandex.ru

Давайте теперь попробуем прочесть следующую простую схему питания светодиода:

В этой схеме для нас есть два новых элемента: это резистор и светодиод. Главным параметром резистора является его сопротивление, которое указывается прямо на схеме рядом с условным обозначением сопротивления. Так же зачастую указывается и мощность рассеивания.

Параметры светодиода на схеме не указываются, а записываются в спецификации к схеме.

Итак, наша схема замкнута, а это значит по ней протекает электрический ток. Причем все элементы соединены последовательно. Это свидетельствует тому, что сила тока везде будет одинакова.

Принято считать, что ток «I» протекает от положительной обкладки источника питания, через резистор «R», светодиод «VD» к отрицательной обкладке.

Принцип работы схемы предельно прост: протекающий ток заставляет светиться светодиод, а для того, чтобы он (светодиод) не сгорел, сопротивление выполняет функцию ограничителя тока.

При этом если мы с вами измерим напряжение на резисторе и светодиоде, то согласно второму закону Кирхгофа оно будет различно.

И если сложить полученные напряжения, то их сумма будет равна напряжению источника питания.

Как читать простейшие электрические схемы с минимумом деталей мы вроде с Вами разобрались. Учиться читать более сложные схемы (на примерах) будем в следующих статьях, поэтому чтобы не пропустить подписываемся.

И если данная статья вам понравилась, то ставим палец вверх! Спасибо за внимание!

План урока «Чтение электрических схем»

Предмет: Основы электротехники

Раздел: «Электрические схемы»

Тема: «Правила чтения электрических схем»

Цели:

Ознакомить обучающихся с правилами чтения электрических схем;

Формировать у обучающихся рациональные приемы и способы мышления, развитие познавательной активности, внимания, памяти, речи, культуры учебного труда;

Воспитывать у обучающихся уважения к труду, высокие нравственные качества.

Подготовка к экзамену по вопросу «Электрические схемы»

Тип урока: формирование новых знаний

Методы: беседа, индивидуальная работа обучающихся, компьютерное тестирование, демонстрация макетов.

Оборудование и материалы: презентация, раздаточный материал, интерактивная доска, пульты для тестирования, компьютер, макеты трансформаторов

Литература:

1. Прошин В.М. Электротехника учебник для СПО, 2013 год

2. Л.Д. Рожкова «Электрооборудование электрических станций и подстанций», учебник для СПО, 2014 год

Интернет – ресурсы: http://electricalschool.info/

Структура урока:

1. Организационный момент, сообщение темы – 4 мин.

2. Формирование новых знаний – 25 мин.

3. Закрепление пройденного материала – 12 мин.

4. Заключительная часть – 4 мин.

 

План урока

 

1.  Организационный момент.

Проверка отсутствующих, готовности к уроку, психологический настрой.

 

Сообщение темы, целей и плана урока

Тема урока: «Правила чтения электрических схем»

 

3. Формирование новых знаний.

 Чтобы читать электрические схемы, необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Расчленение схем на простые цепи

Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых — определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно «лишние» условия, и оценить их последствия.

Для решения этих вопросов пользуются несколькими приемами.

Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.

Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.

При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.

Порядок чтения электрических схем и чертежей

Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.

Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.

Если она не отражена па чертежах, то ее выясняют и записывают.

На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.

При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,

3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,

4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,

5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,

5) проверяют схему па отсутствие ложных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).

     Обобщение пройденного материала в ходе фронтальной беседы.

 

4. Закрепление пройденного материала.

1. Что такое электрическая схема?

2. Что такое питающая сеть?

3. Условные буквенные и графическае обозначения на электрических схемах

4. Порядок чтения электрических схем

 

5. Заключительная часть.

Подведение итогов урока, выставление оценок за урок.

 

Правила чтения электрических схем и чертежей

Чтоб читать электронные схемы, нужно отлично знать и держать в голове распространенные условные обозначения обмоток, контактов, трансформаторов, движков, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой в большей степени приходится сталкиваться в силу профессии, схемы распространенных узлов электроустановок, к примеру движков, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, характеристики поочередного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Разбор схем на отдельные цепи

Неважно какая электроустановка удовлетворяет определенным условиям действия. При чтении схем, во-1-х, необходимо выявить эти условия, во-2-х — найти, отвечают ли приобретенные условия задачам, которые должны электроустановкой решаться, в-3-х, следует проверить, не вышли ли попутно «излишние» условия, и оценить их последствия.

Для решения этих вопросов пользуются несколькими приемами.

1-ый из их заключается в том, что схема электроустановки на уровне мыслей расцепляется на обыкновенные цепи, которые поначалу рассматривают раздельно, а потом в сочетаниях.

Обычная цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (движок, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), оборотный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, к примеру в цепях трансформаторов тока, контактов нет.

При чтении схемы необходимо поначалу на уровне мыслей расцепить ее на обыкновенные цепи, чтоб проверить способности каждого элемента, а потом разглядеть их совместное действие.

Действительность схемных решений

Наладчики отлично знают, что не всегда могут быть осуществлены на самом деле схемные решения, хотя они не содержат очевидных ошибок. Другими словами, проектные электронные схемы не всегда реальны.

Потому одна из задач чтения электронных схем заключается в том, чтоб проверить, могут ли быть выполнены данные условия.

Нереальность схемных решений обычно имеет в главном последующие предпосылки:

  • не хватает энергии для срабатывания аппарата,

  • в схему просачивается «лишняя» энергия, вызывающая неожиданное срабатывание пли препятствующая своевременному отпусканию электронного аппарата,

  • не хватает времени для совершения данных действий,

  • аппаратом задана уставка, которая не может быть достигнута,

  • вместе использованы аппараты, резко отличающиеся по свойствам,

  • не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,

  • не учтены условия, в каких электроустановка будет эксплуатироваться,

  • при проектировании электроустановки за базу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, к примеру, в итоге краткосрочного перерыва питания.

Порядок чтения электронных схем и чертежей

Сначала, нужно ознакомиться с наличными чертежами (либо составить оглавление, если его нет) и классифицировать чертежи (если этого не изготовлено в проекте) по предназначению.

Чертежи перемешивают в таком порядке, чтоб чтение каждого следующего являлось естественным продолжением чтения предшествующего. Потом уясняют принятую систему обозначений и маркировки.

Если она не отражена па чертежах, то ее узнают и записывают.

На избранном чертеже читают все надписи, начиная со штампа, потом примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации непременно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

Если на чертеже имеются ссылки на другие чертежи, то необходимо отыскать эти чертежи и разобраться в содержании ссылок. К примеру, в одну схему заходит контакт, принадлежащий аппарату, изображенному на другой схеме. Означает, необходимо уяснить, что же это все-таки за аппарат, зачем служит, в каких критериях работает и т. п.

При чтении чертежей, отражающих электропитание, электронную защиту, управление, сигнализацию и т. п.:

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько либо использовано несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па обыкновенные цени и, рассматривая их сочетание, устанавливают условия деяния. Рассматривать всегда начинают с того аппарата, который нас в этом случае интересует. К примеру, если не работает движок, то необходимо отыскать па схеме его цепь и поглядеть, контакты каких аппаратов в нее входят. Потом находят цепи аппаратов, управляющих этими контактами, и т. д.,

3) строят диаграммы взаимодействия, выясняя с помощью их: последовательность работы во времени, согласованность времени деяния аппаратов в границах данного устройства, согласованность времени деяния вместе действующих устройств (к примеру, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого попеременно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают вероятные последствия, возможность выхода устройства в рабочее положение из хоть какого состояния, в каком оно могло оказаться, к примеру после ревизии,

4) оценивают последствия возможных дефектов: незамыкание контактов попеременно по одному, нарушения изоляции относительно земли попеременно для каждого участка,

5) нарушения изоляции меж проводами воздушных линий, выходящих за границы помещений и т. п.,

5) инспектируют схему па отсутствие неверных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

7) инспектируют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).

Проектирование электрических схем | Аксоним

Услуги проектирования принципиальных электрических схем

Проектирование электронных схем с использованием актуальных комплектующих, оптимизация решения по различным критериям согласно ограничениям и условиям, задаваемым в техническом задании, устройства с батарейным питанием, моделирование схемотехнических решений, полный пакет конструкторской документации.

Разработка схемотехнического решения включает в себя:
  • расчет, подбор элементов и проверка их производственного статуса;
  • соединение элементов в соответствии с функциональной и структурной схемой технической системы в техническом задании;
  • моделирование системы питания на соответствие требованиям технического задания;
  • подготовку предварительного перечня элементов;
  • проверку доступности элементов и оценки сроков по доставке, в случае необходимости подбор аналогов;
  • согласование перечня с Заказчиком.

Axonim Devices — electronics hardware development — услуги проектирования принципиальных электрических схем по доступной цене! +7 495280-79-00


далее: разработка печатных плат, тестирование печатных плат.

Работа любого современного электрического прибора становится возможной именно благодаря грамотно собранной электросхеме. Электрическая схема обеспечивает энергоснабжение всех основных узлов техники, позволяет регулировать их работу, обеспечивает подачу тока от распределителей к потребителям в определенных количествах, определенной силы, частоты и напряжения.

Однако для того, чтобы прибор работал корректно, необходимы профессиональные услуги проектирования принципиальных электрических схем. Доверив разработку специалистам, вы гарантированно получите схемотехническое решение, которое обеспечит оптимальную работу вашего устройства. Компания AXONIM предлагает клиентам разработку электрических схем под ключ. Мы подготовим проект и проведем моделирование, выполним все необходимые тесты работоспособности и разработаем всю требующуюся документацию для серийного выпуска.

Виды и особенности электрических схем

Проектирование электрических схем зависит от вида электросхемы. У каждой из них есть характерные особенности. Рассмотрим эти виды более подробно.

  • Структурная. Такая схема предполагает описание функциональных частей объектов, и на ней отображается последовательность подключения и работы этих частей, а также направление хода процессов. В данном случае, отображается работа всего устройства в целом.
  • Функциональная. Данный тип электрической схемы предусматривает описания работы отдельных процессов в электротехнике и электронике. Электросхемы подобного рода используются для наглядного отображения последовательности работы оборудования в том или ином процессе.
  • Принципиальная. На ней отображаются основные электрические устройства и компоненты, которые обеспечивают работу электрических процессов в технике. Также на принципиальной схеме отображаются взаимосвязи и элементы начала и конца электроцепи. Кроме того, здесь могут быть изображены соединительные и монтажные элементы. Принципиальная схема разрабатывается для устройств, которые находятся в положении “Отключено”.
  • Монтажная схема. Специализированная схема, где графически изображают входные и выходные элементы. На нее наносят все зажимы, платы, соединительные элементы. Проектирование и моделирование электронных схем подобного типа необходимо для наиболее эффективного расположения входных и выходных элементов.
  • Схема подключения. На ней графически изображаются входные и выходные элементы, а также места и принципы соединения и подачи тока через кабели и проводники. На схеме указываются концы проводов и соединительных элементов, а также размещается информация о подключении.
  • Общая схема подключения. На такую схему наносятся все элементы устройств, а также все соединительные элементы – кабели, жгуты, проводники и т.д.
  • Схема расположения. На схемах расположения конкретный прибор или печатная плата размещается на общих чертежах изделия. Таким образом, определяется расположение в финальной версии устройства.

Разработка схемотехнических решений может предусматривать создание как одной конкретной схемы, так и всего комплекса. Компания AXONIM осуществляет полный комплекс работ по разработке электронных схем любого назначения. Мы выполним работы в любом объеме.

Что включают в себя схемы?

Основой схемы является, конечно же, изображение непосредственно электрической схемы. Оно может изготавливаться в различном масштабе, в соответствии с техническим заданием. Кроме того, к электрической схеме прилагается и ряд дополнительных элементов, что упрощает чтение и понимание элементов системы. К числу таковых относятся:

  • диаграммы;
  • таблицы переключения контактов.

Эти документы прилагаются для сложных устройств, к примеру, для переключателей, в которых предусмотрено несколько позиций. 

Также на схемах присутствует спецификация, содержащая информацию об использованных устройствах и деталях, изображенных на чертеже. Для пояснения особенностей схемы делают дополнительные поясняющие надписи.

Услуги компании Axonim

Компания Axonim предлагает услуги для клиентов, которым необходимо проектирование электронных схем, разработка схемотехнических проектов и т.д. Специалисты нашей компании обладают большим опытом в проектировании схем для различного оборудования. Axonim осуществляет разработку решений для проектов любой сложности. Мы готовим схемотехнические решения как для устройства в целом, так и для отдельных комплектующих в частности (например, для печатных плат).

Компания Axonim – это коллектив профессионалов с колоссальным опытом в проектировании электрических схем. Наша команда включает в себя 30 штатных специалистов и более 400 сотрудников, которые работают на удаленной основе. В нашей команде есть сотрудники, которые специализируются на разных видах оборудования. Мы гарантируем решение задач любой сложности.

Axonim осуществляет разработку схемотехнических решений под ключ. Мы выполняем полный комплекс работ, необходимых для создания электрической схемы. 

Специалисты нашей компании разработают проект, выполнят его моделирование, проведут тестирование и адаптируют документацию для производства устройств с данной схемой. Специалисты Axonim производят разработку строго по техническому заданию, которое составляется с учетом всех требований и пожеланий клиентов.

Главный офис Axonim находится в Беларуси, но мы реализуем заказы для клиентов из разных стран. В том числе, мы работаем с клиентами из России, Украины, стран Европейского Союза, США и т.д. Axonim – это готовое схемотехническое решение для устройств любого типа.

Общие сведения о электрических чертежах




Цели

1. Распознавайте символы, часто используемые на схемах двигателя и управления.

2. Прочтите и постройте лестничные диаграммы.

3. Прочитать электрические схемы, однолинейные и блок-схемы.

4. Ознакомьтесь с клеммными соединениями для различных типов. моторов.

5. Прочтите информацию, содержащуюся на паспортных табличках двигателя.

6.Ознакомьтесь с терминологией, используемой в цепях двигателей.

7. Ознакомьтесь с принципами работы ручных и магнитных пускателей двигателей.

При работе с двигателями используются разные типы электрических чертежей. и их схемы управления. Чтобы облегчить создание и чтение электрические чертежи, используются определенные стандартные символы.

Для чтения чертежей электродвигателя необходимо знать как значение символов и как работает оборудование.

Этот раздел поможет вам понять использование символов в электрических рисунки. В разделе также объясняется моторная терминология и поясняется это с практическим применением.


ЧАСТЬ 1 Символы — сокращения — лестничные диаграммы

Обозначения двигателей

Цепь управления двигателем может быть определена как средство подачи питания к и отключение питания от двигателя. Символы, используемые для обозначения различные компоненты системы управления двигателем можно рассматривать как тип технической стенографии.

Использование этих символов способствует упрощению схемотехнических схем. и легче читать и понимать.

В системах управления двигателями символы и соответствующие линии показывают, как цепи соединены друг с другом. К сожалению, не все электрические и электронные символы стандартизированы. Вы найдете немного разные символы, используемые разными производителями. Также символы иногда выглядят ничего похожего на настоящую вещь, поэтому вам нужно узнать, что означают символы.FGR. 1 показаны некоторые типичные символы, используемые в принципиальных схемах двигателей.

Сокращения терминов двигателя

Аббревиатура — это сокращенная форма слова или фазы. Заглавные буквы используются для большинства сокращений. Ниже приводится список некоторых сокращения, обычно используемые в принципиальных схемах двигателей.

Переменный ток Якорь ARM АВТО автоматический выключатель BKR COM общий Реле управления CR Трансформатор тока CT DC постоянный ток DB динамическое торможение Поле FLD FWD вперед GRD заземление Мощность в лошадиных силах L1, L2, L3 Соединения линий электропередачи Концевой выключатель LS MAN ручной двигатель MTR Пускатель двигателя M NEG отрицательный NC нормально замкнут NO нормально разомкнутый OL реле перегрузки PH фаза PL контрольная лампа POS положительная мощность PWR PRI первичная кнопка PB

REC выпрямитель REV обратный RH реостат SSW предохранительный выключатель SEC вторичный 1PH однофазный соленоид SOL SW-переключатель T1, T2, T3 клеммные соединения двигателя 3-фазный трехфазный трансформатор с выдержкой времени TD

Лестничные схемы двигателей

На чертежах управления двигателем

представлена ​​информация о работе цепи, устройства. расположение оборудования и инструкции по подключению.Символы, используемые для представления переключатели состоят из узловых точек (мест, где друг друга), контактные полосы и специальный символ, который идентифицирует конкретный тип переключателя, как показано в FGR. 2.

Хотя устройство управления может иметь более одного набора контактов, только Используемые в схеме контакты представлены на контрольных чертежах.

Для установки, обслуживания и ремонта используются различные схемы и чертежи. и устранение неисправностей в системах управления двигателем.К ним относятся лестничные диаграммы, электрические схемы, линейные схемы и блок-схемы. «Лестничная диаграмма» (считается некоторыми в виде схематической диаграммы) фокусируется на электрическом функционировании цепи, а не физическое расположение устройства. Например, два кнопки остановки могут физически находиться на противоположных концах длинного конвейера, но электрически рядом на лестничной диаграмме.

Лестничные диаграммы, например, показанная в FGR. 3, нарисованы двумя вертикальные линии и любое количество горизонтальных линий.Вертикальные линии (называемые рельсами) подключаются к источнику питания и обозначаются как линия 1 (L1) и линия 2 (L2). Горизонтальные линии (называемые ступенями) соединяются через L1 и L2 и содержат схему управления.

Лестничные диаграммы предназначены для чтения, как книгу, начиная с вверху слева и читать слева направо и сверху вниз.

Поскольку лестничные диаграммы легче читать, они часто используются при трассировке. через работу цепи.Большинство программируемых логических контроллеров (ПЛК) используют концепцию лестничных диаграмм в качестве основы для своего программирования. язык.


FGR. 1 Символы управления двигателем.


FGR. 2 Переключите компоненты символа.


FGR. 3 Типовая лестничная диаграмма.


FGR. 4 Электропроводка двигателя и цепи управления.

Большинство лестничных диаграмм иллюстрируют только однофазную цепь управления. подключен к L1 и L2, а не к трехфазной цепи питания мотор.FGR. 4 показана схема подключения силовой цепи и цепи управления.

На схемах, включающих проводку силовых цепей и цепей управления, вы можете увидеть как тяжелые, так и легкие проводники. Жирные линии используются для силовая цепь с более высоким током и более светлые линии для более слаботочной цепь управления.

Показаны проводники, которые пересекаются друг с другом, но не имеют электрического контакта. пересекающимися линиями без точки.

Проводники, которые контактируют, обозначены точкой на стыке.В большинстве случаев управляющее напряжение получается непосредственно от источника питания. цепи или от понижающего управляющего трансформатора, подключенного к источнику питания. схема.

Использование трансформатора позволяет снизить напряжение (120 В переменного тока) для управления. цепи при питании цепи питания трехфазного двигателя с повышенным напряжение (480 В переменного тока) для более эффективной работы двигателя.

Релейная диаграмма дает необходимую информацию для упрощения следования последовательность работы схемы.

Это отличный помощник в поиске и устранении неисправностей, поскольку он наглядно показывает, эффект, который открытие или закрытие различных контактов оказывает на других устройствах в схема. Все переключатели и релейные контакты классифицируются как обычные. открытый (NO) или нормально закрытый (NC). Позиции, изображенные на диаграммах, электрические характеристики каждого устройства, которые будут обнаружены при его куплен и не подключен ни в какую цепь. Это иногда называют как «готовое» или обесточенное состояние.Это важно чтобы понять это, потому что он также может представлять положение обесточивания в цепи. Обесточенное положение относится к положению компонента. когда цепь обесточена или в цепи нет напряжения. Эта точка отсчета часто используется в качестве отправной точки в анализе. работы схемы.


FGR. 5 Идентификация катушек и связанных контактов.

Обычный метод, используемый для идентификации катушки реле и задействованных контактов им — поместить букву или буквы в круг, представляющий катушка (FGR.5). Каждый контакт, которым управляет эта катушка, будет иметь буква катушки или буквы, написанные рядом с символом контакта.

Иногда при наличии нескольких контактов, управляемых одной катушкой, число добавляется к письму для обозначения контактного номера. Хотя там являются стандартными значениями этих букв, большинство диаграмм содержат список ключей показать, что означают буквы; обычно они взяты из названия устройства.

Нагрузка — это компонент цепи, имеющий сопротивление и потребляющий электрическую энергию. питание подается от L1 к L2.Катушки управления, соленоиды, звуковые сигналы и пилот огни являются примерами нагрузок. Должно быть включено хотя бы одно загрузочное устройство. на каждой ступеньке лестничной диаграммы. Без загрузочного устройства управление устройства будут переключать разомкнутую цепь на короткое замыкание между L1 и L2. Контакты от устройств управления, таких как переключатели, кнопки, и реле считаются не имеющими сопротивления в замкнутом состоянии. Связь контактов параллельно с нагрузкой также может привести к короткому замыканию когда контакт замыкается.Ток в цепи будет минимальным. сопротивление через замкнутый контакт, замыкая нагрузку под напряжением.

Обычно нагрузки размещаются в правой части лестничной диаграммы рядом с к L2 и контактам с левой стороны рядом с L1. Одно исключение из этого Правило — размещение нормально замкнутых контактов, контролируемых устройство защиты двигателя от перегрузки. Эти контакты нарисованы справа сторона катушки стартера двигателя, как показано на FGR.6. Когда две и более загрузки должны быть запитаны одновременно, они должны быть подключены в параллельно. Это гарантирует, что полное линейное напряжение от L1 и L2 будет появляются при каждой загрузке. Если нагрузки подключены последовательно, ни получит все сетевое напряжение, необходимое для правильной работы. Отзывать что при последовательном соединении нагрузок приложенное напряжение делится между каждая из нагрузок. При параллельном подключении нагрузок напряжение на каждая нагрузка одинакова и равна приложенному напряжению.

Управляющие устройства, такие как переключатели, кнопки, концевые выключатели и давление переключатели управляют нагрузками. Обычно подключаются устройства, запускающие нагрузку. параллельно, а устройства, останавливающие нагрузку, подключаются последовательно. Для Например, несколько пусковых кнопок управляют одним и тем же пускателем двигателя. катушка будет подключена параллельно, а несколько кнопок останова будут подключены последовательно (FGR.7). Все устройства управления идентифицированы с соответствующей номенклатурой устройства (например,г., стоп, старт). Точно так же все нагрузки должны иметь аббревиатуры для обозначения тип нагрузки (например, M для катушки стартера). Часто дополнительный числовой суффикс используется для различения нескольких устройств одного типа. Для Например, цепь управления с двумя пускателями двигателя может идентифицировать катушки как M1 (контакты 1-M1, 2-M1 и т. д.) и M2 (контакты 1-M2, 2-M2 и т. д.).


FGR. 6 Нагрузки размещены справа, а контакты слева.


FGR. 7 Стопорные устройства подключаются последовательно, а пусковые устройства подключаются параллельно.


FGR. 8 Лестничная диаграмма с подробным описанием номеров ступеней.

По мере увеличения сложности схемы управления ее лестничная диаграмма увеличивается в размере, что затрудняет чтение и поиск контактов контролируются какой катушкой. «Нумерация звеньев» используется для помощи в чтении и понимании больших лестничных диаграмм. Каждая ступенька обозначена лестничная диаграмма (ступеньки 1, 2, 3 и т. д.).), начиная с верхней ступеньки и чтение вниз. Ступеньку можно определить как полный путь от L1 до L2, содержащий нагрузку. FGR. 8 иллюстрирует маркировку каждой ступени в линейная диаграмма с тремя отдельными ступенями:

• Путь для ступени 1 завершается нажатием кнопки реверса, цикл кнопка запуска, концевой выключатель 1LS и катушка 1CR.

• Путь для ступени 2 завершается с помощью кнопки реверса, реле контакт 1CR-1, концевой выключатель 1LS и катушка 1CR.Обратите внимание, что ступень 1 и ступень 2 идентифицируются как две отдельные ступени, даже если они контролируют одну и ту же ступеньку. нагрузка. Причина в том, что либо кнопка запуска цикла, либо контакт реле 1CR-1 завершает путь от L1 до L2.

• Путь для ступени 3 завершается через контакт реле 1CR-2 к и соленоид SOL A.

«Числовые перекрестные ссылки» используются вместе с нумерация звеньев для нахождения вспомогательных контактов, управляемых катушками в цепь управления.Иногда вспомогательные контакты не находятся в непосредственной близости на лестничной диаграмме к катушке, контролирующей их работу. Чтобы найти эти контакты, номера звеньев указаны справа от L2 в скобках. на звене катушки, контролирующей их работу.

В примере, показанном в FGR. 9:

• Контакты катушки 1CR появляются в двух разных местах в линии. диаграмма.

• Цифры в скобках справа от линейной диаграммы обозначают расположение линии и тип контактов, контролируемых катушкой.

• Цифры в скобках для нормально разомкнутых контактов имеют без специальной маркировки.

• Номера, используемые для нормально замкнутых контактов, обозначаются подчеркиванием. или завышение числа, чтобы отличить их от нормально разомкнутых контактов.

• В этой схеме катушка управляющего реле 1CR управляет двумя наборами контактов: 1CR-1 и 1CR-2. Это показано цифровым кодом 2, 3.

Для правильного подключите проводники цепи управления к их компонентам в цепи.Метод, используемый для идентификации проводов, зависит от производителя. FGR. 10 иллюстрирует один метод, в котором каждая общая точка в цепи присвоен справочный номер:

• Нумерация начинается со всех проводов, подключенных к стороне L1 устройства. блок питания обозначен номером 1.

• Продолжение в верхнем левом углу диаграммы со звеном 1, новый номер назначается последовательно для каждого провода, пересекающего компонент.

• Электрически общие провода обозначены одинаковыми номерами.

• После того, как был назначен первый провод, напрямую подключенный к L2 (в в этом случае 5) все остальные провода, напрямую подключенные к L2, будут помечены. с таким же номером.

• Количество компонентов в первой строке лестничной диаграммы определяет номер провода для проводников, напрямую подключенных к L2.


FGR. 9 Числовая система перекрестных ссылок.


FGR. 10 Нумерация проводов.


FGR. 11 Альтернативная идентификация проводки с документацией.


FGR. 12 Представление механических функций.


FGR. 13 Заземление управляющего трансформатора: (а) управляющий трансформатор правильно заземлен на сторону L2 цепи; (б) управляющий трансформатор неправильно заземлен на стороне L1 цепи.

FGR. 11 иллюстрирует альтернативный метод присвоения номеров проводов.При использовании этого метода все провода, напрямую подключенные к L1, обозначаются 1, а все подключенные к L2 обозначены 2. После всех проводов с 1 и 2 отмечены, остальные номера присваиваются в последовательном порядке начиная с верхнего левого угла диаграммы.

Преимущество этого метода в том, что все провода подключаются напрямую. до L2 всегда обозначаются как 2. Лестничные диаграммы могут также содержать серию описаний, расположенных справа от L2, которые используются для документирования функция схемы, управляемая устройством вывода.

Пунктирная линия обычно указывает на механическое соединение. Не делают ошибка чтения ломаной линии как части электрической цепи. В FGR. 12 вертикальные пунктирные линии на кнопках прямого и обратного хода указывают, что их нормально замкнутые и нормально разомкнутые контакты механически связаны. Таким образом, нажатие на кнопку откроет один набор контактов. и закройте другой. Пунктирная линия между катушками F и R указывает что они механически взаимосвязаны.Следовательно, катушки F и R не могут одновременное закрытие контактов благодаря механическому блокирующему действию устройства.

Когда управляющий трансформатор должен иметь одну из вторичных линий заземлен, заземление должно быть выполнено так, чтобы случайное заземление в цепи управления не запустит двигатель или не сделает кнопку остановки или управление не работает. FGR. 13a иллюстрирует вторичный элемент управления. трансформатор должным образом заземлен на сторону L2 цепи.Когда цепь исправна, вся цепь слева от катушки M является Незаземленная цепь (это «горячая» нога). Путь неисправности к земле в незаземленной цепи вызовет короткое замыкание, вызывая предохранитель управляющего трансформатора разомкнут. FGR. 13b показывает ту же схему неправильно заземлен на L1. В этом случае короткое замыкание на массу на слева от катушки M возбудит катушку, неожиданно запустив двигатель. Предохранитель не сработает, чтобы размыкать цепь и нажимать стопор, но тонна не обесточила бы катушку М.Повреждение оборудования и травмы персонала было бы очень вероятно. Понятно, что выходные устройства должны быть подключены напрямую к заземленной стороне цепи.

ЧАСТЬ 1 ВИКТОРИНА

1. Определите, что означает термин «цепь управления двигателем».

2. Почему символы используются для обозначения компонентов на электрических схемах?

3. Электрическая цепь содержит три контрольных лампы. Что приемлемо можно ли использовать символ для обозначения каждого источника света?

4.Опишите базовую структуру принципиальной электрической схемы.

5. Линии используются для обозначения электрических проводов на схемах.

а. Чем провода, по которым проходит большой ток, отличаются от проводов, нести слабый ток?

г. Как провода, которые пересекаются, но не соединяются электрически, дифференцируются из тех, которые подключаются электрически?

6. Контакты кнопочного переключателя размыкаются при нажатии кнопки. К какому типу кнопки это относится? Почему?

7.Катушка реле с маркировкой TR содержит три контакта.

Какую приемлемую кодировку можно использовать для идентификации каждого из контактов?

8. Ступенька на лестничной диаграмме требует наличия двух нагрузок, каждая из которых рассчитана на полное линейное напряжение, запитывается, когда переключатель замкнут. Какая связь нагрузок необходимо использовать? Почему?

9. Одним из требований для конкретного двигателя является то, что шесть значений давления выключатели должны быть замкнуты до того, как двигатель будет запущен.Какие связи переключателей надо использовать?

10. Маркировка проводов на нескольких проводах электрического панели проверяются и обнаруживают, что имеют тот же номер. Что это значит?

11. Пунктирная линия, обозначающая механическую функцию на электрическом диаграмма ошибочно принята за проводник и подключена как таковая. Какие два типа проблем, к которым это могло привести?


ЧАСТЬ 2 Электромонтажные схемы — однолинейные блочные схемы

Схемы подключения


FGR.14 Типовая электрическая схема пускателя двигателя.

Этот материал и связанные с ним авторские права являются собственностью и используются с разрешения Schneider Electric.

Электрические схемы используются для демонстрации двухточечной проводки между компонентами. электрической системы, а иногда и их физического отношения друг к другу. Они могут включать идентификационные номера проводов, присвоенные проводникам в лестничная диаграмма и / или цветовое кодирование. Катушки, контакты, двигатели и как показано в фактическом положении, которое можно было бы найти на установке.Эти схемы полезны при подключении систем, потому что соединения могут делаться именно так, как показано на схеме. Схема подключения дает необходимая информация для фактического подключения устройства или группы устройств или для физического отслеживания проводов при поиске и устранении неисправностей. Тем не мение, По такому рисунку сложно определить работу схемы.


FGR. 15 Прокладка проводов в кабелях и коробах.


FGR.16 Электромонтаж с внутренними подключениями магнитного пускателя опущено.

Схемы подключения представлены для большинства электрических устройств. FGR. 14 иллюстрирует типовая электрическая схема, предусмотренная для пускателя двигателя. На диаграмме показано, как можно точнее, фактическое расположение всех составных частей устройства. Открытые клеммы (отмечены открытым кружком) и стрелки представляют собой соединения, сделанные пользователем. Обратите внимание, что жирные линии обозначают цепь питания, а более тонкими линиями показана схема управления.

Прокладка проводов в кабелях и трубопроводах, как показано в FGR. 15, является важной частью электрической схемы. Схема компоновки кабелепровода указывает начало и конец электропроводки и показаны приблизительные путь, пройденный любым каналом при переходе от одной точки к другой. Интегрированный с рисунком такого рода — это кабелепровод и спецификация кабеля, которые сводит в таблицу каждый канал по количеству, размеру, функциям и услугам, а также включает количество и размер проводов, проложенных в кабелепроводе.

На электрических схемах показаны подробности реальных подключений. Редко они попытаться показать полную информацию о монтажной плате или оборудовании. В схема подключения FGR. 15, приведенный к более простому виду, показан на FGR. 16 без внутренних соединений магнитного пускателя. Провода заключенные в кабелепровод C1, являются частью силовой цепи и рассчитаны на текущее требование двигателя. Провода, заключенные в кабелепровод C2, являются частью цепи управления нижнего напряжения и рассчитаны на текущие требования управляющего трансформатора.


FGR. 17 Комбинированная разводка и лестничная диаграмма.


FGR. 18 Однолинейная схема моторной установки.


FGR. 19 Однолинейная схема системы распределения электроэнергии.

Электрические схемы часто используются вместе с лестничными диаграммами для упростить понимание процесса управления. Примером этого является проиллюстрировано в FGR. 17. На схеме подключения показаны питание и управление. схемы.

Включена отдельная лестничная диаграмма цепи управления, чтобы более четкое понимание его работы. Следуя лестничной диаграмме видно, что контрольная лампа подключена так, что она будет гореть всякий раз, когда стартер находится под напряжением.

Силовая цепь опущена для наглядности, так как ее можно проследить. легко на монтажной схеме (жирные линии).

Однолинейные схемы

Однолинейная диаграмма (также называемая однострочной) использует символы вместе с единой линией, чтобы показать все основные компоненты электрической цепи.Некоторые производители оборудования для управления двигателем используют однолинейный рисунок, например тот, что показан в FGR. 18, как дорожная карта в изучении моторного контроля инсталляции. Установка сведена к максимально простой форме, тем не менее, он по-прежнему показывает основные требования и оборудование в цепи.

Энергетические системы — это чрезвычайно сложные электрические сети, которые могут географически распространяться на очень большие территории. По большей части они также трехфазные сети — каждая силовая цепь состоит из трех проводов и все устройства, такие как генераторы, трансформаторы, выключатели и разъединители и т.п.установлен во всех трех фазах. Эти системы могут быть настолько сложными, что полная стандартная схема, показывающая все соединения, непрактична. В этом случае использование однолинейной схемы — это краткий способ сообщение базовой компоновки компонента энергосистемы. FGR. 19 показана однолинейная схема малой системы распределения электроэнергии. Эти типы диаграмм также называют схемами «стояка мощности».

Блок-схемы

Блок-схема представляет основные функциональные части сложных электрических / электронных системы блоками, а не символами.Отдельные компоненты и провода не показаны. Вместо этого каждый блок представляет электрические цепи, которые выполнять определенные функции в системе. Функции, которые выполняют схемы написаны в каждом блоке.

Стрелки, соединяющие блоки, указывают общее направление тока пути.

FGR. 20 показана блок-схема частотно-регулируемого электродвигателя переменного тока. Частотно-регулируемый привод регулирует скорость двигателя переменного тока, изменяя частота, подаваемая на двигатель.Привод также регулирует выходную мощность. напряжение пропорционально выходной частоте, чтобы обеспечить относительно постоянное соотношение (вольт на герц; В / Гц) напряжения к частоте, если требуется характеристиками двигателя переменного тока для создания соответствующего крутящего момента. В Функция каждого блока резюмируется следующим образом:

• На выпрямительный блок подается трехфазное питание частотой 60 Гц.

• Блок выпрямителя — это схема, которая преобразует или выпрямляет трехфазную Переменное напряжение в постоянное.

• Блок инвертора — это схема, которая инвертирует или преобразует вход постоянного тока. напряжение обратно в напряжение переменного тока.

Инвертор состоит из электронных переключателей, которые переключают напряжение постоянного тока. включение и выключение для получения регулируемой выходной мощности переменного тока с желаемой частотой и напряжение.


FGR. 20 Блок-схема частотно-регулируемого привода переменного тока.

ЧАСТЬ 2 ВИКТОРИНА

1. Каково основное назначение электрической схемы?

2.Помимо цифр, какой еще метод можно использовать для идентификации провода на схеме подключения?

3. Какую роль может играть электрическая схема в поиске неисправностей двигателя? схема управления?

4. Перечислите фрагменты информации, которые, скорее всего, можно найти в канале. и перечень кабелей для установки двигателя.

5. Объясните цель использования электрической схемы двигателя вместе с с лестничной схемой цепи управления.

6. Каково основное назначение однолинейной схемы?

7. Каково основное назначение блок-схемы?

8. Объясните функцию выпрямительного и инверторного блоков переменной частоты. Привод переменного тока.


ЧАСТЬ 3 Клеммные соединения двигателя

Классификация двигателей

Электродвигатели были важным элементом нашей промышленной и коммерческая экономика более века.

Большинство используемых сегодня промышленных машин приводится в движение электродвигателями. Отрасли перестанут функционировать, если не будут должным образом спроектированы, установлены, и обслуживаемые системы управления двигателем. В целом моторы классифицируются в зависимости от типа используемой мощности (переменного или постоянного тока) и принципа действия двигателя операции. «Генеалогическое древо» моторных типов довольно обширно, как показано вверху следующей страницы:

В США Институт инженеров по электротехнике и электронике (IEEE) устанавливает стандарты моторного тестирования и методологий тестирования, в то время как Национальная ассоциация производителей электрооборудования (NEMA) готовит стандарты характеристик двигателя и классификации.

Дополнительно должны быть установлены двигатели в соответствии со статьей 430. Национального электротехнического кодекса (NEC).

Подключение двигателя постоянного тока

В промышленных приложениях используются двигатели постоянного тока, потому что соотношение скорость-крутящий момент можно легко варьировать. Двигатели постоянного тока имеют регулируемую скорость. плавно спускаемся до нуля, сразу после чего разгон в обратном направление. В аварийных ситуациях двигатели постоянного тока могут подавать более пяти раз. номинальный крутящий момент без остановки.Динамическое торможение (энергия, генерируемая двигателем постоянного тока подается на резисторную сетку) или рекуперативное торможение (двигатель постоянного тока энергия возвращается в источник питания двигателя постоянного тока) может быть получено с двигателями постоянного тока в приложениях, требующих быстрой остановки, что устраняет необходимость в или уменьшение размеров механического тормоза.

FGR. 21 показаны символы, используемые для обозначения основных частей прямого составной двигатель постоянного тока.



FGR. 21 Детали составного двигателя постоянного тока.

Вращающаяся часть двигателя называется якорем; стационарный часть двигателя называется статором, который содержит серию обмотка возбуждения и шунтирующая обмотка возбуждения. В машинах постоянного тока A1 и A2 всегда указывают выводы якоря, S1 и S2 указывают последовательные выводы возбуждения, а Fl и F2 обозначают выводы шунтирующего поля.

Это вид возбуждения поля, обеспечиваемый полем, который отличает один тип двигателя постоянного тока от другого; конструкция арматуры ничего общего с классификацией мотора.Есть три основных типа двигателей постоянного тока, классифицируемых по способу возбуждения поля как следует:

• В шунтирующем двигателе постоянного тока (FGR. 22) используется шунт со сравнительно высоким сопротивлением. обмотка возбуждения, состоящая из множества витков тонкой проволоки, соединенных параллельно (шунт) с арматурой.

• В последовательном двигателе постоянного тока (FGR. 23) используется последовательное поле с очень низким сопротивлением. обмотка, состоящая из очень небольшого количества витков толстого провода, соединенных последовательно с арматурой.

• Составной двигатель постоянного тока (FGR. 24) использует комбинацию шунтирующего поля (многие витков тонкой проволоки) параллельно якорю, а последовательное поле (несколько витков толстой проволоки) последовательно с якорем.


FGR. 22 Стандартные шунтирующие соединения двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR. 23 Стандартные соединения двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR.24 стандартных соединения постоянного (кумулятивного) двигателя для счетчика часов мудрое и вращение по часовой стрелке. Для дифференциального соединения, обратное S1 и S2.

Все соединения, показанные на рисунках 22, 23 и 24, предназначены для вращения против часовой стрелки. и вращение по часовой стрелке, обращенное к концу, противоположному приводу (конец коллектора). Одна из целей нанесения маркировки на клеммы двигателей в соответствии с к стандарту, чтобы помочь в установлении соединений, когда предсказуемое вращение направление обязательно.Это может быть тот случай, когда неправильное вращение может привести к небезопасной эксплуатации или повреждению. Маркировка клемм обычно используется пометить только те клеммы, к которым нужно подключать извне схемы.

Направление вращения двигателя постоянного тока зависит от направления магнитное поле и направление тока в якоре. Если либо направление поля или направление тока, протекающего через якорь реверсируется, двигатель вращается в обратном направлении.Тем не мение, если оба этих фактора поменять местами одновременно, двигатель будет продолжайте вращаться в том же направлении.

Подключение двигателя переменного тока

Асинхронный двигатель переменного тока является доминирующей технологией двигателей, используемых сегодня, что составляет более 90 процентов установленной мощности двигателей. Индукция двигатели доступны в однофазной (1?) и трехфазной (3?) конфигурациях, размерами от долей лошадиных сил до десятков тысяч Лошадиные силы.Они могут работать с фиксированной скоростью — обычно 900, 1200, 1800, или 3600 об / мин — или быть оснащенным регулируемым приводом.

Наиболее часто используемые двигатели переменного тока имеют конфигурацию с короткозамкнутым ротором. (FGR.25), названный так из-за вставленной в него алюминиевой или медной беличьей клетки. внутри железных пластин ротора. Нет физического электрического подключение к беличьей клетке. Ток в роторе индуцируется вращающееся магнитное поле статора.

Роторные модели, у которых витки проволоки вращают обмотки ротора, так же доступно. Это дорого, но обеспечивает больший контроль над двигателем. эксплуатационные характеристики, поэтому их чаще всего используют для особого крутящего момента приложений для ускорения и для приложений с регулируемой скоростью.


FGR. 25 Трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.


FGR. 26 Асинхронный двигатель переменного тока с разделением фаз.


FGR.27 Соединения статора двухфазного двигателя с двойным напряжением.

ПОДКЛЮЧЕНИЯ ДЛЯ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ

Большинство однофазных асинхронных двигателей переменного мощности для источников питания от 120 до 240 В, 60 Гц. Хотя там это несколько типов однофазных двигателей, они в основном идентичны кроме средств запуска. «Двухфазный двигатель» наиболее широко используется для приложений со средним запуском (FGR.26). Операция сплит-двигателя кратко описывается следующим образом:

• Двигатель имеет пусковую и основную или рабочую обмотки, которые находятся под напряжением. при запуске мотора.

• Пусковая обмотка создает разность фаз для запуска двигателя. и отключается центробежным переключателем при приближении к рабочей скорости. Когда двигатель достигает примерно 75 процентов своей номинальной скорости при полной нагрузке, пусковая обмотка отключена от цепи.

• Мощность двигателя с расщепленной фазой составляет примерно ½ лошадиных сил. Популярные приложения включают вентиляторы, нагнетатели, бытовую технику, такую ​​как стиральные машины и сушилки, и инструменты, такие как небольшие пилы или сверлильные станки, к которым нагрузка прилагается после двигатель набрал свою рабочую скорость.

• Двигатель можно реверсировать, переставив провода к пусковой обмотке. или основной обмотки, но не к обеим. Обычно отраслевой стандарт поменять местами провода пусковой обмотки

В двухфазном двигателе с двойным напряжением (FGR.27) ходовая обмотка разделен на две части и может быть подключен для работы от 120-вольтной или источник 240 В. Две обмотки подключаются последовательно при работе. от источника 240 В и параллельно для работы на 120 В.

Пусковая обмотка подключена к линиям питания низкого напряжения. и по одной линии до середины ходовых обмоток для высокого напряжения. Это гарантирует, что все обмотки получат 120 В, на которые они рассчитаны. работать в.Чтобы изменить направление вращения разветвителя с двумя напряжениями фазного двигателя, поменяйте местами два провода пусковой обмотки.

Двигатели с двойным напряжением подключаются для получения желаемого напряжения следующим образом. схема подключения на паспортной табличке.

Номинальная мощность двухфазного двигателя с двумя напряжениями составляет 120/240 В. любого типа двигателя с двойным напряжением, более высокое напряжение предпочтительнее, когда возможен выбор между напряжениями. Мотор использует столько же мощности и производит такое же количество лошадиных сил при работе от напряжение питания 120 В или 240 В.Однако, поскольку напряжение увеличивается вдвое с 120 В до 240 В ток уменьшается вдвое. Работа двигателя на этом пониженном уровень тока позволяет использовать проводники цепи меньшего диаметра и снижает потери мощности в линии.


FGR. 28 Двигатель с постоянным разделением конденсаторов.

Во многих однофазных двигателях конденсатор используется последовательно с одним из статоров. обмотки для оптимизации разности фаз между пусковой и рабочей обмотками для запуска.Результат — более высокий пусковой момент, чем у расщепленной фазы. мотор может производить. Есть три типа конденсаторных двигателей: конденсаторные. пуск, при котором фаза конденсатора находится в цепи только при пуске; постоянно разделенный конденсатор, в котором конденсаторные фазы в цепи как для запуска, так и для работы; и двухзначный конденсатор, в котором есть — разные значения емкости для запуска и работы. Перманентный раскол конденсаторный двигатель, изображенный на FGR.28, постоянно использует конденсатор соединены последовательно с одной из обмоток статора. Эта конструкция ниже по стоимости, чем двигатели с конденсаторным пуском, которые включают переключение конденсаторов системы. Установки включают компрессоры, насосы, станки, воздушные кондиционеры, конвейеры, воздуходувки, вентиляторы и другие труднодоступные для запуска приложения.

ПОДКЛЮЧЕНИЯ ТРЕХФАЗНЫХ ДВИГАТЕЛЕЙ

Трехфазный асинхронный двигатель переменного тока является наиболее распространенным двигателем, используемым в коммерческих и промышленное применение.

Однофазные двигатели большей мощности обычно не используются, так как они неэффективны по сравнению с трехфазными двигателями. Кроме того, однофазные двигатели не запускаются самостоятельно на своих рабочих обмотках, в отличие от трехфазных моторы.

Двигатели переменного тока большой мощности обычно бывают трехфазными.

Все трехфазные двигатели имеют внутреннюю конструкцию с рядом отдельных намотанные катушки. Независимо от количества отдельных катушек, индивидуальные катушки всегда будут подключены вместе (последовательно или параллельно) для получения трех отдельные обмотки, которые называются фазой A, фазой B и фазой С.Все трехфазные двигатели подключены так, чтобы фазы были подключены друг к другу. конфигурация звезды (Y) или треугольника (?), как показано на FGR. 29.

ПОДКЛЮЧЕНИЯ ДВУХНАПРЯЖНЫХ ДВИГАТЕЛЕЙ


FGR. 29 Подключение электродвигателя трехфазной звездой и треугольником.

Обычно производят трехфазные двигатели, которые могут быть подключены работать на разных уровнях напряжения.

Наиболее распространенное номинальное напряжение для трехфазных двигателей — 208/230/460. В.Всегда проверяйте характеристики двигателя или паспортную табличку на предмет надлежащего напряжения. номинал и схема подключения для способа подключения к источнику напряжения.

FGR. 30 иллюстрирует типичную идентификацию терминала и подключение. таблица для девятипроводного трехфазного двигателя с двойным напряжением, соединенным звездой. Один конец каждой фазы внутренне постоянно подключен к другим фазам.

Каждая фазная катушка (A, B, C) разделена на две равные части и соединена последовательно для работы с высоким напряжением или параллельно для работы с низким напряжением операция.Согласно номенклатуре NEMA, эти отведения имеют маркировку от T1 до Т9. Высоковольтные и низковольтные соединения приведены в прилагаемых таблица соединений и клеммная колодка двигателя. Тот же принцип серии Применяется (высоковольтное) и параллельное (низковольтное) подключение катушек для трехфазных двигателей с двойным напряжением, соединенных звездой-треугольником. В любом случае обратитесь к электросхеме, поставляемой с двигателем, чтобы убедиться в правильности подключения. для желаемого уровня напряжения.

Прод. к части 2 >>

Ошибка разрыва связи

    Щиток приборов

    GHVR110

    Перейти к содержанию Щиток приборов
    • Авторизоваться

    • Панель приборов

    • Календарь

    • Входящие

    • История

    • Помощь

    Закрывать