Чтение электросхем: Чтение электрических схем — Энциклопедия по машиностроению XXL

Содержание

Чтение электрических схем — Энциклопедия по машиностроению XXL

Техника чтения электрических схем — знание условных обозначений, знание электротехники, знание порядка чтения схемы, знание приемов проверки правильности сделанных предположений, условия неразрывности процесса чтения и ан иза.  [c.321]

Для упрощения чтения электрической схемы каждой из ее составных частей присвоен буквенный индекс. Сопровождающие текст индексы в скобках указывают на те части электрической схемы, где находятся рассматриваемые элементы. Действие одного из проставленных в тексте индексов распространяется до следующего индекса. Рассмотрим электросхему с ее исходного положения, когда оба лифта готовы к работе, но находятся в неподвижном положении.  [c.240]


ПОТОЧНЫЕ МЕХАНИЗИРОВАННЫЕ И АВТОМАТИЧЕСКИЕ СБОРОЧНО-СВАРОЧНЫЕ ЛИНИИ ЧТЕНИЕ ЭЛЕКТРИЧЕСКИХ СХЕМ  [c. 234]

Чтение электрических схем  [c.293]

Помощь в чтении электрических схем окажет нижеприведенный рисунок  [c.252]

Последовательность работы элементов электрической схемы лифта. Для сокращения записей и упрощения чтения электросхемы введены следующие обозначения.  [c.220]

При проектировании и изучении электрических схем лифтов или других машин пользуются принципиальными схемами. Основной метод построения принципиальных схем заключается в том, что отдельные элементы одного и того же электрического аппарата, кинематически связанные между собой или расположенные в непосредственной близости один от другого, на схеме изображают в разных местах. Это значительно облегчает чтение схемы и способствует наглядному изучению последовательности работы аппаратов, составляющих схему, в принципиальных схемах все элементы одного аппарата обозначаются одними и теми же буквами. Например, катушка контактора  

[c. 132]

Выявление неисправностей в электрических схемах лифтов я причин, вызвавших эти неисправности, возможно только при условии четкого знания электросхем и свободного чтения их.  [c.42]

При проектировании и анализе электроприводов строятся развернутые электрические схемы (развертки). Положенный в основу их построения принцип состоит в том, что элементы изделий изображаются на схеме условно в тех электрических цепях, в которых они работают, и по расположению они не связываются с изделием, к которому принадлежат. Так, элементы одного и того же аппарата, кинематически связанные друг с другом, в развернутой схеме располагаются в разных местах. Такое расположение элементов намного облегчает чтение схемы, позволяет наглядно видеть взаимосвязь между элементами и понять последовательность действия аппаратуры. В развернутых схемах всем элементам одного изделия присваивается одно и то же буквенное или цифровое обозначение.  [c.308]

Принципиальная электрическая схема той же машины приведена на фиг. 120, Принципиальная схема показывает взаимодействие всех электрических узлов машины, однако сами узлы изображаются условно и размещаются на схеме так, чтобы обеспечить легкое ее чтение. Принципиальная схема служит для изучения и анализа работы машины.  [c.173]

Чтение и квалифицированный анализ электрической схемы требуют достаточных для этого знаний из электротехники и практических навыков.  [c.42]

Для правильного чтения электрической принципиальной схемы необходимо хорошо знать условные графические обозначения электрических машин, аппаратов различного назначения и нх элементов.  [c.253]


Диагностика системы управления двигателем с электронным впрыском топлива достаточно проста, при условии знания базовых понятий электротехники и наличия навыка чтения простых электрических схем. Кроме того, необходимо иметь опыт работы с цифровым мультиметром. Разумеется, необходимо понимание основ работы двигателя.  [c.227]

Для уяснения преимуществ систем электрического управления станками-автоматами, прежде чем приступить к чтению схем таких устройств, рассмотрим конструктивную схему станка с полуавтоматическим управлением. На рис. 242 показана схема копировального станка с полуавтоматическим управлением.  [c.333]

На рис. 238 представлена электрическая принципиальная схема (для упражнений в чтении).  [c.281]

После вычерчивания условных изображений обмоток всех реле и простановки контактов реле памяти дальнейшее построение схемы управления сводится к последовательному включению в электрическую цепь каждого реле тех нормально разомкнутых выключателей Х, хд, Хз, Xi, Х2 и Хз, которые входят в соответствующие формулы включения. Для удобства чтения схемы одноименные выключатели располагаются на одной вертикали и соединяются пунктирной линией. Кроме того, в цепь каждого реле управления распределителями дополнительно вводятся нормально замкнутые выключатели, размыкающие цепь реле, как только кончится соответствующий ход поршня.

[c.542]

Размещение УГО элементов, устройств на схеме должно определяться удобством чтения схемы, а также необходимостью изображения электрических связей линиями минимальной длины и наименьшим количеством пересечений.  [c.253]

Электрические соединения. Для удобства вычерчивания, чтения и монтажа схемы провода цепей управления и силовых цепей соединяются в пучки и вычерчиваются жирной линией. От этой жирной линии ответвляются провода к клеммам аппаратов. Ответвления цепей управления вычерчиваются тонкими линиями, лиловых цепей — толстыми.  [c.106]

В данном случае речь идет не о физическом разрыве электрической цепи, а об условном изображении на схеме, когда линия, изображающая цепь, разрывается и возобновляется в другом месте схемы. А если схема выполнена на нескольких листах, то продолжение цепи может быть выполнено на любом листе. Такое упрощение делается в основном, чтобы не тащить относительно длинные цепи через лист (или листы), что упрощает рисование и чтение схемы и, согласно ГОСТ 2. 721—74, должно выполняться с соблюдением ряда требований.  [c.192]

Допускается линии, изображающие провода, группы проводов, жгуты и кабели (многожильные провода, электрические шнуры), не проводить или обрывать их около мест присоединения, если их изображение затрудняет чтение схемы.  [c.851]

Пфядок чтения электрических схем такой же, как и кинематических. При чтении электрических схем надо иметь в виду следующее  [c.293]

Другой пример — сканирующее устройство для чтения чертежей [9]. Применение средств ИИ в совокупности с растровой телевизионной камерой позволило фирме «Siemens AG» создать установку, которая способна вводить в систему автоматического проектирования (САПР) даже черновые наброски чертежей. Кроме того, высокое быстродействие установки дает возможность вводить графическую информацию за время, составляющее 10-20% времени необходимого для ввода графики традиционными средствами. Экспериментальная установка может считывать черновой набросок электрической схемы, не очень старательно нарисованный от руки, и преобразовывать его в набор символьных элементов. Символы схемы не нужно точно вычерчивать и тщательно ориентировать на рисунке, а линии не обязательно должны быть прямыми и иметь четкие окончания. Вспомогательный текст, например обозначения элементов и спецификации, также может быть написан от руки в заданном формате.  [c.122]

При составлении и чтении схем важно знать принятые условные обозначения для кинематических схем — ГОСТ 2.770—68 для электрических, гидравлических и пневматических схем, обозначения, установленные комплексом соответствующих стандартов ЕСКД (см. 6R, 66),  [c.301]

Элементы и устройства изoбpaяfaют на электрических принципиальных схемах совмещенным (рис. 2.23) или разнесенным (рис. 2.24) способом. По совмещенному способу составные части элементов изображают совместно, т. е. в непосредственной близости друг к другу. Для упрощения начертания схем и их чтения элементы изображаются разнесенным способом, т. е. один и тот 52  

[c.52]


На рис. 7.13 приведен фрагмент чертежа многослойной платы. За главный вид платы принято изображение платы после нанесения последнего слоя. Элементы, расположенные в разных слоях, условно выделены различ1юй штриховкой, которая пояснена в таблице, помещенной в нижней части чертежа. Форма, размеры и количество граф таблицы не регламентируются. Пленочные элементы, имеющие на чертеже ширину 2 мм и менее, изображают сплошной утолщенной линией (2х). Местоположение навесных элементов указывают на чертежах плат условными знаками на рис. 7.13 такими знаками являются два уголка, помещенные между резистором КЗ и конденсатором С1. Все микроэлементы на чертеже платы обозначают в соответствии с обозначениями на электрической принципиальной схеме. На чертеже платы пленочной микросхемы допускается помещать электрическую принципиальную схему — это облегчает чтение чертежа.  [c.318]

I контактном методе перфорированная бумажная карта или лента / (рис. 60, а) лежит на поверхности контактной пластины 3. Контактные, щетки 2, представляющие собой пучок стальных проволок, торцовая поверхность которых отшлифована под углом, опираются на поверхность. ленты. При чтении программы перфокарта или перфолента перемещается, м и ее строчки подводятся к щеткам. Щетки, совмещенные с отверстиями у. перфоленты, соприкасаются с контактной пластиной, к которой подведен к ток, и через эти щетки подаются электрические сигналы. Более совер- шенной является схема с ощупывающим штифтом. При бесконтактном фотоэлектрическом методе (рис. 60, б) с одной стороны перфоленты или  [c.161]


Как научиться читать электрические схемы часть 1 | Энергофиксик

Вступив на очень увлекательный и тернистый путь изучения электроники, все радиолюбители сталкиваются с такой проблемой как чтение электрических схем. Этому процессу посвящено множество научных статей и еще больше книг, но зачастую в них информация подается путано и непонятно. Начиная с этой статьи, я хочу вместе с вами пройти обучение правильному чтению схем от самых простейших и заканчивая сложными и объемными.

yandex.ru

yandex.ru

Условное обозначение элементов

Но прежде чем изучать даже самую простую схему нужно познакомиться с основными элементами и их условными обозначениями.

Как обозначаются источники питания

Любая схема, насколько бы она ни была сложна или наоборот проста не будет работать без электропитания. Принципиально различают два вида источника питания:

1. Постоянный ток;

2. Переменный ток.

На данном этапе мы будем рассматривать с вами исключительно источники постоянного тока, к которым относятся: батарейки, аккумуляторы, разнообразные блоки питания и т. д.

Несмотря на все разнообразие существующих элементов на схемах они имеют практически идентичное обозначение (есть некоторые различия).

Батарейка (единичный гальванический элемент)

Итак, батарейка. Причем не имеет значения какого она будет типа (АА, ААА и т.д.) обозначается двумя черточками разной длины. Причем линия большей длины обозначает «+», а меньшей «-».

Батарейка имеет стандартное буквенное обозначение “G

yandex.ru

yandex.ru

Но многие радиолюбители вместо «G» используют обозначение «Е». Это указывает на то, что данный элемент является источником ЭДС (электродвижущей силы).

Если используется гальваническая группа элементов, то источник питания обозначается так:

yandex.ru

yandex.ru

И уже батарея будет иметь следующее буквенное обозначение: «GB».

Обозначение проводов и их соединения на схеме

Электрические провода выполняют самую главную функцию: соединяют все элементы в единую сеть и по факту заставляют работать всю нашу схему.

У проводов есть множество характеристик: сечение, материал, изоляция, и т. д.

Но в схемах чаще всего используются монтажные гибкие провода.

yandex.ru

yandex.ru

На печатных платах роль проводов выполняют токопроводящие дорожки. При этом на чертежах, что дорожки, что провода обозначаются одинаково – прямыми линиями.

Давайте рассмотрим простейший пример. Для того, чтобы зажечь самую простую лампу накаливания на 12 Вольт,

необходимо при помощи соединительных проводов, напряжение от аккумулятора подать на лампочку. И тогда по замкнутой цепи от плюса к минусу потечет ток и, проходя через лампу, спровоцирует нагрев спирали, и лампа загорится.

В сложных и многоэлементных цепях проводники довольно часто пересекаются. При этом если в месте пересечения не образуется электрическая связь, то на схеме точка не ставится.

А если в месте пересечения образуется электрическая связь, то тогда на чертеже ставится точка и это соединение теперь является электрическим узлом .

yandex.ru

yandex.ru

В таком узле вполне могут пересекаться сразу несколько проводников.

Как обозначается общий провод

В достаточно сложных схемах, чтобы улучшить читаемость и не перегружать чертеж, очень часто проводники, соединяемые с общим «минусом» не обозначают. А в место них используют специальные знаки.

yandex.ru

yandex.ru

Так же в иностранных схемах с таким знаком встречается надпись GND или GRAUND, что переводится как «земля».

Но учтите следующий момент, что не во всех схемах общий провод «минус». Если вы будете читать старые советские схемы, то там часто общим проводом является «плюс».

Давайте рассмотрим следующую схему

yandex.ru

yandex.ru

Когда речь заходит о том, что потенциал в точке «1» равен, например, 10 Вольтам, это значит, что напряжение нужно измерять между данной точкой и «землей»(минусом элемента питания). Метод указывания всего одной точки удобен с практической стороны.

Как обозначаются радиодетали на схемах

Радиодетали — это фундамент любого устройства и к ним относятся: резисторы, транзисторы, светодиоды, конденсаторы, диодные мосты и т. д.

Для того, чтобы читать схемы, вы просто обязаны знать условное графическое обозначение базовых радиодеталей:

yandex.ru

yandex.ru

Давайте теперь попробуем прочесть следующую простую схему питания светодиода:

В этой схеме для нас есть два новых элемента: это резистор и светодиод. Главным параметром резистора является его сопротивление, которое указывается прямо на схеме рядом с условным обозначением сопротивления. Так же зачастую указывается и мощность рассеивания.

Параметры светодиода на схеме не указываются, а записываются в спецификации к схеме.

Итак, наша схема замкнута, а это значит по ней протекает электрический ток. Причем все элементы соединены последовательно. Это свидетельствует тому, что сила тока везде будет одинакова.

Принято считать, что ток «I» протекает от положительной обкладки источника питания, через резистор «R», светодиод «VD» к отрицательной обкладке.

Принцип работы схемы предельно прост: протекающий ток заставляет светиться светодиод, а для того, чтобы он (светодиод) не сгорел, сопротивление выполняет функцию ограничителя тока.

При этом если мы с вами измерим напряжение на резисторе и светодиоде, то согласно второму закону Кирхгофа оно будет различно.

И если сложить полученные напряжения, то их сумма будет равна напряжению источника питания.

Как читать простейшие электрические схемы с минимумом деталей мы вроде с Вами разобрались. Учиться читать более сложные схемы (на примерах) будем в следующих статьях, поэтому чтобы не пропустить подписываемся.

И если данная статья вам понравилась, то ставим палец вверх! Спасибо за внимание!

План урока «Чтение электрических схем»

Предмет: Основы электротехники

Раздел: «Электрические схемы»

Тема: «Правила чтения электрических схем»

Цели:

Ознакомить обучающихся с правилами чтения электрических схем;

Формировать у обучающихся рациональные приемы и способы мышления, развитие познавательной активности, внимания, памяти, речи, культуры учебного труда;

Воспитывать у обучающихся уважения к труду, высокие нравственные качества.

Подготовка к экзамену по вопросу «Электрические схемы»

Тип урока: формирование новых знаний

Методы: беседа, индивидуальная работа обучающихся, компьютерное тестирование, демонстрация макетов.

Оборудование и материалы: презентация, раздаточный материал, интерактивная доска, пульты для тестирования, компьютер, макеты трансформаторов

Литература:

1. Прошин В.М. Электротехника учебник для СПО, 2013 год

2. Л.Д. Рожкова «Электрооборудование электрических станций и подстанций», учебник для СПО, 2014 год

Интернет – ресурсы: http://electricalschool.info/

Структура урока:

1. Организационный момент, сообщение темы – 4 мин.

2. Формирование новых знаний – 25 мин.

3. Закрепление пройденного материала – 12 мин.

4. Заключительная часть – 4 мин.

 

План урока

 

1.  Организационный момент.

Проверка отсутствующих, готовности к уроку, психологический настрой.

 

Сообщение темы, целей и плана урока

Тема урока: «Правила чтения электрических схем»

 

3. Формирование новых знаний.

 Чтобы читать электрические схемы, необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Расчленение схем на простые цепи

Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых — определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно «лишние» условия, и оценить их последствия.

Для решения этих вопросов пользуются несколькими приемами.

Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.

Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.

При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.

Порядок чтения электрических схем и чертежей

Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.

Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.

Если она не отражена па чертежах, то ее выясняют и записывают.

На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.

При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,

3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,

4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,

5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,

5) проверяют схему па отсутствие ложных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).

     Обобщение пройденного материала в ходе фронтальной беседы.

 

4. Закрепление пройденного материала.

1. Что такое электрическая схема?

2. Что такое питающая сеть?

3. Условные буквенные и графическае обозначения на электрических схемах

4. Порядок чтения электрических схем

 

5. Заключительная часть.

Подведение итогов урока, выставление оценок за урок.

 

Правила чтения электрических схем и чертежей

Чтоб читать электронные схемы, нужно отлично знать и держать в голове распространенные условные обозначения обмоток, контактов, трансформаторов, движков, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой в большей степени приходится сталкиваться в силу профессии, схемы распространенных узлов электроустановок, к примеру движков, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, характеристики поочередного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Разбор схем на отдельные цепи

Неважно какая электроустановка удовлетворяет определенным условиям действия. При чтении схем, во-1-х, необходимо выявить эти условия, во-2-х — найти, отвечают ли приобретенные условия задачам, которые должны электроустановкой решаться, в-3-х, следует проверить, не вышли ли попутно «излишние» условия, и оценить их последствия.

Для решения этих вопросов пользуются несколькими приемами.

1-ый из их заключается в том, что схема электроустановки на уровне мыслей расцепляется на обыкновенные цепи, которые поначалу рассматривают раздельно, а потом в сочетаниях.

Обычная цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (движок, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), оборотный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, к примеру в цепях трансформаторов тока, контактов нет.

При чтении схемы необходимо поначалу на уровне мыслей расцепить ее на обыкновенные цепи, чтоб проверить способности каждого элемента, а потом разглядеть их совместное действие.

Действительность схемных решений

Наладчики отлично знают, что не всегда могут быть осуществлены на самом деле схемные решения, хотя они не содержат очевидных ошибок. Другими словами, проектные электронные схемы не всегда реальны.

Потому одна из задач чтения электронных схем заключается в том, чтоб проверить, могут ли быть выполнены данные условия.

Нереальность схемных решений обычно имеет в главном последующие предпосылки:

  • не хватает энергии для срабатывания аппарата,

  • в схему просачивается «лишняя» энергия, вызывающая неожиданное срабатывание пли препятствующая своевременному отпусканию электронного аппарата,

  • не хватает времени для совершения данных действий,

  • аппаратом задана уставка, которая не может быть достигнута,

  • вместе использованы аппараты, резко отличающиеся по свойствам,

  • не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,

  • не учтены условия, в каких электроустановка будет эксплуатироваться,

  • при проектировании электроустановки за базу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, к примеру, в итоге краткосрочного перерыва питания.

Порядок чтения электронных схем и чертежей

Сначала, нужно ознакомиться с наличными чертежами (либо составить оглавление, если его нет) и классифицировать чертежи (если этого не изготовлено в проекте) по предназначению.

Чертежи перемешивают в таком порядке, чтоб чтение каждого следующего являлось естественным продолжением чтения предшествующего. Потом уясняют принятую систему обозначений и маркировки.

Если она не отражена па чертежах, то ее узнают и записывают.

На избранном чертеже читают все надписи, начиная со штампа, потом примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации непременно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

Если на чертеже имеются ссылки на другие чертежи, то необходимо отыскать эти чертежи и разобраться в содержании ссылок. К примеру, в одну схему заходит контакт, принадлежащий аппарату, изображенному на другой схеме. Означает, необходимо уяснить, что же это все-таки за аппарат, зачем служит, в каких критериях работает и т. п.

При чтении чертежей, отражающих электропитание, электронную защиту, управление, сигнализацию и т. п.:

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько либо использовано несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па обыкновенные цени и, рассматривая их сочетание, устанавливают условия деяния. Рассматривать всегда начинают с того аппарата, который нас в этом случае интересует. К примеру, если не работает движок, то необходимо отыскать па схеме его цепь и поглядеть, контакты каких аппаратов в нее входят. Потом находят цепи аппаратов, управляющих этими контактами, и т. д.,

3) строят диаграммы взаимодействия, выясняя с помощью их: последовательность работы во времени, согласованность времени деяния аппаратов в границах данного устройства, согласованность времени деяния вместе действующих устройств (к примеру, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого попеременно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают вероятные последствия, возможность выхода устройства в рабочее положение из хоть какого состояния, в каком оно могло оказаться, к примеру после ревизии,

4) оценивают последствия возможных дефектов: незамыкание контактов попеременно по одному, нарушения изоляции относительно земли попеременно для каждого участка,

5) нарушения изоляции меж проводами воздушных линий, выходящих за границы помещений и т. п.,

5) инспектируют схему па отсутствие неверных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

7) инспектируют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).

Проектирование электрических схем | Аксоним

Услуги проектирования принципиальных электрических схем

Проектирование электронных схем с использованием актуальных комплектующих, оптимизация решения по различным критериям согласно ограничениям и условиям, задаваемым в техническом задании, устройства с батарейным питанием, моделирование схемотехнических решений, полный пакет конструкторской документации.

Разработка схемотехнического решения включает в себя:
  • расчет, подбор элементов и проверка их производственного статуса;
  • соединение элементов в соответствии с функциональной и структурной схемой технической системы в техническом задании;
  • моделирование системы питания на соответствие требованиям технического задания;
  • подготовку предварительного перечня элементов;
  • проверку доступности элементов и оценки сроков по доставке, в случае необходимости подбор аналогов;
  • согласование перечня с Заказчиком.

Axonim Devices — electronics hardware development — услуги проектирования принципиальных электрических схем по доступной цене! +7 495280-79-00


далее: разработка печатных плат, тестирование печатных плат.

Работа любого современного электрического прибора становится возможной именно благодаря грамотно собранной электросхеме. Электрическая схема обеспечивает энергоснабжение всех основных узлов техники, позволяет регулировать их работу, обеспечивает подачу тока от распределителей к потребителям в определенных количествах, определенной силы, частоты и напряжения.

Однако для того, чтобы прибор работал корректно, необходимы профессиональные услуги проектирования принципиальных электрических схем. Доверив разработку специалистам, вы гарантированно получите схемотехническое решение, которое обеспечит оптимальную работу вашего устройства. Компания AXONIM предлагает клиентам разработку электрических схем под ключ. Мы подготовим проект и проведем моделирование, выполним все необходимые тесты работоспособности и разработаем всю требующуюся документацию для серийного выпуска.

Виды и особенности электрических схем

Проектирование электрических схем зависит от вида электросхемы. У каждой из них есть характерные особенности. Рассмотрим эти виды более подробно.

  • Структурная. Такая схема предполагает описание функциональных частей объектов, и на ней отображается последовательность подключения и работы этих частей, а также направление хода процессов. В данном случае, отображается работа всего устройства в целом.
  • Функциональная. Данный тип электрической схемы предусматривает описания работы отдельных процессов в электротехнике и электронике. Электросхемы подобного рода используются для наглядного отображения последовательности работы оборудования в том или ином процессе.
  • Принципиальная. На ней отображаются основные электрические устройства и компоненты, которые обеспечивают работу электрических процессов в технике. Также на принципиальной схеме отображаются взаимосвязи и элементы начала и конца электроцепи. Кроме того, здесь могут быть изображены соединительные и монтажные элементы. Принципиальная схема разрабатывается для устройств, которые находятся в положении “Отключено”.
  • Монтажная схема. Специализированная схема, где графически изображают входные и выходные элементы. На нее наносят все зажимы, платы, соединительные элементы. Проектирование и моделирование электронных схем подобного типа необходимо для наиболее эффективного расположения входных и выходных элементов.
  • Схема подключения. На ней графически изображаются входные и выходные элементы, а также места и принципы соединения и подачи тока через кабели и проводники. На схеме указываются концы проводов и соединительных элементов, а также размещается информация о подключении.
  • Общая схема подключения. На такую схему наносятся все элементы устройств, а также все соединительные элементы – кабели, жгуты, проводники и т.д.
  • Схема расположения. На схемах расположения конкретный прибор или печатная плата размещается на общих чертежах изделия. Таким образом, определяется расположение в финальной версии устройства.

Разработка схемотехнических решений может предусматривать создание как одной конкретной схемы, так и всего комплекса. Компания AXONIM осуществляет полный комплекс работ по разработке электронных схем любого назначения. Мы выполним работы в любом объеме.

Что включают в себя схемы?

Основой схемы является, конечно же, изображение непосредственно электрической схемы. Оно может изготавливаться в различном масштабе, в соответствии с техническим заданием. Кроме того, к электрической схеме прилагается и ряд дополнительных элементов, что упрощает чтение и понимание элементов системы. К числу таковых относятся:

  • диаграммы;
  • таблицы переключения контактов.

Эти документы прилагаются для сложных устройств, к примеру, для переключателей, в которых предусмотрено несколько позиций. 

Также на схемах присутствует спецификация, содержащая информацию об использованных устройствах и деталях, изображенных на чертеже. Для пояснения особенностей схемы делают дополнительные поясняющие надписи.

Услуги компании Axonim

Компания Axonim предлагает услуги для клиентов, которым необходимо проектирование электронных схем, разработка схемотехнических проектов и т.д. Специалисты нашей компании обладают большим опытом в проектировании схем для различного оборудования. Axonim осуществляет разработку решений для проектов любой сложности. Мы готовим схемотехнические решения как для устройства в целом, так и для отдельных комплектующих в частности (например, для печатных плат).

Компания Axonim – это коллектив профессионалов с колоссальным опытом в проектировании электрических схем. Наша команда включает в себя 30 штатных специалистов и более 400 сотрудников, которые работают на удаленной основе. В нашей команде есть сотрудники, которые специализируются на разных видах оборудования. Мы гарантируем решение задач любой сложности.

Axonim осуществляет разработку схемотехнических решений под ключ. Мы выполняем полный комплекс работ, необходимых для создания электрической схемы. 

Специалисты нашей компании разработают проект, выполнят его моделирование, проведут тестирование и адаптируют документацию для производства устройств с данной схемой. Специалисты Axonim производят разработку строго по техническому заданию, которое составляется с учетом всех требований и пожеланий клиентов.

Главный офис Axonim находится в Беларуси, но мы реализуем заказы для клиентов из разных стран. В том числе, мы работаем с клиентами из России, Украины, стран Европейского Союза, США и т.д. Axonim – это готовое схемотехническое решение для устройств любого типа.

Общие сведения о электрических чертежах




Цели

1. Распознавайте символы, часто используемые на схемах двигателя и управления.

2. Прочтите и постройте лестничные диаграммы.

3. Прочитать электрические схемы, однолинейные и блок-схемы.

4. Ознакомьтесь с клеммными соединениями для различных типов. моторов.

5. Прочтите информацию, содержащуюся на паспортных табличках двигателя.

6.Ознакомьтесь с терминологией, используемой в цепях двигателей.

7. Ознакомьтесь с принципами работы ручных и магнитных пускателей двигателей.

При работе с двигателями используются разные типы электрических чертежей. и их схемы управления. Чтобы облегчить создание и чтение электрические чертежи, используются определенные стандартные символы.

Для чтения чертежей электродвигателя необходимо знать как значение символов и как работает оборудование.

Этот раздел поможет вам понять использование символов в электрических рисунки. В разделе также объясняется моторная терминология и поясняется это с практическим применением.


ЧАСТЬ 1 Символы — сокращения — лестничные диаграммы

Обозначения двигателей

Цепь управления двигателем может быть определена как средство подачи питания к и отключение питания от двигателя. Символы, используемые для обозначения различные компоненты системы управления двигателем можно рассматривать как тип технической стенографии.

Использование этих символов способствует упрощению схемотехнических схем. и легче читать и понимать.

В системах управления двигателями символы и соответствующие линии показывают, как цепи соединены друг с другом. К сожалению, не все электрические и электронные символы стандартизированы. Вы найдете немного разные символы, используемые разными производителями. Также символы иногда выглядят ничего похожего на настоящую вещь, поэтому вам нужно узнать, что означают символы.FGR. 1 показаны некоторые типичные символы, используемые в принципиальных схемах двигателей.

Сокращения терминов двигателя

Аббревиатура — это сокращенная форма слова или фазы. Заглавные буквы используются для большинства сокращений. Ниже приводится список некоторых сокращения, обычно используемые в принципиальных схемах двигателей.

Переменный ток Якорь ARM АВТО автоматический выключатель BKR COM общий Реле управления CR Трансформатор тока CT DC постоянный ток DB динамическое торможение Поле FLD FWD вперед GRD заземление Мощность в лошадиных силах L1, L2, L3 Соединения линий электропередачи Концевой выключатель LS MAN ручной двигатель MTR Пускатель двигателя M NEG отрицательный NC нормально замкнут NO нормально разомкнутый OL реле перегрузки PH фаза PL контрольная лампа POS положительная мощность PWR PRI первичная кнопка PB

REC выпрямитель REV обратный RH реостат SSW предохранительный выключатель SEC вторичный 1PH однофазный соленоид SOL SW-переключатель T1, T2, T3 клеммные соединения двигателя 3-фазный трехфазный трансформатор с выдержкой времени TD

Лестничные схемы двигателей

На чертежах управления двигателем

представлена ​​информация о работе цепи, устройства. расположение оборудования и инструкции по подключению.Символы, используемые для представления переключатели состоят из узловых точек (мест, где друг друга), контактные полосы и специальный символ, который идентифицирует конкретный тип переключателя, как показано в FGR. 2.

Хотя устройство управления может иметь более одного набора контактов, только Используемые в схеме контакты представлены на контрольных чертежах.

Для установки, обслуживания и ремонта используются различные схемы и чертежи. и устранение неисправностей в системах управления двигателем.К ним относятся лестничные диаграммы, электрические схемы, линейные схемы и блок-схемы. «Лестничная диаграмма» (считается некоторыми в виде схематической диаграммы) фокусируется на электрическом функционировании цепи, а не физическое расположение устройства. Например, два кнопки остановки могут физически находиться на противоположных концах длинного конвейера, но электрически рядом на лестничной диаграмме.

Лестничные диаграммы, например, показанная в FGR. 3, нарисованы двумя вертикальные линии и любое количество горизонтальных линий.Вертикальные линии (называемые рельсами) подключаются к источнику питания и обозначаются как линия 1 (L1) и линия 2 (L2). Горизонтальные линии (называемые ступенями) соединяются через L1 и L2 и содержат схему управления.

Лестничные диаграммы предназначены для чтения, как книгу, начиная с вверху слева и читать слева направо и сверху вниз.

Поскольку лестничные диаграммы легче читать, они часто используются при трассировке. через работу цепи.Большинство программируемых логических контроллеров (ПЛК) используют концепцию лестничных диаграмм в качестве основы для своего программирования. язык.


FGR. 1 Символы управления двигателем.


FGR. 2 Переключите компоненты символа.


FGR. 3 Типовая лестничная диаграмма.


FGR. 4 Электропроводка двигателя и цепи управления.

Большинство лестничных диаграмм иллюстрируют только однофазную цепь управления. подключен к L1 и L2, а не к трехфазной цепи питания мотор.FGR. 4 показана схема подключения силовой цепи и цепи управления.

На схемах, включающих проводку силовых цепей и цепей управления, вы можете увидеть как тяжелые, так и легкие проводники. Жирные линии используются для силовая цепь с более высоким током и более светлые линии для более слаботочной цепь управления.

Показаны проводники, которые пересекаются друг с другом, но не имеют электрического контакта. пересекающимися линиями без точки.

Проводники, которые контактируют, обозначены точкой на стыке.В большинстве случаев управляющее напряжение получается непосредственно от источника питания. цепи или от понижающего управляющего трансформатора, подключенного к источнику питания. схема.

Использование трансформатора позволяет снизить напряжение (120 В переменного тока) для управления. цепи при питании цепи питания трехфазного двигателя с повышенным напряжение (480 В переменного тока) для более эффективной работы двигателя.

Релейная диаграмма дает необходимую информацию для упрощения следования последовательность работы схемы.

Это отличный помощник в поиске и устранении неисправностей, поскольку он наглядно показывает, эффект, который открытие или закрытие различных контактов оказывает на других устройствах в схема. Все переключатели и релейные контакты классифицируются как обычные. открытый (NO) или нормально закрытый (NC). Позиции, изображенные на диаграммах, электрические характеристики каждого устройства, которые будут обнаружены при его куплен и не подключен ни в какую цепь. Это иногда называют как «готовое» или обесточенное состояние.Это важно чтобы понять это, потому что он также может представлять положение обесточивания в цепи. Обесточенное положение относится к положению компонента. когда цепь обесточена или в цепи нет напряжения. Эта точка отсчета часто используется в качестве отправной точки в анализе. работы схемы.


FGR. 5 Идентификация катушек и связанных контактов.

Обычный метод, используемый для идентификации катушки реле и задействованных контактов им — поместить букву или буквы в круг, представляющий катушка (FGR.5). Каждый контакт, которым управляет эта катушка, будет иметь буква катушки или буквы, написанные рядом с символом контакта.

Иногда при наличии нескольких контактов, управляемых одной катушкой, число добавляется к письму для обозначения контактного номера. Хотя там являются стандартными значениями этих букв, большинство диаграмм содержат список ключей показать, что означают буквы; обычно они взяты из названия устройства.

Нагрузка — это компонент цепи, имеющий сопротивление и потребляющий электрическую энергию. питание подается от L1 к L2.Катушки управления, соленоиды, звуковые сигналы и пилот огни являются примерами нагрузок. Должно быть включено хотя бы одно загрузочное устройство. на каждой ступеньке лестничной диаграммы. Без загрузочного устройства управление устройства будут переключать разомкнутую цепь на короткое замыкание между L1 и L2. Контакты от устройств управления, таких как переключатели, кнопки, и реле считаются не имеющими сопротивления в замкнутом состоянии. Связь контактов параллельно с нагрузкой также может привести к короткому замыканию когда контакт замыкается.Ток в цепи будет минимальным. сопротивление через замкнутый контакт, замыкая нагрузку под напряжением.

Обычно нагрузки размещаются в правой части лестничной диаграммы рядом с к L2 и контактам с левой стороны рядом с L1. Одно исключение из этого Правило — размещение нормально замкнутых контактов, контролируемых устройство защиты двигателя от перегрузки. Эти контакты нарисованы справа сторона катушки стартера двигателя, как показано на FGR.6. Когда две и более загрузки должны быть запитаны одновременно, они должны быть подключены в параллельно. Это гарантирует, что полное линейное напряжение от L1 и L2 будет появляются при каждой загрузке. Если нагрузки подключены последовательно, ни получит все сетевое напряжение, необходимое для правильной работы. Отзывать что при последовательном соединении нагрузок приложенное напряжение делится между каждая из нагрузок. При параллельном подключении нагрузок напряжение на каждая нагрузка одинакова и равна приложенному напряжению.

Управляющие устройства, такие как переключатели, кнопки, концевые выключатели и давление переключатели управляют нагрузками. Обычно подключаются устройства, запускающие нагрузку. параллельно, а устройства, останавливающие нагрузку, подключаются последовательно. Для Например, несколько пусковых кнопок управляют одним и тем же пускателем двигателя. катушка будет подключена параллельно, а несколько кнопок останова будут подключены последовательно (FGR.7). Все устройства управления идентифицированы с соответствующей номенклатурой устройства (например,г., стоп, старт). Точно так же все нагрузки должны иметь аббревиатуры для обозначения тип нагрузки (например, M для катушки стартера). Часто дополнительный числовой суффикс используется для различения нескольких устройств одного типа. Для Например, цепь управления с двумя пускателями двигателя может идентифицировать катушки как M1 (контакты 1-M1, 2-M1 и т. д.) и M2 (контакты 1-M2, 2-M2 и т. д.).


FGR. 6 Нагрузки размещены справа, а контакты слева.


FGR. 7 Стопорные устройства подключаются последовательно, а пусковые устройства подключаются параллельно.


FGR. 8 Лестничная диаграмма с подробным описанием номеров ступеней.

По мере увеличения сложности схемы управления ее лестничная диаграмма увеличивается в размере, что затрудняет чтение и поиск контактов контролируются какой катушкой. «Нумерация звеньев» используется для помощи в чтении и понимании больших лестничных диаграмм. Каждая ступенька обозначена лестничная диаграмма (ступеньки 1, 2, 3 и т. д.).), начиная с верхней ступеньки и чтение вниз. Ступеньку можно определить как полный путь от L1 до L2, содержащий нагрузку. FGR. 8 иллюстрирует маркировку каждой ступени в линейная диаграмма с тремя отдельными ступенями:

• Путь для ступени 1 завершается нажатием кнопки реверса, цикл кнопка запуска, концевой выключатель 1LS и катушка 1CR.

• Путь для ступени 2 завершается с помощью кнопки реверса, реле контакт 1CR-1, концевой выключатель 1LS и катушка 1CR.Обратите внимание, что ступень 1 и ступень 2 идентифицируются как две отдельные ступени, даже если они контролируют одну и ту же ступеньку. нагрузка. Причина в том, что либо кнопка запуска цикла, либо контакт реле 1CR-1 завершает путь от L1 до L2.

• Путь для ступени 3 завершается через контакт реле 1CR-2 к и соленоид SOL A.

«Числовые перекрестные ссылки» используются вместе с нумерация звеньев для нахождения вспомогательных контактов, управляемых катушками в цепь управления.Иногда вспомогательные контакты не находятся в непосредственной близости на лестничной диаграмме к катушке, контролирующей их работу. Чтобы найти эти контакты, номера звеньев указаны справа от L2 в скобках. на звене катушки, контролирующей их работу.

В примере, показанном в FGR. 9:

• Контакты катушки 1CR появляются в двух разных местах в линии. диаграмма.

• Цифры в скобках справа от линейной диаграммы обозначают расположение линии и тип контактов, контролируемых катушкой.

• Цифры в скобках для нормально разомкнутых контактов имеют без специальной маркировки.

• Номера, используемые для нормально замкнутых контактов, обозначаются подчеркиванием. или завышение числа, чтобы отличить их от нормально разомкнутых контактов.

• В этой схеме катушка управляющего реле 1CR управляет двумя наборами контактов: 1CR-1 и 1CR-2. Это показано цифровым кодом 2, 3.

Для правильного подключите проводники цепи управления к их компонентам в цепи.Метод, используемый для идентификации проводов, зависит от производителя. FGR. 10 иллюстрирует один метод, в котором каждая общая точка в цепи присвоен справочный номер:

• Нумерация начинается со всех проводов, подключенных к стороне L1 устройства. блок питания обозначен номером 1.

• Продолжение в верхнем левом углу диаграммы со звеном 1, новый номер назначается последовательно для каждого провода, пересекающего компонент.

• Электрически общие провода обозначены одинаковыми номерами.

• После того, как был назначен первый провод, напрямую подключенный к L2 (в в этом случае 5) все остальные провода, напрямую подключенные к L2, будут помечены. с таким же номером.

• Количество компонентов в первой строке лестничной диаграммы определяет номер провода для проводников, напрямую подключенных к L2.


FGR. 9 Числовая система перекрестных ссылок.


FGR. 10 Нумерация проводов.


FGR. 11 Альтернативная идентификация проводки с документацией.


FGR. 12 Представление механических функций.


FGR. 13 Заземление управляющего трансформатора: (а) управляющий трансформатор правильно заземлен на сторону L2 цепи; (б) управляющий трансформатор неправильно заземлен на стороне L1 цепи.

FGR. 11 иллюстрирует альтернативный метод присвоения номеров проводов.При использовании этого метода все провода, напрямую подключенные к L1, обозначаются 1, а все подключенные к L2 обозначены 2. После всех проводов с 1 и 2 отмечены, остальные номера присваиваются в последовательном порядке начиная с верхнего левого угла диаграммы.

Преимущество этого метода в том, что все провода подключаются напрямую. до L2 всегда обозначаются как 2. Лестничные диаграммы могут также содержать серию описаний, расположенных справа от L2, которые используются для документирования функция схемы, управляемая устройством вывода.

Пунктирная линия обычно указывает на механическое соединение. Не делают ошибка чтения ломаной линии как части электрической цепи. В FGR. 12 вертикальные пунктирные линии на кнопках прямого и обратного хода указывают, что их нормально замкнутые и нормально разомкнутые контакты механически связаны. Таким образом, нажатие на кнопку откроет один набор контактов. и закройте другой. Пунктирная линия между катушками F и R указывает что они механически взаимосвязаны.Следовательно, катушки F и R не могут одновременное закрытие контактов благодаря механическому блокирующему действию устройства.

Когда управляющий трансформатор должен иметь одну из вторичных линий заземлен, заземление должно быть выполнено так, чтобы случайное заземление в цепи управления не запустит двигатель или не сделает кнопку остановки или управление не работает. FGR. 13a иллюстрирует вторичный элемент управления. трансформатор должным образом заземлен на сторону L2 цепи.Когда цепь исправна, вся цепь слева от катушки M является Незаземленная цепь (это «горячая» нога). Путь неисправности к земле в незаземленной цепи вызовет короткое замыкание, вызывая предохранитель управляющего трансформатора разомкнут. FGR. 13b показывает ту же схему неправильно заземлен на L1. В этом случае короткое замыкание на массу на слева от катушки M возбудит катушку, неожиданно запустив двигатель. Предохранитель не сработает, чтобы размыкать цепь и нажимать стопор, но тонна не обесточила бы катушку М.Повреждение оборудования и травмы персонала было бы очень вероятно. Понятно, что выходные устройства должны быть подключены напрямую к заземленной стороне цепи.

ЧАСТЬ 1 ВИКТОРИНА

1. Определите, что означает термин «цепь управления двигателем».

2. Почему символы используются для обозначения компонентов на электрических схемах?

3. Электрическая цепь содержит три контрольных лампы. Что приемлемо можно ли использовать символ для обозначения каждого источника света?

4.Опишите базовую структуру принципиальной электрической схемы.

5. Линии используются для обозначения электрических проводов на схемах.

а. Чем провода, по которым проходит большой ток, отличаются от проводов, нести слабый ток?

г. Как провода, которые пересекаются, но не соединяются электрически, дифференцируются из тех, которые подключаются электрически?

6. Контакты кнопочного переключателя размыкаются при нажатии кнопки. К какому типу кнопки это относится? Почему?

7.Катушка реле с маркировкой TR содержит три контакта.

Какую приемлемую кодировку можно использовать для идентификации каждого из контактов?

8. Ступенька на лестничной диаграмме требует наличия двух нагрузок, каждая из которых рассчитана на полное линейное напряжение, запитывается, когда переключатель замкнут. Какая связь нагрузок необходимо использовать? Почему?

9. Одним из требований для конкретного двигателя является то, что шесть значений давления выключатели должны быть замкнуты до того, как двигатель будет запущен.Какие связи переключателей надо использовать?

10. Маркировка проводов на нескольких проводах электрического панели проверяются и обнаруживают, что имеют тот же номер. Что это значит?

11. Пунктирная линия, обозначающая механическую функцию на электрическом диаграмма ошибочно принята за проводник и подключена как таковая. Какие два типа проблем, к которым это могло привести?


ЧАСТЬ 2 Электромонтажные схемы — однолинейные блочные схемы

Схемы подключения


FGR.14 Типовая электрическая схема пускателя двигателя.

Этот материал и связанные с ним авторские права являются собственностью и используются с разрешения Schneider Electric.

Электрические схемы используются для демонстрации двухточечной проводки между компонентами. электрической системы, а иногда и их физического отношения друг к другу. Они могут включать идентификационные номера проводов, присвоенные проводникам в лестничная диаграмма и / или цветовое кодирование. Катушки, контакты, двигатели и как показано в фактическом положении, которое можно было бы найти на установке.Эти схемы полезны при подключении систем, потому что соединения могут делаться именно так, как показано на схеме. Схема подключения дает необходимая информация для фактического подключения устройства или группы устройств или для физического отслеживания проводов при поиске и устранении неисправностей. Тем не мение, По такому рисунку сложно определить работу схемы.


FGR. 15 Прокладка проводов в кабелях и коробах.


FGR.16 Электромонтаж с внутренними подключениями магнитного пускателя опущено.

Схемы подключения представлены для большинства электрических устройств. FGR. 14 иллюстрирует типовая электрическая схема, предусмотренная для пускателя двигателя. На диаграмме показано, как можно точнее, фактическое расположение всех составных частей устройства. Открытые клеммы (отмечены открытым кружком) и стрелки представляют собой соединения, сделанные пользователем. Обратите внимание, что жирные линии обозначают цепь питания, а более тонкими линиями показана схема управления.

Прокладка проводов в кабелях и трубопроводах, как показано в FGR. 15, является важной частью электрической схемы. Схема компоновки кабелепровода указывает начало и конец электропроводки и показаны приблизительные путь, пройденный любым каналом при переходе от одной точки к другой. Интегрированный с рисунком такого рода — это кабелепровод и спецификация кабеля, которые сводит в таблицу каждый канал по количеству, размеру, функциям и услугам, а также включает количество и размер проводов, проложенных в кабелепроводе.

На электрических схемах показаны подробности реальных подключений. Редко они попытаться показать полную информацию о монтажной плате или оборудовании. В схема подключения FGR. 15, приведенный к более простому виду, показан на FGR. 16 без внутренних соединений магнитного пускателя. Провода заключенные в кабелепровод C1, являются частью силовой цепи и рассчитаны на текущее требование двигателя. Провода, заключенные в кабелепровод C2, являются частью цепи управления нижнего напряжения и рассчитаны на текущие требования управляющего трансформатора.


FGR. 17 Комбинированная разводка и лестничная диаграмма.


FGR. 18 Однолинейная схема моторной установки.


FGR. 19 Однолинейная схема системы распределения электроэнергии.

Электрические схемы часто используются вместе с лестничными диаграммами для упростить понимание процесса управления. Примером этого является проиллюстрировано в FGR. 17. На схеме подключения показаны питание и управление. схемы.

Включена отдельная лестничная диаграмма цепи управления, чтобы более четкое понимание его работы. Следуя лестничной диаграмме видно, что контрольная лампа подключена так, что она будет гореть всякий раз, когда стартер находится под напряжением.

Силовая цепь опущена для наглядности, так как ее можно проследить. легко на монтажной схеме (жирные линии).

Однолинейные схемы

Однолинейная диаграмма (также называемая однострочной) использует символы вместе с единой линией, чтобы показать все основные компоненты электрической цепи.Некоторые производители оборудования для управления двигателем используют однолинейный рисунок, например тот, что показан в FGR. 18, как дорожная карта в изучении моторного контроля инсталляции. Установка сведена к максимально простой форме, тем не менее, он по-прежнему показывает основные требования и оборудование в цепи.

Энергетические системы — это чрезвычайно сложные электрические сети, которые могут географически распространяться на очень большие территории. По большей части они также трехфазные сети — каждая силовая цепь состоит из трех проводов и все устройства, такие как генераторы, трансформаторы, выключатели и разъединители и т.п.установлен во всех трех фазах. Эти системы могут быть настолько сложными, что полная стандартная схема, показывающая все соединения, непрактична. В этом случае использование однолинейной схемы — это краткий способ сообщение базовой компоновки компонента энергосистемы. FGR. 19 показана однолинейная схема малой системы распределения электроэнергии. Эти типы диаграмм также называют схемами «стояка мощности».

Блок-схемы

Блок-схема представляет основные функциональные части сложных электрических / электронных системы блоками, а не символами.Отдельные компоненты и провода не показаны. Вместо этого каждый блок представляет электрические цепи, которые выполнять определенные функции в системе. Функции, которые выполняют схемы написаны в каждом блоке.

Стрелки, соединяющие блоки, указывают общее направление тока пути.

FGR. 20 показана блок-схема частотно-регулируемого электродвигателя переменного тока. Частотно-регулируемый привод регулирует скорость двигателя переменного тока, изменяя частота, подаваемая на двигатель.Привод также регулирует выходную мощность. напряжение пропорционально выходной частоте, чтобы обеспечить относительно постоянное соотношение (вольт на герц; В / Гц) напряжения к частоте, если требуется характеристиками двигателя переменного тока для создания соответствующего крутящего момента. В Функция каждого блока резюмируется следующим образом:

• На выпрямительный блок подается трехфазное питание частотой 60 Гц.

• Блок выпрямителя — это схема, которая преобразует или выпрямляет трехфазную Переменное напряжение в постоянное.

• Блок инвертора — это схема, которая инвертирует или преобразует вход постоянного тока. напряжение обратно в напряжение переменного тока.

Инвертор состоит из электронных переключателей, которые переключают напряжение постоянного тока. включение и выключение для получения регулируемой выходной мощности переменного тока с желаемой частотой и напряжение.


FGR. 20 Блок-схема частотно-регулируемого привода переменного тока.

ЧАСТЬ 2 ВИКТОРИНА

1. Каково основное назначение электрической схемы?

2.Помимо цифр, какой еще метод можно использовать для идентификации провода на схеме подключения?

3. Какую роль может играть электрическая схема в поиске неисправностей двигателя? схема управления?

4. Перечислите фрагменты информации, которые, скорее всего, можно найти в канале. и перечень кабелей для установки двигателя.

5. Объясните цель использования электрической схемы двигателя вместе с с лестничной схемой цепи управления.

6. Каково основное назначение однолинейной схемы?

7. Каково основное назначение блок-схемы?

8. Объясните функцию выпрямительного и инверторного блоков переменной частоты. Привод переменного тока.


ЧАСТЬ 3 Клеммные соединения двигателя

Классификация двигателей

Электродвигатели были важным элементом нашей промышленной и коммерческая экономика более века.

Большинство используемых сегодня промышленных машин приводится в движение электродвигателями. Отрасли перестанут функционировать, если не будут должным образом спроектированы, установлены, и обслуживаемые системы управления двигателем. В целом моторы классифицируются в зависимости от типа используемой мощности (переменного или постоянного тока) и принципа действия двигателя операции. «Генеалогическое древо» моторных типов довольно обширно, как показано вверху следующей страницы:

В США Институт инженеров по электротехнике и электронике (IEEE) устанавливает стандарты моторного тестирования и методологий тестирования, в то время как Национальная ассоциация производителей электрооборудования (NEMA) готовит стандарты характеристик двигателя и классификации.

Дополнительно должны быть установлены двигатели в соответствии со статьей 430. Национального электротехнического кодекса (NEC).

Подключение двигателя постоянного тока

В промышленных приложениях используются двигатели постоянного тока, потому что соотношение скорость-крутящий момент можно легко варьировать. Двигатели постоянного тока имеют регулируемую скорость. плавно спускаемся до нуля, сразу после чего разгон в обратном направление. В аварийных ситуациях двигатели постоянного тока могут подавать более пяти раз. номинальный крутящий момент без остановки.Динамическое торможение (энергия, генерируемая двигателем постоянного тока подается на резисторную сетку) или рекуперативное торможение (двигатель постоянного тока энергия возвращается в источник питания двигателя постоянного тока) может быть получено с двигателями постоянного тока в приложениях, требующих быстрой остановки, что устраняет необходимость в или уменьшение размеров механического тормоза.

FGR. 21 показаны символы, используемые для обозначения основных частей прямого составной двигатель постоянного тока.



FGR. 21 Детали составного двигателя постоянного тока.

Вращающаяся часть двигателя называется якорем; стационарный часть двигателя называется статором, который содержит серию обмотка возбуждения и шунтирующая обмотка возбуждения. В машинах постоянного тока A1 и A2 всегда указывают выводы якоря, S1 и S2 указывают последовательные выводы возбуждения, а Fl и F2 обозначают выводы шунтирующего поля.

Это вид возбуждения поля, обеспечиваемый полем, который отличает один тип двигателя постоянного тока от другого; конструкция арматуры ничего общего с классификацией мотора.Есть три основных типа двигателей постоянного тока, классифицируемых по способу возбуждения поля как следует:

• В шунтирующем двигателе постоянного тока (FGR. 22) используется шунт со сравнительно высоким сопротивлением. обмотка возбуждения, состоящая из множества витков тонкой проволоки, соединенных параллельно (шунт) с арматурой.

• В последовательном двигателе постоянного тока (FGR. 23) используется последовательное поле с очень низким сопротивлением. обмотка, состоящая из очень небольшого количества витков толстого провода, соединенных последовательно с арматурой.

• Составной двигатель постоянного тока (FGR. 24) использует комбинацию шунтирующего поля (многие витков тонкой проволоки) параллельно якорю, а последовательное поле (несколько витков толстой проволоки) последовательно с якорем.


FGR. 22 Стандартные шунтирующие соединения двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR. 23 Стандартные соединения двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR.24 стандартных соединения постоянного (кумулятивного) двигателя для счетчика часов мудрое и вращение по часовой стрелке. Для дифференциального соединения, обратное S1 и S2.

Все соединения, показанные на рисунках 22, 23 и 24, предназначены для вращения против часовой стрелки. и вращение по часовой стрелке, обращенное к концу, противоположному приводу (конец коллектора). Одна из целей нанесения маркировки на клеммы двигателей в соответствии с к стандарту, чтобы помочь в установлении соединений, когда предсказуемое вращение направление обязательно.Это может быть тот случай, когда неправильное вращение может привести к небезопасной эксплуатации или повреждению. Маркировка клемм обычно используется пометить только те клеммы, к которым нужно подключать извне схемы.

Направление вращения двигателя постоянного тока зависит от направления магнитное поле и направление тока в якоре. Если либо направление поля или направление тока, протекающего через якорь реверсируется, двигатель вращается в обратном направлении.Тем не мение, если оба этих фактора поменять местами одновременно, двигатель будет продолжайте вращаться в том же направлении.

Подключение двигателя переменного тока

Асинхронный двигатель переменного тока является доминирующей технологией двигателей, используемых сегодня, что составляет более 90 процентов установленной мощности двигателей. Индукция двигатели доступны в однофазной (1?) и трехфазной (3?) конфигурациях, размерами от долей лошадиных сил до десятков тысяч Лошадиные силы.Они могут работать с фиксированной скоростью — обычно 900, 1200, 1800, или 3600 об / мин — или быть оснащенным регулируемым приводом.

Наиболее часто используемые двигатели переменного тока имеют конфигурацию с короткозамкнутым ротором. (FGR.25), названный так из-за вставленной в него алюминиевой или медной беличьей клетки. внутри железных пластин ротора. Нет физического электрического подключение к беличьей клетке. Ток в роторе индуцируется вращающееся магнитное поле статора.

Роторные модели, у которых витки проволоки вращают обмотки ротора, так же доступно. Это дорого, но обеспечивает больший контроль над двигателем. эксплуатационные характеристики, поэтому их чаще всего используют для особого крутящего момента приложений для ускорения и для приложений с регулируемой скоростью.


FGR. 25 Трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.


FGR. 26 Асинхронный двигатель переменного тока с разделением фаз.


FGR.27 Соединения статора двухфазного двигателя с двойным напряжением.

ПОДКЛЮЧЕНИЯ ДЛЯ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ

Большинство однофазных асинхронных двигателей переменного мощности для источников питания от 120 до 240 В, 60 Гц. Хотя там это несколько типов однофазных двигателей, они в основном идентичны кроме средств запуска. «Двухфазный двигатель» наиболее широко используется для приложений со средним запуском (FGR.26). Операция сплит-двигателя кратко описывается следующим образом:

• Двигатель имеет пусковую и основную или рабочую обмотки, которые находятся под напряжением. при запуске мотора.

• Пусковая обмотка создает разность фаз для запуска двигателя. и отключается центробежным переключателем при приближении к рабочей скорости. Когда двигатель достигает примерно 75 процентов своей номинальной скорости при полной нагрузке, пусковая обмотка отключена от цепи.

• Мощность двигателя с расщепленной фазой составляет примерно ½ лошадиных сил. Популярные приложения включают вентиляторы, нагнетатели, бытовую технику, такую ​​как стиральные машины и сушилки, и инструменты, такие как небольшие пилы или сверлильные станки, к которым нагрузка прилагается после двигатель набрал свою рабочую скорость.

• Двигатель можно реверсировать, переставив провода к пусковой обмотке. или основной обмотки, но не к обеим. Обычно отраслевой стандарт поменять местами провода пусковой обмотки

В двухфазном двигателе с двойным напряжением (FGR.27) ходовая обмотка разделен на две части и может быть подключен для работы от 120-вольтной или источник 240 В. Две обмотки подключаются последовательно при работе. от источника 240 В и параллельно для работы на 120 В.

Пусковая обмотка подключена к линиям питания низкого напряжения. и по одной линии до середины ходовых обмоток для высокого напряжения. Это гарантирует, что все обмотки получат 120 В, на которые они рассчитаны. работать в.Чтобы изменить направление вращения разветвителя с двумя напряжениями фазного двигателя, поменяйте местами два провода пусковой обмотки.

Двигатели с двойным напряжением подключаются для получения желаемого напряжения следующим образом. схема подключения на паспортной табличке.

Номинальная мощность двухфазного двигателя с двумя напряжениями составляет 120/240 В. любого типа двигателя с двойным напряжением, более высокое напряжение предпочтительнее, когда возможен выбор между напряжениями. Мотор использует столько же мощности и производит такое же количество лошадиных сил при работе от напряжение питания 120 В или 240 В.Однако, поскольку напряжение увеличивается вдвое с 120 В до 240 В ток уменьшается вдвое. Работа двигателя на этом пониженном уровень тока позволяет использовать проводники цепи меньшего диаметра и снижает потери мощности в линии.


FGR. 28 Двигатель с постоянным разделением конденсаторов.

Во многих однофазных двигателях конденсатор используется последовательно с одним из статоров. обмотки для оптимизации разности фаз между пусковой и рабочей обмотками для запуска.Результат — более высокий пусковой момент, чем у расщепленной фазы. мотор может производить. Есть три типа конденсаторных двигателей: конденсаторные. пуск, при котором фаза конденсатора находится в цепи только при пуске; постоянно разделенный конденсатор, в котором конденсаторные фазы в цепи как для запуска, так и для работы; и двухзначный конденсатор, в котором есть — разные значения емкости для запуска и работы. Перманентный раскол конденсаторный двигатель, изображенный на FGR.28, постоянно использует конденсатор соединены последовательно с одной из обмоток статора. Эта конструкция ниже по стоимости, чем двигатели с конденсаторным пуском, которые включают переключение конденсаторов системы. Установки включают компрессоры, насосы, станки, воздушные кондиционеры, конвейеры, воздуходувки, вентиляторы и другие труднодоступные для запуска приложения.

ПОДКЛЮЧЕНИЯ ТРЕХФАЗНЫХ ДВИГАТЕЛЕЙ

Трехфазный асинхронный двигатель переменного тока является наиболее распространенным двигателем, используемым в коммерческих и промышленное применение.

Однофазные двигатели большей мощности обычно не используются, так как они неэффективны по сравнению с трехфазными двигателями. Кроме того, однофазные двигатели не запускаются самостоятельно на своих рабочих обмотках, в отличие от трехфазных моторы.

Двигатели переменного тока большой мощности обычно бывают трехфазными.

Все трехфазные двигатели имеют внутреннюю конструкцию с рядом отдельных намотанные катушки. Независимо от количества отдельных катушек, индивидуальные катушки всегда будут подключены вместе (последовательно или параллельно) для получения трех отдельные обмотки, которые называются фазой A, фазой B и фазой С.Все трехфазные двигатели подключены так, чтобы фазы были подключены друг к другу. конфигурация звезды (Y) или треугольника (?), как показано на FGR. 29.

ПОДКЛЮЧЕНИЯ ДВУХНАПРЯЖНЫХ ДВИГАТЕЛЕЙ


FGR. 29 Подключение электродвигателя трехфазной звездой и треугольником.

Обычно производят трехфазные двигатели, которые могут быть подключены работать на разных уровнях напряжения.

Наиболее распространенное номинальное напряжение для трехфазных двигателей — 208/230/460. В.Всегда проверяйте характеристики двигателя или паспортную табличку на предмет надлежащего напряжения. номинал и схема подключения для способа подключения к источнику напряжения.

FGR. 30 иллюстрирует типичную идентификацию терминала и подключение. таблица для девятипроводного трехфазного двигателя с двойным напряжением, соединенным звездой. Один конец каждой фазы внутренне постоянно подключен к другим фазам.

Каждая фазная катушка (A, B, C) разделена на две равные части и соединена последовательно для работы с высоким напряжением или параллельно для работы с низким напряжением операция.Согласно номенклатуре NEMA, эти отведения имеют маркировку от T1 до Т9. Высоковольтные и низковольтные соединения приведены в прилагаемых таблица соединений и клеммная колодка двигателя. Тот же принцип серии Применяется (высоковольтное) и параллельное (низковольтное) подключение катушек для трехфазных двигателей с двойным напряжением, соединенных звездой-треугольником. В любом случае обратитесь к электросхеме, поставляемой с двигателем, чтобы убедиться в правильности подключения. для желаемого уровня напряжения.

Прод. к части 2 >>

Ошибка разрыва связи

    Щиток приборов

    GHVR110

    Перейти к содержанию Щиток приборов
    • Авторизоваться

    • Панель приборов

    • Календарь

    • Входящие

    • История

    • Помощь

    Закрывать
    • Мой Dashboard
    • GHVR110
    Детский семестр в июне 2020 г.
    • Домашняя страница
    • Программа
    • Модули
    • Zoom
    • LIRN: Ресурсы онлайн-библиотеки
    • LIRN: Ресурсы онлайн-библиотеки
    • Оценки курса

    К сожалению, вы обнаружили неработающую ссылку!

    Схема подключения

    — подробное руководство

    Что такое электрическая схема?

    Схема соединений — это визуальное представление компонентов и проводов, относящихся к электрическому соединению.Эта графическая диаграмма показывает нам физические связи, которые очень легко понять в электрической цепи или системе. Одна электрическая схема может обозначать все межсоединения, тем самым сигнализируя об относительных местоположениях. Использование схемы соединений положительно распознается в проектах по производству или устранению неисправностей в электрической сети. Это может предотвратить множество повреждений, которые даже подорвут электрическую схему.

    В этой статье мы узнаем некоторые интересные факты о схеме подключения , их важности и полезном онлайн-инструменте, т.е.е., EdrawMax, чтобы быстро их нарисовать.

    Источник изображения : smartdraw.com

    Почему мы используем электрические схемы?

    Электрические схемы широко используются в производстве схем или других проектах электронных устройств. Компоновка облегчает общение между инженерами-электриками, проектирующими и реализующими электрические схемы.Фотографии также пригодятся при ремонте. Он показывает, была ли установка должным образом спроектирована и реализована, подтверждая регуляторы безопасности.

    Схема подключения также может быть полезна при ремонте автомобилей и строительстве домов. Например, домостроитель может легко найти правильное расположение осветительных приборов и электрических розеток, чтобы избежать дорогостоящих дефолтов или любых нарушений кодекса.

    Преимущества схем подключения:

    Схема подключения дает несколько преимуществ, как указано ниже.

    • Диаграммой легко поделиться даже в электронном виде.
    • Процесс создания диаграммы быстрый и позволяет использовать обычное построение.
    • Доступ к сотням и тысячам символов подключения делает схему более понятной.
    • Диаграмму легко редактировать в зависимости от различных условий.
    • Правильный инструмент обеспечивает точное размещение символов, что невозможно сделать вручную или другими способами.

    Тип электросхемы

    С использованием различных символов электрическая схема в основном состоит из трех основных типов. Все, что связано с электрической системой, можно отобразить на одной из диаграмм, чтобы убедиться, что соединения работают правильно.Его три основных вида заключаются в следующем.

    A. Принципиальные схемы

    Принципиальные схемы показывают схему цепи с ее впечатлением, а не подлинным изображением. Они предоставляют только общую информацию и не могут использоваться для ремонта или проверки цепи. Функции различного оборудования, используемого в схеме, представлены с помощью принципиальной схемы, символы которой обычно включают вертикальные и горизонтальные линии.Однако известно, что эти линии показывают поток системы, а не ее провода.

    B. Схемы электрических соединений

    Схема соединений представляет исходную и физическую схему электрических соединений. Схема подключения на картинке с разными символами показывает точное расположение оборудования во всей цепи. Это гораздо более полезно в качестве справочного руководства, если кто-то хочет узнать об электрической системе дома.Его компоненты показаны на картинке, чтобы их было легко идентифицировать.

    C. Иллюстрированный

    Это наименее эффективная схема среди электрических схем. Часто это фотографии с подробными чертежами или этикетками физических компонентов. Картинка даже не пытается быть четкой или эффектной. Человек, хорошо разбирающийся в схемах электропроводки, может понять только изображения.

    Схема подключения

    Принципиальная схема VS

    Концепция может сбивать с толку, поскольку схема соединений указывает на физическую компоновку или расположение компонентов, тогда как схемы показывают функции различного оборудования, используемого в цепи.

    Давайте посмотрим на его сходства и различия.

    Сходства

    Отличия

    Как читать электрические схемы: символы, которые вы должны знать

    Чтобы прочитать схему соединений , вы должны знать различные используемые символы, такие как основные символы, линии и различные соединения.

    Стандартные или основные элементы, используемые в электрической схеме, включают источник питания, заземление, провода и соединения, переключатели, выходные устройства, логический вентиль, резисторы, свет и т. Д.

    1. Переключатель — Переключатель на электрической схеме включает вспомогательные символы, такие как размыкающий переключатель, размыкающий переключатель, двухпозиционный переключатель, переключатель DPST, переключатель DPDT и т. Д.
    2. Батарея — Батарея представляет собой более одной ячейки для обозначения электрической энергии. Более того, он работает от постоянного напряжения.
    3. Резистор — резистор показывает ограничение протекания тока. Он используется вместе с конденсатором в цепи синхронизации.
    4. Провод и соединение — Обозначения проводов и соединений включают провод, соединенный провод и несоединенный.Соединенные провода обычно образуют двутавровое соединение, тогда как несоединенные провода представляют собой просто пересекающиеся несоединенные провода.
    5. Конденсатор — Конденсатор — это накопитель электрического заряда. Этот символ используется с резистором, а также может быть показан как фильтр для пропускания сигналов переменного тока и блокировки сигналов постоянного тока.
    6. Логический вентиль — Логический вентиль — это своего рода сигнал процесса, используемый для представления истинного (высокий, 1, вкл., + Vs) или ложного (низкий, 0, выкл., OV).Он также содержит субсимволы, такие как AND, NOT, NAND, NOR и OR.
    7. Semiconductor — Полупроводниковые символы являются интеллектуальными и обычно используются для обозначения компонентов, таких как биполярный, MOSFET, управляемый выпрямитель, управляемый переключатель, диод, диод, симистор и т. Д.
    8. Motor — A Motor представляет собой преобразователь, с помощью которого электрическая энергия преобразуется в кинетическую энергию.
    9. Динамик — Динамик представляет собой цифровой вход, преобразованный в аналоговые звуковые волны. Это одна из важнейших частей различных продуктов, таких как телефоны и телевизоры.
    10. Индуктор — это компонент электрической цепи, обладающий индуктивностью. Он также включает в себя различные символы, такие как индуктивность датчика положения, половина индуктивности, взаимная индуктивность и т. Д.

    Примеры электрических схем

    1.Схема 2-ходового переключателя

    В схеме двухпозиционного переключателя необходимо управлять потоком мощности (включение / выключение) на нагрузку (лампу, свет, потолочный вентилятор, розетку и т. Д.). Однако типичная схема будет включать 3-проводной кабель. называется Ромекс. Он состоит из белого, черного и неизолированного медных проводов.

    A. Белый провод = нейтраль

    B. Черный провод = горячий или силовой

    С. Оголенный медный провод = Земля

    Подключение двухпозиционного переключателя требует, чтобы вы управляли горячим или черным проводом для включения и выключения нагрузки.

    На схеме поясняется, что источник питания входит слева. Здесь единственный провод, то есть черный провод, управляется двухпозиционным переключателем. К одному винту на стороне двухпозиционного переключателя подводится черный провод или провод под напряжением. Черный провод также идет от другого винта на двухпозиционном переключателе, идущем к нагрузке.Комбинированные белые провода помогают продолжить цепь.

    Источник изображения : how-to-wire-it.com

    Также важно подключить коммутатор к заземляющему проводу. Зеленый винт представляет собой заземляющий провод для подключения, как показано ниже.

    Источник изображения : инструкции по подключению.com

    Теперь все оголенные медные или заземляющие провода подключены. Схема двухпозиционного переключателя, показанная ниже, поможет вам понять основную концепцию подачи электроэнергии к нагрузке. Здесь вы должны воспринимать контролируемую нагрузку как свет.

    Источник изображения : how-to-wire-it.com

    2.Схема 3-ходового переключателя

    Этот трехпозиционный переключатель также использует трехжильный кабель Romex, идущий от источника. Между 3-проводным кабелем и 3-проводными переключателями также проложен 4-проводный кабель. Трехжильный кабель содержит тот же провод, что и белый провод, черный провод и неизолированный медный провод, тогда как четырехжильный кабель содержит дополнительный красный провод, который также является горячим.

    Источник изображения : инструкции по подключению.com

    Левый блок

    Здесь левый винт в нижнем положении является стандартным и получает черный провод от 3-х проводного источника. Тем не менее, левый винт в верхней части получает черный провод от 4-проводной правой коробки.

    Правая коробка

    В ней левый винт в нижнем положении получает черный провод от 3-х проводной нагрузки.Левый винт в верхнем положении получает красный провод от 4-х проводной левой коробки. Его правый винт в верхней части получает черный провод от 4-проводной левой коробки.

    Источник изображения : how-to-wire-it.com

    3. Подключите розетку

    Стандартные розетки также являются дуплексными розетками.При подключении розетки необходимо выбрать один из нескольких вариантов. Вам понадобится 3-проводной кабель в обоих розетках для подключения розетки (горячей. Также вам понадобится 4-проводной кабель, чтобы переключить верхнюю или нижнюю розетку.

    Источник изображения : how-to-wire-it.com

    Черный или горячий провод слева — это основной источник питания. Провод перевязан проводом, идущим к черному проводу и выключателю, который далее идет к розетке.

    Источник изображения : how-to-wire-it.com

    Как нарисовать электрическую схему в Edraw?

    После того, как мы получили лучшее понимание основной концепции, теперь мы должны продолжить изучение того, как нарисовать схему соединений с помощью одного из лучших онлайн-инструментов — EdrawMax.Чтобы создать схему подключения в Интернете, перейдите на официальный сайт Edraw и выполните следующие действия.

    Шаг 2: Выберите Электротехника и Базовая электрическая часть. Поскольку создание электрической схемы — это электрическая концепция, вам необходимо выбрать Электротехника на боковой панели.Это приведет вас к различным параметрам в главном интерфейсе, откуда вы должны перейти к Basic Electrical .

    Шаг 3: Создайте шаблон. Следующим шагом будет создание вашего шаблона. Во-первых, вам нужно выбрать значок + Basic Electrical . Этот выбор приведет вас к основному интерфейсу создания диаграммы, как показано ниже.

    Шаг 4: Сделайте схему соединений с помощью различных инструментов.

    В этом окне вы можете создать свою электрическую схему, выбирая различные символы коммутационной схемы из библиотеки символов. Доступны различные символы, такие как путь передачи, квалификационные символы, полупроводниковые устройства, переключатели и реле и другие необходимые электрические символы.

    Статьи по теме

    Схемы электрических соединений

    Результаты обучения

    Электрооборудование Электромонтаж Схемы � Опишите различные компоненты электрической схемы.(например, маркировка проводов, размер проводов, символы компонентов, заземление, взаимосвязь между компонентами и цепями, распределение питания) � Определите различные электрические символы. (SAE, DIN, Valley Forge) � Опишите, как читать электрические схемы. � Опишите различные варианты использования электрических схем. � Опишите различия между различными типами электрических схем. (Графические, изометрические, блочные, принципиальные и электрические схемы, распределение питания и заземления) � Обозначьте электрические цепи на схеме. � Рекомендовать диагностические стратегии с использованием электрических схем и испытательного оборудования. Электропроводка Схемы В 1950 году в грузовике было около 200 электрических цепей. Сегодня в коммерческих автомобилях HD используется более 3000 схем. В 1950 году основной интерес вызвали цепи запуска, зажигания и освещения. Теперь электронное управление, применяемое к каждой системе транспортного средства, и объединенные в сеть электрические системы значительно усложнили современные транспортные средства. К традиционным системам транспортных средств добавляются удобные устройства, такие как навигационные и мультимедийные устройства, системы безопасности транспортных средств, специальные схемы кузовостроения и т. Д.Правильное понимание и интерпретация электрической схемы важны для техника, чтобы сократить время диагностики электрических проблем и исключить догадки. Схема подключения обычно позволяет технику отслеживать цепи от источников питания через переключатели, компоненты, устройство защиты цепи, жгуты, соединительные блоки, соединители и заземления. Диаграммы Электромонтаж составляются производителями в различных стилях, чтобы с высокой степенью ясности отображать отдельные компоненты схемы и их расположение.Типы электрических схем включают в себя: � Карта � Графическая � Схема � DIN (Норма Немецкого института) � Карта Valley Forge Схемы На схемах показана вся электрическая схема транспортного средства. Символы для компонентов обычно графические, что означает, что символ выглядит как компонент, который он представляет. Отдельные компоненты и их пространственное отношение друг к другу не обязательно передаются так четко, как логическое и разборчивое представление работы схемы. Вариантом схемы карты является линейная диаграмма.Эти

    Как читать схемы

    Как читать схемы

    В этой статье рассматриваются основы схематических диаграмм.

    Принципиальная схема

    Принципиальные схемы (часто называемые просто схемами) — это способ выразить, как части соединяются вместе. Символы используются для обозначения каждого деталь, а линии используются для представления соединений между частями. Это важно Следует отметить, что не во всех схемах используются одни и те же символы или соединения.

    Символы

    Это символы, обычно используемые на схемах, и части, которые они представлять.

    Подключения

    Важно отметить, что соединения, показанные на принципиальной схеме представляют собой идеальные связи. В реальном мире нет такой вещи, как идеальный дирижер. Таким образом, схема — это приближение схемы. Обычно сопротивление провода, емкость или индуктивность конкретный путь цепи незначительно влияет на работу схемы и может безопасно игнорировать.

    Линии используются для отображения соединений между частями. Когда несколько подключений существуют, они обычно представлены в виде точки, где две линии пересекаются. Многие линии могут сходиться в одно соединение, но для ясности, большинство точек соединяют только две линии.

    Когда две линии пересекаются, но на них нет точки пересечения, это просто означает, что между этими двумя схемы.Иногда люди изо всех сил стараются подчеркнуть, что есть нет связи, нарисовав небольшой «горб» над первой строкой, чтобы показать, что вторая линия находится над ней, не касаясь ее. Это не обязательно, да и то метод приемлем.

    Узлы

    Важным понятием в электронике является понятие «узел». Узел — это просто точка, в которой соединяются две или более частей. Запутанная часть об узле что линии не представляют собой провода.Они просто представляют собой связь. А очень длинная линия не подразумевает очень длинный провод, а короткая линия не подразумевает короткий провод.

    В следующей схеме есть 3 узла, обозначенных A, B и C. Обратите внимание, что нет независимо от того, как нарисована схема, одни и те же части всегда соединяются с одним и тем же узлы. Другими словами, узел A всегда подключен к положительной стороне 9 источник напряжения и одна сторона резистора R1, узел B всегда подключен к R1, R2, и R3, и узел C всегда подключает R2, R3 и отрицательную сторону 9 вольт поставка.Неважно, где на бумаге нарисованы детали и в каком направлении. они ориентированы. Важно только то, чтобы линии были нарисованы таким образом, чтобы узловые отношения сохраняются. Опять же, чтобы подчеркнуть эту мысль, все диаграммы на следующем рисунке описывают точно такую ​​же схему.

    Питание и заземление

    «Питание» и «земля» обычно сокращаются для экономии места на схеме. Земли (означающие возврат сигнала) обычно обозначаются одним из символов. показано выше.Мощность постоянного тока часто обозначается цифрой и знаком плюс или минус. Можно использовать стрелку, но на многих схемах стрелка отсутствует. Следующий пример показывает источник питания постоянного тока на 5 В, подключенный к резистору (остальная часть схема не показана).

    Земля, к сожалению, очень сбивающий с толку термин, которым часто злоупотребляют. электроника. В схемах мы обычно связываем все возвратные сигналы вместе в единая плоскость напряжения. Затем этот план часто соединяется с физической землей. заземление (скажем, медный стержень, вбитый в землю) из-за шума и т. д.Однако, даже если соединение с физической землей может отсутствовать, оно имеет стали обычным явлением в электронике называть возврат сигнала заземлением. Это может привести к некоторой путанице в схемах, когда вы увидите символы земли. Часто подключение к заземлению подразумевается, и, поскольку предполагается, это не упоминается на схеме. В других случаях заземление означает только что возвращаемые сигналы связаны вместе, а связь с физическим земля не предназначена.Чтобы иногда определять, что на самом деле означает символ земли, но, к сожалению, это приходит только с опытом работы с схемами.

    Схемы нарисованы так, чтобы четко показать схемы с использованием наименьшего количества линий необходимо (если вырвать известную цитату Эйнштейна из контекста, «это так же сложно, как это должно быть, но не более того «). Подключение питания и заземления к ИС часто предполагается, поскольку без них ИС не будет работать.Также, если плюс и минус питания, это обычно означает, что двойной источник питания с присутствует общая нулевая ссылка. Обычно предполагается, что общая ссылка быть заземленным, даже если нет подключения от источника питания к любому из могут быть показаны наземные символы.

    Куда пропал этот сигнал?

    Часто линия заходит в тупик, и на ней будет написано имя сигнала, или под этим. Это означает, что сигнал продолжается в другом месте.Для больших, сложные схемы, сигнал может быть на другой странице (и если они хорошие, они перечисляют все сигналы и страницы, на которых они появляются, но наиболее схематично производители не такие добрые). Когда это произойдет, просто обращайтесь с цепью, как с линией. был проведен между двумя точками, где сигнал «тупиковый». Сложная часть Иногда сигнал будет использоваться во многих местах. Например, предположим, что мы есть схема компьютера с тактовой частотой 8 МГц.Существует схема на одной странице схемы, которая показывает кварцевый генератор (который генерирует часы), и отсюда строка просто заканчивается названием сигнал, SYSCLK. На странице, где показан ЦП и связанные с ним схемы, мы снова видим SYSCLK, который используется в качестве основных часов для управления процессором. SYSCLK также проходит по системной шине, что снова отображается на отдельной странице. с именем SYSCLK, нарисованным над линией. Все сигналы с названием SYSCLK, нет независимо от того, сколько раз они появляются на схеме, электрически связаны вместе.Все они просто не могут быть показаны на одной странице, потому что схема слишком большой и сложный.

    Как построить электрические схемы

    Электрические схемы помогают техническим специалистам увидеть, как органы управления подключены к системе.

    Многие люди могут читать и понимать схемы, известные как метки или линейные диаграммы. Этот тип схемы похож на фотографирование всех соединенных деталей и проводов. На этих схемах показано фактическое расположение деталей, цвет проводов и способ их подключения.Рисунок 1 представляет собой типичный пример одной из этих диаграмм, взятой из конденсаторной установки известного производителя бытовых кондиционеров.

    Рисунок 1.

    Единственное, чего не делают эти диаграммы, так это того, чтобы показать, как что-то на самом деле работает! Схема или лестничная диаграмма делает это. См. Рисунок 2.

    Рисунок 2.

    Обратите внимание, насколько чище и проще лестничная диаграмма. Макет предназначен не для расположения деталей, а для объяснения, как все работает.Чтобы «прочитать» или понять лестничную диаграмму, необходимы некоторые знания в области электричества.

    Большинство механиков предпочитают схемы с этикетками, поэтому многие производители комбинируют схемы с этикетками и лестничные диаграммы для создания электрических схем для своего оборудования. Это «гибридные» диаграммы. Гибридные диаграммы очень распространены и работают достаточно хорошо. Все, что работает, лучше всего, если заказчик это понимает. Немного попрактиковавшись, вы сможете составлять простые диаграммы.

    Поскольку мы будем иметь дело с простыми схемами, хорошее практическое правило — помнить, что типичная схема состоит из источника питания, переключателя, нагрузки и заземления.Думайте об электричестве как о воде. Когда вода «течет» по трубе, электричество «течет» по проводам. Электроэнергия течет от источника питания через выключатель через нагрузку на землю. На схемах переключатели выглядят практически одинаково. Специальные символы могут использоваться для обозначения рабочей силы, которая приводит в действие переключатель. Обычно в цепи будет только одна нагрузка.

    Типичная общая схема будет выглядеть так, как показано на рисунке 3.

    Рисунок 3.

    Гибрид — типичный образец того, как, вероятно, будет выглядеть простой набросок. Если нужно, его можно пометить. Фактически, рекомендуется пометить клеммы на элементах управления, если есть вероятность использования неправильных клемм на элементе управления. В нашем примере, гибридном скетче (рис. 3), термостат может быть представлен как SPDT stat и имеет клеммы R, W и Y. Поскольку это охлаждение, выполняйте установку при повышении температуры, как показано на лестничной диаграмме, вам нужно пометить клеммы, которые будут использоваться на термостате, R и Y.

    Коммутаторы

    будут выглядеть практически одинаково на простых схемах. Для обозначения силы, заставляющей переключатель работать, могут использоваться специальные символы.

    Выключатели обозначаются по количеству полюсов и ходов. Полюсы относятся к числу переключателей, задействованных одной силой. Броски относятся к количеству «включенных» позиций. Следовательно, однополюсный двухпозиционный переключатель (SPDT) — это один переключающий механизм с двумя положениями «включено». См. Рис. 4, где показаны различные варианты расположения переключателей.

    Рисунок 4.

    Есть много «нагрузок». Все это может быть представлено каким-то символом сопротивления или энергозатратным символом. Попрактикуемся в создании гибридной диаграммы, которую может запросить типичный покупатель.

    Вот простой пример проектной спецификации. Помещение необходимо проветривать, когда температура или влажность становятся слишком высокими. Должна открываться заслонка, и при ее открытии включается вытяжной вентилятор. При выполнении двух предыдущих условий загорится индикаторная лампа.Вся система будет иметь низкое напряжение, чтобы сэкономить на расходах на проводку. Теперь у нас есть информация, чтобы начать монтажную схему. (Мы не собираемся отбирать устройства по номерам, которые нам нужны для этой работы. Общая номенклатура будет достаточной, поскольку мы демонстрируем создание монтажной схемы).

    Компоненты схемы будут включать трансформатор, источник низкого напряжения, термостат (переключатель), гигростат (переключатель), привод заслонки низкого напряжения (нагрузка), светильник низкого напряжения (нагрузка) и контактор с катушкой низкого напряжения (нагрузка ).

    Попробуйте сделать схемы лестничного типа. Как вы увидите, их на самом деле сделать проще всего, потому что они следуют логическим шагам, и текущий поток можно быстро отследить. Релейную диаграмму также можно быстро преобразовать в схему меток, просто указав клеммы и даже выделив цветом линии, представляющие провода. Помните, мы не пытаемся быть пуристами, а пытаемся составить понятную гибридную диаграмму. Задайте себе эти вопросы, прежде чем начнете рисовать схему:

    • Сколько нагрузок нужно контролировать?

    • Сколько имеется переключателей для управления нагрузками?

    • Сколько нагрузок будет контролировать коммутатор?

    • Сколько переключателей будут управлять нагрузкой?

    Рисунок 5.

    Начните с источника питания, в данном случае трансформатора. Стандартной практикой является построение лестничных диаграмм для чтения слева направо, поэтому наша ветвь источника питания является левой линией и может рассматриваться как «горячий» (L1) источник питания. См. Рисунок 5A.

    Всегда помните о нашем пути прохождения тока — от источника питания через переключатель, через нагрузку до земли. Затем добавьте переключатель, нагрузку и перейдите на землю. На рисунках 5B и 5C показано, как это будет выглядеть теперь, при этом C является более репрезентативным для того, как будет выглядеть базовый набросок.(Схемы обычно составлены таким образом, что переключатели и нагрузки показаны в их «нормальном» или обесточенном положении.)

    Если переключатель «замкнут» или «включен», нагрузка будет включена. У нас ток идет от источника питания, через переключатель, через нагрузку и на землю. Коротких замыканий нет; то есть путь тока к земле без нагрузки. Нет никаких «открытий»; то есть блокирование прохождения тока на землю, когда переключатель замкнут. Это сработает? Ну, частично, но в конструкции также предусмотрено наличие двух переключателей для управления нагрузками.Давайте добавим еще один переключатель для управления нагрузкой. Если мы добавим этот переключатель в «серию», как показано на рисунке 5D, оба переключателя должны быть «замкнуты» до того, как нагрузка будет включена. Этого нет в проектной спецификации. Каждый выключатель должен работать с нагрузками. Следовательно, нам придется «параллельно» переключать переключатели, как показано на рисунке 5E. Проверяя цепи, мы видим, что через любой из переключателей будет протекать ток для подачи питания на нагрузку. Нам еще предстоит разобраться с другими грузами. Нам нужно запустить вентилятор и зажечь свет, еще две нагрузки.Будьте осторожны, не кладите нагрузки последовательно! При последовательном подключении напряжения на нагрузках будут отличаться! При параллельном подключении нагрузок на все нагрузки будет подаваться одинаковое напряжение. Вы можете добавить контакты контактора (показаны как двухполюсные) в цепь вытяжного вентилятора (E.F.). См. Рисунок 5F.

    Рисунок 5F — это вполне работоспособная диаграмма, но давайте разберемся с ней. Обозначение диаграммы не оставляет места для ошибки. Чтобы обозначить схему, теперь вам нужно знать, какие устройства вы используете и как они работают.Например, предположим, что наш термостат — T87F, наш гигростат — W43A-14, двигатель заслонки — M836, контактор или реле — R8222D, лампа — 32RG18-2111T и трансформатор AT140A1000.

    Рисунок 6.

    Рисунок 6 — результат маркировки клемм и проводов. На T87F R превращается в Y при повышении температуры. W43 переводит от C до H при повышении влажности. Клеммы двигателя M836 — это T и T. R1 — катушка R8222D. (Провода катушки на R8222D не кодированы.На пластике корпуса вылито слово «катушка», а стрелки указывают на соответствующие клеммы). 1R1 и 2R1 — это контакты, связанные с катушкой R1. Когда R1 находится под напряжением, 1R1 и 2R1 закроются, запустив вытяжной вентилятор.

    Теперь все будет работать как указано. Иногда, создавая диаграмму, вы можете выявить ошибки в логике или найти лучший способ выполнить то, что хочет сделать заказчик. Как и в случае с этой системой, вы могли заметить, что M836 имеет концевой выключатель, который можно использовать для запуска вытяжного вентилятора, если напряжение и потребление тока двигателя вентилятора могут регулироваться концевым выключателем.Мы могли бы исключить R8222D, если хотите использовать вспомогательный переключатель. В зависимости от важности и критичности сообщения о включении света, было бы лучше добавить устройство проверки вентилятора SML, которое будет сигнализировать о включении света. То, как теперь подключен свет, действительно доказывает, что термостат или гигростат включил цепь, а не то, что заслонка открылась или вентилятор действительно работал.

    Умение читать электрические схемы и уметь составлять простые схемы принесет большую пользу вам и вашим клиентам.

    Рисунок 7.

    Рисунок 7 — это фактическая диаграмма, составленная одним из менеджеров по продажам в Милуоки для клиента, чтобы показать ему, как использовать внутренний вентилятор как для обогрева, так и для охлаждения.

    Схема подключения

    Схема подключения

    : Глава 3

    Схема подключения

    В этом модуле мы познакомим вас с принципиальной схемой. Мы рассмотрим: схему, примечания, легенду и как читать схематическую диаграмму.

    Перейти к викторине!


    Обзор

    Принципиальная схема — это план электрических компонентов в системе. Принципиальные схемы включают схему, примечания и легенду. На рисунке справа показан пример принципиальной схемы.

    Схематические схемы можно использовать для:

    • См. Компоненты в цепи и

    • См. Подключение компонентов

    На принципиальной схеме показано подключение каждого компонента в цепи.Принципиальные схемы очень полезны при поиске и устранении неисправностей или при подключении схемы.

    Лучшее место для начала чтения принципиальной схемы — это легенда. Легенда объяснит, что означают некоторые символы на принципиальной схеме.

    Например, посмотрите на схему справа. Вы можете видеть, что на диаграмме есть сокращения, такие как CONT, CAP и CH. Не прочитав легенду, вы не сможете понять аббревиатуры и составные части схемы.

    После того, как вы прочитаете легенду, важно прочитать раздел примечаний на диаграмме. В разделе примечаний может содержаться важная информация о схеме.

    Например, в разделе примечаний может быть примечание о нагревателе картера (CH) на принципиальной схеме. В примечаниях может быть написано что-то вроде «CH не используется на всех диаграммах». Если вы не читали примечания, возможно, вы неправильно понимаете схему. Канал может отсутствовать.

    Следующим шагом является просмотр схемы на схеме.Каждый символ на схеме представляет компонент в цепи. Линии, проходящие между каждым компонентом, представляют собой провод.

    Напряжения

    У каждой цепи есть две стороны:

    Компоненты на линейной стороне цепи получат более высокое напряжение. Например, 230В. Компоненты на стороне управления схемы получат более низкое напряжение. Например, 24В.

    L1 и L2 питают линию цепи. L1 и L2 представляют собой два полюса источника питания переменного тока.На рисунке справа показаны L1 и L2 на принципиальной схеме. Обратите внимание, что линейное напряжение обозначено над L1 и L2.

    На линейной стороне схемы будут более смелые электрические соединения, чем на стороне управления. На стороне линии также будут рядом L1 и L2. На рисунке справа показана линия цепи. Обратите внимание, что линии проводки более жирные, чем нижняя половина диаграммы.

    Сторона управления схемы может получать питание от внешнего источника питания. Управляющее напряжение обычно будет ниже, чем линейное напряжение, например, 24 В.

    Сторона управления схемы будет иметь более тонкие линии разводки, чем сторона линии цепи. Обратите внимание, что линии разводки тоньше, чем верхняя часть схемы.

    Как читать принципиальную схему

    Напомним, что линии между компонентами на принципиальной схеме представляют собой провода.

    Существует два основных типа проводки в цепи:

    • Полевая проводка

    • Заводская проводка

    Напомним, что заводская проводка выполняется производителем.Полевая проводка выполняется техником. Заводская разводка представлена ​​на схеме сплошной линией. Полевая проводка представлена ​​на схеме пунктирной линией.

    На большинстве схематических диаграмм также указан цвет проводов. В каждой строке диаграммы вы увидите символ. Например, BLK или BLU. BLK обозначает черную проводку, а BLU обозначает синюю проводку. Некоторые легенды определяют цвета символов.

    Напомним, что схематическая диаграмма представляет компоненты с символами.На диаграмме некоторые символы обведены черной рамкой. Вы можете увидеть пример на картинке справа.

    Черная рамка вокруг группы символов обозначает внутреннее устройство одного компонента. Например, изображение справа показывает контактор на принципиальной схеме. Вы можете видеть, что контактор помечен как CONT, и у него есть черный ящик вокруг нескольких внутренних компонентов.

    На схеме показаны внутренние компоненты, чтобы вы могли определить тип контактора.На картинке вы можете видеть, что это однополюсный контактор, так как контакторный переключатель только один. Между 11 и 12 есть один контакторный переключатель, под переключателем проходит провод, а под проводом — катушка.

    Схематическая диаграмма также может использоваться для определения того, как компоненты подключены друг к другу. Например, просмотрите изображение справа. Вы можете видеть, что это изображение показывает двойной рабочий конденсатор, пусковой конденсатор, пусковое реле и пусковой термистор.

    Начните с двойного рабочего конденсатора в левой части изображения.Вы можете видеть, что синий (BLU) провод идет от клеммы HERM на компрессоре до пускового термистора. На изображении провод выделен синим цветом.

    Посмотрите еще раз на двойной рабочий конденсатор. Вы также можете видеть, что желтый провод идет от общей клеммы двойного рабочего конденсатора к пусковому конденсатору. На изображении провод выделен желтым цветом.

    В этом модуле вы научились читать схематическую диаграмму. Всегда читайте примечания и легенды, прежде чем смотреть на диаграмму.На принципиальных схемах показаны компоненты и проводка в цепи.

    Релейные диаграммы


    В этом модуле мы познакомим вас с релейной диаграммой. Мы рассмотрим: Диаграмму, легенду и Как читать лестничную диаграмму.

    Перейти к викторине!


    Обзор

    Релейная диаграмма — это схема электрических компонентов внутри системы. У лестничных диаграмм есть диаграмма и легенда.На рисунке справа показан пример лестничной диаграммы.

    Релейные диаграммы предназначены для отображения логики схемы. Напомним, что схемная логика объясняет, что происходит со схемой, когда компонент меняет свое положение. Например, схемная логика объясняет, какие компоненты получают или теряют мощность при размыкании переключателя.

    Релейная диаграмма состоит из двух частей:

    • Диаграмма и

    • Легенда

    Легенда — лучшее место для начала при чтении лестничной диаграммы.Легенда объяснит значение некоторых символов на лестничной диаграмме.

    Например, посмотрите на легенду справа. Вы можете видеть, что в легенде поясняются сокращения, такие как CC, EFR и HR. Не прочитав легенду, вы не сможете понять сокращения на схеме.

    Напомним, что каждый символ на схеме представляет компонент в цепи. На лестничных диаграммах каждый компонент цепи помещается между двумя вертикальными линиями электропередач, называемыми L1 и L2. Каждый символ находится на горизонтальной линии между L1 и L2.

    Горизонтальные линии называются ступенями. Каждая ступень представляет собой одну цепь в электрической системе. Напомним, что электрические системы имеют несколько цепей. Поскольку системы имеют несколько цепей, лестничная диаграмма будет иметь несколько ступеней.

    Линии между символами представляют протекание тока в цепи. Линии между компонентами не представляют собой точную схему подключения, которую вы найдете в полевых условиях.

    Напряжения

    У каждой цепи есть две стороны:

    Компоненты на линейной стороне схемы получат более высокое напряжение, например 230 В.Компоненты на стороне управления схемы получат более низкое напряжение, например, 24 В.

    Компоненты, которые получают меньшее напряжение, например катушка 24 В, будут размещены на стороне управления схемы. Компоненты, которые получают более высокое напряжение, например компрессор 240 В, будут размещены на линейной стороне схемы.

    Релейная диаграмма будет иметь все компоненты на линейной стороне цепи между двумя вертикальными линиями, обозначенными L1 и L2. L1 и L2 представляют собой два полюса источника питания переменного тока.L1 и L2 обеспечивают питание компонентов на линейной стороне схемы.

    На стороне управления схемы не будет линий для L1 и L2. Сторона управления схемы будет ниже линии на схеме. Трансформатор обычно отмечает разделение между линией и стороной управления. На рисунке справа показана сторона управления лестничной диаграммы.

    Важно отметить, что две стороны цепи не являются отдельными системами. Сторона линии и сторона управления относятся к компонентам, которые получают питание от разных источников.

    Компонент может получать питание как от сети, так и от управляющего напряжения. Это обычное дело для контакторов или переключателей. Управляющее напряжение 24 В может возбуждать катушку в контакторе. Переключатель внутри контактора может находиться на сетевом напряжении 240 В.

    Например, на схеме справа контактор компрессора (CC) имеет компоненты на линии и на стороне управления. Вы можете видеть, что есть контакторные переключатели с маркировкой CC на стороне линии и катушки с маркировкой CC на стороне управления.Оба символа являются частью одного и того же CC, но получают разные напряжения.

    Как читать лестничную диаграмму

    Напомним, что есть три части на линейной стороне лестничной диаграммы:

    Ток течет в линейную сторону цепи через L1.

    После подачи питания на L1 ток течет по каждой ступени лестничной диаграммы. Это предполагает, что звено является закрытым соединением. Если ступенька имеет разомкнутый переключатель, ток не будет течь через ступеньку.

    Как только ток пересекает ступеньку, он достигает L2. Ток течет обратно к вершине L2, а затем процесс начинается снова. Этот процесс происходит практически мгновенно. Здесь он разбит на шаги, чтобы облегчить понимание.

    Напомним, что символы на одной ступени лестничной диаграммы являются частью одной и той же цепи. Например, посмотрите на лестничную диаграмму на изображении справа. Вы можете видеть, что компрессор и контактор компрессора находятся на одной ступеньке линейной стороны схемы.

    Поскольку компоненты находятся на одной ступени, становится легче понять логику схемы. Если контактор на ступени разомкнут, компрессор не будет получать питание. Открытый контактор только предотвращает прохождение тока через эту ступеньку.

    Напомним, что компоненты в цепи могут быть подключены последовательно или параллельно. Лестничные диаграммы позволяют легче увидеть, включены ли компоненты параллельно или последовательно.

    Например, вы можете видеть, что контактор компрессора (CC) подключен последовательно с компрессором.Между L1, CC и компрессором есть только один путь для прохождения тока. Один путь между компонентами означает, что компоненты подключены последовательно.

    Релейная диаграмма справа также имеет параллельные компоненты. Вы можете видеть, что EFR и HR параллельны друг другу.

    Вы можете сказать, что компоненты подключены параллельно, если существует более одного пути для прохождения тока через ступеньку. На схеме ток может проходить от L1 через EFR, а затем через вентилятор испарителя.Ток также может проходить от L1 через HR, а затем через вентилятор испарителя.

    Поскольку ток может проходить по двум путям от L1 до вентилятора испарителя, контакторы EFR и HR включены параллельно.

    В этом модуле вы научились читать релейную диаграмму. Всегда читайте легенду, прежде чем смотреть на диаграмму. Помните, что лестничная диаграмма помещает компоненты между L1 и L2.

    Вопрос № 1: Что включено в схематическую диаграмму:

    1. Диаграмма

    2. Примечания

    3. Легенда

    4. Все вышеперечисленное

    Прокрутите вниз, чтобы просмотреть …

    Ответ: Все вышеперечисленное

    Принципиальная схема будет включать диаграмму, легенду и примечания к схеме.

    Вопрос № 2: На принципиальной схеме показаны соединения между компонентами.

    1. True

    2. False

    Прокрутите вниз, чтобы найти ответ …

    Ответ: True

    На принципиальной схеме показаны компоненты цепи и их подключение.

    Вопрос № 3: Что обозначают L1 и L2 на схематической диаграмме?

    1. Напряжение сети

    2. Управляющее напряжение

    3. Оба

    Прокрутите вниз, чтобы найти ответ …

    Ответ: Напряжение сети

    Напряжение L1 и L2 соответствует линейному напряжению схема.

    Вопрос № 4: Черная рамка вокруг нескольких символов указывает на то, что символы являются частью более крупного компонента.

    1. True

    2. False

    Прокрутите вниз, чтобы найти ответ …

    Ответ: True

    Черная рамка вокруг нескольких компонентов на диаграмме означает, что они являются частью одного и того же составная часть.

    Вопрос № 5: Горизонтальные линии между L1 и L2 на лестничной диаграмме называются:

    1. Ступени

    2. L1

    3. L2

    4. Символы
      55 Прокрутите вниз для
      58 904 символов
      58 904 отвечать…

      Ответ: Ступени

      Горизонтальные линии, проходящие между L1 и L2, называются ступенями.

      Вопрос № 6: Символы между L1 и L2 находятся на какой стороне цепи:

      1. Сторона линии

      2. Сторона управления

      3. Свободная сторона

      4. Ни один из вышеперечисленных

      Прокрутите вниз, чтобы найти ответ …

      Ответ: Сторона линии

      Компоненты между L1 и L2 на лестничной диаграмме находятся на стороне линии цепи.

      Вопрос № 7: На лестничной диаграмме ток течет от L1 через ступеньки, а затем через L2.

      1. True

      2. False

      Прокрутите вниз, чтобы найти ответ …

      Ответ: True

      Верно, на лестничной диаграмме ток течет от L1 к ступеням, а затем от звенья к L2. Этот процесс происходит мгновенно.

      Вопрос № 8: Два параллельных компонента имеют:

      1. Более одного пути прохождения тока

      2. Один путь прохождения тока

      3. Нет путей прохождения тока

      4. Все вышеперечисленное

      Прокрутите вниз, чтобы найти ответ…

      Ответ: Более одного пути прохождения тока

      У параллельно включенных компонентов будет два пути прохождения тока в следующий компонент в цепи.

    Добавить комментарий

    Ваш адрес email не будет опубликован.