Турбина принцип работы: Принцип работы турбины. Как работает турбонаддув в автомобиле

Содержание

Принцип работы турбины. Как работает турбонаддув в автомобиле

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота

 

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

— Установка турбонаддува
— Увеличение рабочего объёма двигателя
— Увеличение числа оборотов коленчатого вала двигателя

Как работает турбина в автомобиле?

 

 

 

Увеличение рабочего объёма двигателя

Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

Увеличение числа оборотов коленчатого вала двигателя

Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

Турбонаддув

В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

Охлаждение воздуха

В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

Турбонагнетатель с механическим приводом

В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

Турбокомпрессор основанный на использовании энергии выхлопных газов

Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

Основные преимущества двигателей с турбонаддувом

1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

Устройство и принцип действия турбокомпрессора авто

Устройство и принцип действия турбокомпрессора

 направлены на увеличение давления топлива в коллекторе впуска для обеспечения максимального поступление кислорода в камеру, где происходит сгорание. Основное назначение турбины – значительное увеличение мощности двигателя. Даже увеличение давления на 1 атмосферу в коллекторе приводит к попаданию в двигатель двойной порции кислорода. Это позволяет даже небольшому двигателю отдавать такую мощность, как вдвое больший его аналог, но не оснащенный турбонаддувом.


Турбонаддув – принцип работы

Рассмотрим, принцип работы турбины на авто. Поток выхлопных газов поступает из выпускного коллектора в горячую часть турбины, там воздействует на лопасти крыльчатки, приводя ее в движение вместе с валом. На нем закреплена также крыльчатка компрессора, расположенного в холодном отсеке турбины. Она при вращении повышает давление в системе впуска, обеспечивая увеличенное поступление в камеру сжигания топлива и воздуха.

Устройство турбины автомобиля не сложное, она состоит из:
  • Улитки компрессора, которая всасывает воздух, а затем нагнетает его в коллектор впуска;
  • Улитки, расположенной в горячей части – здесь выхлопные газы заставляют вращать турбину, после чего выбрасываются в систему отработанных газов на выход;
  • Крыльчатки компрессора, а также ее аналога в горячей части;
  • Шарикоподшипникового картриджа;
  • Корпуса, соединяющего улитки, имеющего систему охлаждения и системы подшипников.

Во время работы устройство подвергается значительным термодинамическим нагрузкам. Попадающие в турбину выхлопные газы достигают температуры 900°С, из-за чего ее корпус делают чугунным, причем для отливки используется особая технология. Обороты турбинного вала могут достигать показателя 200 000 об/мин, поэтому в конструкцию устанавливают высокоточные детали, которые тщательно подгоняют и затем балансируют. Также для турбины предъявляются высокие требования к смазочным материалам. Отдельные турбонагнетатели оборудованы так, что система смазки является одновременно охлаждением узла подшипников.


Система охлаждения и устройство турбокомпрессора автомобиля

Охлаждающая система турбокомпрессоров необходима для улучшения передачи тепла от его механизмов и частей. Наиболее распространенные варианты охлаждения деталей — масляный способ и комплексное охлаждение антифризом и маслом. Оба типа имеют свои преимущества, но не лишены и недостатков.

Охлаждение маслом

Достоинства:
  • Простая конструкция;
  • Удешевление турбокомпрессора.
Недостатки:
  • Меньшая эффективность в сравнении с системой, где выполняется использование антифриза с маслом;
    Высокая требовательность к составу масла;
  • Необходимость часто его менять;
  • Требовательность к контролированию температурного режима.

Изначально устройство турбокомпрессора имело только масляное охлаждение, которое быстро достигало высоких температур, проходя через подшипники. Такое масло начинает сразу закипать, возникает эффект коксования, из-за которого забиваются каналы, существенно ограничивая доступ охлаждения и смазки к подшипникам.


В результате подшипники изнашиваются, их заклинивает, необходим дорогостоящий ремонт. У такой неполадки имеется несколько причин:
  • Некачественное или не то, которое рекомендовано для двигателя масло;
  • Превышение сроков замены масла;
  • Неисправности смазочной системы двигателя автомобиля.

Комплексное охлаждение турбины антифризом и маслом

Преимуществом этого варианта становится большая эффективность получаемого охлаждения. Существенный недостаток – усложнение конструкции турбонагнетателей, что повышает их стоимость.

Устройство турбонаддува в варианте охлаждения турбин антифризом и маслом более сложное, поскольку в нем имеется отдельный масляный контур, а также система с охлаждающей жидкостью. Зато повышается эффективность работы, устраняются проблемы закипания масла.

Для такого турбонагнетателя масло служит, как и прежде, для охлаждения и смазки подшипников, а антифриз, подаваемый из общей цепи охлаждения двигателя, предотвращает перегрев и не дает закипать маслу. Из-за такой сложности увеличивается цена турбонагнетателя.

Что такое интеркулер на авто?

При работе горячей турбины воздух, нагнетаемый компрессором в ее корпусе, сильно сжимается, отчего происходит его нагрев. Это вызывает нежелательные последствия, поскольку при высокой температуре в воздухе меньше кислорода. Значит, эффективность наддува также снижается. Для борьбы с подобным явлением начали, используя рекомендации ученых, устанавливать в турбину интеркулер – вспомогательный охладитель воздуха.

Конструкторы устройства отмечают, что нагрев воздуха далеко не единственная задача, которую им приходится решать при проектировании турбины. Насущной проблемой также становится ее инерционность – задержка реакции двигателя на открытие в коллекторе дроссельной заслонки.

Турбина максимально эффективна, когда достигаются определенные обороты вращения коленчатого вала. Среди автолюбителей даже распространено мнение, что турбонаддув включается только тогда, когда скорость автомобиля достигает определенного значения. Хотя турбина работает постоянно, а значение числа оборотов, при которых ее действие наиболее эффективно, для каждого двигателя индивидуальное.

Отличия твин турбо и битурбо

Решая проблемы устройства турбин, конструкторами была разработана схема, в которой соединились нагнетатели двух компрессоров. Эта конструкция получила название twin-turbo.


Твинтурбо – это система, в которой несколько одинаковых турбин соединены параллельно. Их задача – повысить давление и объем поступающего воздуха. Система управления включает твин-турбо в момент, когда необходимо получить на повышенных оборотах максимальную мощность.

Подобный компрессор реализован в прославленном японском авто бренда Nissan, который получил имя Skyline Gt-R.

В нем установлен мотор rb26-dett. Аналогичная система, однако, оснащенная одинаковыми небольшими турбинами позволяет получить заметный прирост мощности даже при малых оборотах, при этом поддерживать турбонаддув постоянно.

Последовательное соединение разных турбин получило название «битурбо».

Конструкция сделана так, что при невысоких оборотах функционирует лишь маленькая турбина, которая обеспечивает «отзывчивость» при плавно изменяемой скорости. Если обороты резко возрастают, включается «крупная» турбина». Это позволяет машине получить значительный прирост производительности, причем в любом диапазоне функционирования двигателя. Подобная система реализована в моделях BMW biturbo, тюнинг которых вызывает восхищение.



Инновационные разработки

В числе современных разработок, уже радующих автовладельцев, турбина VGT, у которой лопатки крыльчатки изменяют свой угол наклона, направляя ее в сторону, куда направлены выхлопные газы.


Когда обороты двигателя небольшие, становится более узким пропускное сечение выхода в турбину выхлопных газов, поэтому «выхлоп» получается более быстрым. Чаще эту систему применяют для дизельных агрегатов, но есть разработки и для бензиновых двигателей.

Также к инновационным разработкам относится система twinscroll, где благодаря двойному контуру, по которому совершают обход выхлопные газы, получается, что их энергия вращает общий ротор с компрессором и крыльчаткой.

При этом имеется два варианта реализации:
  1. Выхлопные газы проходят одновременно оба контура и система функционирует как twinturbo.
  2. Второй тип работает наподобие схемы biturbo – имеется два контура, у которых разная геометрия. Когда обороты невысокие, выхлопные газы идут по краткому контуру, увеличивающему энергию и скорость благодаря небольшому диаметру. Если обороты повышаются, выхлопные газы поступают в контур, имеющий больший диаметр – при этом рабочее давление сохраняется во впускной системе и отсутствует запор для выхлопных газов. Распределение регулируют механические элементы — клапаны, переключающие потоки.

Сейчас  выпускают усовершенствованные турбины, поэтому их популярность возрастает все больше . Турбокомпрессоры перспективны как в плане форсирования моторов, так и потому, что повышают экономичность двигателя, чистоту его выхлопа.

Принцип работы турбины, как работает турбина на дизельном двигателе

Если вам интересно, каков принцип работы турбины на дизельном двигателе, значит вы попали по адресу. О том, что такое дизельный турбокомпрессор и как он работает, вы узнаете в данной статье.

Как работает турбина на дизеле? Как работает турбина в дизельном двигателе?

Итак, турбокомпрессор — это небольшой воздушный насос, которых осуществляет работу всех элементов турбины. Как известно, турбина вращается с помощью особого тока, получаемого от собранных в процессе езды автомобиля газов. Учитывая тот факт, что скорость лопаток турбины разгоняются почти до скорости света, маневренность во время езды на автомобиле с турбиной значительно выше, чем в автомобилях без неё. Во время “зажигания”, турбина соединяется с жесткой осью и подает его в коллектор двигателя. Чем больше воздуха — тем выше мощность двигателя. Такие воздушные подушки позволяют сделать каждую поезду максимально комфортной, эффектной и маневренной. Именно эти причины вынуждают автолюбителей со всего мира покупать турбины высокого класса за доступную цену. Качество работы турбины на дизеле определяется уровнем всасываемого воздуха, уровнем сжатие этого воздуха, соотношении входа и выхода отработанных газов, мощность компрессора и турбины.

Как проверить работает ли турбина на дизеле? Как проверить справность турбины?

Турбина — штука непростая, но стоит всего лишь из корпуса и ротора. Газы, о которых мы говорили выше, попадают в специальных патрубок, проходят по небольшому каналу, ускоряются и приводят в движения лопатки турбокомпрессора. Как видите, принцип работы дизельного двигателя с турбиной заключается в скорости вращения турбины, благодаря переработанному воздуху. Что логично, скорость вращения лопаток напрямую зависит от размеров “улитки” турбины. К примеру, устройство грузовика может в несколько раз превышать размеры устройства легкового автомобиля, так как для полноценной работы турбины в большом агрегате, её корпус должен быть разделен на два отельных канала, которые поочередно перерабатывают воздух. Чтобы максимально облегчить давление воздушного потока, специалисты советуют устанавливать на турбине специальное кольцо. Компрессор, в свою очередь, производится из ротора и корпуса. Лопатки ротора, как правило, изготавливают из надежного алюминия, а форму имеют особую — улиточную. Это необходимо для того, чтобы воздух направлялся строго в центр ротора. Обычный режим работы турбокомпрессора включает в себя большое давление, которое регулярно сжимается. Важно знать, что все динамические прибора работают по принципу разности давлений.

СТО “Центр Турбин” предлагает вашему вниманию услуги по установке, реставрации и ремонту автомобильных турбин. Все наши специалисты имеют колоссальные знания и стаж работы с автомобильными турбинами. Именно поэтому качество наших услуг находится на высоком уровне. Если вы не знаете, какая турбина подходит именно вам, обратите внимание на мобильный номер, указанный на нашем сайте. Наши консультанты с радостью помогут вам выбрать модель турбины, удовлетворяющую все ваши запросы.

Принцип работы турбины. Принцип работы турбокомпрессора.

Турбокомпрессоры состоят из турбины и колеса центробежного нагнетателя (компрессора), установленных на общем валу. Для вращения турбины используется энергия отработавших газов, воздействующих на ее лопатки. Вращение турбины приводит в действие компрессор, который, в свою очередь, засасывает окружающий воздух, сжимает его и подает в цилиндры двигателя. Частота вращения ротора турбокомпрессора не зависит от частоты вращения коленчатого вала двигателя, но она в значительной степени определяется балансом энергии, получаемой турбиной и отдаваемой компрессору.

Различные области применения турбокомпрессоров требуют применения различных вариантов их конструкций. Однако практически все турбокомпрессоры имеют одни и те же элементы: ротор в сборе, который в сочетании с корпусом подшипника образует так называемый сердечник (картридж), а также кожух компрессора.

Турбокомпрессор, приводимый в действие отработавшими газами:
1 — кожух компрессора;
2 — колесо компрессора;
3 — кожух турбины;
4 — ротор;
5 — корпус подшипника;
6 — поступление отработавших газов;
7 — выход отработавших газов;
8 — вход атмосферного воздуха;
9 — выход сжатого воздуха;
10 — подача масла;
11 — выход масла

Уплотнительные кольца, устанавливаемые со стороны входа и выхода, служат для герметизации масляной камеры, расположенной вне корпуса подшипника. В особых случаях качество уплотнения может быть улучшено установкой воздухоуловителя или торцевого уплотнения с графитовыми прижимными элементами (со стороны компрессора). В основном применяются подшипники скольжения, которые установлены радиально и имеют двойные гладкие вкладыши плавающего типа или неподвижные гладкие вкладыши, в то время как для обеспечения осевой опоры используются вкладыши с клинообразной поверхностью. Подшипники турбокомпрессора смазываются моторным маслом системы смазки двигателя. Корпус подшипника не имеет дополнительных охлаждающих устройств. Поддержание температур ниже критических значений осуществляется применением теплового экрана и теплоизоляцией корпуса подшипника.

Жидкостное охлаждение корпусов подшипников применяется в том случае, если температура отработавших газов превышает 850°С.

Кожух компрессора обычно изготавливается методом литья из алюминия. В кожух может быть вмонтирован перепускной воздушный клапан. Такие клапаны используются исключительно в наддувных двигателях с искровым зажиганием для предотвращения повышения давления компрессором, когда происходит быстрый сброс нагрузки двигателя.

Для изготовления кожухов турбин используются сплавы сортов от GGG 40 до NiResist Д5 (в зависимости от температуры отработавших газов). Турбокомпрессоры, используемые на двигателях грузовых автомобилей, содержат кожух турбины, в котором два газовых потока объединяются непосредственно перед попаданием на лопатки турбины. Эта конструкция кожуха применяется при организации получения импульсного наддува, когда давление отработавших газов дополняется их кинетической энергией.

При работе турбокомпрессора с постоянным давлением на турбину поступает только энергия отработавших газов и поэтому может быть применена турбина, кожух которой имеет окно для впуска отработавших газов. Такая конструкция особенно распространена на судовых двигателях при использовании турбин с жидкостным охлаждением. Турбокомпрессоры мощных двигателей часто имеют перед турбиной кольцевое сопло. Такое сопло обеспечивает получение равномерного и неразрывного потока газа, поступающего на лопатки турбины с одновременной возможностью проведения тонкой регулировки расхода газа.

Турбокомпрессоры этого типа, устанавливаемые на легковых автомобилях, обычно имеют однопоточные кожухи турбин. Если двигатель такого автомобиля работает в широком диапазоне частот вращения, то необходимы механизмы управления турбокомпрессором, поддерживающие давление наддува на относительно постоянном уровне во всем рабочем диапазоне. Обычно направляют часть отработавших газов от двигателя в обход турбины компрессора посредством управляющего механизма, выполненного в виде перепускного клапана или заслонки.

Такой механизм имеет пневматический привод. При использовании средств микроэлектроники управление давлением наддува может выполняться в функции программируемых режимов работы двигателя. Перспективные управляющие механизмы будут электро-или электронноприводными.

Энергия отработавших газов может быть использована более эффективно при применении управляющих систем, например, турбины с изменяемой геометрией лопаток.

Такие конструкции получили наибольшее признание, т.  к. они сочетают в себе широкий диапазон управляющих функций и высокий к.п.д.

Установку угла расположения лопаток осуществляет поворотное регулировочное кольцо. Лопатки могут поворачиваться на требуемый угол специальными кулачками или рычагами. Пневматические исполнительные устройства могут работать как от источника отрицательного (вакуум), так и положительного давления. Микроэлектронная система управления обеспечивает оптимальное давление наддува на всем рабочем диапазоне ДВС.

В двигателях легковых автомобилей небольшой мощности нашли применение турбины с золотниковым регулированием (VST). Турбина VST работает аналогично турбине с неизменной геометрией, с той разницей что первоначально открывается один из двух каналов золотника. При достижении максимально допустимого давления наддува золотник, непрерывно перемещаясь в осевом направлении, открывает второй канал. Каналы выполнены так, чтобы наибольшая часть потока отработавших газов направлялась к турбине. Оставшаяся часть отработавших газов, за счет дальнейшего перемещения регулирующего золотника, направляется в обход крыльчатки компрессора внутри турбонагнетателя.

О новейших технологиях турбонаддува, последовательном и параллельном наддуве и турбинах с изменяемой геометрией читайте в нашей статье «системы турбонаддува Ауди и Фольксваген» в разделе «технологии».

Устройство турбокомпрессора (турбины) двигателя. Принцип работы — ЭнергоТехСтрой, Челябинск

Современная сельскохозяйственная техника оснащается турбокомпрессором. Он направляет воздух в цилиндры посредством газов, которые выходят из двигателя. Вследствие такого наддува воздух попадает в цилиндры под высоким давлением в больших объемах. Устройство турбокомпрессора позволяет повысить мощность техники, а расход топлива наоборот снизить.

Устройство турбокомпрессора

Турбина двигателя (турбокомпрессор двигателя) состоят из нескольких элементов:

  • Газовая турбина;
  • Компрессор;
  • Крыльчатка и улитка;
  • Подшипники, клапаны, гайки и другие крепежные элементы;
  • Насос;
  • Связующая ось.

Колеса турбокомпрессора двигателя крепко фиксируются на одном валу и помещаются в корпуса. У компрессора корпус изготовлен из алюминия, а у турбины – из сплава чугуна.

Принцип работы турбины двигателя

Устройство турбокомпрессора позволяет газам стремительно направляться через трубопровод в газовую турбину. Оттуда при помощи высокого давления по сопловому аппарату газы переходят на лопатки колеса, благодаря чему газовая турбина вращается с огромной скоростью. И только после всех этих действий газы выводятся в атмосферу сквозь глушитель.

Когда колесо турбокомпрессора двигателя (турбины двигателя) крутится, оно захватывает воздух, который поступает из атмосферы при помощи воздухоочистителя. Вследствие чего воздух направляется на лопасти компрессора, стремительно раскручивается и сжимается. После этого он под сильным давлением попадает в цилиндры. Из-за постоянного избыточного давления в трубопроводе важно смазывать его дизельным топливом.

Чем больше будет плотность воздуха, подаваемого в цилиндры, тем выше мощность турбины двигателя (турбокомпрессора двигателя), а удельный расход топлива намного меньше. Повысить плотность воздуха можно охлаждая воздух, который выходит из компрессора в цилиндры.

Получить более подробную информацию об устройстве турбокомпрессора вы можете у наших специалистов.

Конструкция, принцип действия и установка турбокомпрессора

Конструкция, принцип действия и установка турбокомпрессора

Каждый автолюбитель хоть раз, но слышал слова «турбокомпрессор», «турбина» или, по-другому, – «газотурбинный нагнетатель». При упоминании турбокомпрессора или турбонаддува автовладелец сразу же думает о мощности и быстроте, ведь именно с этими словами и связан турбокомпрессор.

Что именно происходит под капотом Вашего автомобиля и в двигателе, снабженном турбиной, мы и расскажем в данной статье.

Турбокомпрессор аналогичен воздушному насосу. То есть турбокомпрессор – это конструкция, состоящая из самого компрессора и газовой турбины.

Компрессор состоит из ротора и корпуса. Лопатки ротора компрессора имеют особенную форму, которая позволяет им засасывать воздух через центр ротора и отбрасывать его на стенки корпуса компрессора. Благодаря этому происходит сжатие воздуха, и через впускной коллектор он попадает в двигатель. Габариты компрессора зависят от скорости вращения турбины и от количества воздуха, необходимого двигателю.

Газовая турбина также состоит из ротора и корпуса. Горячие отработанные газы, выходящие из выпускного коллектора, проходят по внутреннему каналу газовой турбины и попадают в турбокомпрессор. Этот канал постепенно начинает сужаться, и газы, проходящие через него, ускоряются и попадают в корпус, который выполнен в форме улитки. Оттуда отработанные газы направляются к ротору турбины и приводят ее во вращение.

Принцип работы турбокомпрессора

Принцип работы турбокомпрессора заключается в следующем: энергия, которая необходима для сжатия воздуха, поступает от турбины, что совершает обороты за счет энергии потока отработанных газов.

При максимальной энергии отработанных газов и турбина будет вращаться гораздо быстрее. В свою очередь, компрессор тоже будет вращаться быстрее и закачивать больше воздуха.

Коэффициент полезного действия двигателя внутреннего сгорания напрямую зависит от того, какое количество воздуха попадет в цилиндры ДВС. Чем больше воздуха в цилиндрах, тем больше сгорает топлива, за счёт этого влияния турбокомпрессора на двигатель и повышается мощность мотора.

Несмотря на то, что принцип работы турбокомпрессора очень прост, сам агрегат представляет собой довольно тонкое устройство. Для турбокомпрессора требуется исключительно точная подгонка деталей внутри самого устройства и идеально слаженная работа турбокомпрессора и двигателя. При отсутствии слаженной работы между этими деталями последний не только будет работать неэффективно, но и может быть испорчен. Поэтому очень важно следовать технологии установки и обслуживания.

В нашем ассортименте представлен широкий выбор турбокомпрессоров от лидеров производства в этой области. В розничных магазинах и на территории оптовых центров Вы можете приобрести турбокомпрессоры БЗА,чешские турбокомпрессоры CZ Strakonice, турбокомпрессоры ЯМЗ, турбокомпрессоры HYUNDAI, а также скачать подробную инструкцию по установке турбокомпрессора.


ИНСТРУКЦИЯ ПО УСТАНОВКЕ ТУРБОКОМПРЕССОРА

   

Внимание!

Запрещается применять любые герметики. Куски и обрывки герметика выводят турбину из строя.

Исключите попадание песка и пыли в маслоподающую и маслосливную магистраль. Песок из турбины не вымывается. Он измельчается, оставаясь в подшипниках скольжения.

Соблюдайте правила пожарной безопасности.

Помните:

Несоблюдение правил установки турбокомпрессора ведет к его поломке!

Воздушный фильтр:

  • проверьте герметичность коробки и крепления крышки воздушного фильтра;
  • почистите коробку фильтра и заборный патрубок;
  • промойте воздушные патрубки от фильтра к турбине, от турбины к всасывающему коллектору двигателя и коллектор двигателя от пыли и налипшего песка.

Турбокомпрессор:

  1. Приведите ротор турбины в движение пальцами и запомните, с каким усилием он вращается. При последующих работах периодически прокручивайте ротор, сравнивая усилие вращения.
  2. Перед соединением с турбиной промойте бензином маслоподающую магистраль.
  3. Перед монтажом маслоподающего патрубка залейте в турбину масло, пользуясь шприцом и прокручивая ротор рукой.
  4. Не затягивайте основательно маслоподающую трубку, чтобы получить визуальное подтверждение наличия подачи масла.
  5. Убедитесь в том, что есть свободный слив масла в поддон картера продувкой магистрали.
  6. Прикрутите все патрубки от фильтра к турбине, кроме воздуховодного, для того, чтобы можно было контролировать вращение ротора визуально.
  7. Запустите двигатель на 10-20 секунд. Контролируйте появление масла из незатянутого до конца стыка маслоподающего шланга.
  8. Проверьте усилие вращения ротора турбины (п.2).
  9. Если масло не появилось, повторите п.п.8,9 два-три раза до появления масла.
  10. Затяните маслоподающий шланг, заведите двигатель на одну минуту.
  11. Проверьте, как крутится ротор турбины рукой.
  12. Если нет изменений усилия вращения ротора, наденьте воздуховодный патрубок от фильтра к турбине, затяните и проверьте крепление хомутов, запустите двигатель, прогрейте двигатель на холостом ходу, проверьте работу турбины на различных режимах двигателя.
  13. При появлении посторонних звуков, исходящих от турбины (вой, свист и т.д.) на различных оборотах двигателя, а также при появлении масла в воздуховодных патрубках, немедленно заглушите двигатель и обратитесь к специалистам. Не принимайте никаких действий по разборке турбины.

Практические советы по обслуживанию турбокомпрессора

Если двигатель нуждается в ремонте, а признаки указывают, что неисправность связана с турбокомпрессором, важно точно установить, поврежден турбокомпрессор или нет. Это можно сделать, пользуясь таблицей, приведенной на стр. 5. Если точно установлено, что турбокомпрессор неисправен, нужно обязательно отыскать причину этого. Если ее не устранить, новый турбокомпрессор, установленный взамен неисправного, тоже выйдет из строя; иногда это происходит впервые же секунды после запуска двигателя.

Чтобы быть уверенным в качестве приобретаемого нового или отремонтированного турбокомпрессора, рекомендуется покупать его у официальных дилеров производителя, а ремонтировать только в фирмах, имеющих специальное оборудование и разрешение, подтвержденное сертификатом соответствия. При самостоятельной установке турбокомпрессора следует выполнять приведенные указания:

  • Сливные маслопроводы: снять и полностью прочистить. Убедиться в отсутствии вмятин, повреждений, пережатий. Случается, что шланги и резиновые патрубки через некоторое время разбухают изнутри, что затрудняет движение масла. В случае сомнений рекомендуется заменить резиновые части новыми деталями.
  • Сапун двигателя: снять и полностью очистить. Нужно следовать тем же указаниям, что и для маслопроводов. Проверить, при необходимости заменить клапаны (если они есть). На сапуне часто устанавливают небольшой конденсатор масла. Его также нужно очистить и проверить.
  • Герметик: не использовать жидкий герметик вокруг подающих и сливных маслопроводов. Большинство материалов этого типа могут растворяться в горячем масле, загрязняя его, что вызывает повреждение подшипников турбокомпрессора.
  • Масло и фильтр: заменить масло в двигателе, а также воздушный и масляный фильтры.
  • Предварительная смазка: перед окончательной установкой соединений системы смазки турбокомпрессор должен быть предварительно смазан через отверстие для подвода масла.
  • Запуск: после установки турбокомпрессора запустите двигатель и дайте ему поработать две минуты на холостом ходу. Затем постепенно увеличивайте число оборотов. Совершите пробную поездку. Проверьте установку, чтобы выявить возможные утечки воздуха, отработанных газов или масла.

НЕИСПРАВНОСТИ

АДвигатель глохнет при разгоне
БНедостаток мощности двигателя
ВЧерный выхлоп
ГЧрезмерный расход масла
ДГолубой выхлоп
ЕШум в турбокомпрессоре
ЖПовторяющийся звук в ТКР
3Утечка масла через уплотнение компрессора
ИУтечка масла через уплотнение турбины
АБВГДЕЖ3ИПричинаСпособ устранения
    Элемент воздушного фильтра забитЗамените фильтрующий элемент
   Помехи во впускном канале компрессораУдалите помехи или замените поврежденные детали
      Помехи в выпускном канале компрессораУдалите помехи или замените поврежденные детали
      Помехи во впускном коллекторе двигателяВ соответствии с инструкцией по эксплуатации двигателя удалите помехи во впускном «коллекторе двигателя
        Утечка воздуха в канале, соединяющем воздушный фильтр и впускной канал компрессораЛибо замените прокладки, либо подтяните соединение
    Утечка воздуха в канале, соединяющем выпускной канал компрессора и впускной коллектор двигателяЛибо замените прокладки, либо подтяните соединение
    Утечка воздуха в соединении впускного коллектора и двигателяВ соответствии с инструкцией по эксплуатации двигателя либо замените прокладки, либо подтяните соединение
  Помеха в выпускном коллектореВ соответствии с инструкцией по эксплуатации двигателя удалите помеху
      Помеха в выпускной системеЛибо удалите помеху, либо замените неисправные элементы
     Утечка газов в соединениях выпускного коллектора и двигателяВ соответствии с инструкцией по эксплуатации двигателя либо замените прокладки, либо подтяните соединение
     Утечка газов из входного канала турбины в соединении с выпускным коллекторомЛибо замените прокладку, либо подтяните соединение
        Утечка газов в системе после выпускного канала турбиныВ соответствии с инструкцией по эксплуатации двигателя исправьте утечку газов
     Помехи в сливной гидролинии ТКРЛибо удалите помехи, либо замените патрубок сливной гидролинии
     Помехи в системе вентиляции картера двигателяВ соответствии с инструкцией по эксплуатации двигателя удалите помехи из системы вентиляции
     Картридж ТКР либо закоксован, либо в нем произошло отложение осадкаЗамените масло, масляный фильтр и отремонтируйте или замените ТКР
       Топливная система либо вышла из строя, либо плохо отрегулированаВ соответствии с инструкцией по эксплуатации двигателя отрегулируйте топливную систему и замените поврежденные детали
       Некорректная работа распредвалаВ соответствии с инструкцией по эксплуатации двигателя замените изношенные детали
   Изношены либо поршневые кольца, либо цилиндры (прорыв газов)В соответствии с инструкцией по эксплуатации отремонтируйте двигатель
   Внутренние неполадки в двигателе (клапаны, поршни)В соответствии с инструкцией по эксплуатации отремонтируйте двигатель
 Грязь пригорела к колесу компрессора или к лопастям диффузораОчистите колесо, найдите и удалите источник грязного воздуха, замените масло и масляный фильтр
  Поврежден ТКРОпределите причину повреждения и замените ТКР
        Неисправность перепускного клапанаПроверьте правильность работы перепускного клапана и его привода
        Высокое давление наддува, отключение зажиганияПроверьте правильность работы перепускного клапана и его привода, замените неисправные детали

Поиск неисправностей в турбокомпрессорах

На нормально работающем двигателе, который своевременно и качественно обслуживается, турбокомпрессор может безотказно работать в течение долгих лет.

Проявление неисправностей может быть следствием:

  • плохой регулировки топливной аппаратуры;
  • недостаточного давления в масляной системе;
  • попадания в турбокомпрессор посторонних предметов;
  • загрязненного масла;
  • разбалансировки ротора;
  • длительной работы двигателя на минимальных оборотах;
  • неправильной остановки двигателя;
  • загрязнения воздушного и масляного фильтров.

Часто турбокомпрессоры снимают с двигателя без предварительной проверки необходимости этого. Ремонт турбокомпрессора можно производить, лишь убедившись в отсутствии неисправностей в двигателе. В большинстве случаев это позволяет избежать бесполезной замены турбокомпрессора.

Чаще всего встречаются следующие признаки неисправностей, связанных с турбокомпрессором:

  • двигатель не развивает полную мощность;
  • черный дым из выхлопной трубы;
  • синий дым из выхлопной трубы;
  • повышенный расход масла;
  • шумная работа турбокомпрессора.

1. Низкая мощность двигателя, черный дым из выхлопной трубы

Оба признака являются следствием недостаточного поступления воздуха в двигатель, причиной чего может быть засорение канала подвода воздуха либо его утечка из впускного или выпускного коллектора. Для этого необходимо проверить следующие элементы:

  • воздушный фильтр;
  • крепления воздуховодов;
  • выпускной коллектор, его уплотнения, систему выпуска;
  • турбокомпрессор (следы трения роторов турбины и турбокомпрессора).

Для начала нужно запустить двигатель, после чего прослушать шум, производимый турбокомпрессором.

Имея некоторый опыт, можно довольно быстро определить утечку воздуха между выходом турбокомпрессора и двигателем по свисту, который возникает при этом. После этого проверьте, не засорен ли воздушный фильтр.

Проверьте (в случае необходимости) количество поступающего воздуха, пользуясь техническими данными турбокомпрессора. Затем заглушите двигатель, снимите уплотнение между воздушным фильтром и турбокомпрессором и проверьте отсутствие или наличие выброса масла из турбокомпрессора.

Проверьте отсутствие повреждений гофры соединения воздушного фильтра и турбокомпрессора, продуйте или замените воздушный фильтр.

Кассета воздушного фильтра должна быть сухой. Промойте и продуйте воздухом охладитель воздуха, расположенный между турбокомпрессором и воздуховодом подачи воздуха на двигатель. Убедитесь в отсутствии прорывов выхлопных газов из-под креплений выхлопного коллектора, проверьте надежность крепления резьбовых соединений выхлопного коллектора.

Теперь повращайте вал турбокомпрессора, чтобы установить, свободно ли он вращается, нет ли повышенного износа или повреждения ротора турбины или турбокомпрессора. Обычно ось всегда имеет небольшой люфт, но если при вращении турбокомпрессора рукой ротор турбины и турбокомпрессора задевает или трется о корпус, налицо явный износ, требующий капитального ремонта турбокомпрессора.

Если после проверки всех элементов неисправности не обнаружены, значит падение мощности возникло не из-за турбокомпрессора. Необходимо искать неисправности в самом двигателе.

2. Синий дым из выхлопной трубы

Появление синего дыма является следствием сгорания масла, причиной которого может быть либо его утечка в турбокомпрессоре, либо неисправности в двигателе.

Нужно проверить следующие элементы:

  • воздушный фильтр;
  • трубу сливного маслопровода и сапун двигателя.

Прежде всего проверьте воздушный фильтр: любое препятствие на пути воздуха к турбокомпрессору может стать причиной утечки масла со стороны турбокомпрессора. В этом случае за ротором турбокомпрессора образуется разряжение, что вызывает засасывание масла из среднего корпуса.

Следующим этапом проверки будет снятие корпусов турбины и турбокомпрессора для проверки свободного вращения вала и отсутствия повреждений роторов.

Затем проверьте сливной маслопровод от турбокомпрессора к корпусу двигателя на отсутствие повреждений, сужений и пробок.

Засорение этого маслопровода или повышенное давление в картере двигателя (в большинстве случаев вызываемое засорением системы вентиляции картера) приводит к тому, что масло из турбокомпрессора не возвращается в масляный картер двигателя. Проверьте, не повышено ли давление газов в картере.

Используйте масло, рекомендуемое производителем для двигателей с турбонаддувом!

Не следует упускать из виду тот факт, что в масляный картер сливается не только масло, в нем присутствует также часть отработанных газов и сжатого воздуха, из турбины и турбокомпрессора. В этой смеси на одну часть масла приходится 4-5 частей газов.

В последнюю очередь снимите выпускной коллектор двигателя и проверьте наличие следов масла. Если следы масла не обнаружены — ищите неисправность в двигателе.

3. Повышенный расход масла (без синего дыма)

Проверьте воздушный фильтр, а затем крепления корпуса турбины турбокомпрессора и давление в нем. Оцените люфт в роторе турбокомпрессора, проверьте отсутствие следов износа от трения ротора турбокомпрессора и турбины о стенки соответствующих корпусов. Это обнаруживается по люфту вала ротора турбокомпрессора.

Если ничего необычного не выявлено, следует искать неисправность за пределами турбокомпрессора. Иногда постоянная утечка масла происходит через турбину турбокомпрессора, притом, что она находится в исправном состоянии. Практика показывает, что «виноват» в этом засоренный сливной маслопровод или повышенное давление в масляном картере двигателя. Как уже разъяснялось выше, по этому маслопроводу течет не только масло, но и большое количество газов. Поэтому идеальной формой для этого маслопровода была бы прямая труба, отходящая от турбокомпрессора и без изгибов идущая в масляный картер двигателя, вывод которой в картере располагался бы чуть выше нормального уровня масла в нем. Важным является также диаметр маслопровода. В случае турбокомпрессоров небольшого размера, таких как Garret 73, 704B или 3LD Holset-KKK-Shwitzer, диаметр маслопровода составляет 20 мм. Как говорилось выше, в идеале труба маслопровода должна напрямую, без изгибов и горизонтальных частей, соединять турбокомпрессор с картером двигателя. Однако большинство сливных маслопроводов очень редко бывают подобной формы. При значительном износе двигателя возникают трудности со сливом масла.

4. Шумная работа турбокомпрессора

Если турбокомпрессор шумит при работе, следует проверить следующие элементы:

  • крепление воздуховодов;
  • систему выпуска;
  • подшипники (отсутствие повреждений из-за нехватки масла или загрязненного масла).

Проверьте все трубопроводы, находящиеся под давлением: вход и выход турбокомпрессора, систему выпуска.

Полностью снимите сливной маслопровод и трубку сапуна. Тщательно проверьте, не засорились и не пережаты ли они.

Проверьте легкость вращения оси турбины и отсутствие трения роторов турбины и турбокомпрессора и их повреждения посторонними предметами. Если установлено, что роторы трутся или повреждены, снимите и замените турбокомпрессор.

Ни в коем случае не используйте герметик для крепления подающего и сливного маслопроводов турбокомпрессора. Большинство герметиков при контакте с горячим маслом растворяются в нем. Такое загрязненное масло может повредить подшипники и кольца турбокомпрессора.

Очень часто остатки герметика вызывают засорение масляных каналов внутри турбокомпрессора.

Не забудьте смазать турбокомпрессор перед его установкой. Промойте двигатель, замените масло, установите новые масляный и воздушный фильтры.

Следует обращать внимание на правильность запуска и остановки двигателя с турбокомпрессором. Если заглушить двигатель, работающий на высоких оборотах, турбокомпрессор продолжает вращаться без смазки, потому что давление моторного масла почти равно нулю. При этом повреждаются подшипники и кольца турбокомпрессора.

Другие статьи

#Клапан МАЗ включения привода сцепления

Клапан МАЗ включения привода сцепления

27. 07.2021 | Статьи о запасных частях

Многие модели автомобилей МАЗ оснащаются приводом выключения сцепления с пневматическим усилителем, важную роль в работе которого играет клапан включения привода. Все о клапанах включения привода сцепления МАЗ, их типах и конструкции, а также о подборе, замене и ТО данной детали — узнайте из статьи.

Эксплуатация и принцип работы турбины на дизельном двигателе

Гениальная идея использования выхлопных газов для разгона ротора позволила создать турбированный дизельный двигатель внутреннего сгорания и увеличить его мощность на 40–50%. Это притом, что во время работы в обычном режиме выброс газов сопровождается снижением коэффициента полезного действия в пределах 30 — 40%.

Принцип работы турбины дизельного двигателя основан на увеличении количества воздуха, смешиваемого с топливом и поступающего в камеру сгорания. За один и тот же период времени и при равных объемах цилиндров, двигатель с турбонаддувом может сжечь большее количество топлива, чем движок, не оснащенный таким устройством. А значит, его мощность и КПД в единицу времени значительно возрастет.

Рассмотрим устройство турбины дизельного двигателя, как работает, и каким образом достигаются такие показатели.

Конструктивные элементы системы

Для осуществления возложенных функций, система турбонаддува состоит из двух основных частей:

  1. Компрессор;
  2. Турбина.

Компрессор служит для нагнетания атмосферного воздуха в систему подачи топлива. Он состоит из корпуса и расположенной в нем крыльчатки, которая, вращаясь, всасывает воздух. Чем выше ее скорость вращения, тем больше объем принятого воздуха. Увеличению скорости способствует работа турбины.

Она также состоит из корпуса с крыльчаткой (ротором), которая приводится в движение выхлопными газами. В корпусе газы проходят через специальный канал, имеющий форму улитки, что позволяет им увеличить скорость.

Как работает турбонаддув дизельного двигателя

Ротор турбины и крыльчатка компрессора жестко закреплены на одном валу. Таким образом, скорость вращения ротора передается крыльчатке. Круг замыкается:

  • Через компрессор воздух из атмосферы, смешиваясь с топливом, подается в цилиндры двигателя;
  • Смесь сгорает, приводя в движение поршни, и образовавшиеся в результате газы поступают в выпускной коллектор;
  • Здесь они принимаются в корпус турбины, разгоняются в канале и на выходе взаимодействуют с ротором, заставляя его вращаться;
  • Ротор через вал передает вращение крыльчатке компрессора, которая всасывает в корпус атмосферный воздух.

Получается взаимосвязанная схема работы, когда количество всасываемого воздуха зависит от скорости вращения крыльчатки и, наоборот, крыльчатка вращается быстрее при большем количестве забираемого воздуха.

Принцип работы турбонаддува имеет два момента, называемые турбоямой и турбоподхватом.

Первый момент характеризуется задержкой в работе турбины после увеличения подачи топлива нажатием на педаль газа, так как для разгона ротора выхлопными газами требуется время.

Вслед за турбоямой наступает момент турбоподхвата, когда разогнавшийся ротор резко увеличивает подачу воздуха в цилиндры, повышая мощность двигателя.

Регулировка давления наддува

Турбонаддув дизельного двигателя повышает его мощность за счет возрастания давления выхлопных газов, являющихся результатом увеличения числа оборотов и интенсивности работы мотора. Этот же процесс повышает давление наддува. Если его не регулировать, то на самых высоких оборотах оно может достичь опасных значений, приводящих к поломкам и механическим повреждениям.

Регулировка давления производится с помощью выпускного предохранительного клапана, а контроль максимально допустимого значения — с помощью мембраны и пружины определенной жесткости.

Суть работы: при достижении предельного значения давления, мембрана, установленная в корпусе компрессора, преодолевает воздействие пружины и открывает регулировочный клапан.

Давление регулируют как на стороне компрессора, так и на стороне турбины:

  1. Работающий турбокомпрессор сбрасывает в атмосферу через выпускной клапан излишки забранного воздуха, тем самым снижая давление.
  2. В турбине клапан выпускает отработанные газы под воздействием мембраны компрессора, когда давление всасываемого воздуха достигает максимального уровня. Благодаря этому, ротор вращается с установленной скоростью, а компрессор не забирает лишний воздух и не увеличивает давление.

Второй вариант расположения клапана позволяет изготавливать системы меньших габаритов. Кроме того, турбонагнетатель с клапаном в компрессоре подвержен чрезмерному нагреву из-за повышенной температуры выпускаемого воздуха, что негативно сказывается на эффективности его работы.

Поэтому турбонаддув дизельного двигателя чаще оснащают регулировочным клапаном в турбине, а регулировку в компрессоре используют в качестве дополнения.

Система смазки

Смазка вала турбонагнетателя осуществляется смазочной системой двигателя.

На вал устанавливают уплотнительные кольца, предотвращающие проникновение масла в полости корпусов компрессора и турбины. Они же предохраняют корпуса от перегрева. Но герметичность обеспечивается не столько уплотнениями, сколько разностью величины давления в различных частях агрегата. Эту разницу давлений создает турбинная ось (вал), имеющая неравномерный диаметр.

Особая форма литья корпуса, в котором расположен вал, также способствует удержанию масла.

Если мотор не развивает требуемую мощность, это может быть симптомом неисправности турбонаддува. Наиболее часто встречающиеся проблемы — загрязнение воздушного фильтра или потеря герметичности впускного коллектора. Кроме потери мощности, их можно диагностировать по несвойственному для исправной машины цвету и количеству дыма, выходящего из выхлопной трубы.

Недостатки турбокомпрессоров

Принцип работы турбины на дизельном двигателе создает и негативные факторы:

  • Повышенный расход горючего. Возможность сжечь большее количество солярки за счет увеличенного объема подачи воздуха, вместе с мощностью повышает и «прожорливость» машины. Уменьшить аппетит до разумных пределов позволяет правильная регулировка системы.
  • Положительные стороны наддува приводят к многократному повышению температуры во время такта сжатия, что может вызвать детонацию в двигателе. Решается эта проблема установкой охладителей, регуляторов и прочих элементов.

Правила эксплуатации

Чтобы в полной мере использовать ресурс турбины дизельного мотора и продлить ее срок службы, необходимо выполнять ряд условий:

  • Регулярно менять масло в системе, чтобы не допустить попадания абразива в маслопровод и его засорения.
  • Применять только качественное масло, имеющее сертификат, той марки, которая соответствует указанной в паспортных данных двигателя.
  • Прогревать мотор перед началом движения и не давать холодному двигателю высоких нагрузок.
  • Никогда резко не отключать движок, а после остановки автомобиля давать ему возможность поработать несколько секунд на холостых оборотах.

Как работает ветряная турбина

От огромных ветряных электростанций, вырабатывающих электроэнергию, до небольших турбин, приводящих в действие один дом, ветряные турбины по всему миру производят чистую электроэнергию для различных энергетических нужд.

В Соединенных Штатах ветряные турбины становятся обычным явлением. С начала века общая мощность ветроэнергетики в США увеличилась более чем в 24 раза. В настоящее время в США достаточно ветроэнергетических мощностей для выработки электроэнергии, достаточной для питания более 15 миллионов домов, что помогает проложить путь к экологически чистой энергии будущего.

Что такое ветряная турбина?

Концепция использования энергии ветра для выработки механической энергии восходит к тысячелетиям. Еще в 5000 году до нашей эры египтяне использовали энергию ветра для передвижения лодок по реке Нил. Американские колонисты использовали ветряные мельницы для измельчения зерна, перекачивания воды и распиловки древесины на лесопилках. Сегодняшние ветряные турбины — это современный эквивалент ветряной мельницы, преобразующий кинетическую энергию ветра в чистую возобновляемую электроэнергию.

Как работает ветряная турбина?

Большинство ветряных турбин состоит из трех лопастей, установленных на башне из стальных труб.Реже встречаются варианты с двумя лопастями, с бетонными или стальными решетчатыми башнями. На высоте 100 футов или более над землей башня позволяет турбине использовать преимущества более высоких скоростей ветра, обнаруживаемых на больших высотах.

Турбины улавливают энергию ветра с помощью лопастей, похожих на пропеллер, которые действуют как крыло самолета. Когда дует ветер, с одной стороны лезвия образуется карман с воздухом низкого давления. Затем воздушный карман низкого давления притягивает к себе лезвие, вызывая вращение ротора.Это называется лифтом. Сила подъемной силы намного сильнее, чем сила ветра на передней стороне лопасти, что называется сопротивлением. Комбинация подъемной силы и сопротивления заставляет ротор вращаться как пропеллер.

Ряд шестерен увеличивают вращение ротора с примерно 18 оборотов в минуту до примерно 1800 оборотов в минуту — скорость, которая позволяет генератору турбины вырабатывать электричество переменного тока.

Обтекаемый корпус, называемый гондолой, содержит ключевые компоненты турбины — обычно включая шестерни, ротор и генератор — находятся внутри корпуса, называемого гондолой.Некоторые гондолы, расположенные на вершине турбинной башни, достаточно велики, чтобы на них мог приземлиться вертолет.

Другой ключевой компонент — это контроллер турбины, который не позволяет скорости ротора превышать 55 миль в час, чтобы избежать повреждения сильным ветром. Анемометр непрерывно измеряет скорость ветра и передает данные контроллеру. Тормоз, также расположенный в гондоле, останавливает ротор механически, электрически или гидравлически в аварийных ситуациях. Изучите интерактивный рисунок выше, чтобы узнать больше о механике ветряных турбин.

Типы ветряных турбин

Есть два основных типа ветряных турбин: с горизонтальной осью и с вертикальной осью.

Большинство ветряных турбин имеют горизонтальную ось: конструкция в виде пропеллера с лопастями, вращающимися вокруг горизонтальной оси. Турбины с горизонтальной осью работают либо против ветра (ветер ударяет лопасти перед башней), либо по ветру (ветер бьет в башню перед лопастями). Турбины против ветра также включают в себя привод рыскания и двигатель — компоненты, которые вращают гондолу, чтобы ротор был обращен к ветру при изменении его направления.

Несмотря на то, что существует несколько производителей ветряных турбин с вертикальной осью, они не проникли на рынок коммунальных услуг (мощностью 100 кВт и более) в той же степени, что и турбины с горизонтальным доступом. Турбины с вертикальной осью делятся на две основные конструкции:

  • Drag-based или Savonius, турбины обычно имеют роторы с твердыми лопастями, которые вращаются вокруг вертикальной оси.
  • Лифтовые турбины, или турбины Дарье, имеют высокий вертикальный аэродинамический профиль (некоторые из них имеют форму взбивания яиц).Windspire — это тип лифтовой турбины, которая проходит независимые испытания в Национальном центре ветроэнергетики Национальной лаборатории возобновляемых источников энергии.
Приложения для ветряных турбин

Ветровые турбины используются в самых разных сферах — от использования морских ветровых ресурсов до выработки электроэнергии для одного дома:

  • Большие ветряные турбины, чаще всего используемые коммунальными предприятиями для подачи энергии в сеть, варьируются от 100 киловатт до нескольких мегаватт.Эти промышленные турбины часто объединяются в ветряные электростанции для производства большого количества электроэнергии. Ветряные электростанции могут состоять из нескольких или сотен турбин, обеспечивающих мощность, достаточную для десятков тысяч домов.
  • Небольшие ветряные турбины мощностью до 100 киловатт обычно устанавливаются рядом с местами, где будет использоваться вырабатываемая электроэнергия, например, возле домов, телекоммуникационных тарелок или водонасосных станций. Небольшие турбины иногда подключаются к дизельным генераторам, батареям и фотоэлектрическим системам.Эти системы называются гибридными ветровыми системами и обычно используются в удаленных, автономных местах, где нет подключения к коммунальной сети.
  • Морские ветряные турбины используются во многих странах для использования энергии сильных, постоянных ветров, возникающих у береговых линий. Потенциал технических ресурсов ветров над прибрежными водами США достаточен для выработки более 4000 гигаватт электроэнергии, что примерно в четыре раза превышает генерирующие мощности нынешних США.электроэнергетическая система. Хотя не все эти ресурсы будут освоены, это дает прекрасную возможность обеспечить энергией густонаселенные прибрежные города. Чтобы воспользоваться преимуществами огромных морских ветровых ресурсов Америки, Департамент инвестирует в три демонстрационных проекта оффшорной ветроэнергетики, предназначенных для развертывания морских ветровых систем в федеральных водах и водах штата к 2017 году.
Будущее ветряных турбин

Для обеспечения будущего роста США ветроэнергетика, ветровая программа Министерства энергетики работает с отраслевыми партнерами, чтобы повысить надежность и эффективность ветряных турбин, а также снизить затраты.Исследования, проводимые в рамках программы, помогли увеличить средний коэффициент использования мощности (показатель производительности электростанции) с 22 процентов для ветряных турбин, установленных до 1998 года, до более чем 32 процентов для турбин, установленных в период с 2006 по 2012 годы. от 55 центов за киловатт-час (кВтч) в 1980 году до менее 6 центов за киловатт час сегодня в районах с хорошими ветровыми ресурсами.

Ветряные турбины предлагают уникальную возможность использовать энергию в регионах, где население нашей страны нуждается в ней больше всего.Это включает в себя потенциал оффшорного ветра для обеспечения энергией населенных пунктов вблизи береговой линии и способность наземного ветра доставлять электроэнергию в сельские общины с несколькими другими местными источниками энергии с низким содержанием углерода.

Министерство энергетики продолжает работу по развертыванию ветровой энергии в новых районах на суше и на море и обеспечению стабильной и безопасной интеграции этой энергии в электрическую сеть нашей страны.

(PDF) Принципы работы газовой турбины

Эффективность цикла Брайтона довольно низкая, прежде всего потому, что значительная часть

подводимой энергии уходит в окружающую среду.Эта исчерпанная энергия обычно имеет относительно высокую температуру

, и поэтому ее можно эффективно использовать для выработки энергии.

Одним из возможных приложений является комбинированный цикл Брайтона Ренкина, в котором выхлопные газы с высокой температурой

, выходящие из газовой турбины, используются для подачи энергии в котел

цикла Ренкина, как показано на рис. 3.12. Обратите внимание, что температура T

9

газов цикла Брайтона, выходящих из котла, меньше температуры T

3

пара цикла Ренкина

, выходящего из котла; это возможно в теплообменнике противотока

, котле.

7.7 Одно- и многовальное исполнение

Газовая турбина может быть одно- или многовальной конфигурации. В одновальном корпусе

газовая турбина спроектирована с примерно одинаковыми степенями давления

на всех ступенях расширения, которые механически связаны с газовым компрессором

и генератором и работают на скорости генератора (обычно 3600 или 1800 об / мин для

Электрические системы 60 Гц и 3000 или 1500 об / мин для электрических систем 50 Гц).В конфигурации с несколькими валами

компрессор механически приводится в движение набором ступеней расширения

, размер которых рассчитан на выполнение механической работы, необходимой для компрессора

, так что этот вал не соединен с электрическим генератором. и может

вращаться с разной скоростью. Воздух, производимый этим газогенератором, нагревается и

направляется в турбогенератор: заключительная стадия расширения на отдельном валу, который вращает

с оптимальной скоростью генератора.Газотурбинная установка с комбинированным циклом (ПГУ)

Поставщики

конфигурируют турбогенераторы в различных конфигурациях.

Конфигурации с несколькими валами и с одним валом позволяют настраивать

для оптимизации производительности установки, капитальных вложений, строительства и доступа для обслуживания, удобства эксплуатации и минимальных требований к пространству.

Разработка больших газовых турбин F-класса в течение последнего десятилетия

шла рука об руку с усилиями производителей по стандартизации конфигураций парогазовых электростанций

(CCPP), стремясь наилучшим образом использовать новую технологию.Одновальная силовая передача

(SSPT) была первоначально разработана для применений с газовыми турбинами

мощностью более 250 мегаватт. Только позже концепция была расширена до меньших

единиц в диапазоне 60 мегаватт. Новая компоновка ССПТ позволила построить отдельные блоки

мощностью до 450 мегаватт. SSPT внесли наибольший вклад в энергоснабжение станций

, стремясь к экономии затрат и сокращению времени проекта и, следовательно, к меньшему риску. В схемах SSPT

газовая турбина и паровая турбина соединены с общим генератором

на одном валу, в то время как в блоках с несколькими валами силовой передачи (MSPT) до

используются три газовые турбины и назначенные им котлы и генераторы. обычная паровая турбина

(см. рис.7.11). SSPT и MSPT созданы для рынков 50 и 60 Гц.

Основными преимуществами новой концепции, отмеченной производителями, являются более высокая гибкость работы

, меньшая занимаемая площадь, упрощенное управление, более короткое время запуска, более

стандартизированных периферийных систем, а также более высокая эффективность и доступность. Эта разработка

требует, чтобы помимо новых технических проблем, связанных с газовой турбиной

160 7 Принцип работы газовой турбины

Импульсная турбина

: принцип работы, компоненты и типы

Как правило, гидротурбины подразделяются на две группы. группы, основанные на том, как происходит обмен энергией между жидкостью и турбиной: импульсные турбины и реактивные турбины.Гидротурбины устанавливаются для преобразования потенциальной энергии и кинетической энергии потока воды в механическую работу.

Импульсные турбины работают по изменению векторов скорости. Как правило, потенциальная энергия воды (или другой жидкости, например, пара), основанная на высоте водопада, преобразуется в кинетическую энергию одним или несколькими соплами, а затем вода ударяется о лопасти турбины с высокой скоростью, заставляя турбину вращаться. и, следовательно, вырабатывает электричество. Эти турбины больше подходят для извлечения энергии из условий высокого напора и низкого расхода.

Принцип работы импульсной турбины

В этих турбинах статическое давление внутри рабочего колеса постоянно, а рабочее колесо турбины находится под атмосферным давлением. Бегунок вращается в воздухе, и жидкость распыляется на лопасти через сопло для обмена энергией с турбиной. Струйное сопло или ряд сопел направляют высокоскоростной поток к лопастям, которые обычно имеют форму ведер или чашек. Следовательно, в форсунках происходит только изменение давления.

Изогнутые лопасти используются для изменения скорости потока. Этот удар вызывает изменение импульса, и в соответствии с законом передачи энергии к лопаткам турбины прикладывается сила. Согласно второму закону движения Ньютона сила, возникающая при движении жидкости, зависит от двух факторов: массы жидкости, поступающей в турбину, и изменений скорости жидкости между входом и выходом турбины. Поскольку изменение массы жидкости не происходит, при расчете силы, приложенной к рабочему колесу, учитываются только изменения скорости.

Таким образом, в процессе выработки электроэнергии в импульсных турбинах реализуются следующие этапы.

  • Накопленная вода течет из источника вверх по потоку через напорный трубопровод и направляется к форсунке.
  • Потенциальная энергия воды внутри сопла преобразуется в кинетическую энергию и впрыскивается в лопасти или ведра; таким образом бегун вращается.
  • Имеется механизм управления потоком воды, нагнетаемой в бегунок. Копье обычно играет важную роль в этом процессе.
  • Генератор, прикрепленный к валу, преобразует механическую энергию в электрическую.
Схема работы импульсной турбины (Ссылка: alternate-energy-tutorials.com )

Импульсные турбины способны забирать всю кинетическую энергию из воды для повышения эффективности. Вода сбрасывается в атмосферу снизу корпуса турбины после достижения рабочего колеса; следовательно, внизу турбины нет всасывания. Здесь вы можете схематично увидеть, как импульсная турбина работает в процессе извлечения энергии из кинетической энергии воды, а также ее компонентов.

Компоненты импульсной турбины

Импульсные турбины состоят из следующих компонентов.

Бегунок

Бегунок состоит из круглого диска, к которому прикреплено несколько изогнутых лопастей, и цилиндрического вала в центре. Валы и бегуны обычно изготавливаются из нержавеющей стали. В случаях, когда напор меньше, бегунок изготавливается из чугуна.

Ковши

Ковши представляют собой набор чашечек в форме ложки, которые устанавливаются вокруг бегунка для обмена энергией между жидкостью и турбиной.Струя жидкости попадает в эти лопатки после выхода из сопла, заставляя турбину вращаться и выходить из внешнего края лопатки. Изменение направления жидкости во время выхода по сравнению с углом удара варьируется в зависимости от конструкции турбины.

Чтобы получить максимальный импульс, этот угол должен составлять 180 градусов. Однако этот угол ограничен углами около 170 градусов из-за таких соображений, что поток на выходе из одного ковша не сталкивается со следующим ковшом и не вызывает его торможение.Ковши изготавливаются из нержавеющей стали или чугуна.

Форсунка

Форсунка установлена ​​для регулировки и подачи струи жидкости на ковши. Как упоминалось ранее, это единственная часть узла импульсной турбины, в которой изменяется давление, а напор преобразуется в кинетическую энергию. Объем струи воды, попадающей в ведра, регулируется с помощью компонента, называемого копьем, который представляет собой коническую иглу, которая входит и выходит из сопла с помощью маховика или автоматически.При движении этой иглы назад поток воды увеличивается, а при движении вперед — уменьшается.
Сопло обычно изготавливается из карбида вольфрама, который очень твердый и может выдерживать эрозионные частицы.

Кожух

Кожух импульсной турбины представляет собой щит над турбиной, чтобы предотвратить разбрызгивание воды, а также направить ее к водосбросу, который существует для дополнительной воды для защиты структурной целостности плотины. Обычно для изготовления корпуса используется чугун.

Напорные водоводы

Напорные водоводы на гидроэлектростанциях — это трубы и каналы, по которым вода от плотин и водохранилищ поступает к турбинам. В основном они стальные. Вода течет по этим каналам под высоким давлением.

На рисунке ниже показаны различные компоненты импульсных турбин и их расположение.

Основные части импульсной турбины (Ссылка: Mechanicalbooster.com )

Помимо основных компонентов, упомянутых выше, обычно используется механизм, предотвращающий вращение турбины.Когда струя воды останавливается, бегунок продолжает вращаться из-за эффектов инерции. В этих случаях, чтобы предотвратить это вращение, в заднюю часть ведер впрыскивается струя воды, которая называется разрывной струей .

Здесь вы можете схематично увидеть, как импульсная турбина работает в процессе извлечения энергии из кинетической энергии воды, а также ее компонентов.

Типы импульсных турбин

Гидравлические турбины, которые в основном используются на гидроэлектростанциях:

Pelton

Турбина Pelton состоит из трех основных частей: сопла, рабочего колеса и дефлектора.

Эта турбина используется для больших высот капель воды. Напор воды преобразуется в высокоскоростной поток одной или несколькими форсунками (до 6). Расход воды и, следовательно, мощность турбины регулируются копьем, регулируя количество потока воды.

Ряд ковшей установлен симметрично вокруг цилиндрического рабочего колеса турбины. Благодаря особой форме этих ведер струя воды попадает в центр ведра (разделителя) и выходит с обеих сторон.Этот выход такой, что выходящая из ведра вода не попадает в следующее и не приводит к торможению. Ось турбинного колеса может располагаться горизонтально или вертикально. При больших мощностях и большем количестве форсунок вал всегда вертикальный, а генератор устанавливается над турбиной.

Дефлектор расположен между бегунком и соплом, и его задача — предотвратить разбрызгивание воды из сопла на ковши, когда с турбины внезапно снимается нагрузка и увеличивается ее скорость вращения.Затем постепенно с помощью копья поток воды прекращается. Также стоит упомянуть, что из-за возможности возникновения явления гидравлического удара скорость воды в форсунке не может быть быстро уменьшена, а выпуск может быть отключен.

На следующем рисунке показана схема турбины Пелтона и других компонентов, связанных с работой.

Схематический вид турбины Пелтона (Ссылка: image.slidesharecdn.com )

Вот некоторые другие гидравлические и физические характеристики:

  • Он используется для напоров от 20 метров до сотен метров и нагнетания между 5 до 1000 литров в секунду.
  • Установка турбины Пелтона обычно проще, чем реакционная турбина, такая как Каплан, с аналогичной мощностью, поскольку требования к трубопроводам невелики из-за относительно низких скоростей потока.
  • Из-за работы турбины Пелтона при высоком давлении воды оборудование, необходимое для напорного вала в этих турбинах, является сложным и дорогим.
  • Турбины Pelton могут достигать КПД до 95%; Максимальный КПД 90% достигается на гидроэлектростанциях микромасштаба.

Чтобы узнать больше об истории и гидродинамических принципах работы турбины Пелтона, посетите здесь.

Turgo

Турбина Turgo — это другой тип импульсной турбины, которая работает аналогично Pelton; разница в том, что в этих турбинах струя воды попадает в ковши под наклоном (около 20 градусов). Из-за сложной формы ковшей их сложнее изготовить. Турбина Турго имеет более высокую удельную скорость, чем турбина Пелтона. Преимущество заключается в наличии большего жиклера и меньшего размера машины по сравнению с Pelton при равной мощности. Этот тип импульсной турбины используется на малых гидроэлектростанциях.

Вы можете увидеть вид турбины Turgo и положение сопла относительно лопаток на рисунке ниже.

Турбина Turgo (Ссылка: image.slidesharecdn.com )

Некоторые другие физические характеристики перечислены здесь:

  • Они могут иметь более высокий расход, чем турбины Пелтона того же физического размера.
  • Они подходят для высоких частот вращения.

Вы можете узнать больше о турбине Turgo из этого видео.

Подробнее о Linquip

Тяговая труба: Основное руководство по типам, функциям и эффективности

Cross-Flow

Эта турбина представляет собой модифицированный тип импульсной турбины, используемой на малых гидроэлектростанциях.Как и другие типы импульсных турбин, ротор вращается в воздухе и не полностью погружен в воду, как реакционная турбина. Одним из значительных преимуществ и особенностей этой турбины является то, что она может работать в широком диапазоне расхода, напора и, следовательно, мощности. Кроме того, он может хорошо адаптироваться к изменениям расхода при сохранении эффективности. Специальная система управления может регулировать активную часть турбины в зависимости от расхода воды.

Различные части этой турбины показаны на следующем рисунке.Бегунок имеет форму барабана. В случаях, когда голова низка, бегун длинный, и наоборот, чем выше голова, тем короче бегун. Вода поступает в турбину после прохождения через впускной адаптер и направляющие лопатки, которые играют направляющую роль, направляя поток на ротор под подходящим углом для достижения максимальной эффективности. Вода покидает турбину через выпускной патрубок после двойного прохождения через бегунок; он сначала течет по верхним лопастям ротора, а затем возвращается через центр ротора и нижние лопасти, создавая крутящий момент в обоих процессах.Вот почему эти турбины получили название Cross-flow. Наконец, поток покидает ротор через отсасывающую трубу. Вода может попадать в желоб горизонтально или вертикально. Количество лопастей варьируется от 10 до 34.

Поперечная турбина (Ссылка: Renewablesfirst.co.uk )

Некоторые другие гидравлические и физические характеристики:

  • Эта турбина может использоваться для напора от 2 до 200 метров и расход от 20 до 2000 литров в секунду.
  • Диапазон мощности этих турбин для гидроустановок с типовой выходной мощностью составляет от 5 кВт до 100 кВт, а в больших системах может достигать 3 МВт.
  • Они просты в изготовлении и практически не требуют обслуживания.

Более подробную информацию о турбинах с перекрестным потоком можно найти здесь.

62B-104 БАЗОВАЯ ГАЗОВАЯ ТУРБИНА

62B-104 БАЗОВАЯ ГАЗОВАЯ ТУРБИНА
Инженерное обучение

ЛИСТ НАЗНАЧЕНИЯ

ДВИГАТЕЛИ С БАЗОВЫМИ ТУРБИНАМИ

Распределительный лист 60B-104

ВВЕДЕНИЕ

С увеличением количества судов с газотурбинными двигателями становится важным понимать основы конструкции и работы газотурбинного завода.Офицер наземных войск должен также понимать последствия эксплуатации этих двигателей в морской среде.

ТЕМА УРОКА ЦЕЛИ ОБУЧЕНИЯ

Терминал Цель:

7.0 ОПИСАТЬ принципы, конструкцию, функции, компоненты, системы управления и контроля, а также работу газотурбинной двигательной установки и связанных вспомогательных систем поддержки. (JTI: A)

Обеспечивающие цели:

7.1 ОПИСАТЬ следующие применения газовых турбин и указать тип газовых турбин, связанных с каждым из них:

а.Двигательная установка

г. Электроэнергетика

7.2 Дан график, представляющий соотношение давления и объема идеального цикла Брайтона, НАМЕРИТЕ пять фаз и объясните процесс преобразования энергии, происходящий в каждой.

а. 2 копеек

г. Сжатие

г. Горение

г. Расширение

e. Выхлоп

7.3 ОПРЕДЕЛИТЬ следующее применительно к газотурбинным двигателям, включая их преимущества и недостатки, если это применимо.

а. Двигатель с разъемным валом

г. Одновальный двигатель

г. Кольцевая камера сгорания

г. Канально-кольцевая камера сгорания

e. Осевой поток

ф. Коробка отбора мощности

7.4 ОПИСАТЬ и указать их функции:

а. Компрессор

г. Камера сгорания

г. Турбина высокого давления / турбина газогенератора

г. Турбина низкого давления / силовая турбина

e. Подшипник газовой турбины / рама в сборе

ф.Дополнительный привод в сборе

г. Входные направляющие лопатки

ч. Лопатки регулируемого статора компрессора

и. Коллекторы для удаления воздуха из двигателя

Дж. Коллектор для удаления воздуха заказчика

к. Быстроходная эластичная муфта

л. Впуск / выпуск

7.5 ОБСУЖДЕНИЕ источник и использование отбираемого клиентом воздуха.

7.6 СОСТОЯНИЕ Функция системы впуска и выпуска воздуха газовой турбины.

7.7 ОПИСАТЬ путь воздуха от влагоотделителей к эжекторам выхлопных газов.

7.8 ОПИСАТЬ влияние следующего на газотурбинные двигатели и меры предосторожности, принимаемые с учетом окружающей среды, включая:

а. Солевой спрей

г. Льдообразование / температура наружного воздуха

г. Повреждение посторонним предметом

г. Чистота компрессора

e. Киоски / скачки

ф. Пусков / остановок

7.9 ОПИСАТЬ следующие системы двигателя:

а. Система обнаружения льда

г. Система обнаружения и пожаротушения

г.Система зажигания

г. Система промывки водой

7.10 НЕ НАЗНАЧЕН; зарезервировано для использования в будущем

7.11 НЕ НАЗНАЧЕН; зарезервировано для использования в будущем

7.12 НЕ НАЗНАЧЕН; зарезервировано для использования в будущем

НАЗНАЧЕНИЕ НА ИССЛЕДОВАНИЕ

  1. Прочтите информационный лист 60B-104.
  2. Краткий информационный лист 60B-104, используя вспомогательные цели урока 60B-104 в качестве руководства.
  3. Сценарии изучения ответов.

СЦЕНАРИИ ИЗУЧЕНИЯ:

Изучая для вас предстоящую плату SWO, вы изучаете другие типы морских силовых установок.Вы задаете себе несколько вопросов по газотурбинным двигателям.

1. Зная, что газотурбинный двигатель представляет собой открытый термодинамический цикл, как двигатель преобразует энергию, запасенную в топливе и воздухе, в полезную работу в виде вращающегося пропеллера?

После изучения вы явитесь на мостик для промежуточной стражи как JOOD. Здесь тихо, поэтому вы просматриваете доску чтения сообщений OOD. Вы видите, что в этом районе происходит несколько небольших песчаных бурь (в настоящее время вы находитесь в Персидском заливе), и что в сообщении всем судам с газотурбинными двигателями рекомендуется внимательно следить за состоянием своих воздушных фильтров / демистеров.

2. В чем важность этого компонента? Если не удается, не работает ли двигатель?

Просмотрев трафик сообщений, вы замечаете, что одного из FFG в вашей боевой группе нет рядом. Любопытно, что вы спрашиваете ООД, знает ли она, куда они пошли, и она говорит вам, что им пришлось выехать в Бахрейн для замены и двигателя из-за плохой камеры сгорания.

3. Почему замена камеры сгорания LM2500 настолько сложна, что требует захода корабля в порт?

ИНФОРМАЦИОННЫЙ ЛИСТ

ДВИГАТЕЛИ С БАЗОВЫМИ ТУРБИНАМИ

Информационный лист 64B-104I

ВВЕДЕНИЕ

С увеличением количества судов с газотурбинными двигателями становится важным понимать основы конструкции и работы газотурбинного завода.Офицер наземных войск должен также понимать последствия эксплуатации этих двигателей в морской среде.

ССЫЛКИ

(а) Руководство по силовой установке ДД-963

(б) Морские газотурбинные операции (НАВЕДТРА-10097)

ИНФОРМАЦИЯ

  1. Обзор урока:
  2. Завод газовой турбины представляет собой инновационную концепцию судовых электростанций. Военно-морские суда США используют газотурбинные двигатели на базе летательных аппаратов как в качестве главной силовой установки, так и в качестве вспомогательной электроэнергии для судов.Высокая степень автоматизации предприятия достигается за счет интегрированной системы пультов управления и мониторинга.
  3. Преимущества:
  4. Преимущества газотурбинной установки по сравнению с паровой установкой сопоставимой мощности включают:
    1. Снижение массы на 70%
    2. Простота (меньшее количество вспомогательных силовых установок)
    3. Уменьшение численности персонала за счет автоматизированного управления силовой установкой
    4. Более быстрое время отклика
    5. Более быстрое ускорение / замедление
  5. Принципы газовой турбины:
    1. Компоненты базового газотурбинного двигателя включают:
      1. Компрессор
      2. Камера сгорания
      3. Турбина
    2. Рабочий цикл:
    3. В газотурбинном двигателе сжатие, сгорание и расширение происходят непрерывно в разных камерах.Газотурбинные двигатели работают по циклу Брайтона (цикл открытого двигателя).

      Рис.1: Цикл Брайтона

      1. Фаза всасывания:
      2. Наружный воздух втягивается в двигатель под действием компрессора. Давление, температура и объем остаются неизменными в течение фазы всасывания.
      3. Фаза сжатия:
      4. Всасываемый воздух сжимается механически. Давление и температура увеличиваются с соответствующим уменьшением объема. Механическая энергия, приводящая в движение компрессор, преобразуется в кинетическую энергию в виде сжатого воздуха.
      5. Фаза сгорания:
      6. Топливо распыляется в камеру сгорания и сжигается, преобразовывая химическую энергию в тепловую в виде горячего расширяющегося газа. Объем и температура значительно увеличиваются, в то время как давление в камере сгорания остается постоянным.
      7. Фаза расширения:
      8. Тепловая энергия преобразуется в механическую, когда горячие расширяющиеся газы из камеры сгорания вращают ротор турбины. Давление и температура уменьшаются, а объем увеличивается в фазе расширения.
      9. Выхлопная фаза:
      10. Горячие выхлопные газы проходят через суда, попадая в атмосферу. Давление, температура и объем остаются неизменными на всем протяжении фазы выпуска.
  6. Компоненты газовой турбины:
    1. Компрессоры: существует два основных типа газотурбинных компрессоров.
      1. Центробежный компрессор:
      2. В этом компрессоре используется вращающееся рабочее колесо для втягивания всасываемого воздуха и его ускорения наружу за счет центробежной силы в диффузор.Он используется в небольших газовых турбинах и лучше всего подходит для низких отношений давления, когда общий диаметр двигателя не важен.

        Рис. 2: Центробежный компрессор

      3. Осевой компрессор:
      4. Состоит из вращающихся лопаток и неподвижных лопаток. Воздух сжимается, поскольку он течет вдоль вала в осевом направлении. Это обеспечивает большую эффективность и более высокие отношения давления за счет многоступенчатой ​​конструкции. Стадия сжатия состоит из одного ряда вращающихся лопаток, за которым следует ряд неподвижных лопаток.Это наиболее распространенный тип компрессора, используемый в судовых газотурбинных двигателях.

        Рис. 3: Компрессор с осевым потоком

      5. Остановка компрессора:
      6. Остановка или помпаж определяется как прерывание потока воздуха через компрессор. Заглох на работающем двигателе может вызвать серьезное повреждение двигателя из-за чрезмерных вибраций и перегрева секции камеры сгорания. Чтобы предотвратить остановку компрессора, двигатели оснащены выпускными клапанами компрессора или лопатками компрессора с изменяемой геометрией.Выпускные клапаны выпускают воздух из компрессора во время запуска, а регулируемые лопатки компрессора регулируют воздушный поток, чтобы избежать турбулентности, тем самым предотвращая остановку компрессора.
    2. Камеры сгорания:
    3. Камера сгорания смешивает сжатый воздух с топливом и сжигает смесь с образованием горячего расширяющегося газа. Есть три основных типа камер сгорания.
      1. Емкость:
      2. Отдельные баллончики горелок устанавливаются по периферии двигателя. Каждая канистра представляет собой отдельную камеру сгорания и футеровку, получающую собственное топливо.
        1. Преимущество: простая замена
        2. Недостатки — неэффективность, более слабая конструкция

        Рис. 4: Камера сгорания баночного типа

      3. Кольцевой:
      4. Одна большая камера сгорания в корпусе двигателя. Множественные топливные форсунки образуют сплошное «огненное кольцо». Этот тип используется на LM2500.
        1. Преимущества: Самая эффективная, самая прочная рама двигателя.
        2. Недостаток: для ремонта или замены требуется полная разборка двигателя.

        Рис. 5: Кольцевая камера сгорания

      5. Кольцевой баллончик:
      6. В этом гибридном типе используется несколько отдельных баллонов с отдельными топливными форсунками, через которые воздух поступает из общего кольцевого корпуса (Allison 501-K17).
        1. Преимущества: Прочность, простота замены.
        2. Недостаток: менее эффективен, чем кольцевая камера сгорания.

      Рис. 6: Консольная кольцевая камера сгорания

    4. Турбина:

      1. Энергия:
      2. Тепловая энергия горячих расширяющихся газов камеры сгорания преобразуется в механическую энергию путем вращения колеса турбины.
      3. Конструкция:
      4. Состоит из неподвижных лопаток (сопел) и вращающихся лопаток. Ступень турбины — это один ряд сопел и один ряд лопаток.
    5. Узел привода вспомогательных агрегатов:
    6. Узел привода вспомогательных агрегатов приводится в движение компрессором через конические шестерни. Вспомогательный привод используется для привода компонентов, чтобы сделать двигатель самодостаточным. Общие аксессуары включают такие компоненты, как насосы для смазочного масла двигателя и топливного масла.
    7. Двигатели:
      1. Два основных типа, используемых в ВМС США:
        1. Одновальный двигатель:
        2. Одновальный двигатель имеет один вал, который проходит по всему двигателю.На этом валу установлены все вращающиеся части двигателя. Продолжение того же вала, коробка отбора мощности, приводит в движение нагрузку. В основном этот тип двигателя используется там, где требуется постоянная скорость, например, для выработки электроэнергии. Для этого используется двигатель Allison 501-K17.

          Рис.7: Ротор турбины

        3. Двигатель с разъемным валом:
        4. Двигатель разделен на две основные секции: газогенератор и секцию силовой турбины. Секция газогенератора состоит из компрессора, камеры сгорания и турбины высокого давления (ВД).Назначение газогенератора — производить горячий расширяющийся газ для использования в силовой турбине. Силовая турбина аэродинамически связана с газогенератором, но два вала механически не связаны. Силовая турбина преобразует тепловую энергию газогенератора в механическую энергию для привода нагрузки.
          1. Выходная скорость изменяется путем управления скоростью газогенератора, который определяет количество выхлопных газов, отправляемых в силовую турбину.
          2. Газотурбинные двигатели с разъемным валом, такие как LM2500, подходят для основных силовых установок.Преимущества в этом приложении:
            1. Газогенератор более чувствителен к требованиям нагрузки, поскольку работа компрессора не ограничивается нагрузкой на силовую турбину.
            2. Секция газогенератора и секция силовой турбины работают почти со своими наиболее эффективными скоростями во всем диапазоне требований нагрузки.
      2. Система воздухозаборника газовой турбины:

        1. Сборка высокого давления:

          1. Конструкция:
          2. Внешняя конструкция, которая поддерживает сепараторы влаги и вмещает дверцы для обдува .
          3. Влагоотделители (жалюзи и сетчатые экраны):
          4. Влагоотделители удаляют капли воды и грязь из всасываемого воздуха, чтобы предотвратить эрозию компонентов компрессора. Электрические ленточные нагреватели предотвращают образование льда на жалюзи.
          5. Двери продувки:
          6. Двери продувки установлены для предотвращения недостатка воздуха в двигателе при загрязнении влагоотделителей.
            1. Эти двери открываются автоматически при увеличении перепада давления воздуха на влагоотделителях.
            2. В открытом состоянии всасываемый воздух обходит забитые влагоотделители и подает нефильтрованный воздух в двигатель, чтобы предотвратить воздушное голодание двигателя.

          Рис. 8: Сборка High Hat

        2. Впускной канал:

          1. Назначение:
          2. Впускной канал подает воздух для горения для двигателя и охлаждающий воздух для модуля.
          3. Система охлаждения модуля:
          4. Система охлаждения модуля направляет часть всасываемого воздуха в кожух двигателя для вентиляции модуля и внешнего охлаждения двигателя.Охлаждающий воздух модуля кружится вокруг двигателя, отводя тепло и вентилируя модуль, прежде чем выйти через небольшой воздушный зазор вокруг заднего конца силовой турбины. Выхлоп работающего двигателя вызывает эффект эдуктора, втягивающий охлаждающий воздух модуля в выхлопной канал.

          Рис.9: Воздухозаборник GTM

        3. Коллектор для защиты от обледенения:

          1. Назначение:
          2. Коллектор для защиты от обледенения предназначен для нагнетания горячего отбираемого воздуха во впускной ствол под воздуховодом охлаждения модуля для предотвращения образования льда.
          3. Обледенение:
          4. Обледенение может возникнуть во впускном канале, когда температура наружного воздуха упадет до 38 o F. Сигнализация обледенения загорится при температуре 41 o F с влажностью 70%, чтобы предупредить оператора до образования льда. во впуске.
          5. Последствия:
          6. Обледенение на входе компрессора может ограничить воздушный поток, вызывая остановку двигателя, а также представляет опасность серьезного повреждения двигателя посторонними предметами (FOD).
          7. Датчики:
          8. Датчик обледенения, расположенный во впускной камере, генерирует аварийный сигнал, предупреждающий оператора о возможности образования льда в воздухозаборнике.
          9. Управление:
          10. Воздушная система защиты от обледенения активируется вручную с помощью часовых стоек и контролируется для предотвращения образования льда.
        4. Глушители:

          1. Местоположение:
          2. Глушители на впуске расположены посередине впускного канала для снижения шума в воздухе.
          3. Конструкция:
          4. Глушители состоят из вертикальных лопаток из звукопоглощающего материала, заключенных в перфорированные листы из нержавеющей стали.
          5. Канал охлаждающего воздуха модуля:
          6. Канал охлаждающего воздуха модуля содержит единственный глушитель в форме пули, чтобы заглушить шум, создаваемый охлаждающим воздухом.
        5. Компенсатор
        6. : Компенсатор представляет собой резиновый чехол, соединяющий впускной канал с впускной камерой модуля. Это предотвращает передачу шума модуля на корпус корабля.
      3. Узел (модуль) базового корпуса газовой турбины LM2500:

        1. Описание:
        2. Узел основного корпуса состоит из модуля корпуса (26 футов x 8 футов x 9 дюймов) на противоударном основании.
          1. Основание модуля:
          2. Основание представляет собой сварную стальную раму с двутавровой балкой с креплениями для крепления двигателя.
          3. Проникновения:
          4. Сервисные соединения проникают в основание для всех сервисов двигателя, таких как электричество, воздух, масло, топливо, CO 2 или Галон .
          5. Защита:
          6. Кожух термически и акустически изолирован, чтобы обеспечить двигателю контролируемую среду.
            1. Впускная камера: передняя часть модуля отделена от кожуха двигателя перегородкой. Впускная камера считается чистой секцией модуля.Экран FOD на входе газовой турбины устанавливается в этой области в передней части двигателя, чтобы предотвратить попадание крупных посторонних предметов в компрессор.
            2. Рис.10: Узел модуля GTM

            3. Кожух двигателя: кожух содержит собственно двигатель и выпускной патрубок и принимает воздух из охлаждающего канала модуля. Доступ к двигателю осуществляется через боковую дверь и верхний люк.
        3. Система обнаружения и тушения пожара:
        4. Система обнаружения и тушения пожара обеспечивает автоматическую противопожарную защиту газотурбинного двигателя и модуля.

          Рис.11: Основание модуля в сборе

          1. Компоненты системы обнаружения пожара включают:

            1. Ультрафиолетовые датчики пламени, которые ищут пламя в зоне камеры сгорания.
            2. Датчики температуры, которые установлены на 400 o F для обнаружения возгораний за пределами зоны обзора УФ-детекторов.
            3. Ручная кнопка «ПОЖАР», которая может использоваться дежурным для активации пожарной системы.
          2. Компоненты системы пожаротушения включают:

            1. Банк первичного CO 2 баллонов для быстрого затопления модуля.
            2. Банк вторичного CO 2 для поддержания инертной атмосферы в модуле, если это необходимо.
            3. A CO 2 Переключатель блокировки разблокировки, расположенный на пультах управления. Этот переключатель позволяет оператору остановить автоматический выпуск первичного CO 2 в модуль в случае ложной тревоги или присутствия персонала в модуле.
            4. Электронный сигнал пожарной остановки, используемый для остановки двигателя при обнаружении пожара ультрафиолетовыми датчиками пламени, переключателями температуры или ручной кнопкой пожарной сигнализации.Этот сигнал активирует последовательность остановки огня. Остановка огня инициирует следующие действия:
              1. «ПОЖАРНАЯ» сигнализация на пультах управления.
              2. Обеспечивает подачу топлива к двигателю.
              3. Останавливает вентилятор охлаждения модуля и закрывает вентиляционную заслонку.
              4. Выпускает CO 2 после 20-секундной задержки.

        Примечание по безопасности: входя в модуль, убедитесь, что система пожаротушения отключена, а на модуле и пультах управления размещены знаки, предупреждающие о том, что в модуле находится персонал.

        Примечание: FFG, оборудованные системами галона.

      4. Система выхлопных каналов:

        1. Функция:
        2. Отводит выхлопные газы двигателя в атмосферу, снижая при этом тепло и шум выхлопа.
        3. Выхлопной коллектор:
        4. Выхлопной патрубок направляет выхлопные газы в воздухозаборник. Зазор между выпускным коленом и воздухозаборником корабля вызывает эффект эдуктора, втягивающий охлаждающий воздух модуля в воздухозаборник.
        5. Воздухозаборный канал:
        6. Воздухозаборный канал для выхлопных газов изолирован для контроля тепла и шума при выходе выхлопных газов в атмосферу.
        7. Глушитель:
        8. Глушитель пластинчатого типа расположен в центре воздуховода. Эти глушители такие же, как и во впускном воздуховоде, но стационарно установлены.
        9. Выхлопные патрубки:
        10. Вытяжные патрубки расположены на самом верхнем конце вытяжного канала. Выхлопные эжекторы охлаждают выхлопные газы, смешиваясь с холодным окружающим воздухом, чтобы уменьшить инфракрасную сигнатуру корабля.
        11. Система подавления инфракрасного излучения пограничным слоем (BLISS):
        12. Крышки Bliss устанавливаются в верхней части каждой смесительной трубы для дальнейшего охлаждения отработанного воздуха путем смешивания его со слоями окружающего воздуха. Это достигается за счет использования нескольких жалюзи, расположенных под углом для создания эдукторного эффекта. Это позволяет холодному окружающему воздуху смешиваться с горячими выхлопными газами.

        Рис.12: Выхлопная система GTM

      5. Система промывки водой:

        1. Назначение:
        2. Используется для удаления отложений грязи и соли с лопастей компрессора.
        3. Компоненты:
        4. Состоит из резервуара емкостью 40 галлонов и стационарного трубопровода для направления водного промывочного раствора на вход компрессора.
        5. Порядок действий:
        6. В соответствии с PMS компрессор необходимо промыть для поддержания эффективности и предотвращения остановок компрессора.

        Рис.13: Система промывки водой

      6. Отводимый воздух:

        1. Источники:
        2. Отборный воздух потребителя отбирается из последней ступени компрессора на газотурбинных генераторах (ГТГ) и магистрали газовой турбины (ГТМ)
        3. Пользователи отбираемого воздуха: (СПАМ):
          1. Пуск или приведение в действие других газовых турбин.
          2. Воздух прерий для маскировки шума гребного винта.
          3. Воздух для предотвращения обледенения воздухозаборника.
          4. Маскирующий воздух для маскировки шума корпуса главной силовой установки.

        Рис.14: Основные вращающиеся детали LM2500

      7. Сборка газотурбинного двигателя LM2500:

        1. Компоненты газогенератора:

          1. Секция компрессора:
          2. LM2500 имеет 16-ступенчатый компрессор осевого потока, состоящий из следующих компонентов:
            1. Ротор компрессора: 16 ступеней подвижных лопаток, приводимых в движение турбиной высокого давления.
            2. Статор компрессора: корпус компрессора, содержащий одну ступень входных направляющих лопаток (IGV), шесть ступеней регулируемых лопаток статора (VSV) и 10 ступеней неподвижных лопаток статора.
              1. IGV и лопатки статора 1-6 являются переменными, то есть имеют изменяемую геометрию. Угол атаки лопаток можно изменить, чтобы предотвратить остановку компрессора.
              2. Отборный воздух отбирается из компрессора для использования в судовой системе отбираемого воздуха и для внутреннего использования в двигателе.
          3. Камера сгорания:

            1. Камера сгорания кольцевого типа с 30 топливными форсунками и 2 искровыми воспламенителями.
            2. Около 30% воздуха из компрессора смешивается с топливом для поддержания горения. Остальные 70% используются для охлаждения и центрирования пламени внутри гильзы сгорания.
            3. Система зажигания вырабатывает искру высокой интенсивности для воспламенения топливно-воздушной смеси во время запуска. После запуска двигателя воспламенители больше не нужны и будут обесточены.
          4. Секция турбины высокого давления:

            1. Турбина высокого давления извлекает достаточно энергии из горячих расширяющихся газов для привода компрессора и вспомогательного привода.
            2. Турбина высокого давления представляет собой двухступенчатую турбину с осевым потоком, которая механически связана с ротором компрессора.
            3. Турбина ВД использует примерно 65% тепловой энергии камеры сгорания для привода компрессора и дополнительных устройств, установленных на двигателе.
          5. Узел привода вспомогательных агрегатов:

            1. Приводится через вал ротора компрессора через впускной редуктор, радиальный приводной вал и раздаточную коробку.
            2. Дополнительный редуктор обеспечивает монтаж топливного насоса, насоса смазочного масла, воздухо-масляного сепаратора и пневматического стартера.
        2. Силовая турбина:

          1. Конструкция:
          2. Силовая турбина представляет собой шестиступенчатую турбину осевого типа. Силовая турбина забирает оставшиеся 35% полезной энергии и использует ее для привода главного редуктора. Силовая турбина приводит в движение редуктор через высокоскоростной гибкий вал муфты и муфту в сборе.Гибкая высокоскоростная муфта компенсирует радиальное и осевое смещение между GTM и главным редуктором.

        Рис. 15: Вид компонентов LM2500

        Газовая турбина

        открытого цикла — обзор

        Газовые турбины

        (Глава 12.2)

        Для малых и средних промышленных предприятий обычно используются простые газовые турбины открытого цикла, работающие на природном газе или легком мазуте. Двухтопливные системы легко приспособлены, и в некоторых случаях может быть предусмотрено автоматическое переключение нагрузки между двумя видами топлива.

        Машина может быть простой одновальной, в которой силовая турбина, компрессор и выходной привод находятся на общем валу; или двухвальный тип, в котором компрессор и его приводная турбина находятся на одном валу, а силовая турбина находится на выходном приводном валу. Оба типа подходят для приводов генератора, но имеют несколько разные характеристики регулирования мощности; также они могут быть разработаны на основе двигателей, изначально предназначенных для использования в самолетах, или агрегатов, специально разработанных для наземного применения.Первые утверждают, что они легче, компактнее и эффективнее при частичной нагрузке, в то время как вторые более надежны, но у них есть много общего. В этой стране обычные размеры блоков составляют от 0,5 до 3,5 МВт, но могут быть получены блоки до 60 МВт.

        В диапазоне малых промышленных размеров КПД выработки электроэнергии может составлять от 14 до 20% при полной нагрузке, но более крупные блоки могут достигать более 30%. Удельный расход топлива типовой установки мощностью 1,25 МВт может варьироваться от 0.От 51 кг дизельного топлива / кВт · ч при полной нагрузке до 0,63 кг при половинной нагрузке и температуре окружающей среды 15 ° C, однако увеличивается с повышением температуры окружающей среды, особенно при частичной нагрузке.

        После вычета теплового эквивалента электрической мощности из общего количества подводимого тепла, практически весь остаток используется для рекуперации тепла. Радиационные потери и потери в маслоохладителе составляют всего 1-2%. Отходящий газ чистый — почти весь воздух имеет температуру выше 500 ° C при полной нагрузке. Если отработанные газы пропускались через котел-утилизатор для выработки пара, то 1.Установка мощностью 25 МВт может производить около 4500 кг / ч при манометре 1,75 МПа, повышая комбинированный КПД выработки электроэнергии и пара примерно до 50%. Если требуется дополнительный пар, отработанный газ можно использовать в качестве предварительно нагретого воздуха для горения для сжигания дополнительного топлива в котле-утилизаторе; таким образом, дополнительные 13 000 кг / ч пара при 1,75 МПа могут быть комфортно увеличены, увеличивая общий термический КПД до более чем 70% — и дополнительным топливом может быть тяжелая нефть.

        Газовая турбина, как электрический генератор, поэтому менее эффективна, чем дизельный двигатель.Однако его потенциал рекуперации отходящего тепла больше, и он более гибкий.

        Таким образом, дизельный двигатель будет использоваться там, где потребность в электроэнергии высока по сравнению с потребностью в паре или тепле, например, менее 3 кг пара на кВт · ч. Газовая турбина не может полностью раскрыть свой потенциал теплового КПД, если на 1 кВт · ч не требуется более 4 кг пара. Эти цифры выгодно отличаются от паровой турбины с прямым противодавлением, где в типичных средних промышленных диапазонах входного и технологического давления пара нагрузка пара должна превышать 10 кг / кВт · ч.

        В качестве альтернативы производству пара отходящий газ можно использовать напрямую или через теплообменник для многих промышленных осушителей.

        Газовые турбины имеют много преимуществ перед дизельными двигателями для комбинированных энергетических и тепловых установок. Они имеют небольшой вес и работают с незначительной вибрацией, поэтому для них требуется недорогой фундамент. Затраты на техническое обслуживание низкие, а надежность высока. Также обычно не требуется система водяного охлаждения, поскольку для охлаждения масла обычно достаточно простого воздухоохладителя с вентилятором.

        Начальная стоимость обычно выше, чем у дизельных двигателей, хотя это обычно компенсируется более низкими эксплуатационными расходами для непрерывно работающей установки. Проблемой газовых турбин может быть шум. Даже небольшие блоки в диапазоне 1–3 МВт могут издавать звуковое давление около 100 дБА на расстоянии 1 м (Глава 19.7), хотя в основном в высокочастотном диапазоне (4000 с -1 ), который легко ослабляется. Наиболее распространенным подходом является установка акустических кожухов вокруг самой машины или размещение каждой машины в акустической камере прочной конструкции.В любом случае на впускных и выпускных отверстиях для воздуха требуются глушители. Оборудование для рекуперации тепла и дымоход часто обеспечивают достаточное ослабление шума выхлопных газов.

        Его свойства, работа, типы и применение

        Паровая турбина эволюционировала в первом веке, когда это устройство напоминает игрушку. Затем было изобретено практическое применение паровых турбин, которые послужили основой для развития других типов паровых турбин.Современный вид паровой турбины был представлен в 1884 году человеком Чарльзом Парсонсом, конструкция которого включает динамо-машину. Позже это устройство приобрело известность благодаря своим эксплуатационным характеристикам, и люди стали применять его в своих операциях. В этой статье описаны концепции, относящиеся к паровой турбине и ее функциям.


        Что такое паровая турбина?

        Определение: Паровая турбина подпадает под классификацию механической машины, которая изолирует тепловую энергию от нагнетаемого пара и преобразует ее в механическую энергию.Поскольку турбина производит вращательное движение, она наиболее подходит для работы электрических генераторов. Само название указывает на то, что устройство приводится в движение паром, и когда паровой поток проходит через лопатки турбины, пар охлаждается, а затем расширяется, передавая почти всю имеющуюся у него энергию, и это непрерывный процесс.

        Паровая турбина

        Таким образом, лопасти преобразуют потенциальную энергию устройства в энергию кинетического движения. Таким образом, паровая турбина используется для подачи электроэнергии.Эти устройства используют повышенное давление пара для вращения электрогенераторов на чрезвычайно высоких скоростях, при этом скорость их вращения максимальна, чем у водяных турбин и ветряных турбин.

        Например: обычная паровая турбина имеет скорость вращения 1800-3600 оборотов в минуту, что почти в 200 раз больше вращений, чем у ветряной турбины.

        Принцип работы паровой турбины

        Принцип действия этого устройства основан на динамическом движении пара.Пар с повышенным давлением, выходящий из форсунок, ударяет по вращающимся лопастям, которые плотно прилегают к диску, установленному на валу. Поскольку из-за этой повышенной скорости пара создает сильное давление на лопасти устройства, после чего вал и лопасти начинают вращаться в аналогичном направлении. Как правило, паровая турбина изолирует энергию штока, а затем преобразует ее в кинетическую энергию, которая затем проходит через сопла.

        Оборудование в паровой турбине

        Итак, преобразование кинетической энергии оказывает механическое воздействие на лопасти ротора, и этот ротор связан с паротурбинным генератором, и он действует как посредник.Поскольку конструкция устройства настолько обтекаема, она генерирует минимальный шум по сравнению с другими видами вращающихся устройств.

        В большинстве турбин скорость вращающейся лопасти линейна относительно скорости пара, проходящего через лопатку. Когда пар расширяется в самой однофазной фазе от силы котла до силы истощения, скорость пара чрезвычайно увеличивается. В то время как основная турбина, которая используется на атомных станциях, где скорость расширения пара составляет от 6 МПа до 0.0008 МПа со скоростью 3000 оборотов на частоту 50 Гц и 1800 оборотов при частоте 60 Гц.

        Итак, многие атомные станции функционируют как одновальный турбинный генератор высокого давления, который имеет одну многоступенчатую турбину и три параллельные турбины низкого давления, возбудитель вместе с главным генератором.

        Типы паровых турбин

        Паровые турбины классифицируются по многим параметрам, и их много типов. Ниже перечислены типы, которые следует обсудить:

        На основе движения пара

        На основе движения пара они подразделяются на различные типы, включая следующие.

        Импульсная турбина

        Здесь пар с экстремальной скоростью, который выходит из сопла, ударяется о вращающиеся лопасти, которые расположены на периферийной части ротора. Так как из-за удара лопасти меняют направление вращения без изменения значений давления. Давление, вызванное импульсом, развивает вращение вала. Примерами этого типа являются турбины Рато и Кертиса.

        Реакционная турбина

        Здесь расширение пара будет происходить как в движущихся, так и в постоянных лопастях, когда поток проходит через них.На этих лопастях будет постоянный перепад давления.

        Комбинация реактивной и импульсной турбины

        Основываясь на комбинации реактивной и импульсной турбины, они подразделяются на различные типы, включая следующие.

        • На основе ступеней давления
        • На основе движения пара
        На основе ступеней давления

        На основе ступеней давления они подразделяются на различные типы.

        Одноступенчатый

        Они используются для включения центробежных компрессоров, нагнетательного оборудования и других подобных инструментов.

        Многофазная реактивная и импульсная турбина

        Они используются в крайнем диапазоне мощностей, минимальном или максимальном.

        На основе движения пара

        На основе движения пара они подразделяются на разные типы.

        Осевые турбины

        В этих устройствах поток пара будет идти в направлении, параллельном оси ротора.

        Радиальные турбины

        В этих устройствах поток пара будет в направлении, перпендикулярном оси ротора, либо на одну, либо на две фазы давления меньше в осевом направлении.

        На основе методологии управления

        На основе методологии управления они подразделяются на различные типы.

        Управление дроссельной заслонкой

        Здесь свежий пар поступает через один или несколько одновременно работающих дроссельных клапанов, и это зависит от увеличения мощности.

        Управление форсунками

        Здесь свежий пар поступает через один или несколько последовательно открывающихся регуляторов.

        Управление байпасом

        Здесь пар приводит в действие как первую, так и другие промежуточные фазы турбины.

        На основе процедуры снижения тепла

        На основе процедуры снижения тепла они подразделяются на различные типы.

        Конденсация турбины через генераторы

        В этом случае на конденсатор подается паровая сила, которая меньше давления окружающей среды.

        Отбор промежуточной фазы конденсации турбины

        В этом случае пар отделяется от промежуточных фаз для целей коммерческого отопления.

        Турбины с противодавлением

        Здесь отработанный пар используется как для отопления, так и для промышленных целей.

        Topping Turbines

        Здесь отработанный пар используется для конденсации турбин малой и средней мощности.

        На основе условий пара на входе в турбину
        • Меньшее давление (от 1,2 ата до 2 ата)
        • Среднее давление (40 ата)
        • Высокое давление (> 40 ата)
        • Очень высокое давление (170 ата)
        • Сверхкритический (> 225 ат.

          Разница между этими двумя указана ниже.

          Паровая турбина Паровой двигатель
          Минимальные потери на трение Максимальные потери на трение
          Хорошие балансирующие свойства Плохие балансирующие свойства Конструкция и техническое обслуживание сложны
          Подходит для высокоскоростных устройств Работает только для устройств с минимальной скоростью
          Равномерная выработка электроэнергии Неравномерная выработка электроэнергии
          Повышенная эффективность Меньшая эффективность
          Подходит для крупных промышленных приложений Подходит для минимальных промышленных применений

          Преимущества / недостатки

          преимущества паровой турбины :

          • Расположение паровой турбины требует минимального пространства
          • Оптимизированная работа и надежная система
          • Требуются меньшие эксплуатационные расходы и минимальное пространство
          • Повышенный КПД в паровых трактах

          Недостатки паровой турбины

          • Поскольку из-за повышенной скорости будет увеличить потери на трение
          • Имеет минимальную эффективность, что означает, что соотношение лопасти к скорости пара не оптимально

          Применения паровой турбины

          • Турбины смешанного давления
          • Реализовано в инженерных областях
          • Электроинструменты

          Часто задаваемые вопросы

          1).Что такое КПД паровой турбины?

          Определяется как доля работы, выполненной на вращающихся лопастях, ко всей подаваемой энергии, рассчитанная для килограмма пара.

          2). Какая турбина эффективнее?

          Самые эффективные турбины — это импульсные турбины.

          3). Как повысить КПД паровой турбины?

          Эффективность можно повысить за счет повторного нагрева паровой турбины, рекуперации нагрева сырья турбины и за счет бинарного парового цикла.

          4). Что такое паротурбинный генератор ?

          Это устройство первичного преобразования энергии на электростанции.

          5). Как пар может вращать турбину?

          За счет нагрева воды до температуры, при которой она превращается в пар.

          Это все о паровых турбинах. Хороший баланс вращения и минимальный удар молотка позволяют использовать эти устройства в различных отраслях промышленности. Возникающий здесь вопрос — знать о применении паровых турбин.

          Газовые турбины для выработки электроэнергии

          Использование газовых турбин для выработки электроэнергии началось с 1939 года. Сегодня газовые турбины являются одной из наиболее широко используемых технологий производства электроэнергии. Газовые турбины — это тип двигателя внутреннего сгорания (ВС), в котором при сжигании топливовоздушной смеси образуются горячие газы, которые вращают турбину для выработки энергии. Название газовым турбинам дает образование горячего газа при сгорании топлива, а не само топливо. Газовые турбины могут использовать различные виды топлива, включая природный газ, жидкое топливо и синтетическое топливо.В газовых турбинах горение происходит непрерывно, в отличие от поршневых двигателей внутреннего сгорания, в которых сгорание происходит с перерывами.

          Газовые турбины состоят из трех основных секций, установленных на одном валу: компрессора, камеры сгорания (или камеры сгорания) и турбины.

          Компрессор может быть осевым или центробежным.Компрессоры с осевым потоком более распространены в производстве электроэнергии, потому что они имеют более высокую производительность и эффективность. Компрессоры с осевым потоком состоят из нескольких ступеней вращающихся и неподвижных лопаток (или статоров), через которые воздух втягивается параллельно оси вращения и постепенно сжимается по мере прохождения через каждую ступень. Ускорение воздуха вращающимися лопастями и диффузия статорами увеличивают давление и уменьшают объем воздуха. Хотя тепло не добавляется, сжатие воздуха также вызывает повышение температуры.

          Сжатый воздух смешивается с топливом, впрыскиваемым через форсунки. Топливо и сжатый воздух могут быть предварительно смешаны или сжатый воздух может быть введен непосредственно в камеру сгорания. Топливно-воздушная смесь воспламеняется в условиях постоянного давления, а горячие продукты сгорания (газы) направляются через турбину, где они быстро расширяются и сообщают вращение валу. Турбина также состоит из ступеней, каждая из которых имеет ряд неподвижных лопаток (или сопел) для направления расширяющихся газов, за которыми следует ряд движущихся лопаток.Вращение вала заставляет компрессор всасывать и сжимать больше воздуха для поддержания непрерывного горения. Оставшаяся мощность на валу используется для привода генератора, вырабатывающего электричество. Приблизительно от 55 до 65 процентов мощности, производимой турбиной, используется для привода компрессора. Для оптимизации передачи кинетической энергии от продуктов сгорания к вращению вала газовые турбины могут иметь несколько ступеней компрессора и турбины.

          Поскольку компрессор должен достичь определенной скорости, прежде чем процесс сгорания станет непрерывным или самоподдерживающимся, начальный импульс будет передан ротору турбины от внешнего двигателя, статического преобразователя частоты или самого генератора.Перед подачей топлива и возгоранием компрессор должен быть плавно ускорен и достигнет скорости воспламенения. Скорости турбины сильно различаются в зависимости от производителя и конструкции: от 2000 оборотов в минуту (об / мин) до 10000 об / мин. Первоначальное зажигание происходит от одной или нескольких свечей зажигания (в зависимости от конструкции камеры сгорания). Как только турбина достигает самоподдерживающейся скорости — выше 50% от полной скорости — выходной мощности достаточно для приведения в действие компрессора, сгорание идет непрерывно, а систему стартера можно отключить.

          Термодинамический процесс, используемый в газовых турбинах, — это цикл Брайтона. Двумя важными рабочими параметрами являются степень сжатия и температура обжига. Соотношение количества топлива к мощности двигателя оптимизируется за счет увеличения разницы (или соотношения) между давлением нагнетания компрессора и давлением воздуха на входе. Эта степень сжатия зависит от конструкции. Газовые турбины для выработки электроэнергии могут быть как промышленного (тяжелого каркаса), так и авиационного исполнения.Промышленные газовые турбины предназначены для стационарного применения и имеют более низкие отношения давления — обычно до 18: 1. Авиационные газовые турбины — это более легкие компактные двигатели, адаптированные к конструкции авиационных реактивных двигателей, которые работают при более высоких степенях сжатия — до 30: 1. Они предлагают более высокую топливную эффективность и меньшие выбросы, но меньше по размеру и имеют более высокие начальные (капитальные) затраты. Авиационные газовые турбины более чувствительны к температуре на входе в компрессор.

          Температура, при которой работает турбина (температура горения), также влияет на КПД, при этом более высокие температуры приводят к более высокому КПД.Однако температура на входе в турбину ограничена тепловыми условиями, которые допускаются металлическим сплавом лопаток турбины. Температура газа на входе в турбину может составлять от 1200 ° C до 1400 ° C, но некоторые производители повысили температуру на входе до 1600 ° C, разработав покрытия для лопаток и системы охлаждения для защиты металлургических компонентов от теплового повреждения.

          Из-за мощности, необходимой для привода компрессора, эффективность преобразования энергии для газотурбинной электростанции простого цикла обычно составляет около 30 процентов, даже при самых эффективных конструкциях — около 40 процентов.Большое количество тепла остается в выхлопных газах, температура которых составляет около 600ºC, когда они покидают турбину. За счет рекуперации этого отходящего тепла для производства более полезной работы в конфигурации с комбинированным циклом КПД газотурбинной электростанции может достигать 55-60 процентов. Однако существуют эксплуатационные ограничения, связанные с работой газовых турбин в режиме комбинированного цикла, в том числе более длительное время запуска, требования к продувке для предотвращения пожаров или взрывов и скорость нарастания до полной нагрузки.

          Типичные значения производительности для новых газовых турбин
          Тип газовой турбины Выходная мощность
          (МВт эл)
          КПД,
          Простой цикл (%), LHV
          КПД,
          Комбинированный цикл (%), LHV
          Авиационное 30-60 39-43
          51-54
          Малые тяжелые условия 70-200 35-37 53-55
          Для тяжелых условий эксплуатации 200-500 37-40 54-60
          .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *