Диагностика по широкополосным лямбда-зондам
В предыдущих статьях мы рассмотрели назначение, принципы работы и способы проверки «скачковых» датчиков кислорода (лямбда-зондов). Также были рассмотрены те возможности в поиске дефектов (диагностике) топливной системы автомобиля, которые открывает правильный анализ показаний этих датчиков.
Но все мировые автопроизводители постепенно отказываются от них и переходят на так называемые «широкополосные» лямбда-зонды. Почему так происходит? И чем плохи датчики, которые верой и правдой служили на протяжении многих лет? Чтобы ответить на данный вопрос, нам необходимо вернуться в прошлое и посмотреть, как развивалась борьба за экологию.
До 60-х годов прошлого века об экологии никто не думал. Автомобилей было мало, их «вклад» в загрязнение атмосферы был незначительным. Все изменилось во время автомобильного бума начала 60-х. Первым от «чуда» современной цивилизации под названием «автомобиль» пострадал американский штат Калифорния. Не очень удачное географическое положение и крайне неблагоприятная «роза ветров» — он очень плохо продувается, и людям от выхлопных газов просто стало нечем дышать. Был принят ряд законов, обязывающих автопроизводителей повышать качество выпускаемых автомобилей по экологическим параметрам. До недавнего времени это был громадный рынок сбыта автомобилей.
На нем торговали все мировые производители. А законы рынка очень жестоки – хочешь торговать на моем рынке, выполняй поставленные условия. Таким образом, требования законодательства Калифорнии распространились на весь мир. Отдельно хочется отметить рынок Европы. Тут «роза ветров» более благоприятная, экологические требования к автомобилям более мягкие. И стандарты по экологии сразу разделились на «американские» — более жесткие и «европейские» — чуть более мягкие. На данное время автомобильные рынки Старого и Нового Света практически заполнены. По расчетам аналитиков, свободные ниши имеются пока в России и Китае. Поэтому к рынкам этих стран приковано пристальное внимание всех автопроизводителей мира.
Вредные выбросы — это несгоревшее топливо. При полном сгорании углеводородов всего топлива образуется только СО2 (углекислый газ) и Н2О (вода). Если топливо сгорает не полностью, в выхлопе образуются продукты неполного сгорания. Пресловутые СО и СН. Ну, а если топливо полностью не сгорает, что происходит с крутящим моментом? Правильно – он падает! Что происходит с расходом топлива (если вы просто выливаете его в выхлопную трубу)? Правильно – он растет! И вот здесь полностью пересеклись интересы экологов, производителей автомобилей и специалистов автосервисов. Исправный автомобиль имеет прекрасную динамику, низкий расход топлива и еще атмосферу не загрязняет! От чего зависит крутящий момент, расход топлива и вредные выбросы? Основное требование – система управления двигателем должна поддерживать стехиометрический состав смеси. По современным стандартам отклонение не должно превышать 2%. Для контроля над этим параметром как раз и служат датчики кислорода в выхлопе.
Начало широкого применения лямбда-зондов в автомобилестроении было положено еще в конце 70-х годов прошлого столетия. Появление «скачковых» датчиков кислорода позволило на тот момент решить эту задачу. Но для выполнения норм Евро-4 и Евро-5 точность этих датчиков перестала удовлетворять производителей. Их недостатком явилось то, что состав смеси они определяют только по наличию кислорода в выхлопе. Нет кислорода – либо стехиометрия, либо богатая смесь. Есть кислород – бедная смесь. Работают по принципу «да–нет». Системе лямбда — регулирования постоянно приходится чуть добавлять и убавлять топливо, чтобы понять, находится ли система в зоне стехиометрии. Это приводит к некоторой задержке реакции системы при возникновении неизбежных отклонений и имеет определенную погрешность при измерении их величин. Для увеличения точности потребовались датчики, которые могут определить избыток или нехватку кислорода в процентах.
Так появились широкополосные датчики кислорода. При возникновении малейшего отклонения от правильного состава смеси они моментально дают блоку управления двигателя указание внести поправки и указывают их величину с достаточно большой точностью. На данный момент широкополосные датчики занимают лидирующее положение в автомобилестроении.Для рассмотрения принципов работы широкополосных датчиков кислорода обратимся к ставшему уже классическим описанию, данному фирмой Bosch в конце прошлого столетия и вошедшему практически во все учебные пособия и публикации в СМИ и в Интернете. К сожалению, данное описание не дает понимания алгоритмов их работы и (судя по вопросам на форумах) не всегда понятно специалистам автосервисов. Попробуем исправить эту ситуацию.
Условно систему лямбда — регулирования с широполосным датчиком кислорода можно разделить на 4 зоны (см. рис.1). Зона А – ионный насос, зона В – «скачковый» лямбда – зонд (элемент Нернста), зона С – разъем и проводка, зона D – блок управления двигателем (ЭБУ) 4.
Рисунок 1
Выхлопные газы 1 из выхлопной трубы 2 через канал поступают в диффузионную щель 6. Здесь они подвергаются каталитическому дожиганию (как в обычном катализаторе), и здесь же (в зависимости от первоначального состава смеси в двигателе) образуется либо избыток, либо недостаток кислорода. Поскольку толщина щели невелика – около 50 мкм, процесс происходит очень быстро. Но для протекания реакции каталитического дожигания нужна температура (в зависимости от конструкции – от 200 до 300 градусов Цельсия). Учитывая тот факт, что температура отработавших газов (ОГ) на холостом ходу может и не достигать указанных значений, необходимым элементом является нагреватель 3. Непрогретый лямбда-зонд не работоспособен.
Далее в работу вступает элемент Нернста 7 (зона В). Сравнивая состав контрольного воздуха в камере 5 с составом газов в щели 6, он дает информацию ЭБУ о наличии или отсутствии кислорода в ней. Только «да — нет». На основании этих показаний ЭБУ 4 дает команду ионному насосу 8 (зона А):
1. Откачать лишний кислород из щели в выхлопные газы, если избыточный кислород там присутствует. Бедная смесь. Ток положительный.
2. Закачать недостающий кислород в щель, если его там нехватка. Богатая смесь. Ионный насос «отнимает» кислород у продуктов выхлопа и перекачивает его в щель. Ток отрицательный.
3. Ничего не делать, если смесь стехиометрическая. Ток нулевой.
Ток ионного насоса прямо пропорционален разности концентраций кислорода на разных его сторонах. Таким образом, по полярности и величине тока этого элемента сразу же определяется состав смеси. Получив указание от ЭБУ, ионный насос пытается привести состав ОГ в щели, соответствующий стехиометрии. По его току ЭБУ понимает, куда и насколько отклонилась смесь, и сразу принимает меры по корректировке времени впрыска в ту или иную сторону. Колебания смеси ему не нужны – ЭБУ сразу видит абсолютные величины отклонений и выводит стехиометрию в идеал.
С началом применения широкополосных лямбда– зондов работа диагностов значительно облегчилась. Такой прибор, как газоанализатор, стал попросту ненужным. Если ЭБУ выводит показания в виде тока, то «нулевой» ток говорит о том, что системе лямбда-регулирования удалось вывести стехиометрию. По показанию коррекции смотрим, какой ценой и в какую сторону ему это удалось (см. рис. 2).
Рисунок 2
Если ток не нулевой, это означает, что системе вывести стехиометрию не удалось. Причин тут две:
1. Неисправен сам лямбда-зонд. Как показывает практика, код ошибки в этом случае возникает крайне редко. Причина проста – чтобы проверить исправность датчика, ЭБУ обязан включить систему мониторинга, т.е. принудительно обогатить или обеднить смесь. А это приводит к нарушению экологии! Поэтому мониторинг зонда проводится нечасто. Например, два автомобиля Opel Vectra, оборудованные системой впрыска Bosch и принимавшие участие в съемках фильма ОРТ «Левый автосервис», обнаружили отказ этого датчика только через несколько часов после его возникновения.
2.Дефект критичен. Система корректировки по лямбда-зонду уже дошла до пределов своей регулировки, но смесь по-прежнему отклоняется от стехиометрии. В этом случае возможен код «Превышение пределов топливной коррекции».
Действия диагноста в этих случаях таковы:
1. Проверка самого лямбда-зонда.
2. Если зонд исправен, определяем состав смеси. Стандарт OBD2 гласит однозначно: положительный ток – бедная смесь. Отрицательный ток – смесь богатая. График зависимости тока от состава смеси приведен на рис.3. Ну а причины и способы устранения отклонения состава смеси достаточно подробно описаны в учебных пособиях. Не будем повторяться.
Рисунок 3
Так выглядит идеальная картинка. Реалии куда более сложнее. Итак, давайте рассмотрим те «подводные камни», которые нас ждут при анализе показаний широкополосного лямбда-зонда.
Первый «подводный камень»: не все производители придерживаются стандарта. Очень часто ко мне приезжали автомобили, на которых стандарт был нарушен — положительный ток соответствовал богатой смеси, отрицательный – бедной. Но не стоит сразу винить производителей этих датчиков. Полярность тока зависит только от схемотехники и программного обеспечения ЭБУ.
ПРОВЕРКА: Необходимо в воздухозаборник работающего автомобиля добавить немного горючего вещества (принудительно обогатить смесь). На нашем автотехцентре мы используем обычный очиститель карбюратора. При наличии изменений показаний датчика однозначно говорим о его исправности и определяем, в какой полярности выводятся его показания на экран сканера.
Самый сложный случай, когда при этой проверке реакции широкополосного лямбда-зонда нет. Однозначного ответа – где дефект, дать невозможно. Вернемся опять к рис.1 .
Дефект возможен в зонах А и В (сам датчик), зоне С (проводка) либо в самом ЭБУ – зона D. В большинстве сервисов предлагают замену датчика, как наиболее вероятную причину. Но учитывая его стоимость, есть смысл обратиться к зоне С (проводке и разъему) для более глубокого поиска дефекта.
Pin 1. Ток ионного насоса. Проводится миллиамперметром на 10 mA и в большинстве случаев этот замер затруднителен.
Pin 2. Масса. Отклонение от «массы» двигателя не более 100 mV. Если «масса» идет с ЭБУ, возможно наличие смещения, заложенного производите- лем. Необходимо свериться с мануалами.
Pin 3. Сигнал элемента Нернста. При отключенном разъеме должен составлять 450 mV. При подключенном разъеме – напряжение должно находиться в пределах 0…1v. Но некоторые производители могут отклоняться от этого правила. Принудительное обогащение смеси позволяет определить исправность этой цепи.
Pin 4 и 5. Напряжение подогревателя. На современных автомобилях управляется с помощью Широтно-Импульсной Модуляции (ШИМ). Проверка необязательна, ибо в случае ее отказа код ошибки с Р0036 по Р0064 (Heater Control HO2S) пробивается практически моментально.
Второй «подводный камень»: ЭБУ не может «понимать» ток. Его входные цепи способны оцифровывать только напряжения. И блоки управления начинают выводить на сканер не ток, а падение напряжения на каком-то нагрузочном сопротивлении в ЭБУ. В зависимости от схемотехники блока оно в норме может иметь абсолютно разное значение. В потоке данных выводится не ток, а какое-то абстрактное напряжение. Мануалы на конкретный автомобиль его указывают.
Но способы проверки точно такие же. Принудительное обогащение смеси позволяет определить исправность датчика, а просмотр топливной коррекции позволяет понять, в каком состоянии находится система топливоподачи автомобиля.
Третий «подводный камень»: большинство широкополосных датчиков не взаимозаменяемы. Реклама настойчиво предлагает разнообразный выбор. На форумах часто звучат вопросы: «Какой датчик лучше поставить?». Как быть рядовому потребителю? Что выбрать?
Ответ дают сами производители автомобилей. Ставить нужно только те датчики, которые рекомендовал завод-изготовитель. В противном случае, производитель не в состоянии гарантировать правильную работу системы.
«Компания NGK Spark Plug Co., Ltd стала одним из пионеров в области лямбда-регулирования в начале 1980-х годов, когда на рынке был представлен регулируемый катализатор. Сегодня ассортимент продукции, выпускаемой под маркой NTK, включает цирконий-оксидные, титановые, широкополосные лямбда-зонды и покрывает порядка 7600 модификаций автомобилей. Все лямбда-зонды соответствуют спецификации оригинальной комплектации (в том числе по длине проводов, штекерам и электрическим параметрам), что гарантирует простоту установки и безупречную эксплуатацию. Каждый лямбда-зонд NTK обеспечивает оптимальные рабочие условия для функционирования катализатора, идеальное образование смеси, а также способствует сокращению выброса вредных веществ и поддержанию расхода топлива на минимальном уровне. Любой автомобиль, оснащённый регулируемым катализатором, имеет, как минимум, один кислородный датчик. Современным же автомобилям требуется не менее двух датчиков. Широкополосные датчики могут регулировать соотношение воздуха и топлива в топливно-воздушной смеси в широком диапазоне, что особенно важно для современных двигателей, работающих на обеднённых смесях, при значениях лямбда гораздо больше чем 1».
Автор: Федор Рязанов
15.05.2014 г.
Широкополосный датчик кислорода INNOVATE LC-2. Обзор. Подключение. Калибровка
- Принцип действия
- Проверка датчика кислорода ВАЗ 2114
- Подключение датчика кислорода на ВАЗ 2114 в случае, если он вышел из строя
- Как проверить лямбда зонд на ВАЗ 2114 как можно быстрее
- Напряжение на датчике кислорода ВАЗ 2114, а также другие технические показатели
- Полезное видео
Некоторые автолюбители, которые задаются вопросом о том, как проверить датчик кислорода ВАЗ 2114, думают, что сделать это самостоятельно крайне сложно, однако это не так. Достаточно действовать по инструкции (которую можно найти ниже по тексту). Этого будет вполне достаточно для того, чтобы решить проблему.
ВАЗ 2114 имеет массу сложных электротехнических устройств, каждое из которых нуждается в уходе или периодической профилактике. Электронный блок управления ВАЗа позволяет получить данные о текущем состоянии каких бы то ни было систем автомобиля.
Датчик кислорода (также называемый «лямбда зонд») — один из ключевых элементов авто. Если он выйдет из строя, то работоспособность машины будет нарушена. Для того, чтобы недопустить этого, следует изучить принцип работы устройства, а также технологию проверки датчика кислорода, который вышел из строя.
Датчик кислорода ваз 2114
Характеристика
Что это за элемент? Широкополосный лямбда-зонд – это устройство, которое отвечает за измерение количества кислорода в выхлопных газах автомобиля. Благодаря работе данного элемента обеспечивается наиболее правильное смесеобразование и, как следствие, оптимальная и стабильная работа двигателя на всех его режимах. Процесс управления концентрацией кислорода в газах называют лямбда-регулированием.
Сам название «лямбда» происходит от греческого символа λ. В автомобилестроении данным символом обозначается коэффициент остатка воздуха в горючей смеси.
Сообщений 6
1 Тема от serega 32 2014-11-30 00:15:08
- serega 32
- Новый участник
- Неактивен
- Регистрация: 2014-11-29
- Сообщений: 5Спасибо: 0
- Авто: ваз 2109i
Тема: оборвался разъем датчика кислорода, как подключить по цветам? ваз 2109
Оторвался разъем. Как теперь соединить провода без этого разъема? Какой провод к какому? они там не по цветам. подскажите кто сталкивался!?
Добавлено: 2014-11-30 01:15:08
забыл сказать, машина ваз 2109i
2 Ответ от Serg 2014-11-30 08:52:53 (2014-11-30 08:59:27 отредактировано Serg)
- Serg
- Фанат лада2111.рф
- Неактивен
- Регистрация: 2013-07-29
- Сообщений: 830Спасибо: 363
- Авто: 2111 двг2114 год2008
Re: оборвался разъем датчика кислорода, как подключить по цветам? ваз 2109
С какой стороны оторвался датчика или жгута ? На разьеме есть буквы A B C D
датчик A – C выхода датчика (серый и черный) B – D подогреватель датчика (обычно белые провода)
жгут A – розовый к эбу 28 нога B – розовчерн +12в питание нагревателя C – краснбел к эбу 10 нога D – белчерн к эбу
3 Ответ от serega 32 2014-11-30 11:41:24
- serega 32
- Новый участник
- Неактивен
- Регистрация: 2014-11-29
- Сообщений: 5Спасибо: 0
- Авто: ваз 2109i
Re: оборвался разъем датчика кислорода, как подключить по цветам? ваз 2109
СПАСИБо. только самого разъема нет просто провода висят. 4 от датчика и 4 из жгута.
Дата публикации: 16 января 2020 . Категория: Автотехника.
Лямбда зонд (также называется кислородным контроллером, датчиком O2, ДК) является неотъемлемой частью выхлопной системы автотранспортных средств, отвечающих экологическим стандартам EURO-4 и выше. Это миниатюрное устройство (обычно устанавливается 2 лямбда зонда и более) контролирует содержание O2 в выхлопных смесях автотранспортного средства, благодаря чему значительно снижается выброс ядовитых отходов в атмосферу.
В случае некорректной работы ДК или если произошло отключение лямбда зонда, функционирование силового агрегата может быть нарушено, из-за чего мотор перейдет в аварийный режим (на панели загорится Check Engine). Чтобы такого не случилось, систему автомобиля можно перехитрить, установив обманку.
Где находится?
Устанавливается широкополосный лямбда-зонд в выхлопной системе. В зависимости от типа автомобиля, в конструкции может использоваться один или несколько таких датчиков. Так, первый устанавливается до катализатора, второй – после него. Внешне его можно увидеть не всегда. Например, на «Калине» первых поколений данный элемент расположен в районе днища. А начиная со второго поколения кислородный датчик (лямбда-зонд) монтируется прямо в выпускной коллектор, доступ к которому осуществляется из-под капота. Но в любом случае данный элемент будет выглядеть как некая форсунка, что торчит из трубы со жгутом проводов.
Отметим, что на старых автомобилях использовался не широкополосный датчик кислорода, а двухточечный. Он имеет простую конструкцию. Был заменен ввиду необходимости более точных показаний. Ведь чем правильнее смесь, тем более оптимальной будет работа двигателя в разных режимах и нагрузках. Кстати, некоторые устанавливают широкополосный датчик кислорода с показометром. Обычно это цифровой «будильник», который показывает соотношение бензина и воздуха в смеси в режиме реального времени. Зачастую используется для диагностики неисправностей авто. На заводе такой элемент не устанавливается.
Как почистить лямбда зонд?
Для снятия нагара с кислородного датчика можно использовать ортофосфорную кислоту комнатной температуры. Замачивание зонда в данном веществе на протяжении 10 минут способствует удалению посторонних отложений, а также осевшего свинца со стержня устройства. Но нельзя держать зонд в кислоте слишком долго, так как это приведет к повреждению платиновых электродов.
Для большого количества автолюбителей замена лямбда зонда – это лучшее решение проблемы его неисправностей, так как в этом случае отпадает необходимость траты времени на чистку лямбда зонда и проведение сопутствующих операций. Поэтому для поддержания оптимальной работы катализатора рекомендуется менять кислородный датчик каждые 2-3 года (сохраняя чек для возможной замены по гарантии). Но, так как он может сломаться раньше указанного срока, то для предотвращения этого рекомендуется регулярная проверка лямбда зонда.
Устройство
Конструкция данного механизма предполагает наличие следующих элементов:
В основе механизма лежат два чувствительных электрода. Внешний имеет платиновое напыление, благодаря которому электрод сильно чувствителен к кислороду. Внутренний же изготовлен из циркония. Устанавливается датчик таким образом, чтобы сквозь него проходили отработанные газы. Внешний электрод улавливает О2, после чего измеряется потенциал между двумя наконечниками. Чем он выше, тем больше кислорода в системе.
Широкополосный датчик кислорода являет собой усовершенствованную конструкцию двухконтактного механизма. Отметим, что потенциал разницы измеряется под воздействием определенной силы тока.
Как это работает?
Алгоритм действия данного элемента основывается на поддержке определенного напряжения. Оно составляет 0,45 В. Это стабильный показатель между двумя электродами датчика.
При снижении концентрации О2, напряжение между керамическим элементом возрастает. это свидетельствует о наличии обогащенной смеси. Данный сигнал моментально поступает в электронный блок управления. Последний на основаниях этих сигналов создает ток определенной силы на исполнительных устройствах (в том числе на форсунке). Та, в свою очередь, впрыскивает больше (или меньше, в зависимости от показаний) бензина в камеру. Если смесь бедная, датчик сигнализирует об этом ЭБУ таким же образом.
Важная особенность
Стоит отметить, что работа чувствительных наконечников возможна только при достижении температуры в триста градусов Цельсия. Рабочий диапазон керамических электродов составляет от трехсот до тысячи градусов. Но как тогда действует элемент «на холодную»? Ранее на двухконтактных устройствах сигнал формировался от иных датчиков (расхода воздуха, положения заслонки и числа оборотов коленвала). Усредненное значение лямбды поступало на блок и тот формировал готовую смесь. Правда, значения эти были не всегда верными. Это не гарантировало оптимальную и стабильную работу двигателя внутреннего сгорания.
Поэтому в новом поколении датчиков (широкополосного типа) используется специальный подогреватель. Его функция – повысить температуру наконечников. Это необходимо, чтобы устройство включилось в работу сразу же после холодного старта двигателя. При достижении температуры в триста градусов, керамический элемент становится твердым электролитом, который пропускает сквозь себя ионы кислорода, скопившиеся на платиновой электродной сетке.
Нагревательный элемент расположен внутри корпуса датчика и питается принудительно от бортовой сети автомобиля.
Значение лямбды и связь с ДВС
Исходя из всего вышесказанного можно сказать, что работа стабильная работа двигателя внутреннего сгорания невозможна без широкополосного датчика. Именно этот элемент формирует сигнальные значения для ЭБУ, который впоследствии корректирует горючую смесь. Электронный блок является связующим звеном, который не только принимает импульсы, но и подает опорное напряжение 0,45 В на датчик. В зависимости от нагрузки двигателя внутреннего сгорания, режима его работы и рабочей температуры электроника подбирает наиболее оптимальное соотношение воздуха и топлива в смеси.
Считается, что идеальное соотношение – это 14,7 частей кислорода на одну часть бензина. При таком условии значение лямбды будет равно единице. Но не стоит забывать о таком значении, как коэффициент избытка воздуха. Если лямбда показывает выше единицы, значит, смесь будет обедненной. В таком случае в цилиндр поступит больше кислорода. Ежели лямбда ниже одного, значит, ЭБУ будет формировать обогащенную смесь. Так, в цилиндры поступит больше топлива, чем обычно.
Признаки
Как определить, что кислородный датчик (лямбда-зонд) требует замены? Узнать это очень просто. Поскольку датчик будет неисправен, на электронный блок заведомо поступят ошибочные сигналы и данные. В результате мотор будет работать нестабильно. Причиной тому является неправильно сформированная топливовоздушная смесь. Неисправность кислородного датчика широкополосного типа сопровождается:
Если появился хотя бы один из вышеперечисленных симптомов, это повод произвести детальную проверку широкополосного датчика кислорода.
Ремонт лямбда зонда
Перед тем, как произвести необходимые ремонтные работы, необходимо выкрутить кислородный датчик. Для этого в большинстве случаев необходимо наличие одного инструмента – разводного ключа. С его помощью можно легко откручивать зонд. Но перед тем, как открутить это устройство, тщательно осмотрите его корпус на наличие ржавчины. Отложения чаще всего находятся в месте прикрепления датчика к посадочному месту. Поэтому снятие лямбда зонда, корпус которого частично покрыт ржавчиной, лучше доверить опытным мастерам в автосервисе.
Подводим итоги
Итак, мы выяснили, как работает кислородный датчик, как устроен и почему он выходит из строя. Как видите, устроен широкополосный элемент гораздо сложнее, чем двухконтактный. Тем не менее именно такой тип позволяет точно контролировать и правильно готовить топливно-воздушную смесь, не возлагаясь на усредненные параметры. В случае выхода из строя элемент нужно срочно заменить.
Где находится датчик кислорода, мы уже знаем (до и после каталитического нейтрализатора либо в районе выпускного коллектора). При замене могут возникнуть трудности. Резьба часто прикипает, а открутить датчик можно только с использованием универсальных смазок типа ВД-40.
Широкополосный датчик кислорода: устройство, принцип работы, неисправности. Широкополосный лямбда-зонд на News4Auto.ru.
Наша жизнь состоит из будничных мелочей, которые так или иначе влияют на наше самочувствие, настроение и продуктивность. Не выспался — болит голова; выпил кофе, чтобы поправить ситуацию и взбодриться — стал раздражительным. Предусмотреть всё очень хочется, но никак не получается. Да ещё и вокруг все, как заведённые, дают советы: глютен в хлебе — не подходи, убьёт; шоколадка в кармане — прямой путь к выпадению зубов. Мы собираем самые популярные вопросов о здоровье, питании, заболеваниях и даем на них ответы, которые позволят чуть лучше понимать, что полезно для здоровья.
Подключение датчика кислорода на ВАЗ 2114 в случае, если он вышел из строя
Для того, чтобы заменить сломанный датчик, следует сделать следующее:
- отправиться в автомобильный магазин со сломанным прибором. Это нужно для того, чтобы вы могли сверить маркировки на устройствах. В противном случае автолюбитель может приобрести не тот прибор, который ему нужен. Для того, чтобы этого не произошло, следует внимательно сверить маркировку, которая располагается на корпусе устройства;
- необходимо выключить двигатель и дать ему остыть. Если этого не сделать, то заменить датчик не получится;
- после этого нужно отсоединить от датчика все провода;
- теперь необходимо открутить датчик кислорода обычным гаечным ключом;
- когда эта задача будет выполнена, автомобилисту остаётся поставить новый датчик. Сделать это предельно просто, однако необходимо проявлять осторожность, иначе можно запросто сорвать резьбу. Для того, чтобы недопустить столь неприятной поломки, необходимо вкрутить датчик как можно более медленно;
- после этого следует заняться соединением контактов датчика по схеме распиновки.
Установленный датчик кислорода
На все операции по установке нового датчика может потребоваться примерно 60-90 минут. Этого будет вполне достаточно для того, чтобы сделать всё максимально осторожно и аккуратно.
Для того, чтобы лучше понимать особенности этого устройства, необходимо изучить конструкцию лямбда зонда.
Лямбда зонд,датчик кислорода.Устройство и принцип работы.
Для того, чтобы добиться наибольшей продуктивности от работы двигателя необходимо обеспечить наилучшее сгорание топливно-воздушной смеси, в свою очередь для этого необходимо точно определить необходимые пропорции впрыскиваемого топлива и поступающего воздуха. Полученная смесь гарантирует наилучшее сгорание, продуктивную работу и наименьшее количество вредных веществ от выхлопа. Для определения доли кислорода в отработанных газах автомобиля, используется кислородный датчик (он же лямбда зонд, в народе).
Такой датчик используется только на инжекторных автомобилях. Лямбда зонд устанавливается в выхлопной системе автомобиля, некоторые модели авто могут содержать в комплектации 2 кислородных датчика, в таком случае один из них устанавливается до катализатора, второй – после катализатора. Применение 2 датчиков, позволяет усилить контроль, за отработанными газами автомобиля, тем самым достигнуть наиболее эффективной работы катализатора.
Как работает лямбда зонд?
Как Вам известно, дозировкой подаваемого топлива занимается электронный блок управления, он подает сигнал на форсунки о количестве необходимого топлива в камере сгорания в тот или иной момент времени. Лямбда зонд, в этом процессе выступает в качестве устройства обратной связи, благодаря которому, происходит правильная дозировка топлива на количество подаваемого воздуха. Правильно рассчитанная смесь очень важна как с экологической точки зрения, так и с экономической. На сегодняшний день, одним из важнейших требований к производству автомобилей является экологическая безопасность, поэтому новые автомобили комплектуются как правило каталитическим нейтрализатором (катализатором) и двумя датчиками лямбда зонда. Такое сочетание устройств позволяет свести к минимуму экологический вред, который наносят автомобили окружающей среде, но при возникновении поломки в одном из функциональных узлов выпускной системы, водитель попадет на приличные деньги, ведь все это не так то и дешево стоит.
Устройство лямбда зонда.
Сам датчик состоит из 2 электродов, внешнего и внутреннего. Внешний электрод сделан из платинового напыления, поэтому особо чувствителен к кислороду, из за химический свойств платины, ну а внутренний сделан из циркония. Лямбда зонд устанавливается таким способом, чтобы через него проходили отработанные газы автомобиля, при прохождении, внешний электрод улавливает кислород в отработанных газах, при этом изменяется потенциал между электродами, чем больше кислорода – тем выше потенциал! Особенностью циркониевого сплава, из которого сделан внутренний электрод – это его рабочая температура, которая достигает отметки в 300-1000 градусов. Именно по этой причине кислородные датчики имеют в своей конструкции подогреватели, которые доводят температуру самого датчики до рабочей в момент холодного запуска двигателя.
Лямбда зонды бывают 2 видов:
- Двухточечный датчик.
- Широкополосный датчик.
Эти два вида датчика между собой схожи по внешним признакам, но при этом выполняют работу различными способами.
Двухточечный датчик – это пример того датчика, который мы описывали ранее, состоит он с двух электродов, он фиксирует коэффициент избытка воздуха в топливной смеси, по величине концентрации кислорода в отработанных газах автомобиля.
Широкополосный датчик – является современной конструкцией лямбда зонда, в нем значение получают благодаря использование силы тока закачивания. По своей конструкции широкополосный датчик состоит из двух керамических элементов, двухточечного и закачивающего. Закачивающий элемент – физическим процессом закачивает в себя кислород из отработанных газов автомобиля, с использованием определенной силы тока. Датчик держит постоянное напряжение 450 мВ, если концентрация кислорода уменьшается – напряжение между электродами возрастает и подается сигнал в электронно управляющий блок. Как только сигнал поступил на ЭБУ, создается ток определенной силы на закачивающем элементе, этот ток обеспечивает закачку кислорода в измерительный зазор. В этом всем процессе, величины силы тока, которая подается на закачивающий элемент – это уровень концентрации кислорода в отработанных газах.
Основные причины и признаки неисправностей. Существует несколько признаков, по которым можно определить неисправность кислородного датчика:
- Увеличение токсичности выхлопных газов. Этот показатель на «глаз» определить невозможно, только с помощью замера специальным прибором, можно сделать вывод что уровень СО выхлопных газов увеличен. Показания прибора о увеличении СО гласит о нерабочем датчике лямбда зонд.
- Увеличение расхода топлива. Этот признак более заметен, чем предыдущий. Любой автомобилист интересуется, какой количество топлива расходуется автомобилем на определенное расстояние, поэтому повышение расхода будет заметно практически сразу. Единственный нюанс в этом способе определения – не всегда увеличение расхода топлива говорит о неисправности кислородного датчика.
- Check Engine. Все инжекторные автомобили имеют блок управления, который можно диагностировать на причину поломки в том или ином узле. Как правило, при появлении неисправности на приборной панели загорается соответствующая лампочка «Check Engine». В большинстве случаев, горение этой лампы говорит о неисправности лямбда зонда, более подробно можно узнать при диагностике на сервисе.
Причины неисправностей:
- Качество топлива. При некачественном топливе, на кислородном датчике откладывается небольшими долями свинец, этот слой со временем снижает чувствительность внешнего электрода к кислороду. Такой датчик можно со временем смело считать нерабочим.
- Механическая неисправность. К этим неисправностям относятся чисто механические повреждения самого датчика. Например: повреждение корпуса датчика, нарушение целостности обмотки обогрева и прочее. Решаются такие причины путем замены датчика на новый, ремонт практически невозможен и не целесообразен.
- Неисправность в топливной системе автомобиля. Из за неисправности форсунок, в цилиндры двигателя подается большее количество топлива, чем требуется, следовательно, оно не сгорает, а выходит в выхлопную систему в виде черного налета (сажи). Со временем эта сажа накапливается на всех узлах выхлопной системы автомобиля, в том числе и на лямбда зонде, это становиться причиной неправильной работы датчика. Как лечение, можно использовать тряпки и средства очистки, чтобы вычистить кислородный датчик, но если такие загрязнения будут постоянными – можно смело выбрасывать датчик и устанавливать новый.
Следите за автомобилем и своевременно выполняйте диагностику, это поможет сохранить функциональные узлы в хорошем состоянии на протяжении длительного времени.
Полезные статьи по автодиагностике — Школа Пахомова
На написание этого материала натолкнуло обилие вопросов на интернет-форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.
Датчик кислорода: от общего к частномуПрежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.
Чтоб не углубляться в дебри и не перегружать читателя информацией, поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.
Когда-то очень давно датчик кислорода представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся отработанными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них — подогреватель, один — масса, еще один — сигнал.
Из всех этих выводов нас интересует только сигнальный.
Форму напряжения на нем можно увидеть двумя способами:
- сканером
- мотортестером, подключив щупы и запустив самописец
Второй вариант предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения — это как раз и есть характеристика исправности датчика.
Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно.
О физическом принципе работы датчика рассказано во многих книгах, посвященных электронным системам управления двигателем, и мы на нем останавливаться не будем.
На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтобы быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.
К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0. 45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.
Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0.45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8-0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.
Методика проверки датчика кислородаПоняв, как работает датчик кислорода, легко понять методику его проверки.
Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна.
Как нам выяснить, в чем кроется проблема — в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.
- Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да — то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.
- Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.
- Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» — а сигнал на датчике не меняется, так и висит на уровне 0.45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.
Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.
Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливно-воздушную смесь.
Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом.
Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси.
Обратите внимание: эквивалентно
Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае — очень хороший помощник диагноста.
Как пользоваться извлекаемой с его помощью информацией, рассказано в статье «Газоанализ и диагностика».
Датчик кислорода: выводы- Нужно совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.
- Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.
- Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.
- По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.
- Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.
Устройство лямбда зонда
Датчик кислорода:назначение,виды,устройство,фото,принцип работы | АВТОМАШИНЫ
Кислородный датчик — устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название — лямбда-зонд.
Содержание статьи
- Типы датчиков кислорода
- Циркониевый
- Титановый
- Широкополосный
- Основные положения и функции Кислородного датчика : Теория.
- Конструкция и принцип работы кислородного датчика
- Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):
- Распространённые причины неисправностей лямбда зонда и способы их устранения
- Электронная проверка лямбда зонда
- Замена лямбда зонда
- Вопрос — ответ
- Устройство и принцип работы современного гидротрансформатора:описание,фото
- Подвеска МакФерсон (McPherson): устройство,описание,назначение,фото
- Датчик детонации:описание,виды,устройство,принцип работы
- Вариатор:описание,фото,принцип работы,устройство,виды
Типы датчиков кислорода
Циркониевый датчик стоит впереди катализатора и сам генерирует напряжение, либо отрицательное, либо положительное. Опорное напряжение такого датчика составляет 0,45 В, которое отклоняется либо до 0,9 В, либо до 0,1 В. Главное отличие такого датчика от титанового является именно тот факт, что циркониевый самостоятельно генерирует напряжение.
При ремонте стоить помнить, что к такому датчику ни в коему случае нельзя припаивать какие попало провода, потому что именно в изоляции проложены каналы для прохождения эталонного воздуха. Если такового не будет, то датчик попросту не будет правильно работать.
Широкополосный датчик – это новейшая конструкция лямбда-зонда на данный момент. Его устройство позволяет не просто определять бедную или богатую смесь на входе в цилиндры, но так же и определять степень отклонения. Именно такие параметры сделали его более точным, в то же время широкополосный кислородный датчик быстрее реагирует на изменения состава выхлопных газов.
Всем известно, что любой кислородный датчик начинает работать только после 350 градусов. Здесь же для более быстрого достижения рабочей температуры устанавливается нагревательных элемент.
Циркониевый
Одна из наиболее распространённых моделей. Создана на основе диоксида циркония (ZrO2).
Циркониевый датчик кислорода действует по принципу гальванического элемента с твёрдым электролитом в виде керамики из диоксида циркония (ZrO2)
Керамический наконечник с диоксидом циркония с обеих сторон покрыт защитными экранами из токопроводящих пористых платиновых электродов. Свойства электролита, пропускающего ионы кислорода, проявляются при нагреве ZrO2 выше 350°C. Лямбда-зонд не будет работать, не прогревшись до нужной температуры. Быстрый нагрев осуществляется за счёт встроенного в корпус нагревательного элемента с керамическим изолятором.
Выхлопные газы поступают к наружной части наконечника через специальные просветы в защитном кожухе. Атмосферный воздух попадает внутрь датчика через отверстие в корпусе или пористую водонепроницаемую уплотнительную крышку (манжету) проводов.
Разница потенциалов образуется за счёт передвижения ионов кислорода по электролиту между наружным и внутренним платиновыми электродами. Напряжение, образующееся на электродах, обратно пропорционально количеству О2 в выхлопной системе.
Напряжение, которое образуется на двух электродах, обратно пропорционально количеству кислорода
Относительно сигнала, поступающего от датчика, блок управления регулирует состав ТВС, стараясь приблизить её к стехиометрической. Напряжение, поступающее от лямбда-зонда, ежесекундно меняется по несколько раз. Это даёт возможность регулировать состав топливной смеси независимо от режима работы ДВС.
По количеству проводов можно выделить несколько типов циркониевых устройств:
- В однопроводном датчике существует единственный сигнальный провод. Контакт на массу осуществляется через корпус.
- Двухпроводное устройство оснащено сигнальным и заземляющим проводами.
- Трёх- и четырёхпроводные датчики снабжены системой нагрева, управляющим и заземляющим проводами к ней.
Циркониевые лямбда-зонды в свою очередь разделяются на одно-, двух-, трёх- и четырёхпроводные датчики
Титановый
Визуально похож на циркониевый. Чувствительный элемент датчика создан из диоксида титана. В зависимости от количества кислорода в выхлопных газах скачкообразно меняется объёмное сопротивление датчика: от 1 кОм при богатой смеси до более 20 кОм при бедной. Соответственно, меняется проводимость элемента, о чём датчик сигнализирует блоку управления. Рабочая температура титанового датчика — 700°C, поэтому наличие нагревательного элемента обязательно. Эталонный воздух отсутствует.
Из-за своей сложной конструкции, дороговизны и привередливости к перепадам температуры большое распространение датчик не получил.
Кроме циркониевых, существуют также кислородные датчики на основе двуокиси титана (TiO2)
Широкополосный
Конструктивно отличается от предыдущих 2 камерами (ячейками):
- Измерительной;
- Насосной.
В камере для измерений с использованием электронной схемы модуляции напряжения поддерживается состав газов, соответствующий λ=1. Насосная ячейка при работающем моторе на обеднённой смеси устраняет лишний кислород из диффузионного зазора в атмосферу, при богатой смеси — пополняет диффузионное отверстие недостающими ионами кислорода из внешнего мира. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна количеству О2. Именно значение тока и служит детектором λ выхлопных газов.
Температура, необходимая для работы (не менее 600°C), достигается за счёт работы нагревательного элемента в датчике.
Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6
Основные положения и функции Кислородного датчика :Теория.
Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).
Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива (речь идет о объемном соотношении величин), L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Таким образом, Лямбда зонд создан и поставлен инженерами для информирования компьютера, инжекторного автомобиля об отклонении от нормы соотношения топливно воздушной смеси.
График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)
Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором.
Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля.
Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).
Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.
Конструкция и принцип работы кислородного датчика
Конструкция кислородного датчикаСуществует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них — датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:
- Наружный электрод — осуществляет контакт с выхлопными газами.
- Внутренний электрод — контактирует с атмосферой.
- Нагревательный элемент — используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
- Твердый электролит — расположен между двумя электродами (диоксид циркония).
- Корпус.
- Защитный кожух наконечника — имеет специальные отверстия (перфорацию) для проникновения отработавших газов.
Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ — бедная смесь, от 450 до 900 мВ — богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.
Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В).
В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения.
Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.
Распространённые причины неисправностей лямбда зонда и способы их устранения
Датчики содержания кислорода в топливовоздушной смеси со временем выходят из строя, что можно определить по нестабильной работе двигателя и увеличенному расходу горючего. Причины неисправности лямбда — это заправка топлива низкого качества, неполадки системы приготовления и подачи горючего, попадание на датчик спецжидкостей. Неполадки проявляется следующими признаками:
- резкий рост оборотов до максимальных значений и мгновенное отключение мотора;
- ухудшение качества подаваемой в цилиндры смеси, снижение полноты сгорания;
- колебания оборотов холостого хода;
- значительное снижение мощности при увеличении оборотов;
- сбои в работе электронных блоков из-за задержек в подаче сигналов с датчика;
- движение автомобиля рывками;
- появление в двигательном отсеке звуков, которые нехарактерны при нормальной работе мотора;
- поздний впрыск при нажатии педали.
Для восстановления работоспособности электроники и системы впрыска понадобится замена или правильная очистка лямбда зонда. При очистке нужно снять керамический наконечник и удалить загрязнения при помощи химических средств.
Электронная проверка лямбда зонда
Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.
Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.
Замена лямбда зонда
В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.
Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.
Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.
Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.
Вопрос — ответ
В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.
B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.
B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.
Ассортимент кислородных датчиков
• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.
В DENSO решили проблему качества топлива!
Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации.
При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.
В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.
В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь).
ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.
Устройство и принцип работы современного гидротрансформатора:описание,фото
Подвеска МакФерсон (McPherson): устройство,описание,назначение,фото
Датчик детонации:описание,виды,устройство,принцип работы
Вариатор:описание,фото,принцип работы,устройство,виды
Датчик лямбда зонда: распиновка, напряжение, устройство, сопротивление
В современном технократическом мире существует потребность применения специальных устройств, называемых датчиками лямбда зондов, контролирующих концентрацию кислорода в отработанных газах двигателей внутреннего сгорания и котельных агрегатов. Тенденции к ужесточению экологических норм автомобильных выхлопов заставляют производителей автомобилей применять дублирующие датчики для более эффективной работы системы впрыскивания топлива и катализатора уходящих газов.
Описание и назначение устройств
Кислородные датчики, чаще всего, представляют собой гальваническую систему с твердотельным электролитом, который входит в рабочий режим при нагревании свыше 300˚C. Они изготавливаются с применением различных материалов в роли электролита, имеют конструкции в зависимости от назначения.
Название λ-зонды получили из-за обозначения данной греческой буквой коэффициента, отвечающего за избыток воздуха в двигателе внутреннего сгорания. При наилучшей пропорции топлива и воздуха в цилиндре двигателя (достигается максимальный КПД при минимальном расходе топлива), отношение расхода используемой воздушной смеси к стехиометрическому (оптимальному): λ = 1. При данном показателе двигатель автомобиля работает в экономном режиме и достигается наилучшая эффективность катализатора, устраняющего вредные вещества из выхлопных газов.
Назначение датчиков – контроль кислорода либо остаточного топлива в отработанных газах для функционирования ДВС и котлов в экономном режиме и минимизации вредных выбросов угарного газа, оксида азота, углеводородов при помощи автоматики.
В каких системах применяются
Кислородные датчики позволяют измерять объемную долю кислорода в газах, присутствующих после сгорания топлива в ДВС и котлах, работающих на твердом топливе либо метане.
λ- зонды применяются в приборах, измеряющих долю кислорода в уходящих газах котлов на ТЭС и других промышленных предприятиях для наилучшей регулировки КПД сгорания топлива при помощи подачи воздуха в топку, в зависимости от показаний приборов.
Наиболее широкое использование датчики получили в автомобильной промышленности для автоматической регулировки подачи бензиново-воздушной смеси в цилиндры двигателя.
Классификация, устройство и принцип действия
Датчики подразделяют на виды в зависимости от материала активных элементов, наличия системы подогрева, конструктивных особенностей и принципа действия. Рассмотрим существующие типы зондов.
Циркониевые
Для данного типа датчиков в качестве твердого электролита гальванической системы – керамической, проницаемой для ионов кислорода мембраны, служит диоксид циркония, который проявляет рабочие свойства при температуре свыше 300˚С. Наконечник из твердотельного циркония покрывается тонкой прослойкой оксида иттрия для лучшей проходимости атомов кислорода, а с внешней и внутренней стороны, частично покрывается тонким слоем платины, выполняющей функцию электродов. На примере рис.1 рассмотрим λ-зонд в разрезе.
Рис.1
- Провода: сигнальный и питания нагревателя.
- Контактная пластина нагревательного провода.
- Стальной корпус, соединенный с кожухом, вставляемым резьбой в гнездо отверстия выхлопной трубы.
- Циркониевый электролит с наружной и внутренней платиновыми электродными пластинами.
- Нагреватель.
- Керамический теплоизолирующий элемент.
- Контактная плоскость.
- Металлический корпус с отверстиями для попадания уходящих газов.
Принцип работы
Он довольно прост. Во внутренней камере рабочего элемента с платиновым электродом находится обычный воздух, имеющий стандартную (эталонную) проницаемость кислорода со своим давлением на стенки циркониевого наконечника при его нагреве до 350-400˚С.
На наружный платиновый электрод поступают выхлопные газы, делающие проницаемость переменной величиной, в зависимости от объема кислорода в этих газах. Разность потенциалов на электродах появляется вследствие перемещения ионов кислорода со стороны большего давления в сторону с меньшим давлением.
Резкий перепад напряжения (примерно от 850 мВ до 75 мВ) при изменении наличия кислорода в выхлопе от смеси с излишками топлива и недостатком кислорода (богатой, где λ<1) до смеси с недостатком топлива и излишком кислорода (бедной, где λ>1), позволяет делать измерения с погрешностью около 5%.
Титановые
Рабочий элемент этого зонда – диоксид титана. Устройство датчика похоже на циркониевый, только не требует камеры с эталонной смесью воздуха. Принцип работы основан на изменении сопротивления материала при изменении объемной доли кислорода в выхлопе. Чем больше ионов кислорода, тем большее сопротивление возникает в рабочем элементе. Для функционирования системы необходима высокая температура нагрева двуокиси титана (свыше 600˚С) и постоянная подача питания на электронный блок управления – 5В.
Преимущества титановых зондов:
- Прочность, небольшие размеры.
- Отсутствие камеры с эталонной сравнительной смесью, что увеличивает их долговечность.
- Быстрое достижение нагрева и рабочего состояния.
К недостаткам можно отнести более высокую цену, чем у циркониевых, что обусловило отказ производителей автомобилей применять их в современных моделях.
Широкополосные – LSU датчики
При помощи широкого диапазона измерения в областях с различным коэффициентом избытка воздуха (λ<1; λ>1), кислородные зонды этой конструкции получили универсальное применение в разнообразных типах двигателей (газовых, дизельных, внутреннего сгорания с принудительным зажиганием) и отопительных установках. Широкополосное устройство более точно подает сигнал на электронный блок управления о соотношении наличия кислорода и топлива в уходящих газах ДВС, что позволяет лучше контролировать уровень выхлопов.
По внешнему виду зонд похож на циркониевый, но принцип действия немного другой. Работа системы основана на поддержании постоянной разности потенциалов между электродами в пределах 0,45 В, соответствующей коэффициенту избытка воздушной смеси, равной единице.
Датчик состоит из двух рабочих элементов – циркониевого, выполняющего измерительную функцию и элемента для введения либо выведения кислорода из системы. Между рабочими элементами расположено удлиненное отверстие, размером от 20 до 50 мкм. В отверстии размещены два электрода для измерения и регулировки (накачивающий) объемной доли кислорода. В измерительное отверстие вставлен барьер, отделяющий его от уходящих газов и, регулирующий закачку либо откачку кислорода из него. Циркониевый элемент соприкасается с внешней атмосферой благодаря небольшому приточному каналу.
Если смесь, подающаяся в двигатель, обедненная на топливо, то уходящие газы богаты на кислород и он выводится из отверстия для измерения с помощью плюсового напряжения на выводящий рабочий элемент. В противном случае, на элемент подается напряжение с противоположным знаком, кислород входит в измерительное отверстие.
Электронная схема стремится удержать напряжение 0,45 В через, постоянно меняющееся напряжение на электродах элемента введения/выведения кислорода из системы, чтобы концентрация кислорода в отверстии соответствовала: λ = 1. В датчик вмонтирован нагреватель для достижения температуры 700˚С и выше, в зависимости от типа зонда.
Плюсы
Преимуществом широкополосных зондов можно считать:
- Широкий диапазон измерений и регулировки кислорода в выхлопе.
- Быстрый нагрев и приведение в рабочее состояние при запуске авто.
- Широкий спектр применения.
Следует отметить, что лямбда зонды бывают с 2, 3, 4, 5 выводами. Устройства без подогрева обычно имеют 2 вывода – сигнальный и заземляющий. Широкополосные устройства имеют 5 и более выводов.
Методы диагностики
Диагностику датчиков желательно проводить каждые 10000 км пробега автомобиля либо при первых признаках неисправности зонда, которые описаны ниже.
Мультиметром
Очень часто причиной нерабочего состояния кислородного зонда является повреждение спирали нагревателя либо контакта с нагревателем. Так ли это, легко проверить мультиметром, переключив его в режим работы омметра. Обычно 3 и 4 контакт (в 4-х проводном датчике) подходят к нагревательному элементу. Значение сопротивления должно быть в пределах 4,5 – 5,5 Ом. Если показания превышают данное значение, то зонд требует замены, так как нагревательный элемент вышел из строя.
Для проверки сигнала, поступающего на электронный блок, нужно завести автомобиль, нажать на педаль газа, чтобы подержать двигатель в высокооборотном режиме в течение некоторого времени. Сигнальный провод зонда (обычно черный) подключаем к плюсовому щупу мультиметра, а минусовой щуп, соединяем с «землей», переключаем прибор в режим вольтметра (2000 мВ). При удержании педали газа и резком отпускании, показания прибора должны быть в пределах от 1000 мВ до 100 мВ. Если показания остаются неизменными в пределах 400 – 500 мВ при манипуляции с педалью газа, то зонд неисправен.
Осциллографом
Качество проверки осциллографом проявляется в возможности узнать временной промежуток изменения сигнала выходного напряжения. Для проверки необходимо подсоединить осциллограф к проводу, дающему сигнал на электронный блок (черному). Далее нужно завести двигатель и подождать прогрева до 70˚С. По мере прогрева датчика до 400˚С, прибор начнет показывать волнообразный график. При работе двигателя на оборотах около 3000, прибор должен показывать ровный волнообразный график с нижним пределом уровня сигнала (не менее 0,1 В) и высоким (не более 0,8 — 1 В).
Если на экране прочерчивается график в крайних (верхней или нижней) точках, а также в положении около 0,6 В при максимальной работе двигателя, то λ – зонд неисправен.
Основные причины выхода из строя
Причин поломки датчика кислорода может быть много, среди них, конечно же, и качество применяемого топлива. Рассмотрим главные:
- Повреждение или встряска зонда вследствие неаккуратной езды (наезда на препятствие, яму).
- Перегрев зонда из-за неисправности в блоке зажигания.
- Засорение керамической поверхности продуктами сгорания некачественного бензина.
- Неисправность в работе двигателя (попадание масла в выхлоп).
- Замыкание в проводах датчика.
Поломка датчика может происходить постепенно, переводя работу двигателя в режим неправильной работы. На современных машинах стоит второй зонд после катализатора, что улучшает качество работы ДВС и защиту атмосферы от продуктов сгорания топлива.
Нюансы подключения
При поломке устройства, можно установить датчик, который рекомендует завод-изготовитель или похожий циркониевый зонд. Вот основные правила:
- Цвета проводов датчика различаются, но цвет подающего сигнал на электронную схему, всегда темный.
- «Земля» бывает желтого, белого, серого оттенков.
- Для подключения 4-проводного зонда на место 3-проводного – соединяются с «землей» автомобиля провода заземления нагревателя и минусовой сигнальной системы. Провод нагревателя через релейную схему подсоединяется к плюсовому полюсу аккумулятора.
Подключение нового зонда лучше сделает специалист из автосервиса.
Советы и рекомендации
При первых признаках неправильной работы лямбда датчика (машина начинает резко дергаться при начале движения, не так быстро срабатывает педаль газа, на панели должны высвечиваться предупредительные сообщения, перегрев двигателя во время работы, неприятные токсичные газы из выхлопной трубы), необходимо определиться с некоторыми вопросами:
- Точная установка неисправности зонда.
- Правильный подбор нового датчика.
- Не следует поддаваться желанию установить датчик, бывший в употреблении (неизвестен его остаточный ресурс), если хотите сберечь двигатель в хорошем состоянии.
- Не нужно пытаться разобрать устройство, оно сделано герметично и не ремонтируется.
Желательно покупать оригинальный зонд либо универсальный (для двигателей определенного производителя).
Лямбда зонд — признаки неисправности и способы проверки
Инжекторная система питания автомобиля является более экономичной и эффективной, чем карбюраторная. Достигается это за счет полного контроля за подачей топлива и воздуха, которое осуществляется рядом датчиков. Они выполняют проверку рабочих параметров, передают их на электронный блок, который анализирует и на их основе корректирует работу всей системы.
Причем датчики для обеспечения полной информации о работе системы устанавливаются не только на впуске (количества топлива, воздуха), но и в выпускной системе. В ней используется всего один датчик, но от его работы зависит, какое количество воздуха будет подаваться в цилиндры. Он так и называется – датчик кислорода, другое название — лямбда-зонд.
Зачем нужен лямбда зонд в машине?
data-full-width-responsive=»true»>
1) металлический корпус с резьбой и шестигранником “под ключ”;
2) уплотнительное кольцо;
3) токосъемник электрического сигнала;
4) керамический изолятор;
5) провода;
6) манжета проводов уплотнительная;
7) токоподводящий контакт провода питания нагревателя;
8) наружный защитный экран с отверстием для атмосферного воздуха;
9) чувствительный элемент;
10) керамический наконечник;
11) защитный экран с отверстием для отработавших газов.
Основная задача этого датчика кислорода – оценка количества несгоревшего кислорода в отработанных газах. Дело в том, что самое эффективное сгорание топливовоздушной смеси достигается при определенном соотношении топлива и воздуха — одна часть бензина должно смешиваться с 14,7 частями воздуха.
Если топливовоздушная смесь будет обедненной, то содержание воздуха будет увеличенным, и наоборот – обогащенная смесь обеспечит меньшее процентное содержание кислорода в выхлопных газах. А это уже сказывается на мощности, расходе, приемистости.
А поскольку двигатель работает на разных режимах, поэтому такое соотношение далеко не всегда соблюдается. Чтобы была возможность контролировать количество подаваемого воздуха, в систему питания и включен лямбда-зонд.
На основе показаний этого датчика электронный блок оценивает качество топливовоздушной смеси и при обнаружении несоответствия нормам – корректирует работу системы, обеспечивая подачу оптимальной смеси путем подачи сигнала на форсунки, которые увеличивают или уменьшают количество впрыскиваемого топлива.
Устройство и принцип работы лямбда зонда
Принцип работы лямбда зонда
Принцип вроде и прост, но реализация его — не такая уж и легкая. Этот датчик должен с чем-то сравнивать полученные результаты, чтобы «понять», что произошло изменение процента кислорода. Поэтому он делает замеры в двух местах – атмосферный воздух и тот, что остался после сгорания смеси. Это позволяет ему «почувствовать» разницу при изменении соотношения топливовоздушной смеси.
1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба
При этом на электронный блок должен подаваться электрический сигнал. Для этого лямбда-зонду необходимо преобразовать результаты замеров в импульс, который будет подаваться на ЭБУ. Для проведения замеров концентрации кислорода в атмосфере и в выхлопных газах, используется два электрода, вступающих в реакцию с ним. То есть, в работе этого датчика задействован принцип гальванического элемента, при котором смена параметров химической реакции влечет за собой изменение напряжения между электродами датчика. Так, при обогащенной смеси, когда процент кислорода – меньше, напряжение возрастает, а при обеднении – снижается.
Полученный в результате химической реакции электрический импульс подается на ЭБУ, параметры которого он сравнивает с прописанными в своей памяти и в результате этого производит корректировку работы системы питания.
Используя для работы химические реакции, лямбда-зонд не является сложным по конструкции. Основным его элементом выступает керамический наконечник, изготовленный из диоксида циркония (реже – диоксида титана) с платиновым покрытием, которое и выступает в роли электродов, вступающих в реакцию. Одной своей стороной наконечник контактирует с атмосферой, а другой – с выхлопными газами.
Лямбда зонд с подогревом
Особенность работы такого керамического наконечника заключается в том, что произведение эффективных замеров остаточного процента кислорода выполняется только при определенном температурном режиме. Чтобы наконечник обрел необходимую проводимость, необходима температура в 300-400 град. С.
Чтобы обеспечить необходимый температурный режим изначально этот датчик устанавливали ближе к выпускному коллектору, что обеспечивало достижение необходимой температуры по мере прогрева силовой установки. То есть, в работу он вступал не сразу. До того, как лямбда-зонд начнет передавать импульсы, электронный блок основывался на показания других датчиков, включенных в систему питания, но при этом оптимальное смесеобразование не соблюдалось.
Видео: Как подключить лямбда зонд с подогревом
Ещё кое-что полезное для Вас:
Некоторые модели лямбда-зондов в своей конструкции имеют специальные электрические подогреватели, что обеспечивает более быстрый выход на необходимый температурный режим. Запитка подогревателя осуществляется от бортовой сети авто.
Датчик, выполняющий свою работу за счет химической реакции, получил название двухточечного, за счет того, что замеры производятся в двух местах. Но выпускаются еще и другой тип лямбда-зонда – широкополосный, который является более современной версией датчика. В его конструкции тоже используется двухточечный элемент, а также еще один керамический элемент – закачивающий. При этом суть сводится все к той же подаче электрического сигнала на ЭБУ.
Использование двух и более датчиков
Сейчас многие автомобили, чтобы повысить их экологичность, используют каталитические нейтрализаторы, что позволяет снизить вредные выбросы в атмосферу. При этом выхлопная система оснащается не одним, а двумя и более кислородными датчиками.
В такой выхлопной системе эти датчики производят не только замер остаточного кислорода, но еще и оценивают эффективность работы нейтрализатора. Один из датчиков устанавливается перед катализатором, а второй – за ним. Это позволяет на основании сравнения показаний двух лямбда-зондов понять, выполняется ли нейтрализация вредных веществ.
С одной стороны, такая система позволяет меньше загрязнять окружающую среду, но с другой – она очень «капризна». Одна-две заправки некачественным бензином запросто может испортить нейтрализатор. А это уже скажется на показаниях кислородных датчиков, и как следствие – на работе всей системы питания.
К тому же даже при соблюдении всех условий эксплуатации авто, нейтрализатор выйдет из строя, поскольку у него имеется свой ресурс, после которого он подлежит замене, чтобы восстановить нормальную работоспособность системы питания. А поскольку замена – «удовольствие» дорогостоящее, то на выручку приходят разные хитрости.
Многие просто вырезают нейтрализатор, а на его место устанавливают пламегаситель – обычный отрезок трубы необходимого диаметра. А чтобы получить разницу в показаниях двух датчиков, используют так называемую обманку на лямбда зонд – специальную проставку, устанавливаемую на второй лямбда-зонд.
Эта обманка просто удаляет наконечник от потока выхлопных газов, что влияет на его показания. За счет этого и достигается разница, которую ЭБУ воспринимает как работу катализатора.
Видео: Лямбда зонд (датчик кислорода). Как обмануть второй лямбда зонд
Признаки неисправности датчика кислорода
Лямбда-зонд – достаточно важный элемент в системе питания авто и его поломка может значительно сказаться на работе силовой установки. Признаки неисправности его таковы:
- увеличение расхода бензина;
- «плавающие» обороты на холостом ходу;
- понижение динамики разгона;
- щелчки и треск из-под авто после остановки мотора;
Одна из особенностей лямбда-зонда кроется в том, что его неисправность далеко не всегда распознается системой самодиагностики авто. К тому же невозможно его проверить при помощи обычных измерительных приборов в гаражных условиях. Его работоспособность проверяется только осциллографом.
Также он не ремонтопригоден. Единственное, что можно устранить, так это – обрыв проводки, ведущей к датчику. Но с ним бывают также и такие неисправности как повреждение подогревающего элемента и потеря чувствительности самого датчика.
Видео: Как проверить лямбда зонд
Замена
Поэтому многие автолюбители не пытаются проводить диагностику работоспособности лямбда-зондов, а просто периодически производят его замену на новый. Чтобы поддерживать работоспособность системы питания в рабочем состоянии следует производить замену раз в 2-3 года.
Данная операция не является сложной и выполняется она на смотровой яме. Предварительно следует приобрести необходимую модель датчика. Перед демонтажем отключается колодка проводов от зонда, а затем он выкручивается со своего посадочного места рожковым ключом соответствующего размера. Для облегчения откручивания допускается обработка специальными средствами (WD-40 или др.). На место выкрученного элемента вкручивается новый и к нему подключается проводка.
Датчик кислорода (Лямбда-зонд): как работает, проблемы, симптомы
На чтение 5 мин. Просмотров 2.8k. Опубликовано
Датчик кислорода (ДК) — он же лямбда-зонд — измеряет количество кислорода в выхлопных газах, отправляя сигнал на блок управления двигателя (ЭБУ).
Где находится датчик кислорода
Передний датчик кислорода ДК1 установлен в выпускном коллекторе или в передней выпускной трубе перед каталитическим нейтрализатором. Как вы знаете, каталитический нейтрализатор является основной частью системы контроля выбросов в автомобиле.
Задний кислородный датчик ДК2 установлен в выхлопе после каталитического нейтрализатора.
На 4-цилиндровых двигателях устанавливают как минимум два лямбда-зонда. Двигатели V6 и V8 имеют как минимум четыре датчика O2.
ЭБУ использует сигнал от переднего кислородного датчика для регулировки топливно-воздушной смеси путем добавления или уменьшения топлива.
Сигнал заднего датчика кислорода используется для контроля работы каталитического нейтрализатора. В современных автомобилях вместо переднего кислородного датчика используется датчик воздушно-топливного отношения. Он работает аналогично, но точнее.
Как работает датчик кислорода
Существует несколько типов лямбда-зондов, но для простоты в этой статье мы рассмотрим только обычные генерирующие напряжение датчики кислорода.
Как следует из названия, генерирующий напряжение датчик кислорода генерирует небольшое напряжение, пропорциональное разнице в количестве кислорода внутри и снаружи выхлопного газа.
Для правильной работы лямбда-зонд необходимо нагреть до определенной температуры. Типичный современный датчик имеет внутренний электрический нагревательный элемент, который питается от ЭБУ двигателя.
Когда топливовоздушная смесь (ТВС), поступающая в двигатель, бедная (мало топлива и много воздуха), в выхлопе остается больше кислорода, и кислородный датчик создает очень небольшое напряжение (0,1 – 0,2 В).
Если ТВС обогащается (много топлива и мало воздуха), в выхлопе остается меньше кислорода, поэтому датчик будет генерировать бОльшее напряжение (около 0,9 В).
Регулировка соотношения топливовоздушной смеси
Передний датчик O2 отвечает за поддержание оптимального соотношения смеси воздух / топливо, поступающей в двигатель, которая составляет приблизительно 14,7:1 или 14,7 частей воздуха на 1 часть топлива.
Блок управления регулирует топливовоздушную смесь на основе обратной связи от переднего датчика кислорода. Когда передний лямбда-зонд обнаруживает высокий уровень кислорода, ЭБУ предполагает, что двигатель работает на бедной смеси (недостаточно топлива) и поэтому добавляет топлива.
Когда уровень кислорода в выхлопе становится низким, ЭБУ предполагает, что двигатель работает на богатой смеси (слишком много топлива) и уменьшает подачу топлива.
Этот процесс непрерывен. Компьютер двигателя постоянно переключается между обедненным и обогащенным состоянием, чтобы поддерживать оптимальное соотношение воздух / топливо. Этот процесс называется операцией замкнутого цикла.
Если вы посмотрите на сигнал напряжения переднего датчика кислорода, он будет циклически колебаться где-то между 0,2 вольт (бедная) и 0,9 вольт (богатая).
Когда автомобиль заводится холодным, передний кислородный датчик не прогрет полностью, и ЭБУ не использует сигнал ДК1 для регулировки топлива. Этот режим называется разомкнутым контуром. Только когда датчик полностью прогрелся, система впрыска топлива переходит в режим замкнутого контура.
В современных автомобилях вместо обычного датчика кислорода установлен широкополосный датчик топливовоздушного соотношения. Датчик соотношения воздух / топливо работает по-другому, но служит той же цели — для определения, является ли топливовоздушная смесь, поступающая в двигатель, обогащённой или обеднённой.
Датчик топливовоздушного соотношения является более точным и может измерять более широкий диапазон.
Задний датчик кислорода
Задний или нижний кислородный датчик установлен в выхлопе после каталитического нейтрализатора. Он измеряет количество кислорода в выхлопных газах, выходящих из катализатора. Сигнал от заднего лямбда-зонда используется для контроля эффективности нейтрализатора.
Контроллер постоянно сравнивает сигналы от передних и задних датчиков O2. Основываясь на двух сигналах, ЭБУ знает, насколько хорошо каталитический нейтрализатор работает. Если катализатор выходит из строя, ЭБУ включает индикатор «Check Engine», чтобы вы знали об этом.
Задний датчик кислорода можно проверить с помощью диагностического сканера, адаптера ELM327 с программой Torque или осциллографа.
Идентификация датчика кислорода
Передний лямбда-зонд перед каталитическим нейтрализатором обычно называют датчиком «выше по потоку» или датчиком 1.
Задний датчик, установленный после катализатора, называется датчик «ниже по потоку» или датчик 2.
Типичный рядный 4-цилиндровый двигатель имеет только один блок (ряд 1 / банк 1). Поэтому в рядном 4-цилиндровом двигателе термин «Банк 1, Датчик 1» просто относится к переднему датчику кислорода. «Банк 1, Датчик 2» — это задний кислородный датчик.
Читайте подробнее: Что такое Банк 1, Банк 2, Датчик 1, Датчик 2?
Двигатель V6 или V8 имеет два блока (или две части этого «V»). Обычно блок цилиндров, содержащий цилиндр № 1, называется «Банк 1».
Различные производители автомобилей определяют Банк 1 и Банк 2 по-разному. Чтобы узнать, где банк 1 и банк 2 в вашем автомобиле, вы можете посмотреть в руководстве по ремонту или в Google, указав год, марку, модель и объём двигателя.Замена датчика кислорода
Проблемы с датчиком кислорода являются распространёнными. Неисправный лямбда-зонд может привести к увеличению расхода топлива, увеличению выбросов в атмосферу и различным проблемам во время вождения (провалы оборотов, плохое ускорение, плавающие обороты и т. д.). Если датчик кислорода неисправен, его необходимо заменить.
В большинстве автомобилей замена ДК является довольно простой процедурой. Если вы хотите заменить кислородный датчик самостоятельно, с некоторыми навыками и руководством по ремонту, это не так сложно, но вам может понадобиться специальная торцевая головка для датчика (на фото).
Иногда может быть трудно вытащить старый лямбда-зонд, так как они часто сильно ржавеют.
Еще одна вещь, о которой следует знать — некоторые автомобили, как известно, имеют проблемы с заменяемыми датчиками кислорода.
Например, есть сведения о неоригинальном датчике кислорода, вызывающем проблемы в некоторых двигателях Chrysler. Если вы не уверены, лучше всегда использовать оригинальный датчик.
Кислородный датчик: устройство, назначение, диагностика
Сомнительная заправка, плохой бензин, «чек» на панели — стандартный и быстрый путь к замене кислородного датчика. Про лямбда-зонд слышали многие автомобилисты, но мало кто разбирался, за что именно он отвечает и почему так легко выходит из строя. Рассказываем про датчик кислорода — «обоняние» двигателя.
Лямбда и стехиометрия двигателя
Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.
Если лямбда будет <1 (недостаток воздуха), смесь станет обогащённой; при лямбде >1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.
Зависимость мощности и расхода топлива от состава смеси
Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.
Зачем нужен кислородный датчик
Датчиков в современном двигателе великое множество. С помощью различных сенсоров ЭБУ замеряет температуру забортного воздуха и его поток, «видит» положение дроссельной заслонки, отслеживает детонацию и положение коленвала — словом, внимательно следит за воздухом «на входе» и показателями работы мотора, регулируя подачу топлива для создания оптимальной смеси в цилиндрах.
Схема лямбда-коррекции двигателя
Лямбда-зонд показывает, что же получилось «на выходе», замеряя количество кислорода в выхлопных газах. Другими словами, кислородный датчик определяет, оптимально ли работает мотор, соответствуют ли расчёты ЭБУ реальной картине и нужно ли вносить в них поправки. Основываясь на данных с лямбда-зонда, ЭБУ вносит соответствующие коррекции в работу двигателя и подготовку топливно-воздушной смеси.
Где находится кислородный датчик
Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.
Если у двигателя две головки блока (V-образники, «оппозитники»), то удваивается количество выпускных коллекторов и катализаторов, а значит и лямбда-зондов — у современной машины может быть и 4 кислородных датчика.
Устройство кислородного датчика
Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.
Циркониевый элемент лямбда-зонда приобретает проводимость и начинает работать только после прогрева до температуры 300 °C. До этого ЭБУ двигателя действует «вслепую» согласно топливной карте, без обратной связи от кислородного датчика, что повышает расход топлива при прогреве двигателя и количество вредных выбросов. Чтобы быстрее задействовать лямбда-зонд, ему добавляют принудительный электрический подогрев. Кислородные датчики с подогревом внешне отличаются увеличенным количеством проводов: у них 3–4 жилы против 1–2 у обычных датчиков.
В названии узкополосного датчика кроется его недостаток — он способен замерять количество кислорода в выхлопе в достаточно узком диапазоне. ЭБУ может корректировать смесь по его показаниям только в некоторых режимах работы мотора (холостой ход, движение с постоянной скоростью), что не отвечает современным требованиям по экономичности и экологичности двигателей. Для более точных замеров в широком диапазоне используют широкополосный лямбда-зонд (A/F-сенсор), который также называют датчиком соотношения «воздух-топливо» (Air/Fuel Sensor). Обычно к нему подходят 5–6 проводов, хотя бывают и исключения.
Внешне «широкополосник» похож на обычный датчик кислорода, но внутри есть отличия. Благодаря специальным накачивающим ячейкам эталонный лямбда-коэффициент газового содержимого датчика всегда равен 1, и генерируемое им напряжение постоянно. А вот ток меняется в зависимости от количества кислорода в выхлопных газах, и ЭБУ двигателя считывает его в реальном времени. Это позволяет электронике быстрее и точнее корректировать смесь, добиваясь её полного сгорания в цилиндрах.
Почему до сих пор производят узкополосные датчики? Во-первых, для старых автомобилей, где A/F-сенсоры не применялись. Во-вторых, из-за особенностей «широкополосника» его нельзя устанавливать после катализатора, где он быстро выходит из строя. А контролировать работу катализатора как-то надо. Поэтому в современных двигателях ставят два лямбда-зонда разного типа: широкополосный (управляющий) — в районе выпускного коллектора, а узкополосный (диагностический) — после катализатора.
Причины и признаки неисправности лямбда-зонда
Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.
Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.
Но далеко не всегда проблемный лямбда-зонд зажигает «Чек»: иногда он не ломается полностью, а медленно умирает, давая при этом ложные показания, из-за чего ЭБУ двигателя неверно корректирует состав смеси. В этом случае нужно ориентироваться на косвенные признаки — ухудшение работы двигателя.
Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.
Универсальные кислородные датчики
Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.
Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.
Что такое лямбда зонд. Принцип работы, функции и причины неисправностей
Сегодня мы узнаем, что называется автомобильным лямбда зондом, для чего он нужен, какие функции и задачи выполняет, а также как узнать, что данный элемент топливной системы транспортного средства вышел из строя
ЧТО ТАКОЕ ЛЯМБДА ЗОНД. ПРИНЦИП РАБОТЫ, ФУНКЦИИ И ПРИЧИНЫ НЕИСПРАВНОСТЕЙ
Добрый день, сегодня мы узнаем, что называется автомобильным лямбда зондом, для чего он нужен, какие функции и задачи выполняет, а также как узнать, что данный элемент топливной системы транспортного средства вышел из строя. Кроме того, расскажем про принцип функционирования и для чего была изобретена эта деталь автопроизводителями. В заключении мы наглядно увидим принципиальную схему работы лямбда зонда, а также, что в первую очередь влияет на стабильность и долговечность его работы.
Многие автолюбители довольно часто в своем обиходе употребляют такие автомобильные термины, как АБС и ЕСП, однако понятия инжектор, лямбда зонд многим уже позабылись. Для того, чтобы понимать какие задачи выполняет лямбда зонд, для чего он нужен, а также как проверить его на исправность, необходимо понимать, как он функционирует. Данные вопросы мы и разберем в нашем рассказе, чтобы у нас осталось детальное представление об этой ключевой детали топливной системы автомобиля.
Благодаря тому, что последние 20 лет применяются жесткие меры относительно экологических норм, они поспособствовали использованию на транспортных средствах специальных каталитических нейтрализаторов – устройств, которые снижают содержание вредных компонентов в отработанных газах. Катализатор – это довольно хороший элемент топливной системы, но эффективно функционировать он способен только в определенных условиях. Однако без систематического контроля состава топливно-воздушной смеси невозможно обеспечить долгий срок службы данного устройства, поэтому ему на помощь приходит специальный датчик кислорода, который и называется лямбда зондом.
1. Понятие, функции и задачи автомобильного лямбда зонда
Само название датчика кислорода лямбда исходит от древнегреческой литеры “лямбда“, которая издревле в автомобилестроении означала специальный коэффициент избытка воздуха в воздушно-топливной системе. Говоря простыми словами датчик кислорода или лямбда зонд измеряет состав отработанных газов автомобиля для поддержания оптимальной концентрации топлива и воздуха в топливо-воздушной смеси.
В том случае, когда состав топливо-воздушной смеси находится в оптимальном состоянии и на 14,7 части воздуха приходится 1 часть топлива, то коэффициент лямбда в этом случае равен единице. Для того, чтобы обеспечить такую высочайшую точность, применяются высокоточные системы питания с электронным впрыском топлива, а также применяется устройство обратной связи под названием лямбда зонд. Поэтому считается, что в топливной системе, датчик лямбда зонд играет одну из ключевых ролей.
Процесс измерения избытка воздуха в топливной смеси происходит весьма неординарным способом, путем определения в отработанных газах содержания кислорода остаточного уровня. Вот и ответ на вопрос: “почему устанавливают датчик лямбда зонд на выпускном коллекторе перед катализатором?“. Благодаря работе электронного блока управления системы топлива, который считывает электрический сигнал датчика, происходит оптимизация состава топливной смеси при помощи изменения количества направляемого в рабочую область цилиндров топлива.
На современных моделях автомобилей устанавливают несколько датчиков кислорода (лямбда зондов), которые располагаются один стандартно, на выпускном коллекторе, а второй на выходе катализатора. Благодаря сочетанию двух датчиков достигается высокая точность приготовления топливо-воздушной смеси, а также происходит детальный контроль эффективности функционирования самого катализатора.
2. Принцип работы лямбда зонда
Точное и эффективное измерение кислорода остаточного уровня выхлопных газов лямбда зондом обеспечивается после разогрева системы до рабочей температуры от 250 до 450 градусов по Цельсию. Только такой температурный режим обеспечивает условия для того, чтобы циркониевый электролит приобретал высокую проводимость. Кроме того, разница в количестве кислорода с атмосферы и кислорода в трубе выхлопных газов ведет к появлению на электродах датчика лямбда зонда нужного выходного напряжения.
Принципиальная схема любого датчика кислорода или лямбда зонда на основе диоксида циркония, который расположен в выхлопной трубе включает в свой состав следующие элементы: 1. электролит твердого типа с маркировкой ZrO2; 2. наружный электрод; 3. внутренний электрод; 4. контакт заземления; 5. контакт сигнального типа; 6. отверстие для крепления к выхлопной трубе. Ниже на изображение можем наглядно видеть схему лямбда зонда и его основные компоненты.
Когда происходит запуск и прогрев мотора, управление впрыском топлива происходит без воздействия датчика кислорода, а корректировка топливо-воздушной смеси осуществляется по сигналам прочих устройств, например: положения заслонки дроссельного типа, рабочей температуры охлаждающей жидкости или числа оборотов коленчатого вала двигателя внутреннего сгорания.
Главной отличительной чертой циркониевого лямбда зонда является тот момент, что при незначительных отклонениях состава и концентрации топливо-воздушной смеси от эталонного значения напряжения, на выходе датчика оно изменяется ростом, а иногда скачком, в диапазоне от 0,1 до 0,8 Вольт. Ниже на изображении можем наглядно видеть зависимость напряжения датчика кислорода от коэффициента избытка воздуха при температуре лямбда зонда в диапазоне от 500 до 800 градусов по Цельсию.
Отметим, что для повышения чувствительности датчиков кислорода на пониженных рабочих температурах и после запуска не прогретого двигателя применяют специальный принудительный подогрев лямбда зонда. Как правило, нагревательное устройство располагается внутри корпуса зонда и подключается к электрической цепи транспортного средства. Для подключения к электрической цепи применяется специальная проводка, которая обеспечивает высокую и быструю передачу электрической энергии к источнику потребления тока.
3. Как установить, что лямбда зонд перестал работать
Первым и основным признаком того, что лямбда зонд перестал стабильно функционировать или вышел из строя является тот момент, когда электронный блок управления начинает работать по усредненным показателям, которые записываются в его памяти. Кроме того, состав топливо-воздушной смеси, которая образуется в системе будет значительно отличаться от эталонного значения. В результате чего появляется повышенный расход топлива, нестабильная работа мотора на холостых оборотах, повышение содержания углекислого газа, общее снижение мощности двигателя, однако при этом транспортное средство находится в движении.Весь список возможных неисправностей датчика кислорода довольно широкий и некоторые поломки очень тяжело обнаружить самостоятельно, как правило, они не фиксируются. Поэтому для того, чтобы принять окончательное решение о неисправности лямбда зонда нужно детально его проверить. Такую проверку лучше всего осуществлять на специальном оборудовании станций технического обслуживания транспортных средств. Кроме того, заметим, что попытки заменить неисправный датчик кислорода эмуляторами (заглушками) ни к чему хорошему не приведет, так как электронный блок управления топливной системы автомобиля не сможет распознавать посторонние сигналы и не будет их использовать для корректировки состава приготавливаемой топливо-воздушной смеси, то есть произойдет обычное игнорирование инородного устройства.
Видео: “Автомобильный лямбда зонд (датчик кислорода): функции и неисправности”
В заключении отметим, что датчик кислорода или лямбда зонд является одним из самых уязвимых устройств в современном транспортном средстве. Ресурс лямбда зонда составляет в среднем от 50 до 85 тысяч километров пробега, в зависимости от условий эксплуатации, а также исправности мотора и его узлов. Крайне чувствителен датчик кислорода к качеству заправляемого топлива. Заметим, что после нескольких заправок не качественным топливом датчик перестает работать в штатном режиме и может просто выйти из строя. Для того, чтобы наверняка убедиться в неисправности лямбда зонда, необходимо производить диагностику этого устройства только на специализированных станциях технического осмотра транспортных средств.
БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕ. ОСТАВЛЯЙТЕ СВОИ КОММЕНТАРИИ, ДЕЛИТЕСЬ С ДРУЗЬЯМИ.
ЖДЕМ ВАШИХ ОТЗЫВОВ И ПРЕДЛОЖЕНИЙ.
Home — Лямбда-зонд
Home — Лямбда-зонд Лямбда-зонд для Apache TomcatДом
Дом
Обзор
Скриншоты
Скачать
Установка
Форумы
Связаться с нами
Форк Lambda Probe, управляемый сообществом, распространяемый под той же лицензией с открытым исходным кодом (GPLv2), доступен здесь: Psi Probe.
Загрузите лямбда-зонд прямо сейчас!
Загрузите Lambda Probe мгновенно, регистрация не требуется. Это совершенно БЕСПЛАТНО!
Пожертвовать
Щелкните здесь, если вы хотите сделать пожертвование этому проекту
Живая демонстрация
Последняя версия Lambda Probe в действии! Вход на сайт: demo / demo
Добро пожаловать в дом Lambda Probe (ранее известный как Tomcat Probe) — совершенного инструмента для мониторинга и управления экземпляром Apache Tomcat в режиме реального времени.Lambda Probe поможет вам визуализировать информацию об экземпляре Apache Tomcat в реальном времени с помощью простого и дружелюбного веб-интерфейса. Для получения дополнительной информации посетите раздел обзора.
Последний выпуск
Улучшения пользовательского интерфейса, ошибки, возможность просмотра IP-адреса сеанса, возможность просматривать сервлеты, фильтры, дескриптор развертывания и многое другое
LambdaProbe 1.7b, БИНАРИИ см. ИЗМЕНЕНИЕ
Выпущено 28 ноября 2006 г. Размер ~ 7 Мб
Ищете зонд Tomcat? Читайте дальше…
Короче говоря, Tomcat Probe изменил свое название на Lambda Probe.Это всего лишь изменение названия, Lambda Probe — это тот же код, та же лицензия GPL, и его разрабатывает тот же человек :). Откровенно говоря, было две причины для изменения названия: одна — держаться подальше от возможных претензий о нарушении прав на товарный знак, а вторая — то, что я просто не смог придумать более или менее достойный логотип для прежнего названия. Да, честно говоря! обсудить…
Избранные скриншоты
Говорят, картинка стоит слов… Ну, вот несколько скриншотов того, что вы получите, загрузив последнюю версию Lambda Probe.Вы можете найти намного больше изображений в разделе скриншотов этого сайта.
Сделать перевод
Сделайте перевод Я ищу людей, которые будут готовы помочь в переводе лямбда-зонда на другие языки. Если считаете, что можете помочь — свяжитесь с нами!
Информация о лицензии
Lambda Probe — БЕСПЛАТНАЯ программа, распространяемая по лицензии GPL. Вы можете получить копию лицензии GPL здесь
Совместимость с Tomcat
Лямбда-зондразработан для Apache Tomcat и только для Apache Tomcat.Он не будет работать с другими серверами приложений. Лямбда-зонд был протестирован с Java 1.4 и Java 1.5, и я обнаружил, что он отлично работает с обоими. Он также совместим с Tomcat5 версий 5.0.x и 5.5.x. К сожалению, он несовместим со старыми версиями, такими как 4.1.x и 3.3, из-за отсутствия поддержки EL в JSP 1.2.
Авторские права 2012 lambdaprobe.org XHTML, CSS 2.0
Отказ от ответственности: этот сайт является архивом, и этот сайт и проект никоим образом не связаны с Apache Software Foundation и не одобряются ею.Apache Tomcat является товарным знаком Apache Software Foundation.
Лямбда-зонд: устройство и назначение
Лямбда-зонд (или еще словосочетание автомобилисты, лямбда-зонд) — это механизм, отвечающий за концентрацию и соотношение бензина и воздуха в топливно-воздушной смеси при ее приготовлении и подаче по топливным каналам в цилиндр двигателя. От правильности показаний этого прибора зависит общий расход топлива, мощность и динамика автомобиля. Фактически, важность датчика сравнима с карбюратором и инжектором, поскольку оба они принимают непосредственное участие в приготовлении топливной смеси.В сегодняшней статье мы узнаем, что такое лямбда-зонд, как он устроен и для чего предназначен.
Прибор
Основой (основным рабочим элементом) этого датчика является пористый керамический материал, изготовленный на диоксиде циркония. Сама конструкция устройства предполагает наличие следующих деталей:
- стальной кожух;
- манжеты проводов;
- керамический изолятор;
- контакт отопительного контура;
- электропроводка;
- Кольцо уплотнительное;
- наконечник из циркониевой керамики;
- стержень со спиралью накаливания;
- внутренний защитный экран со специальным отверстием для выхлопных газов;
- экран наружный с отверстием для атмосферного воздуха;
- токоприемник.
Где находится?
Часто лямбда-зонд (в том числе ВАЗ-2110) располагается в выхлопной системе, вне выхлопного коллектора. Также следует знать, что на некоторых автомобилях таких устройств может быть два. Один из них можно разместить перед катализатором, а второй — после него. Работа двух лямбда-зондов значительно повышает эффективность и точность подготовки топливно-воздушной смеси для ее дальнейшей подачи в камеру сгорания ДВС.
Принцип работы
Алгоритм работы этого устройства основан на свойствах оксида циркония. Поэтому его используют при температуре не менее 350 градусов по Цельсию. В некоторых случаях для ускорения процесса нагрева используют специальный электронагреватель. Весь принцип работы лямбда-зонда можно разделить на несколько этапов:
- Отработанные выхлопные газы проходят через катализатор и выхлопную трубу. В этом случае они обтекают рабочую поверхность датчика лямбда-зонда, который расположен перед катализатором.
- Кроме того, это устройство анализирует уровень O2 в выхлопных газах и сравнивает данные с уровнем в атмосфере.
- Во время работы датчика создается разность потенциалов, после чего механизм посылает короткий электрический сигнал на ЭБУ двигателя.
- После этого компьютер обрабатывает данные и отправляет сигнал на определенное количество устройств, регулируя тем самым работу исполнительных механизмов.
Следует отметить, что при недостатке кислорода в системе, а именно в топливно-воздушной смеси, продукты сгорания не окисляются до конца.В этом случае машина начинает терять обороты, и происходит увеличение расхода топлива (в камере образуется обедненная смесь). Если в системе слишком много воздуха, это приводит к неполному разложению оксида азота, что также не лучшим образом проявляется при работе двигателя.
p >> .лямбда-зондов. Широкополосный | Bimmerprofs.com | Эмулятор NOx NOXEM 129 | 130
Для проверки выхлопных газов используются кислородные датчики. Давным-давно появились циркониевые узкополосные лямбда-зонды (вначале — без подогрева, затем — с дополнительным подогревом, что позволяет быстрее готовить датчики, а также обеспечивает более точные данные), начиная с двигателя BMW N серии, их заменяют на циркониевые широкополосные (для регулирования топливной смеси) датчики.
В отличие от узкополосных датчиков, линейный диапазон которых равен 0.99 .. 1.01, широкополосные датчики могут измерять коэффициент от 0,65 до состава атмосферного воздуха.
Основы работы широкополосных циркониевых зондов вы можете найти в Интернете, в этом посте я остановлюсь на некоторых специфических нюансах.
Первое поколение пробников Bosch, известных под названием LSU 4.2, отличалось необходимостью их повторной калибровки, поскольку в качестве эталонного источника тока использовался атмосферный воздух. С следующего поколения — СМЛ 4.9 — эта проблема была решена: полупроводниковый переход используется в качестве источника тока опорного.
LSU 4.2
LSU 4.9
Основная техническая информация:
Bosch LSU4.2 против LSU4.9
LSU 4.9 обеспечивает более точные измерения лямбда: контрольные данные определены в 30 точках в таблице лямбда / Ipump (LSU 4.2 определил только 10 точек).
Вместе с датчиками Bosch OEM предлагал также наборы микросхем управления для датчиков: CJ110, CJ120, CJ125. CJ110 и CJ120 были предназначены для работы с LSU 4.2 зонда, CJ125 — также с датчиком кислорода типа LSU 4.9.
В отличие от CJ110, CJ120 включает также динамический контроль сопротивления ячейки Нернста, который использовался для контроля температуры кислородного датчика. Оптимальное сопротивление ячейки Нернста для LSU 4.2, измеренное на частоте 1..4 кГц: 80 Ом.
CJ125 дополнен некоторыми специфическими нюансами по работе с кислородным датчиком LSU 4.9. Динамическое сопротивление ячейки Нернста для LSU 4.9: 300 Ом (при достижении оптимальной рабочей температуры).
CJ125 лист данных
Позже чипсет CJ125 был заменен на контроллер CJ135 со встроенным АЦП, кислородный датчик LSU 4.9 был заменен на LSU 5.2.
Общими недостатками для CJ110, CJ120, CJ125 было повышенное потребление энергии (которое было выше 30 мА / 150 мВт, и чипсет был вынужден работать в жестких тепловых условиях), большое напряжение смещения для усилителя измерения тока ячейки накачки (CJ110, CJ120, CJ125 ): даже до +/- 10 мВ, хотя для точных измерений необходимо напряжение смещения не более нескольких сотен мкВ.Такая же нехватка актуальна и для модуля измерения температуры, используемого в CJ120, CJ125. Для решения этих проблем все упомянутые ранее наборы микросхем используют процесс прерывания для компенсации напряжения смещения и сравнения измеренных значений с эталонными. К сожалению, ключи MOSFET, используемые для прерывателей (коммутации), имеют повышенный ток утечки, что очень сильно влияет на точность измерения, а также увеличивает количество паразитных помех. Функциональное управление для CJ120 и CJ125 предусмотрено через последовательный интерфейс SPI, управление нагревом — внешнее.
В двигателяхN52, N53 и аналогичных используются широкополосные кислородные датчики типа LSU 4.2 для контроля топливной смеси. Для калибровки контрольной точки (лямбда = 1,00) используются узкополосные датчики кислорода. Этот нюанс необходимо учитывать, когда один из банков показывает сбалансированное (интегратор топливной коррекции стабильный и находится в надлежащем диапазоне значений) значение лямбда, отличное от 1,00.
Технические параметры, общие для CJ110, CJ120 и CJ125:
Напряжение ячейки Нернста: 450 мВ
опорное напряжение, Ipump: 1.500 В
Сопротивление шунтирующего резистора Ipump: 62 Ом
Коэффициент усилителя Ipump: 8/17 (богатый / обедненный режим)
Примечание: двигатели серии N имеют напряжения опорного значения: 2,00 В (напряжение штифта Нернста ячейки, как представляется, сообщается) и различный коэффициент усилителя из наборов микросхем управления серии CJ.
PS: Используя контроллеры управления датчиками CJ120, CJ125, имейте в виду, что Bosch предлагает (не юридически) несколько выпусков контроллеров, которые имеют некоторые различия в управлении SPI (регистры управления SPI и необходимые данные НЕ СООТВЕТСТВУЮТ таблице данных), это означает , что, например, когда вам нужно заменить контроллер, вы можете столкнуться с некоторыми неопределенными проблемами, которые приведут к ухудшению измерений лямбда — решения с прерыванием не будут работать и т. д.
Связанные записи:
Управление лямбда-зондами
N52 диагностика двигателя
STFT и LTFT
.Старение лямбда-зонда | Bimmerprofs.com | Эмулятор NOx NOXEM 129 | 130
Если лямбда-зонд поврежден или забит настолько, что его сигнал неверен — скорее всего, будут записаны сообщения об ошибке, касающиеся этой проблемы.
В этой записи — об одном симптоме, который позволяет заметить старение лямбда-зондов до того, как будет записано какое-либо сообщение об ошибке.
Что указывает на старение лямбда-зонда? Увеличил ШИМ своего нагрева!
Вот пример:
и сопротивление Нернсту (химическая эффективность) зонда:
Как мы видим, сопротивление Нернста правильное (правильные значения: 0/256 Ом), но ШИМ нагрева датчика, чтобы достичь этого значения Нернста на 20% (как минимум) выше, чем для второго контрольного датчика.
На что указывает такая повышенная ШИМ? Очевидно, зонд с правильной ШИМ не может достичь необходимой химической эффективности, поэтому ДМЭ увеличил свой нагрев. Страшная новость — лямбда-зонд не выдержит такой термической перегрузки. Поэтому рекомендуется вовремя приобрести новый лямбда-зонд и подготовиться к его замене.
Примечание: DME измеряет сопротивление Нернсту (химическую эффективность) каждого зонда примерно раз в секунду. Через источник I (ток) сигнал выходного сигнала подключается к напряжению +5.0 В, и измеряется изменение U (напряжения). Оптимальные значения сопротивления Нернста: 80 .. 300 Ом (согласно Паспорту датчиков). Шаг значений, отображаемых INPA, составляет 256 Ом. Соответственно правильные значения меню INPA: 0/256 Ом (разрешено 512 Ом на короткое время). ШИМ обогрева управляется согласно карте управления (с учетом смоделированной температуры выхлопных газов и скорости / давления выхлопа), которая дополняется адаптацией Offset, учитывающей отличия измеренного сопротивления Нернстса от идеального значения.
.Как работает широкополосный датчик O2
(СПРАВОЧНАЯ ИНФОРМАЦИЯ: http://megamanual.com/PWC/LSU4.htm)
Прежде чем можно будет понять аппаратную схему PWC и управляющее программное обеспечение, необходимо понять, как работает широкополосный датчик кислорода [WBO2] (эти датчики также известны как универсальные датчики кислорода в выхлопных газах [UEGO]).
Прецизионный широкополосный контроллер разработан для использования новейших «широкополосных» кислородных датчиков. Эти датчики, управляемые электроникой прецизионного широкополосного контроллера, могут напрямую измерять соотношение воздух / топливо.Вместо переключения назад и вперед с богатой на обедненную смесь, как в случае с традиционными «узкополосными» датчиками кислорода в выхлопных газах, широкополосный датчик выдает сигнал, который прямо пропорционален соотношению воздух / топливо, создаваемому контроллером впрыска топлива. Широкополосный кислородный датчик реагирует на изменения в топливно-воздушной смеси менее чем за 100 миллисекунд.Схема прецизионного широкополосного контроллера предназначена для прямого управления топливной смесью, поэтому она должна быть точной и воспроизводимой.При настройке двигателя на дороге или на динамометре желательно иметь средства контроля воздушно-топливного отношения двигателя (AFR), которое также может быть выражено через лямбда (λ). Во время этих сеансов настройки параметры двигателя / транспортного средства / окружающей среды остаются постоянными, за исключением настраиваемой переменной. Широкополосные измерители используют пользовательский интерфейс для получения текущего AFR / лямбда, так что тюнер двигателя может регулировать и оптимизировать подачу топлива.
Прецизионный широкополосный контроллер — это устройство с обратной связью по смеси.Устройство обратной связи по смеси используется для определения мгновенной смеси в работающем двигателе, где эти параметры вводятся обратно в уравнение заправки в ЭБУ для коррекции ширины импульса форсунки в реальном времени. Основное требование к устройству обратной связи по смеси состоит в том, что оно должно быть воспроизводимым для абсолютно всех условий окружающей среды и иметь одинаковые показания для экстремально жарких или морозных условий. Этот ответ вводится обратно в уравнение заправки в ЭБУ для коррекции ширины импульса форсунки в реальном времени.Основное требование к устройству обратной связи по смеси состоит в том, что оно должно быть воспроизводимым для абсолютно всех условий окружающей среды — одинаковые показания для экстремально жарких или морозных условий.
Кроме того, функция отклика широкополосных датчиков UEGO зависит от таких параметров, как тип углеводорода, рабочая температура, температура выхлопных газов, противодавление выхлопных газов и т. Д. Если любой из этих параметров изменяется, контроллер должен знать это и уметь исправить / компенсировать.
Брюс и Эл приобрели расходомер Horiba на 5 газов непосредственно у компании Horiba, так что это, наряду с использованием первичных эталонов газа для контрольных газов, позволяет им точно знать, что видит датчик.
Существует разница между широкополосным измерителем EGO и широкополосным устройством, которое непосредственно контролирует топливную смесь — устройство смешивания должно быть всегда точным или, по крайней мере, иметь возможность уведомлять контроль смеси о том, что сигнал WB не в пределах допуска. Управление подогревателем очень импортное. Устойчивый режим работы легко контролировать.
Проблемы возникают из-за таких событий, как восстановление после ускорения, когда температура датчика будет изменяться из-за изменений в потоке выхлопных газов.Если температура датчика изменяется, то требуемый ток насоса для поддержания равновесия также изменяется (все остальное остается неизменным) — вы должны либо поддерживать регулируемую температуру датчика. , либо имеют поправочные коэффициенты, либо оба (см. Раздел 5.1 данных LSU). лист для графика температуры с различными условиями работы двигателя и влияние температуры выхлопных газов).
Включите переходную характеристику для контура насоса, точность самой схемы измерения насоса и т. Д.и все может пойти не так — и в неподходящее время. Справиться со всеми этими эффектами (и их величиной) важно для всего, что поддерживает смесь AFR. И единственный способ понять это — это сравнить с известной откалиброванной системой и провести много испытаний.
Широкополосный датчик соотношения воздух / топливо сочетает в себе чувствительную к кислороду ячейку «Нернста» из узкополосного датчика с «кислородным насосом» для создания устройства, которое дает широкий диапазон отклика на различные соотношения воздух / топливо. Ячейка Нернста определяет кислород в выхлопных газах так же, как традиционный узкополосный датчик O 2 .Если есть разница в уровнях кислорода на чувствительном элементе ZrO 2 , ток течет от одной стороны к другой и создает напряжение.
Широкополосный датчик кислорода в выхлопных газах имеет множество конструктивных форм, но в основном они похожи по своей природе. Они состоят из двух частей: эталонной ячейки Нернста и ячейки кислородного насоса, сосуществующих в пакете, который содержит эталонную камеру и нагревательный элемент (используемый для регулирования температуры Нернста / насоса).
Широкополосный датчик работает только в сочетании со специализированными широкополосными цепями управления, которые регулируют как ток ячейки накачки, так и нагреватель.В электронику прецизионного широкополосного контроллера встроен необходимый блок управления для широкополосного кислородного датчика.Прежде чем углубляться в работу ячеек Нернста и насосных ячеек, важно понять, что на самом деле датчик пытается измерить. Для начала давайте разберемся с химическими реакциями, происходящими при горении.
Во-первых, осознайте, что для того, чтобы произошло горение, должно быть топлива (например, углеводород) и источник оксигенатов (т.е.е. кислород и / или молекулы или частичные молекулы, которые содержат кислород). Кроме того, имеется разбавителей , которые присутствуют в смеси, но не способствуют фактическому сгоранию (например, азот [N 2 ]). Это справедливо для любого события возгорания, будь то внутри двигателя внутреннего сгорания или у небольшого костра.
Во-вторых, каждый атом сохраняется в процессе сгорания, поэтому можно использовать составляющие выхлопного газа для восстановления количества топлива и оксигенатов перед сгоранием.В противном случае широкополосные кислородные датчики не смогли бы определять соотношение воздух / топливо перед сгоранием.
Можно выразить событие горения как баланс входных реагентов: топлива, оксигенатов и разбавителей (например, бензин, смешанный с воздухом) и образующихся продуктов сгорания (то есть состава выхлопных газов). Обратите внимание, что это химический баланс , что означает, что каждый элемент должен быть учтен в его молекулярном балансе до и после горения.Другими словами, если мы знаем пропорции топлива, оксигенатов и разбавителей, поступающих в двигатель, можно определить видовой состав выхлопных газов. И мы можем работать в обратном направлении. Если мы знаем состав выхлопных газов, мы можем определить соотношение воздуха и топлива (как в молярном количестве, так и в молекулярной массе).
Представим химический состав всасываемого топлива как углерод, водород, кислород и азот в пропорции:
C α H β O γ N δ, где α, β, γ и δ представляют количество каждого из присутствующих элементов (т.е.е. молей каждого элемента). Например, октан имеет молекулярный состав C 8 H 18 , поэтому имеется 8 атомов углерода и 18 атомов водорода, поэтому мы имеем α = 8, β = 18, γ = 0 и δ = 0. . Очевидно, что другие молекулы топлива имеют другой состав.Обычно химики работают с величиной, называемой «моль» , которая представляет собой определенное очень большое количество атомов или молекул любого данного вида [типа]. Соединение одного моля атома A с двумя молями атома B — то же самое, что объединение одного атома A с двумя атомами B, много-много раз.
Мы можем объединить топливо с воздухом и записать простое уравнение баланса для сгорания и баланс молярных количеств до и после сгорания:
Элементы в левой части стрелки представляют собой топливо / оксигенаты / разбавители, поступающие в двигатель, а элементы справа — молярные количества после сгорания. Мы хотим найти неизвестное ε, которое является молярным отношением топлива к воздуху (отношение эквивалентности), и коэффициенты ν 1 , ν 2 и ν 3 , которые описывают состав продукта.Переменная x o представляет собой молярный относительный процент кислорода во всасываемом воздухе (0,21 — обычно используемое значение), а x n представляет собой относительный молярный процент азота (часто используется 0,79. ).Обратите внимание, что у нас больше неизвестных, чем уравнений, поэтому нам придется использовать некоторые известные ограничения, чтобы помочь нам найти неизвестные. Во-первых, атомы сохраняются (т.е. то, что входит, должно выходить наружу), поэтому мы можем немедленно записать следующие соотношения (известные как уравнения баланса элементов):
Решение для уравнений баланса (перечисленных выше) следующее: Отсюда можно записать стехиометрическое соотношение топливовоздушных масс как: Обратите внимание, что стехиометрическое массовое воздушно-топливное отношение является просто обратной величиной приведенного выше уравнения.Кроме того, эквивалентное соотношение топливо-воздух определяется как фактическое соотношение топливо-воздух, деленное на стехиометрическое соотношение топливо-воздух (обратите внимание, что обратная величина определяется как лямбда): Теперь, поскольку мы имеем дело с выхлопными газами (то есть с низкой температурой по сравнению с фактическим сгоранием) и отношением углерода к кислороду меньше единицы, можно ввести CO и h3 в баланс: Это довольно сложно решить, но мы знаем, что некоторые вещи могут облегчить нашу жизнь. Во-первых, если смесь бедная (т.е. φ 5 и ν 6 равны нулю. Для богатых смесей ν 4 = 0. А для богатого случая можно ввести константу равновесия водяного газа для реакции: что дает постоянную K p : где t — температура в Кельвинах.При этом ν 5 можно оценить как решение квадратичной:
куда: Используя этот результат, можно составить таблицу с описанием решения для каждого вида газа для бедных или богатых ситуаций: Во всем этом есть несколько моментов.Во-первых, углеводород / топливо, указанные как: C α H β O γ N δ может быть комбинацией двух или более углеводородов. Например, когда топливо смешивается со спиртом, полученная смесь может быть выражена как один углеводород со сбалансированными индексами. То же самое верно для закачки воды или закиси азота. Это очень важное преимущество при использовании математического подхода к определению лямбда — при изменении компонента топлива можно соответствующим образом адаптировать отклик широкополосного сигнала без какой-либо повторной калибровки.Это не относится к системам, которые полагаются на фиксированную «кривую» отклика широкополосного датчика. И, если широкополосный контроллер подключен к ЭБУ (через шину CAN), и ЭБУ контролирует подачу воды или азота, можно мгновенно настроить кривую лямбда-отклика для любых ратиометрических комбинаций углеводородов. Это важное требование к контроллеру смеси.Затем можно разделить выражение углеводород / топливо на константу, что сделает индекс углерода равным единице.Это создает соотношение H / C, соотношение O / C и соотношение N / C — они часто встречаются в литературе. Например, топливо C 8 H 18 (октановое число) может быть нормализовано до C 1 H 2,25 = CH 2,25 , где отношение H / C равно 2,25, отношение O / C равно 0 (потому что нет кислородного компонента) и N / C 0 (нет компонента), и, конечно, индекс C равен 1. Другим примером является топливо CH 3 NO 2 , которое уже имеет C индекс 1, поэтому отношение H / C равно 3, отношение N / C равно 1, а отношение O / C равно 2.Просто обратите внимание, что обе формы выражения топлива идентичны.
Примечание: Для тех, кто хочет поэкспериментировать с приведенными выше уравнениями, мы разработали программу COMBAL, приложение для ПК, работающее под Windows. Один в основном вводит отношения H / C и O / C, равновесие выхлопных газов и целевую лямбду, и он генерирует процентное содержание молей каждого из видов газа. Также выполняется сравнительная проверка с использованием уравнения Бретчнайдера. Приложение можно скачать с:
bgsoflex.com/pwb/combal.zip Наконец, есть два других газовых компонента, CO и H 2 , которые также присутствуют в выхлопных газах. Они взяты из баланса, известного как равновесие вода-газ — подробнее об этом позже в этом документе, но достаточно сказать, что это действительно важно при работе широкополосного датчика.Вы еще не запутались? Если да, не беспокойтесь. Все, что мы здесь подчеркиваем, это то, что с известным входящим топливом, разбавителями и оксигенатами можно предсказать концентрации газов в выхлопных газах.И мы можем вернуться назад — с помощью измеренных компонентов газа можно определить входящую смесь с точки зрения лямбда или соотношения воздух / топливо. Вернитесь и перечитайте раздел несколько раз, важно понимать этот аспект.
К анализу, который здесь не показан, гораздо больше — см. Статью Bowling & Grippo по аналитическому методу для точного широкополосного контроллера в целом.
Ячейка Нернста и ячейка с кислородным насосом соединены вместе таким образом, что требуется определенное количество тока для поддержания сбалансированного уровня кислорода в диффузионном зазоре.Измерение этого тока позволяет прецизионному широкополосному контроллеру определять точное соотношение воздух / топливо, при котором работает двигатель.
Насосная ячейка может потреблять либо кислород, либо углеводородное топливо в полости насосной ячейки, в зависимости от направления потока тока насосной ячейки ( I насос ).
При нормальной работе датчика выхлопные газы проходят через диффузионный зазор в насосную ячейку. Этот выхлопной газ часто бывает богатым или бедным стехиометрическим.Любое условие определяется эталонной ячейкой, которая создает напряжение (Vs) выше или ниже сигнала Vref, как и узкополосный датчик).
Однако горение редко бывает идеальным. Даже при правильном соотношении воздух / топливо (AFR) сгорание может быть неполным, и могут образовываться CO, H 2 , NO x и углеводороды (HC). Это может быть вызвано гашением (фронта пламени относительно «холодных» поверхностей камеры сгорания), объемами щелей (над кольцами между поршнем и цилиндром) и многими другими факторами.
Однако относительные количества этих «побочных продуктов» меняются в зависимости от соотношения воздух / топливо. Когда топливно-воздушная смесь обогащена, эталонный элемент выдает высокое напряжение В с (выше 0,450 В). Прецизионный широкополосный контроллер реагирует на создание тока насоса ( I , насос ) в одном направлении для потребления свободного топлива. Насосный элемент требует «отрицательного» тока, который изменяется от нуля до примерно 2,0 миллиампер, когда соотношение воздух / топливо составляет около 11: 1.Когда топливно-воздушная смесь бедная, эталонная ячейка выдает низкое значение В с (ниже 0.450 вольт). Прецизионный широкополосный контроллер направляет ток насоса в противоположном направлении для потребления свободного кислорода. Насосной ячейке требуется «положительный» ток от нуля до 1,5 миллиампер, когда смесь становится «свободным воздухом».
Когда смесь воздух / топливо составляет 14,7: 1 (стехиометрическое соотношение для бензина), насосный элемент не требует выходного тока. Поскольку свободный кислород или свободное топливо нейтрализованы током насоса, сигнал обратной связи V s переходит примерно в 0.450 вольт (то же, что и значение Vref).
Чтобы определить широкий диапазон соотношений воздух / топливо, кислородный насос использует нагретый катод и анод, чтобы втягивать немного кислорода из выхлопных газов в «диффузионный» зазор между двумя компонентами. Насос приводится в действие двумя портами PWM или процессора с противоположной полярностью (с использованием H-моста или прямого привода порта процессора), а прецизионный широкополосный контроллер измеряет время, когда эталонная ячейка проходит через 0,45 вольт. Затем он может настроить синхронизацию ШИМ, чтобы ограничить этот 0.45 вольт стехиометрическая точка переворота.
Как и обычный узкополосный датчик, схема прецизионного широкополосного контроллера выдает сигнал низкого напряжения, когда соотношение воздух / топливо становится бедным, и сигнал высокого напряжения, когда смесь богатая. Но вместо того, чтобы резко переключаться на стехиометрическом уровне, он производит пропорциональное изменение напряжения. Оно увеличивается или уменьшается пропорционально относительному богатству или бедности соотношения воздух / топливо. При стехиометрическом соотношении воздух / топливо 14,7: 1 широкополосный датчик O2 будет давать устойчивый 0.450 вольт. Если смесь станет немного богаче или беднее, выходное напряжение датчика изменится лишь на небольшую величину, а не резко повысится или снизится.
Результатом является сенсорный элемент, который может точно измерять соотношение воздух / топливо (AFR) от очень богатой (10: 1) до очень бедной (свободный воздух). Это позволяет прецизионному широкополосному контроллеру напрямую управлять соотношением воздух / топливо. Вместо того, чтобы переключать соотношение воздух / топливо туда и обратно с богатого на бедное для создания средней сбалансированной смеси, PWC может просто добавлять или вычитать топливо по мере необходимости, чтобы поддерживать стехиометрическое соотношение 14.7: 1 или любое другое соотношение.
Еще одно различие между узкополосным датчиком, используемым в большинстве автомобилей, и широкополосным датчиком кислорода заключается в цепи нагревателя. Мощность нагревателя регулируется по замкнутому контуру во время измерения, так что достигается номинальное внутреннее сопротивление датчика R i = 80 Ом (измерено с частотой от 1 до 4 кГц), что соответствует температуре керамики датчика прибл. 750 ° C, когда датчик новый. Схема нагревателя прецизионного широкополосного контроллера (PWC) модулируется для поддержания постоянной рабочей температуры от 1300 ° F до 1500 ° F (от 700 ° C до 800 ° C).Датчику требуется около 20 секунд для достижения рабочей температуры после холодного запуска.
Датчик включает нагреватель мощностью 10 Вт (3,2 Ом при 20 ° C, 2,1 Ом при -40 ° C), который обеспечивает поддержание датчиков при номинальной рабочей температуре 750 ° C (~ 1400 ° F). Ток, подаваемый на нагреватель, ограничивается схемой прецизионного широкополосного контроллера, чтобы предотвратить чрезмерный нагрев во время прогрева. Нагреватель датчика никогда не должен подключаться напрямую к напряжению батареи, он всегда должен управляться прецизионным широкополосным контроллером.Запускать подогрев датчика до запуска двигателя не рекомендуется, это повредит датчик.
Максимальная рабочая температура выхлопных газов для датчика составляет до 850 ° C (1560 ° F). При превышении максимальной температуры выхлопных газов необходимо отключить питание нагревателя, и точность сигнала датчика снизится. Горячий выхлопной газ с температурой выше рабочей температуры керамики также дает отклонение температуры керамики и выходного сигнала датчика. Холодный выхлопной газ, в дополнение к высокой скорости газа, может привести к снижению температуры керамики датчика, если система управления нагревателем не может поддерживать постоянную температуру керамики.Это приводит к отклонению выходного сигнала датчика. Как правило, изменение температуры керамики датчика дает отклонение выходного сигнала датчика на:
(ΔI насос ) / I насос прибл. 6% .. 7% / 100 тыс. Давайте двигаться дальше. Теперь давайте попытаемся понять работу секции ячейки Nernst в UEGO. Ячейка Нернста — это электрохимическая ячейка, состоящая из твердого электролита, проводящего только ионы кислорода. К этому электролиту прикреплены два платиновых электрода.Один электрод подвергается воздействию атмосферы, а другой — камере сравнения (подробнее об этом позже).На электродах происходят следующие реакции:
При возникновении этой реакции может генерироваться ток. Используя уравнение Нернста, можно рассчитать ЭДС, возникающую при отсутствии нагрузки: Где E — это ЭДС Нерстиана , сгенерированная,R — универсальная газовая постоянная = 8,31 Дж * K -1 * моль -1 ,
T — это температура ячейки в Кельвинах,
F — постоянная Фарадея = 96500 Смоль -1 ,
Z — электроны, перенесенные за O 2 = 4.
Поскольку имеется нагреватель, поддерживающий повышенную температуру ячейки Нернста, существует температурный градиент, который генерирует напряжение смещения. Мы можем добавить этот член к указанному выше члену, и в процессе мы также можем упростить вычисление, преобразовав логарифмы с основанием e в логарифмы с основанием 10:
Теперь, когда мы знаем работу ячейки Нернста, уместно немного рассказать о ее физической конструкции. Датчик UEGO имеет «плоскую структуру» — это означает, что он имеет прямоугольную форму, в отличие от наперстка или другой симметричной формы — представьте себе плоский сэндвич из компонентов.В сэндвиче есть электролит Нернста, который обычно изготавливается из стабилизированного оксидом иттрия оксида циркония (YSZ), хотя существуют и другие формы. Что такое диоксид циркония, стабилизированный иттрием? Это диоксид циркония (ZrO 2 ), примерно три процента молей которого замещены иттрием (Y 2 O 3 ). Поскольку каждые два иона циркония заменяются иттрием, существует кислородная вакансия — это позволяет соседним ионам кислорода «прыгать» в эти места, а при повышенных температурах эта активность является основой для производства ЭДС.Продолжая обсуждение плоской структуры, существует внутренняя «диффузионная полость» — в этой полости «задерживается» проба выхлопного газа, а также там, где обращены секции Нернста и насоса. Как туда попадает газ? В результате процесса диффузии отбираемый отработавший газ попадает в полость. Чтобы не слишком «увлекаться» процессом диффузии, достаточно сказать, что существует два механизма распространения:
- один известен как молекулярная диффузия, а
- вторая известна как диффузия Кнудсена или диффузия «мелких пор».
Очень важно отметить: диффузия Кнудсена зависит от температуры — это означает, что пористость испытательной камеры (т.е. сколько газа может входить / выходить) зависит от температуры головки датчика — вот почему ток накачки (описан далее) отличается для разных температур, как и зависимость противодавления выхлопных газов.
Вышеупомянутый кислородный насос — это то, что делает обычный кислородный датчик настоящим широкополосным устройством — на самом деле просто еще одна ячейка типа Нернста, к которой подключен внешний ток.
Выше мы говорили о «полости», где находится проба выхлопных газов, а с одной стороны — измерительная ячейка Нернста. С другой стороны находится насосная ячейка — эта ячейка используется для транспортировки кислорода в измерительную полость и из нее. Проще говоря, если выхлопной газ в измерительной ячейке обеднен, то имеется избыток кислорода (бедные смеси означают избыток кислорода). Мы можем «включить насос», чтобы удалить кислород из эталонной полости — и при надлежащем мониторинге с обратной связью измерительной ячейки Нернста мы можем откачать ровно столько кислорода, чтобы достичь стехиометрического баланса (примерно, когда измерительная ячейка Нернста показывает 0.45 вольт или около того).
Лучшая часть всего: если мы отслеживаем ток накачки, мы можем использовать это для определения лямбда (λ) и AFR. Ток насоса связан с количеством откачанного кислорода как функция времени как:
где n — моли O 2 закачанного газа, t для времени и текущего i . Чтобы сделать это уравнение полезным, его следует преобразовать в изменение парциального давления в эталонной полости.Также обратите внимание, что диффузия (объясненная выше) со временем приведет к увеличению количества выхлопных газов — поэтому мы делаем равновесие с обратной связью от измерительной ячейки Нернста, определяющей, сколько кислорода нужно откачать, в то время как больше выхлопных газов диффундирует. дюйм. Обратите внимание, что давление измеряемого выхлопного газа также влияет на степень диффузии в измерительную полость и из нее — это знаменитый эффект противодавления.Мы объяснили случай избытка кислорода, когда топливно-воздушная смесь обеднена.Как он работает на обедненной кислородом стороне или на стороне с богатым соотношением воздух / топливо? В этом случае кислород «закачивается» в измерительную полость просто путем обратного приложения тока к насосному элементу. Обратная связь по измерительной ячейке Нернста указывает на достижение стехиометрического равновесия.
Что-то должно беспокоить ваш кишечник прямо сейчас…
Насосный элемент работает на переносе ионов кислорода, но мы находимся в ситуации, когда в топливовоздушной смеси нет кислорода (т.е.е. мы богаты). Если мы станем намного богаче, у нас все равно не будет кислорода. Очень богатый, но без кислорода. Как в этом случае может возникнуть ситуация обратной связи?
Оказывается, внутри диффузионной измерительной полости протекают следующие химические реакции:
Таким образом, часть, перекачивающая кислород, вводит кислород в диффузионную камеру путем электролизного разложения диоксида углерода (CO 2 ) и воды (H 2 O) в измерительном газе.Подумайте об этом так: у нас есть выхлопные газы, захваченные в диффузионной полости, которая содержит H 2 и CO, а кислородный насос вырабатывает O 2 — они объединяются, чтобы произвести CO 2 и воду. Если у нас больше H 2 и CO в выхлопных газах, тогда больше O2 из насоса преобразуется — и, чтобы увеличить производство O 2 , мы увеличиваем ток насоса.И оказывается, что H 2 и CO присутствуют в значительных количествах для богатого AFR и могут быть связаны с лямбда уравнением элементарного баланса для топлива / оксигенатов / разбавителей, которые мы вывели выше.
Это не совсем верно, поскольку мы имеем дело с газовым балансом, а насос на самом деле является электрохимическим элементом (щелкните ссылки, чтобы получить справочную информацию о Принципе Ле Шателье для правил равновесного баланса, а также о Законе идеального газа), поэтому нам нужен кислород в H 2 O и CO 2 в качестве доноров для реакции — именно сюда насос получает кислород. Это баланс, и, изменяя количество тока, подаваемого в насос, мы можем изменить баланс.Баланс также зависит от реакции водяного газа, о которой будет сказано ниже.
Наконец, лямбда (λ), которую мы все хотим знать, связана со всеми компонентами выхлопных газов в упрощенном соотношении, известном как уравнение Бретчнайдера :
Все это говорит о том, что существуют известные комбинации количества выхлопных газов (в молях или парциальном давлении), которые напрямую связаны с лямбда. К ним относятся H 2 и CO.Итак, вооружившись всеми этими знаниями, мы можем написать уравнение, связывающее ток насоса с компонентом выхлопных газов, а затем вставить его в уравнение Бретчнайдера (или более сложную форму — см. Статью Bowling & Grippo).Для стороны бедной смеси, где имеется избыток кислорода, уравнение тока насоса:
Таким образом, требуемый ток накачки I p — это просто парциальное давление O 2 в диффузионной камере, умноженное на калибровочный коэффициент K o2 . Помните, что это парциальное давление кислорода, а не молярное количество, поэтому необходимо учитывать элементарную массу.Для стороны богатой смеси, где нет кислорода, датчик измеряет количество CO и H 2 в выхлопных газах (парциальное давление):
Обратите внимание на минусовые знаки.Применяемый ток накачки имеет обратную полярность, поэтому кислородный насос является генератором кислорода, а не кислородным «присосом».Также обратите внимание, что датчик UEGO реагирует на несгоревшие углеводороды. Однако при нормальном сгорании количество несгоревших углеводородов находится в области миллионных долей, тогда как моли CO и H 2 значительно выше (например, в диапазоне 10-20%).
Измерение сопротивления ячеек Нернста
Точный контроль температуры широкополосного зонда UEGO является абсолютным требованием во время работы.Изменения температуры зонда UEGO приведут к изменению требуемого тока накачки (из-за разницы в диффузии в измерительной полости и из нее), поэтому мониторинг температуры позволяет вносить поправки в измерения. Широкополосный датчик не имеет какой-либо формы прямого измерения температуры (например, термистора, термопары и т. Д.).
Однако мониторинг сопротивления эталонной ячейки дает точное представление о температуре зонда — сопротивление эталонной ячейки зависит от температуры.Эталонная ячейка Нернста имеет высокое сопротивление при низких температурах (т.е. температурах окружающей среды) и сопротивление примерно 80-100 Ом при нормальной рабочей температуре. Таким образом, отслеживая внутреннее сопротивление эталонной ячейки, можно определить точную температуру зонда UEGO без необходимости во внешнем датчике температуры.
Существует несколько методов измерения сопротивления эталонной ячейки, в том числе отключение цепи насоса и приложение известного постоянного тока к эталонной ячейке и измерение результирующего напряжения, наконец, повторное включение цепи насоса.Этот метод требует нескольких аналоговых переключателей для подачи тока и восстановления цепи сервопривода насоса, когда это будет сделано. Кроме того, если к ячейке Нернста приложено смещение, то необходимо применить ток противоположной полярности с той же длительностью, чтобы «сбросить» поляризацию ячейки. Единственная проблема этого метода заключается в том, что он «мешает» цепи обратной связи Nernst / pump.
Другой метод — подать высокочастотный сигнал в цепь накачки и измерить результирующее отклонение в ЭДС.Сопротивление эталонной ячейки определяется связыванием по переменному току прямоугольной волны известной амплитуды и частоты через последовательное сопротивление и измерением амплитуды результирующей формы волны переменного тока. Этот сигнал присутствует всегда, и, поскольку он имеет высокую частоту по сравнению с откликом контура обратной связи Нернста / насоса, он по существу усредняет. Это метод, используемый в PWB.
Схема работы очень проста. Известный источник прямоугольных импульсов с напряжением 5 В от пика к пику и частотой от 1 до 3 кГц (генерируемый DSP) емкостным образом соединен с положительным выводом опорной ячейки.Общий ток ограничен последовательным сопротивлением (плюс внутреннее сопротивление R и ) до 500 мкА от пика до пика, или ± 250 мкА вокруг точки смещения V (смещение V установлено на 2,5 В, чтобы учесть двойное напряжение). полярный насос) — это значение соответствует техническим характеристикам, указанным в техническом паспорте Bosch LSU 4.2. Сигнал переменного тока генерирует соответствующее переменное напряжение со значением, основанным на внутреннем сопротивлении R i . Например, если R i = 100 Ом, то 500 микроампер (P-P), умноженные на 100 Ом, дают 50 милливольт p-p, или ± 25 мВ вокруг точки смещения V .Фактически, сопротивление ограничения последовательного тока и R и образуют схему резисторного делителя, управляемую потенциалом напряжения.
Для измерения напряжения используется конденсатор, блокирующий смещение постоянного тока (т. Е. Напряжение опорной ячейки) и пропускающий переменный сигнал. Вводится каскад усиления, и напряжение подается на аналого-цифровой порт процессора. Обратите внимание, что этот сигнал является сигналом переменного тока, поэтому выборка АЦП должна коррелировать с полярностью приложенного прямоугольного сигнала — это известно как синхронное выпрямление.Альтернативный метод — использовать схему мостового выпрямителя для восстановления положительных / отрицательных колебаний и затем фильтровать перед подачей на канал АЦП.
Этилированное топливо
Широкополосные датчики кислородарассчитаны на срок службы 100 000 миль (160 000 км / сек) при нормальных условиях эксплуатации. Замена требуется только в том случае, если датчик вышел из строя из-за необычных условий эксплуатации, физического повреждения или загрязнения. Например, выдувная прокладка головки может позволить кремнию попасть в выхлопную трубу и загрязнить датчик.Масло, сгоревшее в камере сгорания из-за негерметичных направляющих или колец клапана, может привести к попаданию фосфора в выхлопную трубу и загрязнению датчика.
В зависимости от содержания свинца в отработанном топливе ожидаемый срок службы составляет:
- для 0,6 г Pb / л: 20 000 км (12 000 миль)
- для 0,4 г Pb / л: 30 000 км (18 000 миль)
- для 0,15 г Pb / л: 60 000 км (36 000 миль)
Как правило, при использовании этилированного топлива датчик необходимо заменять при возникновении функциональных проблем, например.грамм. нестабильные холостые обороты, проблемы с управляемостью. Для грубой проверки работы датчика можно выполнить следующие тесты:
- Обоснованность проверки сигнала при обогащенном ОГ: сигнал датчика должен указывать на обогащение
- Обоснованность проверки сигнала на «открытом воздухе»: сигнал датчика должен указывать на очень бедную температуру воздуха
- Холодостойкость нагревателя при комнатной температуре с мультиметром между серым и белым кабелем (H +, H-) и датчиком, не подключенным к прецизионному широкополосному контроллеру, должно быть равно 2.От 5 до менее 10 Ом
* Мы выделяем прецизионный широкополосный контроллер для памяти Garfield Willis . Гарфилд сыграл важную роль в ранних исследованиях и разработке широкополосного контроллера EGOR.
Последнее обновление: 04.05.2020 09:45:16
Контроллеры MegaSquirt ® и MicroSquirt ® — экспериментальные устройства, предназначенные для образовательных целей.Контроллеры
MegaSquirt ® и MicroSquirt ® не предназначены для продажи или использования на транспортных средствах с контролируемым загрязнением. Ознакомьтесь с действующими в вашем регионе законами, чтобы определить, является ли использование контроллера MegaSquirt ® или MicroSquirt ® законным для вашего приложения.
© 2004, 2007 Брюс Боулинг, Эл Гриппо и Лэнс Гардинер. Все права защищены. MegaSquirt ® и MicroSquirt ® являются зарегистрированными товарными знаками.Этот документ предназначен исключительно для поддержки плат MegaSquirt ® от Bowling и Grippo.
Тестирование широкополосного датчика кислорода Bosch LSU 4.2
Все значения, указанные в образце сигналов , являются типичными и применимы не ко всем типам двигателей.
Канал A показывает значение напряжения измерительной ячейки кислородного датчика.
Канал B показывает напряжение ячейки насоса кислородного датчика.
Канал C указывает управление с широтно-импульсной модуляцией (ШИМ) цепи нагревателя кислородного датчика.Канал D показывает ток через цепь нагревателя, управляемую ШИМ, видимым на канале C.
Math Channel показывает ток ячейки насоса, полученный по формуле Канал B / 38,7 Ом.
Диагностика формы сигнала
Конкретные условия и результаты испытаний см. В технических данных автомобиля
Типичные значения (двигатель при правильной рабочей температуре):
Двигатель на холостом ходу: Датчик кислорода Измерительная ячейка Напряжение должно оставаться почти стабильным на уровне 450 мВ независимо от состояния заправки двигателя. |
||
Двигатель на холостом ходу: Датчик кислорода Напряжение элемента насоса будет расти и падать в зависимости от уровня содержания кислорода в выхлопной системе. При нормальных условиях работы напряжение будет оставаться фиксированным на уровне 0 В, что указывает на правильное стехиометрическое соотношение воздух-топливо 14,7: 1 (лямбда 1,0) Значения напряжения и тока элемента насоса имеют следующие характеристики:
|
||
мгновенный тест WOT: Указывает на небольшое повышение напряжения Насосной ячейки в точке WOT (+ 30 мВ), поскольку содержание кислорода в выхлопной системе падает из-за ускоренного обогащения (кислород закачивается в измерительную камеру ). |
||
Прекращение подачи топлива из-за перебега : Указывает на падение напряжения насосного элемента (-158 мВ) во время прекращения подачи топлива из-за перебега двигателя. Следовательно, содержание кислорода в выхлопной системе увеличится. (Кислород откачивается из измерительной камеры . ) Переключение напряжения насосной ячейки во время WOT и перебега подтверждает правильность работы кислородного датчика. Реакция на ускорение и замедление двигателя должна быть практически мгновенной, подтверждая, что время отклика датчика кислорода является эффективным.Активность ячейки насоса обычно измеряется с помощью миллиамперных клещей, а не регистрируется напряжение. Учитывая, что значение сопротивления цепи Pump cell известно из теста, проведенного в , шаге 2 выше, мы можем преобразовать записанное напряжение Pump cell в текущее значение, используя закон Ома (ток = вольт / сопротивление), поэтому устранение необходимости в зажиме миллиампер. См. Пункт 7 ниже и Пример формы сигнала 2 , где математический канал используется для выполнения этого вычисления и отображения тока ячейки насоса в качестве дополнительной формы сигнала.
|
||
Двигатель работает: Подтверждает максимальный ток цепи нагревателя (1,6 А). Форма волны тока нагревателя должна отражать сигнал ШИМ, наблюдаемый в точке 6. |
||
Двигатель работает: Подтверждает хорошее ШИМ-управление (> 2 Гц) нагревательного элемента кислородного датчика при переключении напряжения с 0 В на 13,5 В прибл. Чувствительный элемент в кислородном датчике требует минимальной рабочей температуры 300 ° C, и его необходимо будет контролировать в течение всего времени работы двигателя, чтобы обеспечить эффективное функционирование при сохранении надежности нагревательного элемента. Примечание: Могут быть случаи, когда ШИМ-управление кислородным датчиком останавливается PCM (во время начального WOT). Это зависит от производителя и в конечном итоге способствует снижению расхода топлива и выбросов за счет снижения электрической нагрузки на автомобиль. PCM может также изменять ШИМ-регулирование во время процесса разогрева, чтобы обеспечить достаточное рассеивание воды / конденсата в различных рабочих условиях окружающей среды.
|
||
Захват формы сигнала остановлен: В приведенных выше примерах сигналов не измеряется непосредственно ток, протекающий через ячейку насоса , но измеряется напряжение, которое также будет изменяться пропорционально протеканию тока (канал B). Учитывая значение сопротивления насосной ячейки , было измерено и подтверждено значение сопротивления цепи , равное примерно 38,7 Ом. мы можем включить это значение в 5-й черный математический канал , чтобы преобразовать напряжение Pump cell , измеренное с помощью канала B, в текущее значение по закону Ома: Пока осциллограф собирает данные из Channel B , вы заметите, что 5-й черный математический канал появится в конце каждого снимка экрана.При остановке захвата (нажмите пробел или кнопку остановки) на экране появится математический канал . Используя буфер осциллограмм, вы можете просматривать снимки и измерять ток Pump cell из математического канала, который прямо пропорционален напряжению Pump cell .
|
Измерение активности широкополосного датчика кислорода с использованием метода падения напряжения, сопровождаемого законом Ома, устраняет необходимость в дорогостоящих миллиамперных клещах для измерения крошечных значений тока в диапазоне от 0.От 5 мА до 3,5 мА.
Дополнительная информация
Bosch Lambda Sensor Universal (LSU) 4.2 широкополосный датчик кислорода
Современные нормы выбросов требуют более жесткого контроля систем управления двигателем во всех диапазонах оборотов двигателя и нагрузок. Традиционный датчик кислорода может точно определять стехиометрическое соотношение воздух-топливо при 14,7: 1 (лямбда 1,0) с выходным сигналом примерно 450 мВ. Однако за пределами стехиометрической точки традиционный кислородный датчик будет выдавать либо сигнал богатой смеси (900 мВ), либо сигнал бедной смеси (100 мВ) без указания того, насколько богатая или насколько бедная .Таким образом, управление двигателем будет компенсировать это путем регулировки подачи топлива (управление с обратной связью) вперед и назад (богатая / обедненная) в попытке поддерживать правильное стехиометрическое соотношение воздух-топливо. Поэтому традиционный кислородный датчик мог работать точно только в очень узком диапазоне соотношений воздух-топливо (14,7: 1), отсюда и название Узкополосный кислородный датчик .
Потребность в повышенной точности, более быстром времени отклика и надежности привела к модернизации узкополосного датчика кислорода до стандартного отраслевого датчика кислорода, используемого сегодня всеми производителями, широкополосного датчика кислорода .
Широкополосный датчик кислорода часто называют широкополосным датчиком или датчиком воздушно-топливного отношения (датчик AFR) и может быть установлен как на бензиновых, так и на дизельных двигателях.
Название широкополосное происходит от способности датчика точно определять соотношение воздух-топливо в широком диапазоне от 10: 1 до 20: 1 (20: 1 — окружающий воздух), в отличие от способности узкополосного датчика обнаруживать только стехиометрическое соотношение 14,7 : 1.
Однако широкополосный датчик кислорода включает часть рабочих характеристик узкополосного датчика в виде измерительной ячейки .Измерительная ячейка подвергается воздействию атмосферного воздуха с одной стороны (эталонный воздух) и кислорода выхлопных газов в измерительной камере с другой. Предполагая, что содержание кислорода в измерительной камере поддерживается на заданном уровне, 450 мВ выводится из измерительной ячейки широкополосного датчика кислорода на PCM (канал A).
Поддержание правильного уровня кислорода в измерительной камере имеет первостепенное значение для обеспечения того, чтобы выходное напряжение измерительной ячейки оставалось как можно ближе к 450 мВ во всех условиях заправки.Это достигается насосной ячейкой .
Характеристики насосной ячейки таковы, что в зависимости от количества и направления тока, протекающего через насосную ячейку (управляемый PCM), кислород может закачиваться в измерительную камеру или из нее, , таким образом поддерживая 450 мВ выход Измерительная ячейка .
Таким образом, ток, протекающий через насосный элемент , используется для прямого и точного определения соотношения воздух-топливо в широком спектре в результате содержания кислорода в выхлопных газах.
Управление нагревательным элементом широкополосного датчика кислорода имеет решающее значение для правильной работы датчика. Кислородные датчики, которые остаются ненагретыми, в конечном итоге «забиваются» и требуют замены, в то время как электрохимические реакции внутри датчика, которые обеспечивают транспортировку кислорода и генерацию напряжения, просто не могут происходить, если температура кислородного датчика не поддерживается.
Рисунок 6
Лямбда-датчики — современные широкополосные типы
Планарные датчики
Прежде чем обсуждать широкополосные датчики, следует отметить, что в то время как Широкополосный датчик иногда называют «Планарным», Bosch производит узкополосный датчик. датчик, также имеющий планарную конструкцию.Вместо твердого электролита из типов диоксида циркония он заменяется слоями керамического ламината, и Эти слои ламината печатаются методом шелкографии для их конфигурации. Большой Преимущество этого метода строительства в том, что обогреватель можно закопать в слоях сенсора, таким образом нагревая сенсор до рабочего состояния. температура намного быстрее.
Широкополосные датчики
Датчики текущего поколения называются широкополосными, планарными, UEGO или «Датчики соотношения A / F» (датчики соотношения воздух / топливо).Они намного лучше точное измерение количества кислорода в выхлопном потоке, а не простое переключение узкополосных датчиков. Термин «планарный» исходит из формы чувствительного элемента, который представляет собой плоскую полосу (плоскость), скорее чем форма наперстка традиционных датчиков.
Рисунок 11 — Изображение планарного широкополосного датчика
в разрезеШирокополосные датчики стали необходимы только в качестве систем управления двигателем. дошли до того, что требуется более точный датчик для соответствия мишени для транспортных средств с низким уровнем выбросов — старые датчики имели свои особенности «точка переключения» по разным историческим причинам.Широкополосный датчик — абсолютное требование для стратегий управления обедненной смесью и ионизирующей топливной смесью (например, Volkswagen FSi), а также дизельные автомобили. Широкополосный датчик позволяет ЭБУ измерять насколько хорошо происходит горение вплоть до очень бедных смесей.
Рисунок 12 — Кривая выходного сигнала широкополосного датчика (красный)
по сравнению с диапазоном выходного сигнала узкополосного датчика (зеленый)
Датчик работает по тому же принципу, что и обычный датчик (Nernst ячейка), но с дополнительной внутренней системой (устройство, называемое кислородным насосом), и выходной ток изменяется пропорционально количеству кислорода, присутствующему в выхлоп.Как видно из графика, он может измерять гораздо более широкий диапазон чем традиционный датчик, но что более важно, когда он находится в пределах диапазона что нас больше всего интересует (от Lambda = 0.9 до Lambda = 1.1) ответ график довольно линейный, что означает, что мы можем определить точное содержание кислорода выхлопных газов, а не крутой точки переключения вокруг центральной площадь. В крейсерских условиях современного двигателя соотношение AF может достигать примерно 20: 1, а широкополосный диапазон позволяет нам точно измерять эти бедные смеси.
Другой, более сложный метод декодирования сигнала необходим ЭБУ использует специальный ASIC, а датчики несовместимы с более ранними типами. Этот тип датчик работает только при температурах 600 ° C и выше, требуя мощного нагревателя.
Широкополосные датчики можно идентифицировать по их многопроволочному жгуту (пять, шесть или более проводов) и обычно устанавливаются на:
- Любой недавний автомобиль, в котором используется двигатель с обедненной смесью или с прямым впрыском топлива.
- Автомобили с дизельным двигателем, оборудованные лямда-датчиками
- Некоторые автомобили Honda примерно с 1990 г. использовал этот тип датчика (L1h2)
- Volkswagen FSi системы и другие стратифицированные системы заряда
- Некоторые неавтомобильные применения, такие как прокатные дороги и специализированное лабораторное оборудование для проверки газов
Широкополосный датчик особенно подходит для обедненной смеси, с наддувом, с турбонаддувом. и высокопроизводительные автомобили (например, Subaru impreza 2002 г.в.), например, детонация зажигания или «стук», противник высокопроизводительного двигателя, этого можно избежать при любой работе двигателя. условий, проводя гораздо более тщательный контроль за соотношением воздух / топливо, чем если бы когда-либо быть возможным с узкополосным датчиком. Это также относится к обедненному ожогу. двигатели, в которых средняя (средняя) прочность смеси очень слабая.
Широкополосные датчики для автоспорта
Широкополосные датчики используются гоночными командами для точного определения высокой производительности. тюнингованные двигатели. Можно приобрести лямбда-метры с широкополосным датчиком. для регистрации данных о прочности смеси и других параметрах двигателя. Следует отметить, что лямбды WB, разработанные для легковых автомобилей, не являются такие же, как и те, которые предназначены для использования в автоспорте, и поэтому несовместимы.
Помимо большей устойчивости, датчики WB для автоспорта откалиброваны так, чтобы иметь широкий выходной диапазон, тогда как легковые автомобили откалиброваны для обеспечения максимальной точности по стехиометрии и очень компактны. смеси.Гоночный автомобиль будет проводить большую часть времени на противоположном конце дороги. прочность смеси, заправка топливом для максимальной производительности.
Планарный датчик Bosch Audi 1.8T Beetle turbo Volvo S80 Датчик LSU VR6 Golf Carrera 911 GT3
как это работает, проблемы, тестирование
Обновлено: 13 сентября 2021 г.
В начале 00-х обычные датчики кислорода уступили место более точным датчикам состава топливовоздушной смеси, хотя их до сих пор называют «датчиками кислорода» или датчиками O2.Датчик соотношения воздух-топливо (A / F) Датчик соотношения воздух-топливо (A / F) измеряет содержание кислорода в выхлопных газах в более широком диапазоне. Он также известен как «широкополосный лямбда-зонд» или «лямбда-зонд».Датчик состава топливовоздушной смеси устанавливается в выпускном коллекторе или в передней выхлопной трубе перед каталитическим нейтрализатором. Его также можно назвать «передним датчиком O2». Работа датчика состава топливовоздушной смеси заключается в измерении содержания кислорода в выхлопных газах и обеспечении обратной связи с компьютером двигателя (PCM).На основе сигнала датчика соотношения воздух-топливо компьютер регулирует соотношение воздух-топливо, чтобы поддерживать его на оптимальном уровне, который составляет около 14,7: 1 или 14,7 частей воздуха на 1 часть топлива.
Неисправности датчика состава топливовоздушной смеси
Проблемы с датчиками состава топливовоздушной смеси — обычное дело. Часто датчик загрязняется или просто выходит из строя. В некоторых автомобилях нагревательный элемент внутри датчика может перестать работать и вызвать неисправность. Например, во многих автомобилях Toyota и Honda код P0135 может быть вызван неисправным нагревательным элементом внутри датчика.Посмотрите, как проверяется ТЭН датчика A / F, в этой статье: код P0135. В некоторых автомобилях проводка датчика может закоротиться после трения о металлические детали. Например, в старой Mazda 3 провод датчика может тереться о кронштейн и закорачиваться, вызывая код P0131. Когда компьютер двигателя определяет, что сигнал датчика соотношения воздух-топливо выходит за пределы ожидаемого диапазона, он включает контрольную лампу двигателя.Наиболее распространенные коды неисправностей OBDII, связанные с датчиком состава топливовоздушной смеси: P0131, P0134, P0135, P0133, P0031 и P1135.Есть ли какие-либо симптомы, кроме индикатора Check Engine? В некоторых автомобилях вы можете заметить снижение расхода топлива или проблемы с управляемостью.
Диагностика датчика состава топливовоздушной смеси
Датчик состава топливовоздушной смеси диагностируется в соответствии с процедурой устранения неисправностей производителя для установленного кода неисправности. Первый шаг — проверить наличие соответствующих бюллетеней технического обслуживания (TSB). Проводку и разъем датчика необходимо проверить на наличие повреждений, коррозии, ослабленных контактов и т. Д.Проверка датчика соотношения воздух-топливо с помощью диагностического прибора. Затем, в зависимости от кода неисправности, сигнал датчика необходимо проверить с помощью диагностического прибора. Например, см. Эту диаграмму сигнала датчика состава топливовоздушной смеси на диагностическом приборе: при увеличении оборотов двигателя сигнал переходит на «богатый», затем, когда частота вращения падает и подача топлива прекращается, датчик показывает «обедненная смесь». «. После этого сигнал вернется в норму. Этот топливный датчик воздуха работает правильно.Часто датчик может работать правильно во время проверки.В этом случае ваш механик может порекомендовать заменить датчик состава топливовоздушной смеси, чтобы исключить возможность периодической неисправности.
Задний датчик кислорода
Схема заднего (нижнего) кислородного датчика Задний или нижний кислородный датчик устанавливается в выхлопе после каталитического нейтрализатора. Он измеряет количество кислорода в выхлопных газах, выходящих из каталитического нейтрализатора. Сигнал от заднего кислородного датчика используется для контроля эффективности каталитического нейтрализатора. Компьютер двигателя или PCM постоянно сравнивает сигналы от переднего и заднего кислородных датчиков (см. Схему). Основываясь на двух сигналах, PCM определяет, насколько хорошо каталитический нейтрализатор выполняет свою работу. Если каталитический нейтрализатор выходит из строя, PCM включает световой индикатор «Check Engine», чтобы вы знали.
Задний кислородный датчик можно проверить с помощью диагностического прибора или лабораторного осциллографа.
Идентификация датчика соотношения воздух-топливо / кислорода
Перед каталитическим нейтрализатором устанавливается передний кислородный датчик или датчик состава топливовоздушной смеси; он называется «восходящий» или «датчик 1».Задний кислородный датчик, установленный после каталитического нейтрализатора, называется «нижним по потоку» или датчиком 2.
Типичный рядный 4-цилиндровый двигатель имеет только один ряд (ряд 1). Следовательно, в рядном 4-цилиндровом двигателе термин «ряд 1, датчик 1» просто относится к переднему датчику кислорода. «Банк 1, датчик 2» — это задний кислородный датчик. Обычно двигатель банка
содержит цилиндр 1, называется Bank 1
Двигатель V6 или V8 имеет два ряда (или две части этой буквы «V»).Обычно банк, содержащий цилиндр номер 1, называется «Банком 1».
Разные производители автомобилей определяют Банк 1 и Банк 2 по-разному. Чтобы узнать, какой банк 1 и банк 2 в вашем автомобиле, вы можете найти его в руководстве по ремонту или в Google, указав год, марку, модель и объем двигателя вашего автомобиля. Например, согласно бюллетеню Toyota TSB-0398-09 , в V6 Camry, Highlander, Avalon, Sienna и Solara банк 1 находится сзади, банк 2 — спереди.Точно так же в Mazda 6 V6 2003-2008 гг. Или Mazda Tribute V6 банк 1 находится сзади, банк 2 — спереди. В Nissan Maxima 2003 года банк 1 находится сзади, банк 2 — спереди.
Замена датчика соотношения воздух-топливо / кислорода
В большинстве автомобилей замена кислородного датчика — довольно простая работа, если к нему нет труднодоступного доступа. В ремонтной мастерской замена кислородного датчика стоит от 50 до 250 долларов (только рабочая сила).Если вы хотите заменить кислородный датчик самостоятельно, обладая определенными навыками и руководством по ремонту, это не так уж и сложно, но вам может потребоваться специальная розетка для датчика кислорода (на фото ниже).
Иногда бывает трудно удалить старый датчик, так как он может застрять в резьбе. Мы нашли несколько видео, как снять заклинивший датчик O2.
При замене топливного датчика воздуха есть два варианта: установить оригинальную (OEM) или неоригинальную деталь. Датчики послепродажного обслуживания большую часть времени работают нормально. Тем не менее, мы столкнулись с несколькими случаями, когда датчик вторичного рынка вызывал проблему, которая была устранена после установки датчика OEM.
Замена датчика кислорода Если цена сопоставима, лучше использовать датчик OEM.Еще одна причина использовать OEM-датчик заключается в том, что производители часто обновляют конструкцию детали, чтобы устранить проблемы, обнаруженные после производства.Для автомобилей, сертифицированных для Калифорнии, номер детали датчика состава топливовоздушной смеси может быть другим. Лучше всего заказывать нужную деталь, используя свой VIN-номер.
Как работают 5-проводные датчики (Tech Edge)
Как работают 5-проводные датчики (Tech Edge)При использовании 5-проводного (широкополосного) датчика мы делаем определенные предположения об окружающей среде, в которой используется датчик, например, мы предполагаем, что датчик используется для измерения побочных продуктов выхлопа при достаточно полном сгорании.Сгорание может быть внутренним, как в обычном автомобиле, или внешним сгоранием, как в печи или другом устройстве, потребляющем топливо и кислород. Если эти условия изменить, это может привести к неправильным показаниям. Например, если происходит промах и несгоревшие капли топлива проходят через двигатель, тогда датчик покажет обедненную смесь, поскольку он не обнаружит жидкое топливо. При настройке автомобиля не следует полагаться исключительно на показания датчика. Позвольте своему здравому смыслу и небольшому знанию того, как работает датчик, направлять вас.
Для широкополосных датчиков требуется контроллер, поскольку они сложнее стандартных узкополосных датчиков. Они более точны из-за своей сложности, но это означает, что для их работы требуется технически сложный контроллер. Сам датчик можно представить как две тесно связанные части, которые электрически нагреваются до тусклого тепла для считывания:
Как мы увидим, широкополосный датчик управляется током, который накачивается в насосную ячейку или из нее с помощью электроники широкополосного контроллера. Это принципиально отличается от узкополосного датчика, который выдает свое узкополосное напряжение без какой-либо внешней электроники при нагревании до рабочей температуры. Чтобы понять широкополосный диапазон, мы должны сначала понять узкополосные датчики : Узкополосные датчикиУзкополосные датчики имеют от одного до четырех проводов.Один из проводов всегда будет сигналом напряжения. Второй провод можно использовать для изоляции заземляющего конца сигнала, чтобы уменьшить шум сигнала. Трех- и четырехпроводные датчики добавляют нагревательный элемент, поэтому датчик начинает работать быстрее и надежнее. Изображение слева показывает 4-проводную версию — в практических узкополосных конструкциях датчик часто имеет форму гильза для максимального увеличения площади поверхности, контактирующей с выхлопными газами. Электрический нагреватель используется для повышения температуры диоксида циркония. (ZrO 2 ) материал, из которого изготовлен чувствительный элемент. Диоксид циркония (часто с добавлением оксида иттрия) является важным веществом, которое сохраняет механическую жесткость при способен проводить электрический ток в расплавленном (раскаленном) состоянии. Ток датчика переносится ионами кислорода, которые становятся доступными только тогда, когда датчик достаточно горячий. Платиновое покрытие одновременно является проводящим и способствует каталитической реакции. между ионами кислорода и частично сгоревшим топливом. Уравнение Нернста описывает напряжение, возникающее в результате этой каталитической реакции с участием ионов кислорода, платинового катализатора и выхлопных газов.
pO 2 xxx — это парциальное давление кислорода и удобное представление концентрации кислорода. с каждой стороны кислородного датчика. Член RT / 4F можно представить как постоянную, умноженную на температуру T . |
Это уравнение говорит о том, что в богатых смесях, где почти нет кислорода, но много свободного топлива,
напряжение В, с , создаваемое датчиком, будет достаточно высоким.
Вокруг стека становится доступным немного свободного кислорода, и напряжение, создаваемое датчиком, быстро падает.
График слева показывает, как В s быстро переключает с напряжения около 0,9 В до около 0,1 В в очень небольшом диапазоне лямбда (или AFR).Это быстрое переключение — одна из причин, по которой узкополосные датчики не точны в богатой области, где происходит большая часть настройки мощности.
Уравнение также говорит, что при более высоких температурах V s также будет выше. Это показано на изображении справа. Это еще одна важная причина, по которой узкополосные датчики не очень точны вдали от стандартных значений. По мере изменения нагрузки на двигатель температура датчика будет изменяться, и он будет считывать другое значение, хотя фактическая лямбда (или AFR) не изменилась.Можно выполнить температурную компенсацию путем измерения импеданса датчика и вычисления его средней температуры, и это то, что делают наиболее качественные лямбда-измерители, использующие узкополосный датчик (например, LSM-11), для повышения своей точности. |
Насосная ячейкаУзкополосный датчик, описанный выше, обнаруживает напряжение В, s , создаваемое ячейкой Нернста. Можно пропустить ток через расплавленный электролит и запустить химическую реакцию. таким образом, что кислород перекачивается (в форме ионов 2- ) от одной стороны ячейки к другой. В смеси, обогащенной , ионы кислорода будут объединяться на каталитической поверхности элемента насоса с топливом с образованием воды и углекислого газа. Когда все топливо будет израсходовано, свободного кислорода не будет, и полученная смесь будет стеична. В обедненной смеси (или даже в свободном воздухе) ток насоса меняется на противоположный, и свободный кислород откачивается. до тех пор, пока ничего не останется, и полученная смесь также будет стоить. На изображении справа показаны насосная ячейка и небольшая камера , в которую могут попадать выхлопные газы.Богатый или обедненный газ внутри камеры может быть восстановлен или окислен с образованием стеховой смеси. Важной частью насосной ячейки является размер входного отверстия насосной ячейки и ширина диффузионной камеры. Поскольку все они подвержены производственным изменениям, ожидается разброс рабочих параметров, и требуется схема, учитывающая это изменение. |
Комбинация узкополосных и насосных ячеек -> 5-проводной датчикКомбинация узкой полосы и насосных ячеек позволяет узкополосному датчику определять смесь, возникающая в результате нагнетания кислорода в диффузионную камеру или из нее.Полученный датчик показан слева. Чтобы сэкономить провода, ячейки Vs (сенсор) и IP (насос) соединены вместе — в любом случае они имеют общую поверхность реакции, так что это не проблема. Проблема производственных вариаций, которая приводит к появлению датчиков разной чувствительности (разные токи накачки для одной и той же лямбды), решается добавлением калибровочного компонента. Резистор (Rcal) подстреливается лазером после того, как датчик сконструирован и испытан. Лазер сжигает материал и увеличивает сопротивление резистора до тех пор, пока не будет получен стандартный ток Ip с известным значением лямбда.Если эта схема воспроизводится в самом контроллере, то каждый датчик будет автоматически откалиброван без дальнейшей калибровки. Очевидно, что, поскольку каждый датчик откалиброван на заводе, а калибровочный компонент обычно находится в самом разъеме датчика, если кто-то снимает разъем, значит датчик стал некалиброванным!Многие контроллеры не имеют этой схемы, и для точной работы они должны пройти этап калибровки в открытом воздухе. Также обратите внимание, что все широкополосные датчики с насосной ячейкой будут иметь как минимум 5 проводов от датчика.Шесть или семь проводов пойдут от разъема (некоторые датчики используют калибровочный резистор в разъеме, оба конца которого свободны). Следует отметить, что, когда датчик активно контролируется, смесь в диффузионной камере находится на уровне стехи, а напряжение Vs, близко к 450 мВ. Сенсорная часть vs дает небольшой эффект самовсасывания атмосферного кислорода в диффузионную камеру, но он намного меньше, чем действие насосной ячейки.Поскольку концентрация атмосферного кислорода (например, свободный воздух) используется в качестве эталона на одной стороне ячейки против , тогда поток воздуха к задней части ячейки Датчик необходимо обслуживать — обычно это делается через оболочку, покрывающую провода к / от датчика. Оплетка провода не должна быть сужена! |
Как работает широкополосный контроллер?Задача контроллера — поддерживать температуру диффузионной камеры в узких пределах и контролировать смесь там на стеич, прокачивая более или менее Ip тока, и путем изменения направления Ip , когда смесь меняется с бедной на богатую.Для расчета лямбда смеси с помощью справочной таблицы выполняется точное измерение Ip . Изображение справа представляет это в действии. Операционный усилитель A выдает напряжение, представляющее разницу между Vs и опорным напряжением 450 мВ — Идея состоит в том, чтобы поддерживать против на уровне 450 мВ. Микроконтроллер, реализующий ПИД-регулятор. использует Vs в качестве входа, а выход PID управляет операционным усилителем B , сконфигурированным как источник тока, который вырабатывает ток Ip , используемый датчиком.Операционный усилитель C непосредственно измеряет ток накачки и выдает напряжение, которое измеряется микроконтроллером. Микроконтроллер эффективно преобразует IP в внутреннее лямбда-представление, которое используется для создания выходных напряжений, хранящихся в виде данных и т. д.Чтобы контроллер вообще работал, чувствительный элемент должен быть нагрет до правильной рабочей температуры. где ионы кислорода могут поддерживать необходимые каталитические реакции. Температура датчика поддерживается на оптимальном уровне рабочей температуры путем измерения импеданса. (электрическое сопротивление) либо насосной ячейки, либо сенсорной ячейки против .Более точные результаты обычно получаются при измерении температуры ячейки vs (как это делается в устройствах Tech Edge ). но это может быть немного сложнее, чем измерения импеданса ячейки IP . Нагреватель большинства 5-проводных датчиков разработан для обеспечения максимальной мощности нагрева при более низком напряжении, чем напряжение аккумуляторной батареи автомобиля. Это сделано для того, чтобы учесть потери напряжения в схемах контроллера и для более быстрого нагрева от холода, но это также означает, что для длительного срока службы датчика контроллер должен быть осторожен, чтобы не повредить датчик во время прогрева, когда токи достаточно большие, чтобы разрушить нагреватель, могут протекать. На изображении слева показаны основные части схемы управления нагревателем. На самом деле это более сложная схема, чем схема измерения лямбда. Операционный усилитель E , с помощью резистора с очень низким сопротивлением, может напрямую измерять ток через нагреватель, и он используется во время разогрева до контролировать среднюю мощность нагревателя в близких пределах (как указано в документации производителя датчика). Также можно использовать ток нагревателя и напряжение батареи ( Ватт, ). (по закону Ома) для расчета приблизительной температуры нагревателя.Когда датчик достаточно нагрет, чтобы напрямую измерить сопротивление сенсорной ячейки Vs можно сделать более точное измерение температуры. Малые импульсы напряжения прикладываются к Vs с помощью драйвера F , и снова для расчета используется закон Ома. импеданс сенсорной ячейки путем измерения различных напряжений операционным усилителем D . Нагреватель включается на частоте около 30 Гц с помощью драйвера полевого транзистора нижнего уровня. и алгоритм ПИД-регулирования нагревателя. |
Подробнее…
Перейдите на главную страницу LSU WBo2.com для получения дополнительной информации о датчиках LSU. Перейдите на домашнюю страницу WBo2 для получения более подробной информации о широкополосном доступе.
Принцип работы кислородного датчика
Датчик кислорода Aanderaa был первым и единственным, кто измерял растворенный кислород в течение многих лет без дрейфа — теперь это один из самых быстрых! Ниже вы можете подробнее ознакомиться с принципом работы кислородного датчика
.Поскольку кислород участвует в большинстве биологических и химических процессов в водной среде, это важный параметр для измерения.Кислород также можно использовать в качестве индикатора в океанографических исследованиях. Компания Aanderaa произвела революцию в океанографическом мониторинге / исследованиях кислорода, представив в 2002 году датчик кислорода. Применения варьируются от мелких ручьев до самых глубоких траншей, от тропических до измерений во льду / в донных отложениях. К настоящему времени с использованием этих оптодов опубликовано более 150 научных работ, в том числе публикации о принципе работы кислородного датчика. Датчик кислорода предназначен для измерения абсолютной концентрации кислорода и% насыщения.Датчик может использоваться от ручьев до морских глубин, от рыбных ферм до сточных вод и от полярных льдов до гидротермальных источников.
Эти датчики основаны на способности выбранных веществ действовать как динамические гасители флуоресценции. Флуоресцентный индикатор представляет собой специальный комплекс платинампорфирина, заключенный в газопроницаемую фольгу, которая подвергается воздействию окружающей воды. Эта чувствительная фольга прикреплена к стеклянному окну, обеспечивая оптический доступ к измерительной системе изнутри водонепроницаемого корпуса.Чувствительная фольга возбуждается модулированным синим светом; датчик измеряет фазу возвращенного красного света. Для повышения стабильности датчик также выполняет считывание эталонной фазы с помощью красного светодиода, который не вызывает флуоресценции в фольге. Датчик имеет встроенный температурный термистор, который обеспечивает линеаризацию и температурную компенсацию фазовых измерений для получения абсолютной концентрации O2.
Принцип гашения люминесценции на основе срока службы дает следующие преимущества:
- Время отклика
- Высокая точность
- Не чувствительно к перемешиванию (не потребляет кислород)
- Более низкая чувствительность к засорению
- Измеряет абсолютную концентрацию кислорода без повторных калибровок
- Лучшая долгосрочная стабильность
- Контроль горячей воды
- Менее подвержен давлению
- Нечувствителен к H 2 S
- Не чувствителен к замерзанию
Узкополосный и широкополосный диапазоны: объяснение датчиков кислорода
Сегодня мы поговорим о датчиках кислорода: что это такое, как они работают и зачем они вам нужны.
Датчики кислорода обычно ввинчиваются в выхлопную систему. Они расположены ближе к двигателю, чем к выхлопной трубе.
Их задача — измерить количество несгоревшего кислорода в смеси выхлопных газов и предоставить системе управления двигателем точное измерение соотношения воздух-топливо (AFR).
Это показание AFR — это то, на что смотрят специалисты по настройке двигателей, когда корректируют требования к топливу двигателя.
Это также значение, которое отображается на дино-экране (или на вашей динамометрической распечатке) после настройки двигателя.
Есть два стиля кислородных датчиков: узкополосный и широкополосный.
Узкополосные датчики O2 обычно имеют до 4 проводов, выходящих из них, и, как следует из названия, измеряют только очень узкое окно между воздухом и топливными смесями — от 0,99 до 1,01 лямбда или от 14,6 до 14,8: 1 по шкале бензина.
Эти датчики обычно используются в старых автомобилях и используются для того, чтобы сообщить блоку управления двигателем, работает ли двигатель на уровне Stoich (1,00 лямбда или 14,7 бензин AFR) или нет.
Как правило, когда двигатель работает на холостом ходу и движется при небольшой нагрузке (скажем, при дроссельной заслонке 40%), эта измеряемая смесь и сигнал от узкополосного датчика кислорода будут подаваться в ЭБУ, который, в свою очередь, будет выполнять коррекцию на основе этого значения.
Если двигатель работает слишком богатой (слишком много топлива) или слишком бедной (недостаточно топлива), ЭБУ выполнит то, что мы называем «Корректировкой замкнутого контура O2», и внесет коррективы в общую заправку, чтобы поддерживать его работоспособность. при оптимальном соотношении воздух-топливо 14.7: 1.
Но что происходит, когда двигатель работает с соотношением воздух-топливо, которое узкополосный датчик не может измерить? Буквально ничего. Датчик просто посылает ЭБУ свой сигнал и сообщает ему, что двигатель вышел за пределы измеряемого диапазона. Если соотношение не находится в пределах рабочих параметров «Замкнутый контур O2», он просто ждет, пока он снова не вернется в этот диапазон.
Здесь вступает в игру широкополосный датчик O2 . Широкополосный датчик похож на узкополосный, но обычно имеет 6 проводов и более громоздкий соединительный элемент для жгута проводов двигателя.
Также требуется довольно сложная электроника для управления магией внутри датчика (в то время как узкополосный сигнал может быть прочитан с помощью простого входа ECU).
Это означает, что вы можете найти небольшой контроллер широкополосного датчика между ЭБУ и датчиком, этот контроллер выполняет всю работу, а затем отправляет простой сигнал 0-5 В или сообщение CAN в ЭБУ, чтобы сообщить ему соотношение воздуха и топлива.
В качестве альтернативы широкополосный датчик можно подключить напрямую к выделенным входам на ЭБУ, это будет известно как встроенный широкополосный контроллер.Независимо от марки широкополосного контроллера сигнал 0-5 В может подаваться в диапазон ЭБУ Haltech, чтобы использовать расширенные функциональные возможности широкополосного датчика.
Зачем вам нужен широкополосный датчик?
Помните, как узкополосный датчик сообщает ЭБУ только о том, составляет ли AFT около 14,7: 1 или нет? Это означает, что ЭБУ может выполнять контроль O2 по замкнутому контуру только тогда, когда мы нацелены на смесь 14,7: 1.
Широкополосный датчик O2 измеряет AFR около 0.От 68 до 1,36 лямбда или от 10: 1 до 20: 1 бензина с соотношением воздух-топливо. Это весь рабочий диапазон обычного двигателя.!
Это означает, что ЭБУ может отслеживать фактическое соотношение воздух / топливо, проверяя его на соответствие желаемому соотношению тюнера, а затем вносить изменения, чтобы убедиться, что целевое и фактическое значение всегда одинаковы.
Мы даже можем выполнить то, что мы называем «долгосрочным обучением», чтобы каждый раз, когда целевое и фактическое соотношения воздух / топливо не совпадают, блок управления двигателем записывает и применяет корректировку.Таким образом, ЭБУ не пытается исправить одну и ту же ошибку снова и снова. И самое лучшее — по мере того, как вы ведете машину, мелодия становится все лучше и лучше!
Почему возникает ошибка, спросите вы? Это может быть связано с различными климатическими условиями, такими как температура и давление, это может быть связано с температурой топлива, эффективностью промежуточного охладителя на динамометрическом стенде по сравнению с дорогой или с частями топливной карты, которые трудно смоделировать на динамометрическом стенде.
Настройка всех возможных температур для каждого датчика на каждом модифицированном двигателе потребует очень много времени, и именно по этой причине широкополосный кислородный датчик и долгосрочное обучение топливу необходимы для модифицированного автомобиля.
Но это еще не все!
С широкополосным датчиком кислорода вы можете установить рабочие ограничения для защиты двигателя. Например, если число оборотов в минуту было выше 4000, а давление наддува выше 15 фунтов, вы можете установить аварийное состояние защиты двигателя, если AFR меньше, чем, скажем, 13: 1 (или что вы выберете).