Что такое цилиндр в машине: Роль цилиндра и поршня в двигателе автомобиля

Содержание

Цилиндры двигателя

Цили́ндр  двигателя внутреннего сгорания является рабочей камерой объемного вытеснения. Во время работы двигателя внутренние и наружные части цилиндров испытывают различный нагрев.

Внутренняя часть цилиндра — втулка или гильза цилиндра.

Наружная часть — рубашка двигателя.

Внутренняя поверхность втулки или гильзы цилиндра называется зеркалом. Зеркало это рабочая часть цилиндра, поэтому она подвергается специальной обработке (хонингование, хромирование, азотирование) и поэтому выбирают следующие типы материалов для гильз цилиндров. На зеркале цилиндра наносится специальный рельеф, который способствует снижению трения между поршнем, поршневыми кольцами и цилиндром, благодаря удерживанию моторного масла на стенках.

В современных двигателях внутреннюю поверхность цилиндров подвергают отбеливающему переплаву лазером, что способствует образованию белого чугуна высокой твердости. Ресурс таких цилиндров намного выше и не требует ремонтных размеров.

Гильзы цилиндров отливают из чугуна высокой прочности или специальных сталей. Иногда на алюминиевые гильзы цилиндров наносят гальваническое покрытие хромом.

 

В одноцилиндровом четырехтактном двигателе коленчатый вал вращается неравномерно, поэтому маховик должен обладать большим моментом инерции. В многоцилиндровом двигателе вращение коленчатого вала происходит равномернее, так как рабочие ходы в различных цилиндрах не совпадают друг с другом. Чем больше цилиндров имеет двигатель, тем равномернее вращается коленчатый вал. Нагрузка на детали кривошипно-шатунного механизма в многоцилиндровом двигателе изменяется более плавно, чем в одноцилиндровом.

Цилиндры двигателя могут быть расположены следующим образом: вертикально в один ряд – однорядные, двигателя автомобилей ВАЗ-2107 «Жигули», ГАЗ-52-04, ГАЗ-3102 «Волга» и др., под углом a к вертикали, двигатель автомобиля Москвич 2140; в два ряда V-образные, двигателя автомобилей ГАЗ-53А,ЗИЛ-130, КаМаз 5320 и др.

Дефекты гильз цилиндров

Гильзы цилиндров изнашиваются вследствие трения между поршнем и зеркалом (внутренней стенкой цилиндра). Как правило повышенный износ может происходить вследствие таких причин:

— не достаточно масла на стенках цилиндров

-двигатель долго не работал, и все масло стекло в картер

-применение масла не соответствующей вязкости

— коррозия, возникает вследствии применения воды, как охлаждающей жидкости

-сколы, царапины возникают вследствие не правильного монтажа, демонтажа ( все действия по съемке гильз цилиндров нужно проводить согласно правил специальным съемником)

-при не правильной эксплуатации двигателя

 

Методы обработки для устранения дефектов

Дефекты устраняются такими методами обработки как: шлифовка, фрезировка, напыление, наплавка, хонингование.

Хонингование 

Хонингование — вид абразивной обработки материалов с применением хонинговальных головок (хонгов). В основном применяется для обработки внутренних цилиндрических отверстий (от 2 мм) путём совмещения вращательного и поступательно-возвратного движения хона с закреплёнными на нём раздвижными абразивными брусками с обильным орошением обрабатываемой поверхности смазочно-охлаждающей жидкостью. Один из видов чистовых и отделочных обработок резанием. Позволяет получить отверстие с отклонением от цилиндричности до 5 мкм и шероховатостью поверхности Ra=0.63÷0.04.

Обработка отверстий в различных деталях в том числе в деталях двигателя (отверстий блоков цилиндров, гильз цилиндров, отверстий кривошипной и поршневой головок шатунов, отверстий шестерен) и т. д. При обработке хонингованием обеспечивается стабильное получение точных отверстий и требуемых параметров шероховатости обработанной поверхности. Зеркало цилиндров должно иметь не совсем гладкую поверхность, так как масло будет стекать и не оставатся между парой трения, что будет приводить к износу, поэтому делается как бы меленькая насечка. В ней остаються частички масла , которые обеспечивают хорошую работу цилиндр-поршень и приводит к увеличению ресурса деталей.

Почему троит двигатель? Не работает один из цилиндров

«Не работает один из цилиндров…» , — данная неисправность не относится к разряду слишком уж частых, но все-таки случается и иногда вызывает некоторые затруднения с ее диагностикой. Данное явление получило название «миссинг» ( «missing» ), что в «вольно-техническом» переводе может означать тоже самое, что и «двигатель троит» ( каждый волен называть данное явление так, как ему нравится).

В случае миссинга (если стоять около выхлопной трубы и прислушаться), мы услышим явно различимое и равномерное «бу-бу-бу…» .

А когда какой-то из цилиндров не работает – это вызывает дополнительные проблемы, потому что в этом случае ( кроме потери мощности и «некомфортной езды»…хотя надо еще, наверное , поискать такого безрассудного водителя, который при «троении» двигателя будет продолжать упорно ездить! ) сам двигатель начинает катастрофически быстро изнашиваться, и вот почему :

* бензин, который продолжает поступать в «нерабочий» цилиндр не сгорает, а оседает на стенках (зеркале) цилиндра, перемешивается с маслом и попадает в картер.Моторное масло начинает постепепенно «разжижаться», его качество ухудшается и через какое-то время уже во все цилиндры начинает поступать некондиционное масло. Из-за этого уменьшается компрессия двигателя, создаются «хорошие» условия для создания «задиров» на «зеркале» цилиндра, на поршнях, прецезионных плоскостях гидрокомпенсаторов и вообще на всем, что «движется» внутри двигателя и омывается маслом. Двигатель начинает работать уже в другом температурном режиме, начинает потихоньку перегреваться, потому что масло (нормальное по качеству масло) служит еще и для отвода тепла от движущихся частей, а то, что уже находится в картере трудно назвать «моторным маслом».

Вот неполный перечень того, какие «беды» нам может принести «нерабочий» цилиндр.

На первый взгляд определение этой неисправности довольно простое.

На первый взгляд…

Но иногда оказывается, что проверено, вроде все, и это «все» работает нормально, а двигатель все-равно «троит». Поэтому мы «по пунктам» постараемся разобрать порядок диагностирования систем электронного впрыска топлива на предмет «миссинга» в условиях «обыкновенной мастерской» или «просто в гараже» , где нет специальных приборов для того, что бы «заглянуть внутрь» двигателя при его работе и очень точно определить причину «миссинга».

Проверку, как обычно, можно и нужно начать с проверки искрообразования.То есть проверить и убедиться : «есть искра или нет ее».

Свечи зажигания

Для начала выкрутим свечу из цилиндра и внимательно осмотрим ее. Что мы увидим ?

Если двигатель работает (работал) нормально и «правильно», то цвет бокового электрода и изолятора будут светлыми и немного коричневыми.Такая свеча работать должна. Если же увидим закопченность электрода и изолятора – это «звоночек» нам : «что-то и где-то работает неправильно». Идет «обогащение» топливом или «закидывание» маслом. И из-за такой вот «закопченности» свеча зажигания тоже может не работать или работать крайне отвратительно, можно даже и так сказать – «нерегулярно», потому что такой нагар мешает нормальному протеканию искрообразования.Причинами нагара могут быть :

— длительная работа двигателя на холостом ходу и в режиме прогрева в случае, если в двигатель вкручена свеча зажигания «неправильного» калильного числа.

— неисправность «обратного» клапана

— пониженная компрессия в цилиндре

— смещение или нарушение фаз газораспределения

— неправильная работа инжекторов (форсунок) — «переливают»

— неправильная работа датчика кислорода ( Oxygen Sensor )

Далее переведем взгляд на корпус свечи зажигания. Он должен быть белым (мы не рассматриваем некоторые отдельные свечи зажигания с темным корпусом) и на нем не должно быть вертикальных черных полосок или черных точек. Наличие этого говорит о том, что свеча уже «пробивается» и нормально работать не будет. Такая свеча зажигания идет только «на выкид».

Ну а если визуальный осмотр нас удовлетворил, то далее проверим непосредственно саму искру при прокручивании стартером. Вставляем свечу зажигания в наконечник высоковольтного провода, кладем на «массу» двигателя и прокручивая двигатель стартером смотрим – «проскакивает» искра между электродами свечи или нет.

Проскакивает ? Хорошо. Но это еще не все. Вспомним, что свеча зажигания «работает» внутри цилиндра, где создается давление в пределах 10 кг\см2 ( в среднем). А мы проверяли «наличие искры» при нормальном атмосферном давлении. И что бы постараться приблизиться к тому давлению, что создается в цилиндрах двигателя нам надо отнести свечу зажигания на расстояние 15-20 мм от «массы» и так же прокрутить двигатель стартером. Если и при этом условии между свечой и «массой» проскакивает хорошая «здоровая» искра «насыщенного» синего цвета – все нормально.

Если же на таком расстоянии искра «не проскакивает» или «проскакивает», но еле-еле заметная, то можно сказать, что у нас на двигателе «искра слабая» и причинами здесь могут быть :

— повышенное сопротивление высоковольтных проводов

— неисправность катушки зажигания

— неисправность коммутатора

Высоковольтные провода

Снимем и так же внимательно рассмотрим каждый высоковольтный провод в отдельности. Сначала осмотрим наконечник провода вставляемый в свечу зажигания. Он должен быть однотонного (черного или красного, в зависимости от типа ) и не иметь:

— светло – серого налета на внутренней поверхности

— серо-коричневых точек снаружи (диаметром они могут быть от 1 до3 мм)

И первое и второе «говорит» нам о том, что данный высоковольтный провод «работал» в «экстремальном» режиме (неисправная свеча зажигания, увеличенный зазор в свече зажигания), что и послужило причиной вот такого светло-серого налета или серо-коричневых точек (пробоя). Из практики можно сказать, что сначала появляется светло-серый налет и уже только по нему «опытный взгляд» можно сразу же определить, что свеча работает в «нештатном» режиме. И если вовремя не обратить внимание на это изменение цвета внутри наконечника высоковольтного провода – далее высоковольтный провод просто «пробьет». Сопротивление высоковольтного провода – лучше всего его измерять цифровым мультиметром. Значения могут быть разными на каждом конкретном двигателе.

Для примера :

— «Mitsubishi» с двигателем 4G63 – от 5 до 9 Ком. С двигателем 6G73 – от 8 до 16 Ком.

— «Toyota» с двигателем 3S-FE – от 7 до 12 Ком, с двигателем 1G-FE – от 8 до 15 Ком

Сопротивление высоковольтных проводов зависит (естественно) от их длины, но не должно превышать (практически на любом двигателе) величины 20 Ком. Если же прибор показал нам сопротивление свыше 20 Ком – надо искать причину. Что может случиться с высоковольтным проводом ?

Для начала, конечно, его надо разобрать, то есть снять резиновый ( пластмассовый) наконечник и оголить тот самый металический наконечник, непосредственно одеваемый на свечу зажигания.

На приведенном выше рисунке все «детали» наконечника приведены немного с увеличенными расстояниями – что бы было немного понятнее. На самом же деле высоковольтный провод должен очень плотно прилегать к «пятаку» наконечника. Это и есть возможная причина №1 повышенного сопротивления высоковольтного провода. Из-за обыкновенного «старения» контакт внутренней жилы ВВ-провода с «упорным пятаком» окисляется и сопротивление провода в целом возрастает очень сильно, бывает, что и до 150-190 Ком.

Проверить данное утверждение просто : надо коснуться вторым щупом мультиметра не самого наконечника, а именно центральной жилы самого высоковольтного провода. В большинстве случаев мультиметр сразу же показывает нормальное и «правильное» сопротивление.

Если же этого не произошло и сопротивление высоковольтного провода у нас -«бесконечность», то далее надо осторожно проделать следующую процедуру : не знаю, как у кого, но у нас имеется комплект «плюсового» щупа с очень тонкой иголкой на конце. При проведении обыкновенных измерений мы им не пользуемся, а используем именно для таких случаев : начинаем прокалывать высоковольтный провод до центральной жилы через каждые пять-десять миллиметров и смотреть – появилось сопротивление или нет. Бывает такое, что эта самая «центральная жила» просто-напросто по своей длине «выгорает» и при помощи такой вот простой проверки мы и находим место обрыва. Далее все просто – отрезаем «пораженный» участок и восстанавливаем работоспособность нашего высоковльтного провода в целом. Однако, если длина провода у нас «на пределе» ( такое часто встречается на двигателях серии «3S-Fe», «4A-FE» и им подобных) — приходится сожалеть и менять провод целиком. Если же заменить ВВ-провод нечем, то можно временно поступить таким образом : срастить два ВВ-провода. Только надо очень тщательно соединять между собой центральные жилочки ВВ-проводов, все хорошо в завершении изолировать и стараться не бросать такой «новый» провод на металл при его установке.

Крышка распределителя зажигания

Так же внимательно и тщательно рассматриваем ее как снаружи, так и внутри.

Общая «болезнь» — «пробой» крышки распределителя вследствии повышенного напряжения создаваемого неисправной свечой зажигания или высоковольтного провода. Если он есть – мы увидим его в виде тонкой и извилистой полоски темного или сероватого цвета, обычно в «районе» контактов.

Обращаем внимание на так называемый «уголек» внутри крышки : сам он должен легко «ходить» в своем гнезде ( он подпружинен и можно для профилактики его вытащить и немного растянуть пружинку), и не иметь явно выраженных признаков «подгорания» — как на нем, так и около его посадочного места.

И последнее, что можно сделать для проверки крышки распределителя зажигания – на «рабочем», то есть заведенном двигателе проводом, который одним концом хорошо прикручен к «массе» поводить вблизи крышки распределителя на расстоянии не более 0.5мм – 1мм. В случае «пробоя» крышки мы увидим проскакивающую искру в месте этого «пробоя».

Распределитель с датчиками Холла

Посмотрим на рисунок :

 

 

 

На этом рисунке приведен разъем распределителя зажигания двигателя 6G73 «Mitsubishi».

Расположение: контакт №1 – тот, который находится ближе к салону, контакт №4 – ближе к радиатору. Цвета проводов :

1. Сине-красный

2. Сине-желтый

3. Красный (самый «толстый» из остальных)

4. Черный

Перебои в искрообразовании могут быть из-за «недобросовестной» работы данного распределителя. Углублять в эти причины не будем, потому что это отдельная тема, расскажем только, как правильно проверить работоспособность распределителей зажигания подобного типа.

1. При выключенном зажигании проверяем наличие «массы» ( или «минуса») на контакте №4. Обычно это тонкий провод черного цвета.

2. Включаем зажигание. Проверяем наличие +12v на контакте №3. Обращаем внимание, что на этом контакте должно быть напряжение АКБ, не менее и не более.

3. «Садимся» выводом («плюсовым») мультиметра на контакт №2 и при включенном зажигании начинаем медленно проворачивать двигатель, но не стартером, а «вручную» ( или за шкив генератора, или за шкив коленвала). Смотрим на шкалу прибора : при медленном проворачивании двигателя там будут чередоваться «0» и «+5вольт». Следует обратить внимание, что бы после, например, 5 вольт на шкале прибора следовал сразу же «0», а не было бы постепенного снижения напряжения.

4. На контакте №1 повторяем процедуру проверки, описанную в пункте №3.

Самое главное здесь – выяснить, что сигналы с датчиков Холла идут «правильные», то есть всегда за «логическим 0» идет «логическая 1», то есть наши 0 и 5 вольт.

После этого проверим надежность соединений как «плюсового», так и «минусового» проводов.Бывает, что из-за окисления данных контактов в «работе по созданию искрообразования» наступают перерывы.

«Бегунок» распределителя зажигания

Проверка его сводится к определению отсуствия «внутреннего пробоя» :

Для этого соберем «серьезную конструкцию», как показано на рисунке и, прокручивая двигатель стартером будем внимательно наблюдать – «проскакивает» искра между «проводом» и самим «бегунком» или нет. Если «проскакивает» — двигатель, естественно, будет работать неровно (спотыкаться) и иметь перебои на холостом ходу.

Форсунка ( инжектор)

Двигатель может «троить» из-за инжектора в случаях:

1. Неисправности самого инжектора (перегорела обмотка,например, но такое встречается довольно редко — надо «сильно постараться»).

2. Вследствии использования некачественного топлива или неправильного применения различного вида «очистителей топливной системы», особенно «СУПЕР-ОЧИСТИТЕЛЕЙ» инжектор через какое-то время просто-напросто «забивается» посторонними примесями (теми же самыми «ошметками» из топливного бака) и перестает пропускать топливо в цилиндры.

3. Оборваны или замыкают цепи питания или управления на данный инжектор.

На рисунке выше приведены две распространенные схемы соединения форсунок с блоком управления (ECU), которые применяются практически на всех машинах японского производства.

Только надо отметить, что схема с применением токоограничительного резистора использовалась на машинах выпуска до 1990 года ( «Toyota», например). Внешний вид форсунки представлен на следующем рисунке :

Что и как проверяется :

Поступающее «питание» и «управление» на форсунку

Собрав вышеприведенную схемку мы можем довольно легко и быстро проверить как и наличие «питания» на форсунке, так и поступление сигналов «управления» на форсунку.При прокручивании двигателя стартером лампочка должна мигать. Если здесь все нормально, переходим на следующий пункт :

— Медицинским стетоскопом на работающем двигателе «прослушать» каждую форсунку, обратить внимание на различие ( если они есть) звуков между форсунками. Если звуки (щелчки), издаваемые форсунками есть и практически одинаковые на всех, то смотрим следующий пункт :

— Выкрутить свечу зажигания на неработающем цилиндре и две соседних свечи, разложить на столе , внимательно осмотреть и попытаться найти различия между цветом нагара на свечах зажигания в работающих цилиндрах и на свече зажигания в неработающем цилиндре.Если будет заметно, что на свече зажигания в неработающем цилиндре цвет нагара светлее, чем на соседних (работающих) – надо снимать форсунку и проверять, в первую очередь фильтр на ее входе (см. рисунок вверху). Вполне вероятно, что он забит различного рода отложениями.

Есть еще и более длительная, но и более точная проверка работоспособности форсунок. Для этого надо полностью снять топливную рейку (рампу) и развернуть ее на 180 градусов таким образом, что бы распылители форсунок «смотрели» или вверх или в сторону.

Перепутаны высоковольтные провода

Бывает и такое, действительно, когда из-за этого не работает какой-то из цилиндров (или сразу же несколько), и вместо того, что бы сразу же обратить на это внимание и досконально все проверить, мастер ограничивается вопросом : «Провода не трогали?» и получив отрицательный ответ успокаивается на этом.

Довольно часто такая вот «беда» случается на «Mitsubishi» с двигателями 4G63 и 6G73, потому что на катушках зажигания хоть и есть «цифирки», обозначающие номер цилиндра на который «работает» данная катушка зажигания, но не все, во-первых об этом знают, а во-вторых, они иногда просто плохо читаются из-за грязи. Ниже приведены рисунки, на которых обозначены «какая катушка зажигания на какой цилиндр работает» :

На всех остальных машинах номера цилиндров написаны (выдавлены) на распределителе зажигания, надо только хорошенько очистить крышки от грязи и все сразу станет видно. И проблем станет меньше.

«Нарушение фаз газораспределения»

Как мы знаем, для нормальной и «правильной» работы двигателя впускные и выпускные клапана должны открываться и закрываться в определенный момент.

Если же этого не происходит,то ТВС (топливо-воздушная смесь) попадает в цилиндры двигателя в нерассчетном составе (неправильного количества и качества).

Какие причины могут «способствовать» этому :

— Ремень газораспределения неправильно установлен изначально или «перескочил» вследствии попадания моторного масла на поверхность ремня из-за выработки сальника или постепенного «выдавливания» сальника со своего «посадочного места» (повышенное давление картерных газов — характерно для сильно изношенных двигателей), …из-за выработки или «старения»гидравлического натяжителя (характерно для Mitsubishi)

— Шкив коленчатого вала «разболтался» из-за выработки в шпон-пазу,что вызывается неправильной установкой шкива при его непрофессиональной замене в случае переустановки, например, нового ремня газораспределения

— «выработка» распределительного вала ( характерно для двигателя 1G-E выпуска до 1990 года, вследствии чего один из цилиндров перестает работать на ХХ, причиной чему может являться некачественное моторное масло или естественный процесс «старения)

— «выработка» «постели» распределительного вала (часто встречается на «пожилых» моделях двигателей серии 1G-E, причиной чему так же может являться некачественное моторное масло или естественный процесс «старения»)

— износ гидрокомпенсаторов ( в случае поверхностного износа «тела» гидрокомпенсатора — это «лечится» только заменой, но если при визуальном осмотре износа не обнаружено, то имеет смысл полностью разобрать гидрокомпенсатор, все тщательно промыть, прочистить…).

— износ регулировочной шайбы «гидростаканов» ( если износ относительно небольшой, то «лечить» можно при помощи тщательной и внимательной «перемены мест слагаемых» — перестановкой регулировочных шайб с одного места на другое)

— прогорание прокладки головки блока цилиндров вследствии нарушения теплового режима работы двигателя ( спортивная и «безбашенная» гонка по каким-то причинам, отсутствие или пониженный уровень охлаждающей жидкости, неисправность редукционного клапана как в радиаторе, так и в расширительном бачке, неисправность водяной помпы, термостата…).

Причин еще можно назвать множество, выбраны только самые «яркие».

Рассогласование опорного сигнала датчика коленвала

Встречается на двигателе Mitsubishi серии 6G-73 и ему подобных. Смотрим на рисунок :

Опять же, данная неприятность случается только после проведения некачественного ремонта, невнимательности специалистов, проводивших ремонт и незнания ими назначения всего того, что они «откручивают или прикручивают».

На коленвалу находится так называемая «трехлопастная пластина» , которую можно еще назвать «задатчик сигналов» ( signal master ). Эта трехлопастная пластина при вращении двигателя формирует для компютера опорный сигнал вращения, который служит для рассчета и определения времени «подачи искры» и открывания — закрывания форсунок. При проведении работ по, например, замене ремня газораспределения, снимается так же и шкив коленчатого вала. Если не обратить внимание, в каком положении и при каких метках этот шкив прижимает «задатчик сигналов» и установить обратно шкив произвольно или неплотно, то «трехлопастная пластина» будет смещена, что повлечет за собой рассогласование сигналов

Источник: http://amastercar.ru/articles/engine_car_6.shtml

блок, цилиндр, поршень, поршневые кольца и шатун

Для будущего автомобильного механика, диагноста устройство двигателя автомобиля является одной из ключевых тем. Именно двигатель обеспечивает транспортное средство энергией, которая нужна для его движения. 

Чаще всего механизм запуска устройства двигателя автомобиля возможен за счёт применения бензина или дизеля (дизельного топлива). Сгораемое внутри мотора топливо продуцирует тепло, что приводит к увеличению температуры газов внутри цилиндра двигателя и росту давления газов. Подвижные части двигателя под их влиянием вступают в работу, и тепловая энергия преображается в механическую.

Базовые части двигателя


Чтобы хорошо понимать устройство двигателя автомобиля, важно разбираться, что из себя представляет блок, цилиндр, поршень, поршневые кольца и шатун.

Блок 

Металлическую основу мотора, остов называют блоком. Это корпусная деталь. Именно к блоку крепятся механизмы и отдельные части мотора и его систем.

Иногда можно встретиться с термином «блок», иногда – с терминами «блок двигателя», «блок цилиндров». Всё это одно и тоже.
Блок двигателя берёт на себя серьёзные нагрузки. Поэтому контроль качества при его изготовлении должен быть предельно высок. Огромное внимание уделяется как материалу, так и уровню точности изготовления детали. Для производства используются высокоточные станки.

Раньше блоки изготавливали из перлитного чугуна с легирующими добавками. Популярность чугуна при изготовлении блоков легко объяснима тем, что материал износостоек, стабилен по своим свойствам, малочувствителен к перегреву, адаптивен к ремонту. Сейчас некоторые производители также выпускают блоки из алюминиевого, магниевого сплава. В этом случае есть выигрыш, связанный с весом мотора. Это очень актуально для блоков моторов спорткаров.

Цилиндр 

Рядом с понятием «блок» стоит понятие «цилиндр». Под цилиндром подразумевается цилиндрическое отверстие, высверленное в блоке.  То есть это рабочая камера объёмного вытеснения.

Уплотнение верхней стороны цилиндра обеспечивает головка. Именно в ней находятся: 

  • Клапаны. Обеспечивают (в процессе открытия-закрытия) поступление в цилиндр воздуха, топливовоздушной смеси. Также среди функций клапанов обеспечивают очистку камеры сгорания цилиндра от отработавших (выхлопных) газов. Закрытие клапанов и удержание их в таком состоянии обеспечивают клапанные пружины.
  • Распредвалы (элементы привода клапанов). От них зависит то, как открываются клапаны, сколько времени они находятся в открытом состоянии
  • Механизмы привода клапанов. Функция идентична. И, как видно, из названия – это привод клапанов. Но сами механизмы могут быть разными. Всё зависит от мотора: например, бензиновый, дизельный.

Цилиндр играет роль направляющего для поршня.


Поршень, поршневые кольца и шатун


Цилиндрическая деталь или совокупность деталей, которая преобразует энергию горения топливо в механическую энергию, называется поршнем.

В проточках на боковой поверхности поршня вставлены поршневые кольца. Благодаря им между поршнем и стенкой цилиндра создаётся уплотнение. Задача поршневых колец заключается в создании барьера для перетекания из камеры сгорания в картер коленчатого вала газов.

Среди задач поршня:

  • Оказание силового воздействия на шатун.
  • Отвод тепла от камеры сгорания.
  • Герметизация камеры сгорания.

Подвижное соединение между поршнем и коленчатым валом обеспечивает шатун. Именно шатун передаёт силу движущегося поршня к вращающемуся коленчатому валу.


Коленчатый вал 


Коленчатый вал – это важная составляющая кривошипно-шатунного механизма. Кривошип коленчатого вала создает возвратно-поступательное движение поршня через шатун (подвижный элемент), то есть возвратно-поступательное движение поршня превращается в крутящий момент. Физически коленвал расположен в нижней части двигателя. Снизу коленвал прикрыт картером – самой внушительной неподвижной и полой частью двигателя, закреплённой на блоке сбоку. Визуально картер напоминает поддон.

Конструкция коленчатого вала состоит из несколько шеек (коренных и шатунных). Они соединены щеками, соединенных между собой щеками. Место перехода от шейки к щеке всегда является самым нагруженным у коленвала.

На коленчатый вал приходятся переменные нагрузки от сил давления газов.
Для того, чтобы не возникало осевых перемещений коленчатого вала, используется упорный подшипник скольжения. Он устанавливается на одной из шеек (средней или крайней).

Несколько важных терминов, касающихся устройства двигателя автомобиля


Камера сгорания –замкнутое пространство, где осуществляется воспламенение и горение топливовоздушной смеси. Сверху камера сгорания ограничена нижней поверхностью головки цилиндра, сбоку – стенками цилиндра, снизу –днищем поршня.
Толкатели клапанов, подъёмники –промежуточное звено, необходимое для передачи движения от распределительного вала к остальным частям механизма привода клапанов.
Коромысла (рокеры). Детали двигателя, функции которых заключаются в передаче движения от распределительного вала к клапанам.

Маховик. Деталь, ответственная за обеспечение равномерного вращения коленчатого вала. На цилиндрической устанавливается зубчатый венец. Он помогает провести пуск электростартера.

На схеме представлено расположение основных частей двигателя при рассмотрении его со стороны его задней части. На фланце коленчатого вала видны отверстия под болты, с помощью которых к фланцу крепится маховик с зубчатым венцом, или платина привода гидравлического трансформатора автоматической трансмиссии. Источник: Ford.

Автомобильные двигатели

Большинство двигателей автомобилей многоцилиндровые. Это значит при работе используется два или несколько цилиндров и два или несколько поршней.  

Автопром выпускает машины с 2-; 3-; 4-; 5-; 6; 8-; 10- и 12-цилиндровыми двигателями. 
Чем больше цилиндров у мотора, тем больше возможностей для увеличения мощности двигателя. Если нужен двигатель, предназначенный для езды по бездорожью либо машина, развивающая сверхвысокие скорости, актуально именно устройство двигателя автомобиля, ориентированное на большое количество цилиндров. Устройство двигателя с большим количеством цилиндров обеспечивает отличную равномерность вращения коленчатого вала, ведь угол поворота коленчатого вала при 10, 12 цилиндрах – очень небольшой.

Но у 2-х цилиндровых двигателей есть другое преимущество: самые лучшие показатели топливной эффективности.

Циклы двигателя

Устройство двигателя автомобиля всегда рассматривается в купе с его рабочим циклом.
Физически цикл – это периодически повторяющиеся процессы в каждом его цилиндре. Достаточно подробно разница между работой четырёхтактного и двухтактного двигателя отражена в нашей статье о двигателе внутреннего сгорания.

Сегодня мы остановимся на работе четырёхтактных моторов. Именно по четырёхтактному циклу работает большинство современных автодвигателей. Хотя сам принцип двигателя был изобретён Николаусом Отто в 19-м веке.

Поршень четырёхтактного двигателя совершает нисходящее и восходящее движение. Эта работа укладывается в один оборот коленчатого вала. При втором обороте коленчатого вала вновь повторяют эти движения.

1. Такт впуска (всасывания). Поступление в цилиндр двигателя свежего заряда: воздуха- от дизельного мотора бензинового двигателя с прямым вспрыском или топливовоздушной смеси, от газово-топливного двигателя, мотора с распределенным или центральным впрыском топлива, или газо-топливные двигатели). В результате разрежения, созданного поршнем, перепад давления между давлением в цилиндре и давление окружающего воздуха, заряд втягивается непосредственно в цилиндр.

2. Такт сжатия. Шатун толкает поршень. Поршень сжимает газообразный свежий заряд в цилиндре. Устройство дизельного двигателя настроено на то, чтобы температура сжатых газов должна достигла температуры воспламенения топлива. Если же речь идёт об устройстве газо-топливного, бензинового двигателя температура в конце такта сжатия достигать температуры воспламенения топлива не должна. Воспламенение производится от электроискрового разряда свечи зажигания.

3. Такт рабочего хода. Температура газов в цилиндре снижается, энергия горящих газов преобразуется в механическую энергию.

4. Такт выпуска отработавших газов. Поршень движется снизувверх. Отработавшие газы выходят из цилиндра через выпускной клапан.

Устройство двигателя автомобиля устроено так, что четыре такта повторяются циклично. Посредством маховика механическая энергия превращается во вращательное движение коленвала.

Модульное обучение автоосновам доступно при изучении электронных программ по профессиям. Удобный дистанционный формат обучения.

Справочная и техническая информация о деталях двигателей

Назначение гильз, требования к гильзам цилиндров.

Стенки цилиндра двигателя образуют совместно с поршнем, кольцами и поверхностью камеры сгорания пространство переменного объема, в котором совершаются все рабочие процессы двигателя внутреннего сгорания. Стенка цилиндра должна быть тщательно обработана и образовывает с поршневыми кольцами пару скольжения. Цилиндры и гильзы цилиндров нагружаются силами давления газов, боковой нагрузкой от поршня и температурной нагрузкой. Переменная по величине и направлению боковая нагрузка вызывает изгиб и вибрацию цилиндра и ослабляет его крепление к картеру. Стенки цилиндра под действием возникающих при движении поршня сил трения подвергаются, кроме того, износу. Гильзы цилиндров должны быть прочными, жесткими, износостойкими, обеспечивать, возможно, меньшие потери на трение поршня о поверхность цилиндра. Внешняя и внутренняя поверхность гильз должна обладать антикоррозионной устойчивостью. Конструкция гильз должна также обеспечивать надежность уплотнений в местах стыков гильз с головкой и блоком цилиндров. Гильзы цилиндров могут, являются как самостоятельной конструкционной единицей двигателя («мокрые» и гильзы двигателей  воздушного охлаждения), так и являться элементом ремонтной технологии, предусмотренной заводом изготовителем (например: «сухие» гильзы для двигателей, где цилиндры выполнены заодно с блок-картером). В автомобильных и тракторных двигателях наибольшее распространение получили чугунные гильзы.

По конструкции гильзы цилиндра современных автомобильных и тракторных двигателей можно разделить на три основные группы:

  1. «Мокрые» гильзы цилиндров.
  2. «Сухие» гильзы цилиндров.
  3. Гильзы для двигателей с воздушным охлаждением. 

 

«Мокрые» гильзы. Конструкцией двигателя с водяным охлаждением предусмотрена полость в картере двигателя, так называемая «рубашка охлаждения». Гильза, соприкасающаяся свой поверхностью с охлаждающей жидкостью находящейся в «рубашке охлаждения» называется «Мокрой». «Мокрые» гильзы цилиндров обеспечивают лучший отвод тепла, но картер двигателя с такими гильзами обладает меньшей жесткостью. Большое распространение эти гильзы получили на грузовых и тракторных двигателях в силу своей высокой ремонтопригодности. Как правило, выпускаемые производителями «мокрые» гильзы не требуют перед установкой, какой либо доработки. Изношенные «мокрые» гильзы в большинстве случаев не ремонтируют, а заменяют новыми без снятия двигателя с шасси. Для предотвращения прорыва газов в охлаждающую жидкость и просачивания этой жидкости в цилиндр и картер двигателя «мокрые» гильзы комплектуются уплотнительными прокладками. Внутренняя поверхность гильз тщательно обрабатывается (хонингуется)для того что бы обеспечить наличие требуемой масляной пленки для смазки поршневых колец. Двигатели с «мокрыми» гильзами устанавливаются почти на все современные коммерческие автомобили.

«Сухие» гильзы. Гильзы, не имеющие соприкосновения с охлаждающей жидкостью, называются «сухими» гильзами. Конструкцией некоторых двигателей предусмотрена заливка при изготовлении в блок картер гильз изготовленных из износостойкого материала, создавая тем самым оптимальные условия для работы цилиндропоршневой группы. Например, некоторые модели двигателей HONDA, Land Rover, Volkswagen, AUDI, VOLVO и многих других производителей имеют алюминиевый блок цилиндров (для уменьшения веса силового агрегата) и залитые в него «сухие» гильзы (для увеличения ресурса и повышения ремонтопригодности). Но самое широкое распространение «сухие» гильзы получили в сфере капитального ремонта двигателя. Не «загильзованный» блок цилиндров современного двигателя имеет несколько, предусмотренных технологией, расточек с последующей установкой в него ремонтных поршней. Установка «сухих» гильз позволяет не менять блок двигателя даже после износа цилиндра расточенного в последний ремонтный размер. Производители гильз выпускают так называемые, заготовки гильз, то есть гильзы имеющие запас по длине и внешнему диаметру, которые после токарной обработки запрессовываются с натягом в блок цилиндров. Такие гильзы как правило не имеют обработки внутренней поверхности. Они растачиваются и хонингуются только после установки гильзы в блок цилиндров. Поверхность блока цилиндров под установку тоже повергается тщательной обработке: расточке и в некоторых случаях хонингованию. Гильза с упором устанавливается в блок под давлением, с натягом (в среднем 0,03-0,04 мм), для гильз, не имеющих упора натяг больше. Наружная поверхность «сухих» ремонтных гильз, как правило, подвергается шлифовке, для увеличения плотности прилегания к блоку цилиндров. Гильзы могут фиксироваться при установке верхним буртом, нижним буртом или вообще могут устанавливаться без упора. Некоторые японские производители, например ISUZU, изготавливают двигатели с тонкостенными стальными гильзами, имеющими покрытие из пористого хрома железом. Такие гильзы не подвергаются механической обработке и устанавливаются в блок цилиндров без натяга, с небольшим усилием и удерживаются в блоке за счет прижатия широкого бурта гильзы головкой блока. Блок картер с сухими гильзами имеет повышенную жесткость по сравнению с блоком, с установленными «мокрыми» гильзами.

Гильзы цилиндров для двигателей с воздушным охлаждением. В двигателях воздушного охлаждения конструкция оребрения и необходимость создания охлаждающих воздушных потоков не позволяют применять блок-картерный тип отливки. В этих двигателях применяют отдельно отлитые цилиндры с воздушными ребрами, расположенными чаще всего перпендикулярно оси цилиндра. Эти гильзы цилиндра крепятся к верхней части картера короткими шпильками через опорный фланец (несущие цилиндры) или при помощи анкерных (несущих) шпилек. Гильзы цилиндров двигателей воздушного охлаждения изготавливают как из одного (монометаллические), так и из двух (биметаллические) металлов. Монометаллические цилиндры делают из чугуна, реже из стали или легких сплавов. Из биметаллических цилиндров получили распространение чугунные или стальные цилиндры с залитыми (или навитыми) алюминиевыми ребрами. Широкое распространение двигатели с воздушным охлаждением получили среди производителей тяжелой строительной техники. Ярким примером является всемирно известный производитель индустриальных двигателей немецкая фирма DEUTZ.

Знакомьтесь: сильфонно-поршневой двигатель — Энергетика и промышленность России — № 05 (121) март 2009 года — EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 05 (121) март 2009 года

Это направление породило огромное количество конструктивных разработок и выявило множество связанных с ними физических процессов, общей задачей которых было преобразование тепловой энергии в механическую работу.

Неизменным за прошедший период для всего многообразия тепловых машин было понятие «компенсации за преобразование тепла в работу». Это понятие сегодня воспринимается как абсолютное знание, каждодневно доказываемое человеческой деятельностью в данной сфере.

Сразу отметим, что факты известной практики являются вовсе не базой абсолютного знания, а лишь базой знаний данной практики. Ведь и самолеты не всегда летали!

Из истории поршневых двигателей

Первым массовым тепловым двигателем была паровая машина Уатта – поршневой двигатель, в котором потенциальная энергия сжатого водяного пара преобразуется в механическую работу.

Рабочий процесс паровой машины здесь обусловлен периодическими изменениями упругости пара в полостях ее цилиндра, объем которых изменяется в процессе возвратно-поступательного движения поршня, преобразуемого с помощью кривошипного механизма во вращательное движение вала.

С конца XVIII до конца XIX века паровая машина была единственным распространенным тепловым двигателем в промышленности и на транспорте. Паровая машина имеет хорошие тяговые характеристики, допускает большие перегрузки и реверсирование, надежна, проста. Коэффициент полезного действия от нескольких процентов на начальном этапе достигает к закату эпохи паровых машин 20‑25 процентов.

К недостаткам паровой машины относятся низкая экономичность, вызванная большой неизбежной передачей тепла в окружающую среду, и ограничение единичной мощности.

О двигателе внутреннего сгорания

Следующим этапом развития теплотехники стал двигатель внутреннего сгорания (ДВС) – тепловой двигатель, в котором топливо в смеси с воздухом сжигается внутри рабочих цилиндров и выделяющееся при этом тепло частично преобразуется в механическую работу. ДВС подразделяются на карбюраторные, работающие по циклу с подводом тепла при постоянном объеме, и дизельные, работающие по циклу с подводом тепла при постоянном давлении.

Общим недостатком всех ДВС является отсутствие регенерации тепла выхлопных газов в цикл, что снижает их термический КПД до 40‑50 процентов и ограничивает единичную мощность.

ПГУ и ГТУ

Вслед за ДВС широкое развитие получили паротурбинные и газотурбинные установки.
Паротурбинная (паросиловая) установка состоит из парового котла с пароперегревателем, паровой турбины с системой регенерации, конденсатора и питательного насоса. Работает она по циклу Ренкина.

К недостаткам паротурбинных установок относятся потеря большого количества тепла из‑за ограничений регенерации, вызванных свойствами влажного пара, а также сложность и дороговизна установок.

Газотурбинная установка (ГТУ) состоит из компрессора (сжимающего воздух, направляющийся в камеру сгорания), собственно камеры сгорания, в которой при постоянном давлении (цикл Брайтона) или при постоянном объеме (цикл Гемфри) происходит горение топлива. ГТУ, работающие по циклу Брайтона, оснащаются регенераторами, обеспечивающими возвращение части тепла выхлопных газов в цикл.

К недостаткам ГТУ, работающим по циклу Брайтона, относится то, что теплообмен в регенераторе ограничен. После сжатия в компрессоре температура воздуха резко повышается, что приводит к снижению возможности отбора тепла уходящих газов, то есть снижает возврат тепла в цикл. Это снижает КПД и экономичность установки.

К недостаткам ГТУ, работающим по циклу Гемфри, относится то, что, несмотря на принципиальную возможность работать без компрессора (по циклу Ленуара) и иметь более благоприятные условия для регенерации в этих установках, на практике регенераторы отсутствуют вовсе. По этой причине у них КПД ниже, чем у ГТУ, работающих по циклу Брайтона.

В настоящее время наиболее перспективными признаны парогазовые установки (ПГУ). ПГУ состоит из ГТУ, работающей по циклу Брайтона, и паротурбинной установки, в которой вместо парового котла используется котел-утилизатор, генерирующий пар за счет тепла выхлопных газов ГТУ. ПГУ имеют самый высокий КПД в современной энергетике, превышающий 50 процентов.

К недостаткам ПГУ относятся значительные потери тепла, связанные с передачей его в окружающую среду, все та же компенсация, а также сложность и дороговизна установок.

Известны также реактивные (ракетные) тепловые двигатели. Главным недостатком этих двигателей является низкий КПД.

Говоря о КПД, мы везде имели в виду термический КПД.

Таким образом, исследование современного уровня техники показывает, что общим технологическим недостатком тепловых машин является необходимость передачи в окружающую среду значительной части тепла, подведенного в цикл тепловой машины. Главным образом, поэтому они имеют низкие КПД и экономичность.

Обратим особое внимание на тот факт, что все перечисленные и иные тепловые машины для преобразования тепла в работу используют процессы расширения рабочего тела. Именно эти процессы позволяют преобразовывать потенциальную энергию тепловой системы в кооперативную кинетическую энергию потоков рабочего тела и далее в механическую энергию движущих деталей тепловых машин (поршней и роторов).

Природа компенсации

Отметим еще один, пусть тривиальный факт, что тепловые машины работают в воздушной атмосфере, находящейся под постоянным сжатием сил гравитации. Именно силы гравитации создают давление окружающей среды.

Компенсация за преобразование тепла в работу связана с необходимостью производить работу против сил гравитации или (то же самое) – против давления окружающей среды, вызванного силами гравитации.

Совокупность двух выше отмеченных фактов и приводит к ущербности всех современных тепловых машин, к необходимости передачи окружающей среде части подведенного в цикл тепла.

Природа компенсации за преобразование тепла в работу заключается в том, что 1 килограмм рабочего тела на выходе из тепловой машины под воздействием процессов расширения внутри машины имеет больший объем, чем объем на входе в тепловую машину.

А это означает, что, прогоняя через тепловую машину 1 килограмм рабочего тела, мы расширяем атмосферу на величину – для чего необходимо произвести работу против сил гравитации, работу проталкивания.

На это затрачивается часть механической энергии, полученной в машине. Однако работа по проталкиванию – это только одна часть затрат энергии на компенсацию. Вторая часть затрат связана с тем, что на выхлопе из тепловой машины в атмосферу 1 килограмм рабочего тела должен иметь то же атмосферное давление, что и на входе в машину, но при большем объеме.

А для этого, в соответствии с уравнением газового состояния, он должен иметь и большую температуру, то есть мы вынуждены передать в тепловой машине килограмму рабочего тела дополнительную внутреннюю энергию. Это вторая составляющая компенсации за преобразование тепла в работу.

Из этих двух составляющих и складывается природа компенсации. Обратим внимание на взаимозависимость двух составляющих компенсации. Чем больше объем рабочего тела на выхлопе из тепловой машины, по сравнению с объемом на входе, тем выше не только работа по расширению атмосферы, но и необходимая прибавка внутренней энергии, т. е. нагрев рабочего тела на выхлопе в сравнении с входом.

И наоборот, если за счет регенерации снижать температуру рабочего тела на выхлопе, то в соответствии с уравнением газового состояния будет снижаться и объем рабочего тела на выхлопе, а значит, и работа проталкивания. Если провести глубокую регенерацию и снизить температуру рабочего тела на выхлопе до температуры на входе и тем самым одновременно сравнять объем килограмма рабочего тела на выхлопе до объема на входе в тепловую машину, то компенсация за преобразование тепла в работу будет равна нулю.

О регенерации

Регенерация позволяет самым существенным образом сократить передачу тепла в окружающую среду (в холодильник), сократить компенсацию за преобразование тепла в работу. Это снижает относительную долю переданного в холодильник тепла и, следовательно, повышает термический КПД. Однако процесс предварительного сжатия рабочего тела и теплоперепад в регенераторе накладывают ограничения на глубину регенерации.

Тем не менее есть принципиально иной способ преобразования тепла в работу, без использования процесса расширения рабочего тела. При этом способе в качестве рабочего тела используется несжимаемая жидкость. Удельный объем рабочего тела в циклическом процессе преобразования тепла в работу остается постоянным. По этой причине не происходит расширения атмосферы и соответственно затрат энергии, свойственных тепловым машинам, использующим процессы расширения. Необходимость в компенсации за преобразование тепла в работу отпадает. Это возможно в сильфоне.

Сильфонно-поршневой двигатель

Автором были запатентованы две установки: «Л-2» и «Л-3».

Первая позволяет сократить компенсацию за преобразование тепла в работу, а вторая исключает ее полностью.

Общим технологическим недостатком этих установок был процесс теплопередачи в регенераторах в условиях газовой конвекции. В этих условиях теплопередача имеет очень низкое значение, что приводит к большим габаритам регенератора.

Автором предлагается тепловой двигатель, содержащий рабочие цилиндры, внутренняя полость которых объединена с помощью перепускных трубопроводов, имеющих регулирующую арматуру, и коллектора.

Внутренняя полость рабочих цилиндров заполнена в качестве рабочего тела кипящей водой (влажным паром со степенью сухости порядка 0,05‑0,1).

Внутри рабочих цилиндров расположены сильфонные поршни, внутренняя полость которых объединена с помощью перепускных трубопроводов и коллектора.

Внутренняя полость сильфонных поршней заполнена трансформаторным или турбинным маслом.

Сильфонные поршни соединены ползуном с кривошипно-шатунным механизмом, преобразующим тяговое усилие сильфонных поршней во вращательное движение коленчатого вала.

Рабочие цилиндры расположены в объеме сосуда, заполненного кипящим трансформаторным или турбинным маслом.

Кипение масла в сосуде обеспечивается подводом тепла от внешнего источника. Каждый рабочий цилиндр имеет съемный теплоизоляционный кожух , который в нужный момент или охватывает цилиндр, прекращая процесс теплопередачи между кипящим маслом и цилиндром, или освобождает поверхность рабочего цилиндра (при этом обеспечивается передача тепла от кипящего масла к рабочему телу цилиндра).

Сильфонный поршень, выполненный в форме сильфона, одной стороной неподвижно закреплен с трубопроводом, соединяющим внутреннюю полость сильфонного поршня с коллектором и с корпусом рабочего цилиндра, другая сторона, прикрепленная к ползуну, подвижна и перемещается (сжимается) во внутренней полости рабочего цилиндра, под воздействием повышенного давления рабочего тела цилиндра.

В предлагаемой конструкции сильфонный поршень выполнен из нетеплопроводящего материала. Его сжатие и растяжение происходят только под воздействием перепада давлений по сторонам.

Цилиндр в машине


Что такое цилиндр

28 ноября 2011

Автор КакПросто!

Цилиндр – одна из основных частей двигателя внутреннего сгорания, состоящая из гильзы и рубашки. Цилиндров может быть несколько, их суммарный объем определяет общий объем двигателя.

Цилиндр автомобильного двигателя представляет собой трубку с толстыми стенками. Это одна из основных частей поршневого двигателя внутреннего сгорания, который является самым распространенным типом двигателя. Поршневой двигатель используется в разных видах транспорта, сельскохозяйственной и строительной технике, компрессорах, насосах и т.д.В разных поршневых двигателях может быть от 1 до 24 цилиндров. При этом общий объем двигателя равен суммарному объему всех цилиндров. Цилиндр состоит из двух частей: внутренней (гильзы) и внешней (рубашки). Гильза называется рабочей поверхностью цилиндра и отливается из высокопрочного чугуна или стали. Гильзу называют зеркалом цилиндра, она имеет очень большую чистоту.Рубашка цилиндра – это его внешняя часть, которая обычно изготавливается из единого материала со станиной двигателя. Когда цилиндров больше одного, они располагаются в двигателе единым блоком, имея общее зарубашечное пространство. В этом случае рубашки всех цилиндров представляют собой целую отливку и называются блоком цилиндров.Во время работы двигателя в цилиндр поступают продукты сгорания топлива в газообразном состоянии. Эти газы расширяются и их возрастающая тепловая энергия двигает поршень, который вставлен в цилиндр. Движение поршня в свою очередь заставляет вращаться коленчатый вал, количество колен которого обычно совпадает с числом цилиндров. Полный рабочий цикл двигателя представляет собой последовательность тактов, т.е. этапов полного движения поршня из одной крайней точки в другую.Во время работы двигатель сильно нагревается, поэтому предусматривается система охлаждения, которое происходит в рубашечном отделе цилиндров. Различают два типа системы охлаждения поршневых двигателей:1. Воздушная. Избыток тепловой энергии выбрасывается в быстрый поток воздуха через рубашки цилиндров, которые имеет ребристую поверхность.2. Жидкостная. Для охлаждения используется специальная жидкость, которая проходит через рубашку цилиндра, а затем уходит в радиатор охлаждения, в котором снова охлаждается системой вентиляции. Охлаждающей жидкостью может быть масло, вода или антифриз.Основные характеристики цилиндров поршневого двигателя:- рабочий объем – это объем, который высвобождается поршнем при движении от крайней верхней точки до крайней нижней;- полный объем – это объем пространства, находящегося над поршнем, когда он достигает крайнего нижнего положения. Полный объем складывается из рабочего объема и объема камеры сгорания.Литраж многоцилиндрового двигателя можно вычислить через произведение рабочего объема на количество цилиндров.

Видео по теме

Цилиндры двигателя автомобиля. Часть 1

Ходос Авто

 Автор: p0zitiv · Published 21.09.2017

Прошлое видео про катализатор подняло волну обсуждений и разделило наших зрителей на два лагеря. Именно для тех кто не верит словам а привык доверять лишь своим глазам этот ролик. Как керамическая пыль от каталитического нейтрализатора попадает в цилиндры ДВС. Вы увидите простой, но очень познавательный эксперимент.

Теория ДВС

 Автор: p0zitiv · Published 11.09.2017

В процессе работы в блоке цилиндров появляются следующие дефекты: износ, задиры и риски на зеркале цилиндров; трещины цилиндров, водяной рубашки и головки цилиндров; износ, трещины и раковины клапанных седел; поломка шпилек и болтов крепления головки цилиндров; накипь в водяной рубашке; нагар в головке цилиндров. Под действием коррозии, повышенной температуры, трения поршней и поршневых колец стенки цилиндров приобретают овальную форму (эллипсность) в плоскости качания шатуна и конусность по длине цилиндра. Такой износ происходит по следующим причинам: При сгорании топлива в цилиндре газы прорываются в канавки поршневых колец и с силой отжимают их к стенкам цилиндра; при этом сила давления колец по…

Технологические процессы ремонта цилиндров двигателя автомобиля «Москвич» практически не отличаются от аналогичных процессов ремонта цилиндров (не имеющих вставных гильз) других автомобильных двигателей. При этом нужно иметь в виду следующие особенности: Максимально допустимое увеличение диаметра цилиндров при ремонте, ограничиваемое опасным уменьшением толщины стенки вставной гильзы, составляет 1,5 мм. Практически такое увеличение диаметра цилиндров обеспечивает при нормальных условиях эксплуатации возможность трехкратной их расшлифовки. При ремонте блока недопустимо удалять из цилиндров заводскую короткую гильзу и заменять ее гильзой на всю длину зеркала, отлитой из обычного серого чугуна. Следует отметить, что обрабатываемость вставных коротких гильз цилиндров такая же, как и основного материала блока. Поэтому…

При разборке двигателя для ремонта необходимо перед извлечением из цилиндров поршней в сборе с шатунами проверить, нет ли уступов (буртиков) в верхней части зеркал цилиндров на участке, свободном от трения верхнего компрессионного кольца. Эти уступы нужно аккуратно удалить специальным режущим инструментом. При этом не следует снимать металл с зеркала цилиндра ниже уступа, в зоне работы верхнего компрессионного кольца. Только после срезания уступа и после соответствующей очистки цилиндров от металлической стружки можно приступить к извлечению из цилиндров поршней с шатунами. Для определения степени износа цилиндры обмеряют пассиметром в верхней и нижней частях зеркала. Благодаря применению коротких сухих гильз из аустенитного чугуна…

Двигатель автомобиля

 Автор: p0zitiv · Published 04.08.2014

Чем больше внутренний диаметр цилиндра, тем больше площадь поверхности, на которую давят рабочие газы. Давление измеряется в фунтах на квадратных дюйм (psi — pound per square inch). Чем больше площадь, тем больше сила, действующая на поршень, заставляя его вращать коленчатый вал. Рис. Линейные размеры, по которым определяется рабочий объем цилиндра

Дефекты блоков цилиндров и их устранение Блок цилиндров является базовой деталью, которая служит для заданного расположения всех механизмов и деталей двигателя. У большинства дизелей блоки изготовлены из серого или специального легированного чугуна. Используют для изготовления этих деталей алюминиевый сплав AЛ-4 (двигатель 3M3-53). Наиболее часто встречающимися дефектами блоков цилиндров являются: трещины и пробоины в стенках рубашки охлаждения износ гнезд под вкладыши коренных подшипников, нарушение соосности гнезд износ отверстий во втулках и отверстий под втулки распределительного вала или нарушение их соосности износ посадочных мест под гильзы, резьбовых отверстий и отверстий под толкатели коробление поверхностей трещины на перемычках между посадочными местами под гильзы…

Блок цилиндров изготавливается с помощью литья с последующей механической обработкой. Нижняя часть блока цилиндров обычно обрабатывается для установки в блок коренных подшипников коленчатого вала и для присоединения поддона картера. Большое значение имеет расстояние между соседними цилиндрами. Увеличение расстояния дает возможность повысить жесткость блока и обеспечить возможность увеличения в дальнейшем рабочего объема двигателя путем увеличения диаметра цилиндров (наиболее простой способ получения модификаций двигателей различной мощности). С другой стороны, это приводит к увеличению га­баритных размеров двигателя и его массы. В последнее время некоторые производители автомобильных двигателей изготавливают блоки цилиндров, в которых соседние цилиндры соприкасаются стенками (так называемые сиамские блоки с «сухими» гильзами). Такой способ дает возможность получить довольно…

Цилиндры двигателя

Категория:

   Тракторы-2

Цилиндры двигателя

Корпус (остов) двигателя состоит из неподвижных частей, к которь.м изнутри и снаружи прикреплены детали его механизмов и агрегаты. Часть, объединяющая все цилиндры, называется блоком цилиндров, а замкнутая полость, в которой вращается коленчатый вал и находится масло для смазывания механизмов, — картером. У двигателей жидкостного охлаждения эти две части изготовлены в виде общей отливки, называемой блок-картером. Сверху он закрыт головкой цилиндров, снизу — поддоном картера, спереди — корпусом (картером) распределительных шестерен, а сзади — картером маховика.

Подвеска двигателя. Корпус двигателей разных моделей опирается на раму машины через эластичные резинометаллические амортизаторы. Они снижают вредное влияние вибрации двигателя на водителя и на машину, а также предохраняют корпус двигателя от перегрузок, которые могут возникнуть в случае перекоса рамы.

Корпус двигателя небольшой массы (например, Д-21А самоходного шасси Т-16М) сзади жестко присоединен к корпусу трансмиссии, а спереди опоры не имеет. Такое крепление называется консольным.

Блок-картер (блок) отлит из серого чугуна, а у двигателя 3M3-53 (автомобиль ГАЗ-53) — из алюминиевого сплава. В нем выполнены внутренние перегородки, схематически показанные на рисунке. Через отверстия Б верхней стенки и Г перегородки в блок установлены цилиндры двигателя. Перегородки с выемками В делят верхнюю часть блока на полости, предназначенные для охлаждающей жидкости (воды) и называемые водяной рубашкой. Перегородка I отделяет эти полости от камеры штанг распределительного механизма. Перегородки придают блоку большую жесткость. Выемки Д этих перегородок, а также передней и задней стенок закрыты снизу крышками и образуют постели, в которых расположены коренные подшипники коленчатого вала. Параллельно ему в отверстиях Е блока размещается вал газораспределительного механизма, а в отверстиях А — его толкатели. Такой блок-картер имеют рядные двигатели. Форма блока двухрядных двигателей— более сложная, V-образная.

В блоках двигателей отлиты каналы для поступления охлаждающей жидкости к водяной рубашке, просверлены отверстия и каналы для подвода масла к трущимся поверхностям деталей. Чтобы крепить наружные детали, в блоке имеются обработанные приливы и площадки с резьбовыми отверстиями.

В двигателях воздушного охлаждения (Д-144 и Д-21А) нет блока цилиндров. Каждый цилиндр в отдельности прикреплен к чугунному картеру, в котором размещены коленчатый и распределительный валы.

Цилиндр. В нем перемещается поршень и совершаются процессы рабочего цикла двигателя. (а) и картер с цилиндром дизеля воздушного охлаждения Д-144 (б): 1 — крышки коренных подшипников; 2— блок-картер; 3 — гильзы цилиндров; 4 — цилиндр с ребрами; 5 — картер дизеля; 6 — уплотнительное кольцо

У всех изучаемых двигателей жидкостного охлаждения каждый цилиндр в отдельности отлит из высокопрочного чугуна и называется цилиндровой гильзой. Ее устанавливают в блок сверху. Бурт Б входит в выточку блока (выступая над ним на сотые доли мм) и через прокладку плотно прижимается к нему головкой цилиндров. Кольцевой выступ А предохраняет эту прокладку от обгорания.

Водяная рубашка блока образуется между его стенками и наружной поверхностью гильз, которые в таком случае называются мокрыми. У автомобильных двигателей 3M3-53 и ЗИЛ-130 в верхнюю часть мокрой гильзы запрессована короткая, не омываемая жидкостью (сухая) вставка, изготовленная из высокопрочного антикоррозионного чугуна. Такая конструкция гильзы цилиндра увеличивает срок службы двигателя.

Рис. 2. Разрез боковой поверхности цилиндров (а) и схема уплотнения верхней части гильзы (б): 1 — гильза цилиндра; 2 — вставка; 3 — блок цилиндров; 4 — уплотнительная прокладка; 5 — резиновое кольцо; 6 — цилиндр воздушного охлаждения; 7 — картер дизеля; 8 — уплотнение водомасляного стыка; 9 — головка цилиндра; 10 — уплотнение газового стыка

Нижняя часть гильзы снаружи обработана на конус и свободно входит в нижнее отверстие блока, но уплотнена одним (Д-240) или двумя резиновыми кольцами круглого сечения. Их располагают в канавках гильзы или блока. Такое уплотнение дает возможность гильзе при нагревании удлиняться без нарушения герметичности водяной рубашки. Иногда (в дизелях А-41 и ЯМЗ-240Б) выше этих колец в широкую канавку гильзы вкладывают антикавитационное резиновое кольцо прямоугольного сечения. Гильза цилиндра двигателя 3M3-53 уплотнена в блоке медной прокладкой.

По внутреннему диаметру гильзы сортируют на размерные группы, облегчая тем самым подбор нужного зазора между цилиндром и поршнем. Обозначение группы (Б, С, М) нанесено на верхнем торце.

Цилиндры двигателя воздушного охлаждения тоже отлиты из высокопрочного чугуна, но для лучшей теплоотдачи имеют снаружи ребра. Нижней обработанной поверхностью такой цилиндр ставят на картер дизеля, прокладывая между ними медное кольцо, и притягивают к нему вместе с головкой с помощью гаек анкерных (силовых) шпилек, ввинченных в картер. На верхнем торце цилиндра выполнены мелкие кольцевые выступы В, которые врезаются в металл головки цилиндра, обеспечивая уплотнение между этими деталями без прокладки.

Головка цилиндра вместе с его стенками и днищем поршня образует камеру сгорания. У двигателей жидкостного охлаждения головка цилиндров представляет собой отливку из чугуна или из алюминиевого сплава (3M3-53, ЗИЛ-130, Д-144, КамАЗ-740). Она закрывает цилиндр или ряд цилиндров.

Головку цилиндров ЗИЛ-130 подвергают лазерному упрочнению, которое значительно увеличивает срок ее службы.

В головке цилиндров размещены клапаны распределительного механизма и форсунки (или искровые свечи зажигания). У карбюраторных двигателей в ней же выполнены камеры сгорания.

Внутри головки имеются каналы и водяная рубашка. Охлаждающая жидкость подводится к наиболее нагретым местам головки — перемычкам между седлами клапанов и к местам расположения форсунок, а также к другим нагретым поверхностям этой детали. В нижней обработанной поверхности головки выполнены отверстия (для шпилек или болтов крепления головки к блоку, штанг, форсунок или искровых свечей зажигания, протекания жидкости из водяной рубашки блока) и расточены гнезда для клапанов.

На всех изучаемых двигателях (кроме Д-240) в гнезда выпускных или всех клапанов запрессованы кольца из жаропрочного чугуна. Они служат седлами головок клапанов. Для лучшего смесеобразования в цилиндре воздуху, поступающему в него, придают вихревое движение. Для этого в седлах впускных клапанов выполнены козырьки (СМД-60 и СМД-62)* или впускным каналам головки придают винтовую форму (КамАЗ-740, СМД-18, Д-245, ЗИЛ-130).

Рис. 3. Головка цилиндров (а) и схема расположения впускных и выпускных каналов в головках цилиндров (б): 1 — прокладка головки цилиндров; 2 — головка цилиндров; 3 — втулки клапанов; 4 — стакан форсунки; 5 — гайка стакана; 6 — седло клапана; 7 — головка с охлаждающими ребрами

Герметичность прилегания головки цилиндров к блоку достигается установкой между ними жаростойкой прокладки, чаще всего из асбостального полотна. Она препятствует выходу газов из цилиндров наружу и утечке охлаждающей жидкости из водяных рубашек.

На дизеле КамАЗ-740 установлено комбинированное уплотнение. Его металлические кольца предотвращают выход газа, а резиновая прокладка не дает вытекать охлаждающей жидкости и маслу.

Головка цилиндров прикреплена к блоку шпильками с гайками или болтами (у ЗИЛ-130, КамАЗ-740).

Головка цилиндра двигателей воздушного охлаждения для лучшего отвода теплоты выполнена с ребрами. В нее ввинчена стальная втулка для крепления форсунки, а в расточках под клапаны запрессованы чугунные седла.

Сверху в головку цилиндров запрессованы чугунные или метал-локерамические направляющие втулки клапанов.

Реклама:
Читать далее: Поршень,поршневые кольца и пальцы

Категория: — Тракторы-2

Главная → Справочник → Статьи → Форум

Тормозной цилиндр описание,устройство,принцип работы,неисправности,фото.

Механические устройства для остановки транспортного средства содержат большое количество составляющих, но наиболее значимые из них — тормозные цилиндры, являющиеся основой всей этой конструкции.

Предназначен главный тормозной цилиндр (ГТЦ) для того, чтобы видоизменять сжатие воздуха в усилителе при нажатии на рычаг тормоза в мощные давления жидкости, запуская весь механизм.

Принцип работы главного тормозного цилиндра

При торможении шток вакуумного усилителя тормозов толкает первый поршень. При движении по цилиндру поршень перекрывает компенсационное отверстие. Давление в первом контуре начинает расти. Под действием этого давления перемещается второй контур, давление во втором контуре также начинает расти. В образовавшиеся при движении поршней пустоты заполняются через перепускное отверстие тормозной жидкостью. Перемещение каждого из поршней происходит до тех пор, пока позволяет возвратная пружина. При этом в контурах создается максимальное давление, обеспечивающее срабатывание тормозных механизмов.

При окончании торможения поршни под действием возвратных пружин возвращаются в исходное положение. Когда поршень проходит через компенсационное отверстие, давление в контуре выравнивается с атмосферным давлением. Даже если тормозная педаль отпускается резко, разряжения в рабочих контурах не создается. Этому препятствует тормозная жидкость, заполнившая полости за поршнями. При движении поршня эта жидкость плавно возвращается (перепускается) в бачек через перепускное отверстие.

Если в одном из контуров произойдет утечка тормозной жидкости, другой контур будет продолжать работать. Например, при утечке в первом контуре первый поршень беспрепятственно переместиться по цилиндру до соприкосновения со вторым поршнем. Второй поршень начинает перемещаться, обеспечивая срабатывание тормозных механизмов во втором контуре.

При утечке во втором контуре, работа главного тормозного цилиндра происходит несколько иначе. Движение первого поршня вовлекает в движение второй поршень, который не встречает препятствий на своем пути. Он двигается до достижения упором торца корпуса цилиндра. После чего давление в первом контуре начинает расти, обеспечивая торможение автомобиля.

Несмотря на то, что ход педали тормоза при утечке жидкости несколько увеличивается, торможение будет достаточно эффективным.

Устройство главного тормозного цилиндра

А1,А2 — компенсационные отверстия; Б1,Б2 — перепускные отверстия; В,Г,Д,Е — полости; 1- корпус; 2- трубка; 3- соединительная втулка; 4 — бачок; 5 — защитный колпачок; 6 — датчик сигнализатора аварийного падения тормозной жидкости; 7 — упорное кольцо; 8 — наружная манжета; 9 — направляющая втулка; 10, 17 — поршни; 11 — стопорное кольцо; 12 — уплотнительное кольцо; 13 — шайба поршня; 14, 16 — манжеты; 15, 18 — упорные шайбы; 19 — пружина; 20 — пробка; 21 — болт держателя пружины; 22 — держатель пружины; 23 — пружина.

Главный цилиндр располагается на крышке вакуумного усилителя тормозов. Конструктивная схема главного тормозного цилиндра следующая:

  • корпус
  • бачок (резервуар) ГТЦ
  • поршень (2 шт.)
  • возвратные пружины
  • уплотнительные манжеты

Бачок с жидкостью главного тормозного цилиндра расположен непосредственно над цилиндром и соединен с его секциями через перепускные и компенсационные отверстия. Бачок необходим для восполнения жидкости в системе тормозов в случае ее утечки или испарения. Уровень жидкости можно отслеживать визуально за счет прозрачных стенок бачка, где находятся контрольные метки.

Кроме того, за уровнем жидкости следит специальный датчик, расположенный в бачке. В том случае, когда жидкость опускается ниже установленной нормы, загорается сигнальная лампа, расположенная на панели приборов.

В корпусе ГТЦ расположены два поршня с возвратными пружинами и резиновыми уплотнительными манжетами. Манжеты нужны для уплотнения поршней в корпусе, а пружина обеспечивает возврат и удержание поршней в исходном положении. Поршни обеспечивают нужное давление тормозной жидкости.

Главный тормозной цилиндр может быть дополнительно оборудован датчиком перепада давления. Последний необходим для предупреждения водителя о неисправности в одном из контуров по причине потери герметичности. Датчик давления может располагаться как в главном тормозном цилиндре, так и в отдельном корпусе.

Возможные неисправности

В процессе эксплуатации главный тормозной цилиндр, как и все механизмы автомобиля, приходит в негодность, что влечет за собой ремонт либо замену деталей. В основном причиной может стать неравномерное распределение тормозной жидкости внутри конструкции. Диагностику неисправностей проводят сначала, используя внешний осмотр: проверяют наличие дефектов и протечки тормозной жидкости. Затем проверяют работоспособность узла: при обычном надавливании штока заеданий и проваливания не должно быть.

Рабочий тормозной цилиндр, как правило, при долгом использовании подвергается износу, а также поражается ржавчиной с внутренней стороны. Это – следствие попадания посторонних веществ (воды, кислорода) в тормозную жидкость. Существуют и такие нюансы, как: изнашивание уплотнительной манжеты и пружин возврата, их задирания, также ветхость зеркала устройства. Такие нарушения требуют обязательного ремонта либо замены.

Среди других факторов, по которым колесный тормозной цилиндр ломается, выделяют разгерметизацию его. Выявляется это при внешнем осмотре: остается характерный след и присутствует сильный запах, уровень жидкости будет быстро понижаться. Колесный тормозной цилиндр, в котором набухли уплотнительные чехлы снаружи, свидетельствует о негодности и внутренних уплотнителей.

Аварийный режим

Стоит отметить высокую надежность системы. И даже если будут неисправности главного тормозного цилиндра (ВАЗ — не исключение), автомобиль исправно затормозит. Это обеспечивает второй аварийный контур. Если произошла утечка в первом, поршень переместится в цилиндре до соприкосновения со вторым. А далее он начнет перемещаться, обеспечивая исправную работу тормозных механизмов. Но если наблюдаются утечки во втором контуре, работа механизма будет немного отличаться. Первый поршень будет толкать собой второй, пока он не упрется в верхнюю часть металлического корпуса. Далее уровень давления в первом контуре возрастает и автомобиль начинает тормозить. И несмотря на то что система работает в аварийном режиме, машина успеет затормозить в случае необходимости. 

При утечке во втором контуре работа главного тормозного цилиндра происходит иначе. Первый поршень выталкивает второй, после чего он двигается до верхней части металлического корпуса. Уровень давления в первом контуре растет. Автомобиль начинает тормозить. Разумеется, имея такие неисправности главного тормозного цилиндра, эксплуатировать автомобиль без ремонта просто опасно. Но доехать до ближайшего гаража или СТО – возможно.

А что будет — если один из контуров потеряет герметичность

Даже несмотря на потерю герметичности одного из контуров, второй контур останется в рабочем состоянии. Вот допустим, утечка произошла в первом контуре, тогда первый поршень переместиться без сопротивления по цилиндру до второго поршня. А второй поршень перемещаясь создаст давление, необходимое для работы тормозных механизмов в своем контуре. Только следует учитывать, что свободный ход педали добавится из-за неисправности первого контура.

Если утечка произошла во втором контуре, то работа первого контура будет происходить вот так: оба поршня будут перемещаться, пока второй поршень не дойдет до конца и только потом в первом контуре создастся давление способное привести контур в рабочее состояние. Тут тоже ход педали тормоза будет увеличен, но тормозная система будет работать.

Проверка главного тормозного цилиндра

Устройство главного тормозного цилиндра подразумевает использование уплотнительных резиновых деталей, которые периодически выходят из строя и стают основной проблемой при проведении проверки. Поэтому, в случае, если в работе тормозной системы возникли неполадки, описанные выше, необходимо проверить ее работу. И начать необходимо именно с ГТЦ. Проверка выполняется в такой последовательности:

  • Необходимо проверить наличие потеков на корпусе, а также наличие трещин на нем.
  • Далее нужно проверить герметичность и состояние уплотнительных элементов цилиндра. При любом объеме проводимых ремонтных работ необходимо обязательно заменить все резиновые уплотнители, которые имеются в составе ремкомплекта главного тормозного цилиндра.
  • Также обязательно нужно проверить зеркало цилиндра. Оно не должно иметь раковин и повреждений. Кроме этого, не допускается изменение его геометрической формы (превращение в овал).
  • Нужно проверить зазор между поршнями и цилиндром. Не допускается его увеличение сверх нормы, указанной в мануале к вашему автомобилю.

Если проверка показала появление изменений в работе ГТЦ, то не дожидаясь полного выхода его из строя, рекомендуем отремонтировать его, заменив некоторые элементы из ремкомплекта. Учтите, что с его помощью можно устранить лишь мелкие неисправности (например, течь тормозной жидкости).

В случае же, если было повреждено зеркало цилиндра, то есть, на нем появились царапины, раковины или другие повреждения, то он становится неремонтопригоден. Единственный выход в таком случае — его полная замена.



Стук 4-го цилиндра Субару | Сервисный центр Субару на Лихоборке

Бесплатная диагностика мотора

для всех моделей Subaru

  • Диагностика течей
  • Контроль уровня жидкостей
  • Проверка приводных ремней

0 ₽

записаться

Звоните нам по телефону +7 (925) 041 97 17

А был ли мальчик

Любопытно, откуда взялась информация о 4 цилиндре, ведь весь российский интернет пестрит статьями, дискуссиями на форумах и разнообразными предложениями по ремонту. Беспокойство автовладельцев можно понять, так как большинство из них не являются специалистами по оппозитным моторам Субару, но наслышаны про слабое место этой марки. Вот они и собираются на форумах и делятся своими опасениями, мнениями и личным опытом.

Хуже, когда этот вопрос на полном серьезе муссируется на профессиональном канале, особенно, если предоставляются не вполне достоверные и корректные сведения и вносится дополнительная путаница.

Непонятно, кому выгодна байка про 4 цилиндр. Возможно, продавцам других марок авто, которые пугают желающих купить Субару несуществующей проблемой и предлагают свои авто. Возможно, недобросовестным автосервисам, которым неважно, на чем заработать.

Попробуйте поискать инфу на англоязычных сайтах, и вы едва ли встретите упоминания о каких-то специфических недостатках, присущих именно этой детали двигателя Субару.
Предлагаем разбираться вместе.

Почему именно «4-й»

Не секрет, что оппозитные моторы Субару имеют конструктивные особенности, в частности:

  • Цилиндры расположены в горизонтальной плоскости, что усложняет равномерную смазку зеркал цилиндров
  • Двигатель достаточно компактный, поэтому используются поршни с уменьшенной высотой «юбки», что приводит появлению задиров и более быстрому износу. Впрочем, Субаристы готовы мириться с этим, так как это компенсируется высокими оборотами и, соответственно, мощностью двигателя

Проблема 1. Масло доходит в последнюю очередь

Считается, что именно 4-й цилиндр страдает больше всего от плохой смазки, потому что он, якобы, расположен дальше остальных от масляного насоса. Но достаточно просто посмотреть на компоновку мотора (рис. 2), чтобы увидеть, что 3-й и 4-й цилиндры равноудалены от насоса (так же, как 5 и 6 соответственно на 6-цилиндровых моделях Tribeca, Oitback, Legacy).

На самом деле, неприятные последствия ожидают не только 4-й, но и остальные цилиндры, если водитель не следит за уровнем масла. Не меньше страдают от плохой смазки коленвал, распредвал и другие детали и узлы – это глобальная проблема.

Проблема 2. Плохое охлаждение

Упор делается на то, что 4-й – самый теплонагруженный цилиндр со слабым охлаждением. Действительно, этот элемент нагревается сильнее остальных, потому помпа Субару подает антифриз сначала ко 2-му, потом к 3-му и 1-му цилиндрам, и только потом к печально известному 4-му. К этому времени температура жидкости поднимается, и охлаждает последний цилиндр хуже остальных.

Пользуясь этим, владельцам машин предлагаются технические решения, требующие вмешательство в конструкцию двигателя, такие как увеличение диаметра выходных отверстий головки или установка дополнительной помпы. Определенная логика в этом есть, и, если у вас есть лишние деньги, вы можете принять эти предложения.

Таким образом, нужно быть готовыми к тому, что у машин с пробегом стук может появиться во всех слабых местах, и это случится рано или поздно, а масляное голодание и перегрев двигателя лишь усугубляет существующие проблемы и ускоряет разрушение ВСЕХ деталей двигателя.

В то же время, при грамотной эксплуатации автомобиля, ОТДЕЛЬНОГО вопроса 4-й цилиндра в принципе не существует.

Опасен ли стук в цилиндрах Субару

Характерные шумы во время движения (стук, стрекот) появляются у многих авто с пробегом от 100 000 км. Цилиндр, у которого сильно изношена «юбка», может стать одним из источников стука. Дело в том, что уменьшившийся в следствие износа поршень начинает раскачиваться, сильно ударяя по рабочей поверхности цилиндра.

Этим объясняется, что стук, как правило, появляется при работе двигателя «на холодную». Под воздействием растущей рабочей температуры детали, в том числе, поршень, расширяются, и стук исчезает. По большому счету, причина, вызывающая этот звук, опасности не представляет. Большинство субаристов знают об такой особенности и спокойно продолжают ездить.  Но некоторые водители не хотят мириться с посторонним шумом и готовы идти на довольно высокие расходы, чтобы от него избавиться (для замены поршня и комплекта прокладок Субару придется разбирать двигатель).
Если же двигатель начинает стучать постоянно, даже после прогрева, то лучше проконсультироваться со специалистами, потому что в некоторых случаях это может быть опасным симптомом. Возможно, износ поршня достиг опасного уровня, зазоры увеличились до критической величины, предельно возросли ударные нагрузки, которые могут повредить сопрягаемые поверхности.

Как избежать неприятностей

Чтобы предотвратить преждевременное изнашивание деталей, не допускайте повышенного трения и перегрева двигателя. Для этого нужно просто придерживаться следующих правил и, как говорится, будет вам счастье:

  • Не пренебрегайте прогревом двигателя перед началом движения
  • Используйте только качественное масло соответствующей вязкости и горючее
  • Следите за уровнем масла
  • Регулярно меняйте масло (не через 15000 км, как пишут, а через 5000, максимум 7000 км пробега!)
  • Своевременно делать промывку радиатора.

И в заключении, хочется еще раз повторить: возможны самые неприятные последствия для различных деталей, узлов и агрегатов при нарушении правил эксплуатации автомобиля. Это распространяется на двигатели разного объема и касается машин любых марок, не только Субару. Но какой-то особенной «проблемы 4-го цилиндра» не существует.

Наши консультанты готовы ответить на ваши вопросы по тел. +7 (925) 041-97-17, e-mail: [email protected]

Все, что вам нужно знать о цилиндрах двигателя

Что такое цилиндр двигателя и почему они различаются от двигателя к двигателю?

Цилиндры двигателя высокопроизводительного автомобиля

Цилиндр — это силовая установка двигателя. Здесь топливо сжигается и преобразуется в механическую энергию, приводящую в движение автомобиль. Количество цилиндров в типичном автомобиле может быть четыре, шесть или восемь.

Цилиндр металлический и закрывается пломбой.Он содержит поршень, который перемещается вверх и вниз, сжимая топливо, которое воспламеняется и вызывает возгорание. В верхней части цилиндра есть два клапана; впускной клапан и выпускной клапан. Впускной клапан — это место, где топливо и воздух поступают в цилиндр из карбюратора или электрического топливного инжектора, а выпускной клапан — это место, где выходят выхлопные газы.

Выхлопные газы, образующиеся при сгорании в цилиндре, вращают ось, известную как коленчатый вал. Они соединены с нижней частью цилиндра, который, в свою очередь, приводит в действие коробку передач, приводящую в движение колеса.

Чем больше цилиндров, тем больше поршней сжигает топливо и, следовательно, вырабатывается больше энергии.

Цилиндры могут располагаться под капотом по прямой, в два ряда или ровно. Двигатели с цилиндрами, расположенными по прямой линии, известны как рядные двигатели (например, I4 или L4). У них обычно меньше шести цилиндров. Двигатели, расположенные в два ряда, называются V-образными двигателями, поскольку они обычно расположены в форме буквы «V» и имеют более шести цилиндров. Британские двигатели с плоским расположением обычно имеют от четырех до шести цилиндров.

Как узнать, что цилиндр двигателя не работает?

Если цилиндр двигателя не работает эффективно, это может означать перегрев, утечку или пропуски зажигания. Это могут быть очевидные проблемы, которые можно обнаружить по запаху, дыму или видимым утечкам.

Если у вас проблема с цилиндрами, вы можете почувствовать сладкий запах резины, находясь внутри автомобиля. Этот запах может быть вызван утечкой охлаждающей жидкости в цилиндры.

Серый дым — хороший индикатор того, что ваши цилиндры не работают эффективно и двигатель перегревается.

Утечки могут быть очевидны, особенно в засушливые дни. Если под вашей машиной образовалась лужа с жидкостью, вы можете проверить уровень охлаждающей жидкости.

Давление в цилиндре должно быть сбалансировано для поддержания эффективного сгорания и хорошего состояния двигателя. Низкое давление будет легко идентифицировать, поскольку основным индикатором является пропуск зажигания в двигателе при его запуске или плохая работа при движении.

Давление можно измерить с помощью манометра. Вы можете сделать это сами, если он у вас есть, или попросить механика сделать это за вас.

Если в вашей машине наблюдается какая-либо из этих проблем, попросите кого-нибудь ее проверить. Цилиндры и прокладки двигателя являются важными рабочими частями двигателя.

Об авторе

Николь Фергюсон

Штатный писатель Арнольда Кларка

Цилиндр? Что такое цилиндр? | VroomGirls

Праймер по всему, что связано с двигателем.Вы когда-нибудь задумывались, что такое смещение? А крутящий момент? Что это за фигня? Не волнуйтесь, мы все это объясним.


Автор: Аарон Голд

Класс в работе

Когда вы читаете об автомобилях, вы сталкиваетесь со спецификациями двигателя, то есть с 2,0-литровым 4-цилиндровым турбонаддувом, развивающим мощность 160 лошадиных сил и 175 фунт-фут крутящего момента. Что означают все эти числа? Это тема урока в университете VroomGirls.

Цилиндры

Цилиндр — силовая установка двигателя; это камера, в которой бензин сжигается и превращается в энергию.Большинство двигателей автомобилей и внедорожников имеют четыре, шесть или восемь цилиндров. Как правило, двигатель с большим количеством цилиндров производит больше мощности, а двигатель с меньшим количеством цилиндров обеспечивает лучшую экономию топлива.

Цилиндры

будут расположены либо по прямой линии (рядный двигатель, то есть «рядный 4», «I4» или «L4»), либо в два ряда (V-образный двигатель, то есть «V8»).

ПЕРЕМЕЩЕНИЕ (в литрах и кубических дюймах)

Двигатели измеряются рабочим объемом, обычно выражаемым в литрах (л) или кубических сантиметрах (куб. См).Рабочий объем — это общий объем всех цилиндров двигателя. Двигатель с четырьмя цилиндрами по 569 куб. См каждый имеет общий объем 2276 куб. Более крупные двигатели, как правило, производят большую мощность, в частности, больший крутящий момент (см. Ниже), но при этом потребляют больше топлива.

До начала 1980-х годов двигатели измерялись в кубических дюймах. Один литр равен примерно 61 куб.см, поэтому двигатель на 350 кубических дюймов составляет около 5,7 литра.

ТУРБОКОМПЕНСАТОРЫ

Турбокомпрессор — это устройство, которое используется для увеличения мощности двигателя.Четырехцилиндровый двигатель с турбонагнетателем может производить столько же мощности, что и шестицилиндровый двигатель, но при щадящем управлении расходует меньше топлива. (Для получения дополнительной информации см. Как работают турбокомпрессоры и нагнетатели. Двигатели с турбонаддувом иногда получают букву T после рабочего объема; «2.0T» обозначает 2-литровый двигатель с турбонагнетателем.

МОЩНОСТЬ И МОМЕНТ

Мощность и крутящий момент измеряют мощность, развиваемую двигателем, причем чаще всего используется мощность в лошадиных силах. Разницу между мощностью и крутящим моментом часто неправильно понимают (и ее трудно объяснить).

Крутящий момент, который измеряется в фунт-футах (фунт-фут или фут-фунт), служит для измерения тягового усилия; когда вы нажимаете педаль газа, и сиденье вдавливается вам в спину, вы чувствуете крутящий момент. Грузовикам нужен большой крутящий момент, чтобы перемещать тяжелые грузы. Мощность в лошадиных силах является функцией крутящего момента и частоты вращения двигателя (об / мин) и показывает, сколько продолжительной работы может выполнять автомобиль. Гоночным автомобилям требуется большая мощность для поддержания высоких скоростей. Как правило, двигатели с большим рабочим объемом развивают больший крутящий момент, но небольшие двигатели могут вращаться быстрее, что увеличивает их мощность в лошадиных силах.

Автомобиль с высокой мощностью, но с низким крутящим моментом может казаться вялым после остановки, но будет ощущаться сильнее, когда двигатель вращается все быстрее и быстрее. Двигатель с высоким крутящим моментом и малой мощностью будет сильно ускоряться после остановки, но будет останавливаться при увеличении скорости двигателя (до тех пор, пока трансмиссия не переключит передачи).

Измерения мощности и крутящего момента являются «пиковыми» числами; двигатель мощностью 180 лошадиных сил будет производить только 180 лошадиных сил при определенной частоте вращения двигателя, скажем, 6000 об / мин. На других скоростях двигатель развивает меньшую мощность.То же самое и с крутящим моментом, хотя некоторые двигатели (особенно с турбонагнетателями) имеют устойчивый диапазон максимального крутящего момента, развивая свой номинальный крутящий момент, скажем, между 1800 и 4000 об / мин. Двигатель с высоким крутящим моментом в среднем диапазоне (пик между 2000 и 4000 об / мин) будет иметь хорошее ускорение при прохождении, в то время как большой крутящий момент на нижнем уровне (ниже 1500 об / мин) полезен для буксировки прицепов или езды по бездорожью. Однако автомобили с двигателями с высоким крутящим моментом более склонны к скольжению в дождь и снег.

С учетом всего вышесказанного, на ускорение будут влиять и другие факторы, такие как вес автомобиля.То, как вы себя чувствуете, когда вы едете, важнее, чем мощность и крутящий момент.

Volkswagen Group of America, Inc. не несет ответственности за содержание этой колонки.

Какие функции головного блока цилиндров выполняет в двигателе автомобиля?

Вы можете найти всевозможную информацию о прокладке головки , и многие автовладельцы знают о ее функциях, но гораздо меньше знают о самой головке блока цилиндров.Вот почему мы собрали все, что вам нужно знать о головке блока цилиндров . Узнайте, как работает головка блока цилиндров в вашем автомобиле, почему это важно и какие дефекты могут возникнуть.

Что делает головка блока цилиндров в моей машине?

Основная задача ГБЦ — закрывать камеру сгорания двигателя сверху. Верхняя часть двигателя называется головкой блока цилиндров, а нижняя часть — — блоком двигателя . Головка блока цилиндров находится на двигателе и закрывает камеру сгорания.Зазор, который остается между головкой блока цилиндров и двигателем, дополняется прокладкой головки.

Еще одна задача ГБЦ — обеспечить постоянную смазку цилиндра. Если цилиндры плохо смазаны маслом, бесперебойная работа двигателя невозможна, поэтому головка блока цилиндров является неотъемлемой частью работы двигателя.

Так устроена ГБЦ

Головка блока цилиндров — это не только очень важная часть двигателя, но и одна из самых дорогих частей двигателя автомобиля из-за своей сложной конструкции.Поскольку головка блока цилиндров в процессе сгорания подвергается воздействию очень высоких температур, она состоит из стойких алюминиевых сплавов и легких металлов.

Внизу он обычно закреплен непосредственно на картере коленчатого вала и закрыт вверху клапанной крышкой. В зависимости от того, какой у вашего автомобиля дизельный или бензиновый двигатель, конструкция головки блока цилиндров различается.

Это компоненты головки блока цилиндров бензинового двигателя

  • Впускные и выпускные каналы: они обеспечивают выход выхлопных газов из цилиндров, а абсорбированная воздушно-топливная смесь может попадать в цилиндры.
  • Впускные и выпускные клапаны: здесь бензиновые двигатели всасывают топливно-воздушную смесь, а выхлопные газы одновременно транспортируются в выхлопную систему
  • Распредвалы: коленчатый вал, приводимый в движение ремнем ГРМ, приводит в движение распредвалы.Распредвалы отвечают за открытие и закрытие клапанов
  • Форсунки: обеспечивают впрыск топлива в камеры сгорания
  • Свечи зажигания: инициируют сгорание топлива

Это компоненты головки блока цилиндров в дизельном двигателе

  • Впускные и выпускные каналы: они позволяют выхлопным газам выходить из цилиндров и позволяют захваченной воздушно-топливной смеси поступать в цилиндры
  • Впускные и выпускные клапаны: автомобили с дизельным двигателем всасывают воздух через впускные и выпускные клапаны, в то время как выхлопные газы одновременно транспортируются в выхлопную систему
  • Распредвалы: коленчатый вал, приводимый в движение цепью ГРМ, приводит в движение распредвалы.Распредвалы отвечают за открытие и закрытие клапанов
  • Форсунки: впрыскивают топливо в дизельных двигателях в камеры сгорания или предкамеры
  • Свечи накаливания: они служат для облегчения холодного пуска

Возможны ли дефекты головки блока цилиндров?

К сожалению, сложная конструкция головки блока цилиндров и ее многочисленные задачи делают ее подверженной дефектам. Самый частый дефект — негерметичная прокладка ГБЦ, вызванная повышенным истиранием.Подробнее читайте в нашем блоге о признаках неисправной прокладки головки .

Также могут быть дефекты на самой головке блока цилиндров, например, из-за высоких температур и сильной вибрации работающего двигателя. Это может привести к трещинам в материале головки блока цилиндров.

Ремонт или восстановление ГБЦ?

Многие дефекты могут потребовать ремонта головки блока цилиндров, что может оказаться очень дорогостоящим. Поскольку головка блока цилиндров установлена ​​в двигателе, обширные работы над этой деталью двигателя связаны с ремонтом или восстановлением.

В большинстве случаев головку блока цилиндров необходимо сначала снять, а затем отшлифовать после ремонта, так как это единственный способ обеспечить правильное закрытие нижней части двигателя.

Замена головки блока цилиндров возможна только в редких случаях. В основном дефекты ГБЦ связаны с легко заменяемыми деталями, например, с клапанами.

На этой странице вы найдете дополнительную информацию о том, сколько стоит ремонт ГБЦ.

Как распознать признаки возможных дефектов

Если вы заметили нарушения в работе двигателя, рекомендуется как можно скорее обратиться в мастерскую, чтобы предотвратить дальнейшие повреждения.

К признакам дефектов ГБЦ относятся:

  • Вы заметили потерю мощности двигателя
  • Температура охлаждающей воды в красной области
  • Вы видите масло в охлаждающей воде
  • Через короткое время необходимо долить воду и масло
  • Вы заметили плохое поведение при холодном запуске

Как охлаждается головка блока цилиндров в двигателе?

Как уже было сказано выше, головка блока цилиндров подвергается воздействию высоких температур и поэтому ее необходимо охлаждать, чтобы избежать перегрева и повышенного истирания.Существует два различных типа охлаждения ГБЦ: водяное или воздушное.

Головки блока цилиндров с воздушным охлаждением

Головки цилиндров с воздушным охлаждением охлаждаются только проходящим воздухом. Кроме того, они оснащены большими ребрами охлаждения.

Одним из преимуществ этого метода охлаждения является то, что он обеспечивает надежную работу и может быть построен очень просто и недорого. Соответственно, ремонт таких ГБЦ обходится дешевле, чем ремонт ГБЦ с водяным охлаждением.Кроме того, вам не нужно беспокоиться о замерзании охлаждающей жидкости при охлаждении воздуха.

Головки блока цилиндров с водяным охлаждением

Большинство современных двигателей охлаждаются водой. Для этого в качестве охлаждающей жидкости обычно используют смесь воды и морозостойкости. Для охлаждения головки блока цилиндров охлаждающая жидкость проходит через прокладку головки блока цилиндров в головку блока цилиндров.

Одним из преимуществ этого типа охлаждения является, прежде всего, то, что охлаждающая жидкость может поглощать, а также рассеивать большое количество тепла.К тому же этот способ охлаждения наиболее эффективен.

Что такое 4-цилиндровый двигатель?

Говоря о двигателях, количество цилиндров относится к количеству поршней внутри двигателя. Поршни перемещаются вверх и вниз в цилиндрах внутри двигателя. Когда они двигаются, они открывают и закрывают впускные клапаны, так что воздух смешивается с топливом. Эта топливно-воздушная смесь воспламеняется при воспламенении либо от искры, либо в результате сильного сжатия. Эта серия событий приводит в действие двигатель.Чем больше цилиндров, тем быстрее цикл сгорания. Следовательно, 4-цилиндровый двигатель обычно менее мощный, чем 6-цилиндровый.

В большинстве 4-цилиндровых двигателей поршни имеют прямолинейную вертикальную конфигурацию. Однако поршни в 6-цилиндровом двигателе обычно наклонены, а два ряда по три цилиндра образуют V-образную форму. Эта форма считается более компактной и мощной. Эти двигатели V6 также имеют тенденцию быть тише, чем 4-цилиндровые двигатели. Поршни в 4-цилиндровых двигателях имеют тенденцию быть шумными, особенно в более крупных двигателях.

Однако 4-цилиндровые двигатели все еще могут быть сильными, а в некоторых случаях они мощнее 6-цилиндровых. Современные 4-цилиндровые двигатели рассчитаны на максимальную мощность. В результате 4-цилиндровый двигатель, сочетающий в себе технологические достижения, намного мощнее, чем 4-цилиндровый двигатель, созданный несколько десятилетий назад.

Вы должны взвесить различия между двумя типами двигателей перед покупкой нового или подержанного автомобиля. Например, 4-цилиндровые двигатели более экологичны.Обычно они выбрасывают в воздух меньше загрязняющих веществ и более экономичны, чем 6-цилиндровые модели. Поскольку гибридные автомобили еще не приобрели достаточной популярности, чтобы заменить автомобили, работающие только на бензине, 4-цилиндровые двигатели могут быть хорошей альтернативой для людей, заботящихся об окружающей среде. Эти двигатели дешевле, чем двигатели V6, и вы сможете значительно сэкономить на общей стоимости вашего автомобиля, выбрав 4-цилиндровый двигатель.

Однако некоторым покупателям может не понравиться шумность некоторых 4-цилиндровых двигателей, особенно на холмах или при перевозке тяжелых грузов.Тяговая способность 6-цилиндрового двигателя может быть намного выше.

В чем разница между 4- и 6-цилиндровым двигателем?

Большинство водителей понятия не имеют, что у них под капотом или сколько цилиндров у их двигателя. Мы ездим на машинах каждый божий день, но кажется, что люди знают о них все меньше и меньше. Нет ничего постыдного в том, чтобы не знать больше о своей машине, но понимание основ машины и ее двигателя дает некоторые важные преимущества.Чтобы помочь вам узнать больше о своем автомобиле, вот некоторые различия между 4-цилиндровыми и 6-цилиндровыми автомобильными двигателями.

Автомобильные цилиндры

Собираясь купить новую машину или лучше понять, какая у вас есть, первое, что нужно сделать — это немного узнать о цилиндрах двигателя автомобиля. Цилиндры помогают автомобильным двигателям работать. Внутри каждого цилиндра находится поршень, который соединяется с коленчатым валом и поворачивает его. Газ в вашем автомобиле вызывает воспламенение, которое толкает поршень к коленчатому валу; чем больше цилиндров, тем больше мощности может генерировать ваш автомобиль и тем больше мощность у вашего двигателя.4-цилиндровые двигатели имеют 4 поршня, которые соединяются с коленчатым валом, а 6-цилиндровые двигатели имеют 6 поршней, которые соединяются.

Различия с 4 и 6 цилиндрами

Вот некоторые из основных различий между типами 4- и 6-цилиндровых двигателей.

4-цилиндровые автомобильные двигатели

  • 4-цилиндровые двигатели экономичны и являются отличной покупкой, если вы ищете небольшой и надежный автомобиль
  • 4-цилиндровые двигатели
  • меньше влияют на ваш углеродный след, чем 6-цилиндровые двигатели
  • 4-цилиндровые двигатели обычно используются в небольших и компактных автомобилях

6-цилиндровые автомобильные двигатели

  • 6-цилиндровые двигатели — это двигатели с более высокими характеристиками, которые обычно используются в спортивных автомобилях и автомобилях, которым требуется большая мощность
  • 6-цилиндровые двигатели лучше всего подходят для автомобилей с большими двигателями
  • 6-цилиндровые двигатели
  • в старых автомобилях часто уступают более новым 4-цилиндровым моделям, поэтому лучше проверить мощность перед покупкой.

Автомобили могут показаться сложными, но, узнав немного о своем автомобиле, вы сможете узнать, как лучше о нем заботиться. Вот почему Cascade Collision здесь, чтобы помочь!

Если вы когда-нибудь попадете в автомобильную аварию в округе Юта, обязательно свяжитесь с Cascade Collision. Мы специализируемся на ремонте автомобилей и поможем вашей машине выглядеть как новая.

Чем отличаются 4-цилиндровые двигатели и двигатели V6?

Цилиндры являются критически важными элементами способности вашего двигателя преобразовывать сырое топливо в энергию, что он делает посредством крошечных контролируемых взрывов.Среднему малому и среднему седану или купе обычно требуется как минимум четыре цилиндра для работы, в то время как более крупным транспортным средствам, таким как грузовые автомобили, может потребоваться до 12. Многие модели автомобилей предлагаются как с четырех-, так и с шестью цилиндрами. В общем, чем больше цилиндров в двигателе, тем быстрее может быть произведена мощность. Это часто приводит к снижению эффективности использования топлива. Для увеличения мощности требуется больше топлива, а это означает, что вы в конечном итоге будете платить значительно больше за бензин в течение всего срока службы вашего автомобиля.

Стоимость

При использовании той же модели автомобиля вы будете платить в автосалоне более высокую цену за двигатель V6, чем за четырехцилиндровый двигатель, что даст вам больше мощности при меньшей топливной эффективности. С V6 вы обнаружите, что чаще бываете на заправке, и вы также можете получить более высокие страховые взносы. Если для вас приоритетом является экономия, вероятно, лучше всего подойдет четырехцилиндровый двигатель.

Производительность

Двигатель V6 будет способен производить большее количество мощности в более быстром темпе и будет намного более отзывчивым на каждое нажатие педали газа, способным быстро разгоняться до высоких скоростей.Для более крупных и тяжелых транспортных средств, таких как внедорожники и грузовики, для работы может потребоваться мощность двигателя V6, в то время как компактные автомобили меньшего размера часто предлагают оба варианта.

Улучшенная конструкция двигателя

Благодаря последним усовершенствованиям в технологии двигателей, 4-цилиндровые двигатели стали более мощными, в то время как двигатели V6 стали более экономичными, чем когда-либо, что значительно сокращает разрыв между четырех- и шестицилиндровыми автомобилями. Сегодня хорошо работающий двигатель V6 1991 года, вероятно, будет лучше, чем четырехцилиндровая модель.Количество цилиндров — один из многих факторов, определяющих мощность и топливную экономичность, но не единственный.

Сколько цилиндров вы решите инвестировать, во многом зависит от ваших ценностей. Четырехцилиндровый экономичный двигатель имеет больше смысла для основной марки автомобилей, чем для роскошного спортивного автомобиля. Если это ощущение чистой мощности — этого сотрясающего землю двигателя под вами — это то, что вам нужно, V6 может быть стоящим вложением. V6 также может быть более практичным выбором, если вы часто едете по крутым холмам, по грунтовым дорогам или по обледенелым дорогам, где более труднопроходимая местность может повысить нагрузку на ваш двигатель.Понимание различий поможет вам сделать осознанный выбор при выборе подходящего автомобиля, отвечающего вашим потребностям.

Что такое ГБЦ и как она выходит из строя?

Головка блока цилиндров является важной частью всех двигателей внутреннего сгорания, и растрескивание головки блока цилиндров может привести к катастрофическим повреждениям двигателя. В некоторых случаях растрескивание головки блока цилиндров может привести к такой серьезной травме двигателя, что ее необходимо заменить. В результате большинство автомобилистов стараются предотвратить растрескивание головки блока цилиндров, так как унция профилактики в этом случае стоит многих фунтов лечения.Все причины растрескивания головки блока цилиндров относительно просты и легко предотвращаются, за исключением случая отказа механических частей не по вине оператора.

Головка блока цилиндров, используемая в сочетании с прокладкой головки, уплотняет цилиндры автомобиля вместе с другими деталями, связанными с ними. Головка блока цилиндров адаптирована к автомобилю и имеет очень точно фрезерованные поверхности, обеспечивающие плавное прилегание ко всем соединительным деталям. В случае небольшой трещины цилиндры могут потерять компрессию и пропускать зажигание.Сильные трещины могут серьезно повредить цилиндры двигателя. По этой причине при замене головки цилиндров или прокладки головки убедитесь, что вы используете правильные детали, включая болты, для работы, по этой причине рекомендуется использовать надежного специалиста, такого как HEAD TECH.

Даже новый автомобиль может растрескаться в головке блока цилиндров, если детали были установлены неправильно или если металл имеет слабые места. Особенно в случае автомобиля, который все еще находится на гарантии, водители должны обсудить с дилером растрескивание головки блока цилиндров.Обязательно осмотрите любой автомобиль перед покупкой, чтобы проверить наличие слабых мест в металле или неправильно установленных компонентов. Сюда входит и прокладка головки блока цилиндров, поскольку неправильная установка этой важной детали может вызвать растрескивание головки блока цилиндров.

Растрескивание головки блока цилиндров стало более распространенным явлением, поскольку производители автомобилей используют в своих двигателях смешанные металлы. Например, многие автомобили имеют твердый чугунный блок цилиндров, но алюминиевую головку блока цилиндров. Эти два металла расширяются с разной скоростью, что может привести к растрескиванию головки блока цилиндров.

Самая частая причина появления трещин в головке блока цилиндров — перегрев. Когда автомобиль перегревается, это создает нагрузку на все его металлические компоненты, включая головку блока цилиндров, которая часто находится в центре нагрева. Это может привести к выходу из строя прокладки головки блока цилиндров, что может привести к растрескиванию головки блока цилиндров из-за деформации компонентов и утечки давления. Все водители должны правильно обслуживать свои автомобили, чтобы не допустить перегрева.

Многие водители по ошибке наливают прохладную воду в радиатор при перегреве автомобиля, пытаясь снизить температуру.Это не лучшая идея, потому что быстрое изменение температуры приведет к растрескиванию головки блока цилиндров из-за термического напряжения. В случае, если головка блока цилиндров переживает перегрев, водитель может непреднамеренно разрушить ее, пытаясь сделать добро.

Чтобы предотвратить перегрев, убедитесь, что ваш радиатор наполнен и находится в хорошем состоянии, с плотно закрытой крышкой. Убедитесь, что термостат вашего двигателя находится в хорошем рабочем состоянии и точно отражает температуру. Убедитесь, что у вас нет натянутых ремней или негерметичных шлангов, а вентилятор работает эффективно.Если ваш автомобиль действительно перегревается, остановитесь, выключите двигатель и дайте ему полностью остыть, прежде чем добавлять воду.

Трещины в головке цилиндров также могут быть вызваны локализованными горячими точками в двигателе, которые обычно представляют собой отказ какой-либо части системы охлаждения. Всегда обращайте внимание на горячие точки, особенно если прокладка головки блока цилиндров вышла из строя и недавно потребовала замены. Горячие точки часто возникают из-за неравномерного расширения деталей двигателя, негерметичных шлангов и предварительного воспламенения в цилиндрах двигателя.

Если ваш автомобиль перегрелся, проверьте головку блока цилиндров и прокладку на предмет трещин или деформаций. Если головка блока цилиндров даже немного деформировалась при промывании, это вызовет растрескивание головки блока цилиндров. В этом случае, возможно, потребуется заменить прокладку головки блока цилиндров, а головку блока цилиндров следует снова отшлифовать до того, как она треснет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *