Схема роторного двигателя: Пятитактный роторный двигатель — это… Что такое Пятитактный роторный двигатель?

Содержание

Пятитактный роторный двигатель — это… Что такое Пятитактный роторный двигатель?

Пятитактный роторный двигатель  — роторный двигатель с простым и равномерным вращательным движением главного рабочего элемента и с использованием такого же простого вращательного движения уплотнительных элементов.

История

Впервые такая схема расширительной машины в виде насоса была описана британским изобретателем Д. Эвом в 1820-х годах и опубликована в английской книге Т. Юбанка в 1850 году «Гидравлические и другие машины».

Но первую известную и реально действующую машину на этом принципе создал русский инженер-механик из Санкт-Петербурга Н. Н. Тверской в 80-х годах 19-го века. Его паровая «коловратная машина» (паровой роторный двигатель) ставился на паровые катера, вращал динамомашины и даже, работая сжатым аммиаком, приводил в движение «подводную миноноску» (подводную лодку) конструкции Н. Н. Тверского, на которой сам инженер опускался в воды Финского залива. Паровая машина Н.

 Н. Тверского стояла даже на императорской паровой яхте «Штандарт». Однако потом эти двигатели по непонятной причине были забыты и не получили в России, да и в мире, дальнейшего развития.

В 20-м веке с появлением двигателя внутреннего сгорания производились попытки приспособить такую схему роторного двигателя к осуществлению циклов двигателя внутреннего сгорания. Например, в специальной технической литературе Европейских стран и США середины 20-го века описаны схемы двигателей конструкции Ф. Унзина и С. Беймана, которые пытались развить именно эту схему роторных машин применительно к режиму работы двигателя внутреннего сгорания. Однако эти попытки были явно неудачными и о реализации этих схем в металле ничего неизвестно.

Отечественным инженером и изобретателем И. Ю. Исаевым в 2009 году была предложена схема реализации циклов двигателя внутреннего сгорания в конструктивной компоновке данного типа роторных машин, которая значительно отличалась от всего предложенного ранее. Главным отличием этого изобретения является вынесение в отдельные конструктивно обособленные камеры технологического цикла «горение рабочей смеси—образование газов горения высокого давления». То есть впервые в конструкции двигателя внутреннего сгорания привычный для всех типов двигателей внутреннего сгорания такт «горение—расширение», разделен на два технологических процесса «горение» и «расширение», которые реализуются в разных рабочих камерах двигателя. Именно поэтому изобретатель называется свой двигатель 5-тактным, так как в нем в различных конструктивных объемных камерах последовательно реализуются следующие технологические такты:

  1.  — всасывание рабочей смеси.
  2.  — сжатие рабочей смеси.
  3.  — поджиг и горение рабочей смеси.
  4.  — расширение рабочих газов.
  5.  — выпуск отработавших газов.

Литература

  • Т. Юбанк. Гидравлические и другие машины. — 1850. (на английском языке)
  • Записки Русскаго Императорскаго Техническаго общества, 1885.
  • Е. Акатов, В. Бологов и другие. Судовые роторные двигатели — 1967.

Ссылки

Mazda RX. Серийная жизнь роторного двигателя — ClassicAutoClub.

ru

XX век ознаменовал эпоху безраздельного господства в сфере автомобилестроения поршневых двигателей внутреннего сгорания. Но их врожденные недостатки заставляли инженеров и изобретателей интенсивно искать альтернативные решения. Самой очевидной альтернативой могли бы стать роторные двигатели. Но их просто было заставить работать в варианте XIX века, с паровым котлом в основе. А вот приспособить роторные схемы для работы в системе внутреннего сгорания оказалось куда как сложнее. Тем не менее инженерам это удалось, и роторный двигатель однажды пошел в серийное производство.

Двигатель Ванкеля

В роторных двигателях главный рабочий орган совершает вращательное движение, в отличие от наиболее распространенных двигателей внутреннего сгорания, основанных на линейном возвратно-поступательном движении поршня. Единственной в начале XXI века выпускаемой в промышленных масштабах моделью роторного двигателя, является двигатель Ванкеля. Он относится к типу роторных двигателей с планетарным круговым движением главного рабочего элемента. Чтобы представить себе принципиальное устройство роторного двигателя, можно посмотреть фотографии, рисунки и анимированную схему в Википедии.

Двигатель Ванкеля. Экземпляр Немецкого
технического музея
(Фото Amux, Wikipedia)

В 1943 году  изобретатель Майлар предложил первую схему роторных двигателей с планетарным вращательным движением главного рабочего элемента. Вскоре на двигатели подобной схемы был подан целый ряд патентов, в том числе и от разработчиков немецкой фирмы NSU. В группу разработчиков компании NSU вошел и Феликс Ванкель, с 1924 года занимавшийся темой разработки роторно-поршневого двигателя. К 1957 году в лаборатории NSU построили прототип роторного двигателя типа DKM, с треугольным ротором и рабочей камерой в форме капсулы с неподвижным ротором и вращающемся корпусом. Но более практичным был признан вариант компоновки с вращающимся ротором и неподвижной камерой корпуса.

Такой двигатель был собран годом позже — в 1958 г. Есть распространенная версия о том, что основная идея роторно-поршневого двигателя с планетарным круговым движением принадлежала инженеру NSU Фрёйде, а Ванкель (кстати, самоучка, не имевший даже профильного образования), позднее подключившийся к разработкам, решил лишь главную техническую проблему — разработку уплотнений двигателя. Впрочем, достоверно известно, что именно Ванкель в конце концов возглавил всю работу по доводке двигателя и выпуску первых опытных серий. И сам двигатель в результате получил его имя.

Интерес автопроизводителей

Первые публичные показы нового роторного двигателя в 1957 году вызвали настоящий ажиотаж среди мировых производителей автомобилей. Первой лицензию на двигатель Ванкеля купила Curtiss-Wright, год спустя тоже сделали Daimler-Benz, MAN, Friedrich Krupp и Mazda. Всего лицензии на новый двигатель приобрели около ста компаний, включая такие солидные бренды как Rolls-Royce, Porsche, BMW и Ford. Интерес к роторному двигателю был связан с его очевидными достоинствами: существенно меньшем числе деталей, относительной простотой производства и ремонта, компактностью и легкостью, низким уровнем шумов и вибрации и, наконец, высокой мощностью при скромном объеме.

Однако для начала серийного производства автомобилей с роторно-поршневыми двигателями нужно было серьезно поработать над их недостатками. А их тоже было немало. Основная проблема на момент первых разработок была связана с низким рабочим ресурсом и неравномерным износом поверхности рабочей камеры (при применении в конструкции традиционных материалов). Второй серьезный минус – неэкономичность, но он существенную роль сыграл позднее. Еще одной серьезной проблемой была повышенная токсичность выхлопа роторного двигателя. За счёт неполного сгорания топлива (отсюда же шла неэкономичность) «ванкель» выделял в атмосферу существенно больше углеводородов, чем традиционные двигатели внутреннего сгорания.

Так или иначе, в 1964 году появился первый в мире автомобиль с роторно-поршневым двигателем Ванкеля — NSU Spider, выпускавшийся в кузове кабриолет с 1964 по 1967 гг. (всего вышло 2 375 автомобилей).

Mazda всерьёз берется за «ванкеля»

После NSU Spyder последовали легендарный NSU Ro 80, Citroen M35 (несколько сотен машин, выпущенных за три года 1969-71) и Mercedes C-111 (не ставший даже «предсерийным»). Но первым по-настоящему серийным коммерческим автомобилем с двигателем Ванкеля по праву считается Mazda Cosmo. Прототип этой машины был представлен в 1964 году на Токийском автосалоне. Mazda, вскоре после приобретения лицензии на «ванкель», организовала целый отдел для работы по усовершенствованию роторно-поршневого двигателя. Именно в этом отделе, со временем, решили и проблему надежности и долговечности двигателя, и нашли решение снижающее токсичность выхлопа, и добились существенного снижения потребления топлива.

К примеру, для снижения токсичности японские инженеры разработали так называемый термальный реактор, который позволял дожечь остатки углеводородов. Эта схема впервые была реализована на Mazda R100  (на японском рынке — Familia Rotary), вышедшей в 1968 году и прошедшей жесткие экологические стандарты, установленные в США.

Затем роторный двигатель был установлен на специальную серию Mazda Capella, на японском рынке называвшуюся Capella Rotary, а на экспорт отправлявшуюся уже под маркировкой Mazda RX-2. Под этим именем роторная Mazda пришла в 1971 году и на американский рынок. Почти одновременно на авторынке США неплохо выступила Mazda RX-3 (на родине Mazda Savanna) – более компактная чем RX-2, с ярко выраженными спортивными формами. Немногим позже на экспорт отправилась роторная версия Mazda Luce, в Японии известная как Luce Rotary, а в экспортном варианте с двигателем Ванкеля получившая имя RX-4. Последней из роторных японок с относительно короткой историей можно назвать вышедшую в 1975 году представительницу нового поколения Cosmo. На некоторые рынки эта машина поставлялась под маркировкой Mazda RX-5, а в Японии носила название Cosmo AP.

Роторные долгожители

В период нефтяного кризиса 1970-х годов, особенно на американском рынке, остро встала одна из уже упомянутых проблем двигателя Ванкеля — неэкономичность. При помощи целого комплекса разработок, переработки термореактора, карбюратора, добавления теплообменника в выхлопную систему, а также разработки каталитического конвертера и внедрение новой системы зажигания, Mazda сумела добиться снижения потребления топлива на целых 40%.

В 1978 году на рынок был выпущен спортивный автомобиль Mazda RX-7, оснащенный доработанным двухсекционным роторно-поршневым двигателем Ванкеля. RX-7 пришла на долгих 24 года и вытеснила почти всех своих роторных предшественниц. Mazda RX-7 выдержала переиздания в четырех поколениях: с 1978 по 1985, с 1985 по 1991, с 1992 по 1999 и четвёртое поколение — с 1999 по 2002 годы. Ликвидация основных слабых мест «ванкеля» сделала более заметным его главное преимущество — великолепные динамические характеристики. На низкой передаче можно было без особой нагрузки на двигатель разогнаться до 100 км/ч при высоких оборотах. Да и сама конструкция, за счёт отсутствия механизма преобразования возвратно-поступательного движения во вращательное, способна выдержать большие обороты, чем традиционные двигатели внутреннего сгорания.

RX-7 впоследствии еще не раз удивляла динамическими решениями. Так, автомобили третьего поколения, представленные в 1991 году, оснащались турбированным двигателем мощностью 255 л. с. и сразу двумя турбонагнетателемя. Один из которых начинал работу сразу, а второй присоединялся при 4500 оборотах.

Вышедшая в серию в 2003 году преемница «семерки» – Mazda RX-8 станет объектом внимания нашего сайта лишь лет через десять. Но уже сейчас очевидно, что и она не стала проходной моделью, и со временем займет своё место в гараже классических автомобилистов.


РОТОРНЫЙ ВАЗ

Любопытно, что роторный двигатель нашел своё применение и в довольно консервативной советской промышленности. В 1976 году был создан первый волжский односекционный роторно-поршневой двигатель ВАЗ-311 мощностью 65 л.с. Через пять лет была выпущена опытная партия в 50 роторных автомобилей ВАЗ-21018. Правда, внешне похожий на японский двигатель, надежностью не отличался, и вскоре все двигатели на той партии сменили на серийные поршневые. Но советские «органы» заинтересовали динамические характеристики роторных движков. И из двух двигателей ВАЗ-311 был сделан двухсекционный роторно-поршневой «ванкель» мощностью 120 л.с. Его ставили на спецсерию ВАЗ-21019. Кроме роторной «единички» на АвтоВАЗе также выпускались малые партии ВАЗ-2105, -2107, -2108, -2109, -21099, оснащенные «ванкелями».


Константин Дьяков
 

Роторный двигатель на ударной волне

Авторы: Владимир Егоров, Андрей Далимаев
Источник: icarbio.ru
8290 0

Вы поворачиваете ключ зажигания — и тут двигатель Вашего автомобиля разрывает ударная волна. Быть может, это звучит катастрофой, но двигатель на ударной волне, которая сжимает смесь горячего воздуха и топлива, может сделать гибридные автомобили гораздо более эффективными. Так говорит Норберт Мюллер (Norbert Müller) в Университете Штата Мичиган в Ист-Лансинге. Он разработал опытный образец такого двигателя, который недавно был представлен на встрече, организованной Управлением перспективных исследований Министерства энергетики США.

Схема роторного двигателя на ударной волне
  1. Воздух и топливо подаются в межлопастные промежутки сквозь ступицу ротора.
  2. В результате столкновения топливовоздушной смеси со стенкой корпуса образуется ударная волна.
  3. Сжатая смесь воспламеняется.
  4. Газовая смесь покидает межлопастные промежутки, вращая ротор.

В его основе лежит ротор, содержащий ряд лучеобразных лопастей (см. схему). Схематично это можно представить в виде лежащего горизонтально настольного вентилятора, крыльчатка которого (ротор) имеет большое число изогнутых лопастей и окружена кожухом. В то время как вращается ротор, топливовоздушная смесь, поступает в межлопастные промежутки через впускные отверстия, расположенные в ступице, но за время впуска ротор успевает повернуться в положение, при котором межлопастные промежутки замкнуты стенкой корпуса. В результате столкновения топливовоздушной смеси со стенкой корпуса образуется ударная волна, которая, распространяясь в ограниченном пространстве, сжимает рабочую смесь. Сжатая смесь воспламеняется. За время горения межлопастные промежутки ротора вновь поворачиваются на выпускные каналы, — газовая смесь на высокой скорости покидает межлопастные промежутки и давит на лопасти ротора, вызывая его вращение. Вращение ротора передаётся выходному валу.

Данная конструкция устранит многие из компонентов обычного двигателя, включая поршни, распределительный вал и клапаны. Это сделает её гораздо более компактной и легкой в сравнении с обычным двигателем. “Автомобиль, оснащённый новым мотором, может стать в целом на 20 % легче”, — утверждает Норберт Мюллер. Он говорит, что, устраняя потери, связанные с механическими компонентами, она также сделает автомобили более экономичными. Мюллер сообщает, что двигатель может быть адаптирован для работы на различных видах топлива, в том числе водородном. Собрав небольшой опытный образец, он надеется, что 25-киловаттная версия будет готова к концу этого года.

Руй Чен (Rui Chen), который изучает системы сгорания в университете Лафборо в Великобритании заявляет, что эта конструкция может существенно уменьшить вес трансмиссии автомобиля. “В топливном отношении этот двигатель гораздо податливее, чем обычный поршневой”, — добавляет он. Норберт Мюллер соглашается с Ченом. По словам Мюллера поршни, шатуны и блок цилиндров двигателю с волновым диском не нужны. Кроме того, меньшая масса и более высокая топливная экономичность двигателя «могут позволить гибридному автомобилю с подзарядкой от сети и рекуперативным торможением пробегать впятеро большее расстояние на литре бензина.

Что же, все это звучит весьма красочно. Однако не будем забывать, что машины такого типа инженеры начали изучать еще в 1906 г., но трудно понять, как управлять этими нестационарными газовыми потоками. Даже Норберт Мюллер признает, что предсказание очень сложного нелинейного поведения таких потоков требует детальных численных расчетов, которые слишком трудоёмки или неточны.

Другой учёный — Дэниел Паксон (Daniel E. Paxson), занимающийся моделированием течений в Научно-исследовательском центре им. Гленна NASA в Кливленде, скептически замечает, что Мичиганский проект, несомненно, расширяет горизонты. “Каковы бы ни были конечные результаты, я не сомневаюсь, что они узнают много нового”. С последним замечанием трудно не согласиться. Тем не менее, исследования ведутся и для создания двигателей применяются компьютерные модели. А значит, основания для оптимизма есть.

Опубликовано 02.11.2011

Читайте также

Комментарии

Роторный двигатель устройство. Роторный двигатель: орел и решка

Роторный двигатель является одной из разновидностей тепловых ДВС. Первый роторный двигатель, принцип работы которого кардинально отличается от традиционного двигателя внутреннего сгорания, появился в 19 веке.

Его особенностью было использование не возвратно поступательных движений, как в классическом ДВС, а вращение в специальном овальном корпусе трехгранного ротора. Такая схема применялась в первых поршневых паровых машинах и дала толчок к активному проектированию и созданию роторных паровых двигателей. С роторного парового двигателя и начиналась история двигателя внутреннего сгорания роторного типа. Впервые схему классического роторно-поршневого (двигателя Ванкеля) разработали в конце 1950-х годов в немецкой фирме NSU, авторами стали Феликс Ванкель и Вальтер Фройде.

Конструкция

Давайте рассмотрим основные части РПД:

  • корпус двигателя;
  • ротор;
  • выходной вал.

Как и любой другой двигатель внутреннего сгорания, двигатель Ванкеля имеет корпус, который включает основную рабочую камеру, в нашем случае – овальной формы.

Форма камеры сгорания (овал) обусловлена применением трехгранного ротора, грани которого при соприкосновении со стенками камеры сгорания овальной формы образуют изолированные закрытые контуры. В этих изолированных контурах и происходят все такты работы РПД:

Такая компоновка позволяет обойтись без впускных и выпускных клапанов. Впускные и выпускные отверстия находятся по бокам камеры сгорания, а соединены напрямую к системе питания и системе выпуска отработанных газов.

Следующей составной частью роторного мотора является непосредственно ротор. В РПД ротор выполняет функцию поршней в обычном двигателе. Своей формой ротор похож на треугольник с закругленными наружу краями и вдающимися внутрь гранями. Закругление краев ротора необходимо для лучшего уплотнения камеры сгорания. Выборка внутри грани нужна для увеличения объема камеры сгорания, правильного горения топливно-воздушной смеси и увеличения скорости вращения ротора. Вверху каждой грани и по ее бокам находятся металлические пластины, задача которых состоит в уплотнении камеры сгорания, аналогично поршневым кольцам классического ДВС. Внутри ротора расположены зубцы, вращающие привод, который, в свою очередь, вращает выходной вал.

Классический мотор имеет коленчатый вал, в РПД его функцию выполняет выходной вал. Относительно центра выходного вала расположены выступы-кулачки в форме полукругов. Выступы-кулачки несимметричны по отношению к центру и явно смещены относительно центра оси. На каждый выступ-кулачок выходного вала приходится по своему ротору. Вращательное движение каждого ротора, передаваемое на выступ-кулачок, заставляет выходной вал вращаться вокруг своей оси, что, в свою очередь, создает крутящий момент на выходном валу.

Рабочие такты РПД

Давайте теперь более подробно рассмотрим принцип работы роторного двигателя и рабочие процессы, происходящие внутри него. Как и классический мотор, двигатель Ванкеля имеет те же такты впуска, сжатия, рабочего хода и выпуска.

Начало такта впуска происходит в момент прохода одной из вершин ротора впускного канала корпуса мотора. В этот момент в постепенно расширяющуюся камеру сгорания всасывается топливно-воздушная смесь либо просто воздух, в зависимости от компоновки системы подачи топлива. При дальнейшем вращении ротора к точке, когда вторая вершина проходит впускной канал, начинается такт сжатия топливно-воздушной смеси. Давление смеси вместе с движением ротора постепенно нарастает и достигает своего пика в момент прохождения зоны свечей зажигания. В момент воспламенения начинается такт рабочего хода ротора.

В связи с особой формой камеры сгорания, вытянутой вдоль стенки корпуса, целесообразно использовать две свечи зажигания. Использование двух свечей позволяет быстро и равномерно произвести поджиг топливно-воздушной смеси, что гарантирует быстрое, плавное и равномерное распространение фронта пламени.

Две свечи может иметь и обычный поршневой мотор, например некоторые спортивные двигатели, но в РПД использование двух свечей зажигания просто необходимо.

Образовавшееся давление газов поворачивает ротор на эксцентрике вала, что в свою очередь приводит к возникновению крутящего момента на выходном валу. При приближении к выпускному каналу вершины ротора давление в камере сгорания плавно снижается. Вращаясь по инерции, вершина ротора достигает выпускного канала, начинается такт выпуска. Выхлопные газы устремляются в выпускной канал, и как только вершина ротора достигает впускного канала, снова начинается такт впуска.

Система питания и смазка

Роторный мотор не имеет принципиальных отличий от классического ДВС в системах зажигания, топливоподачи и охлаждения. Однако система смазки имеет свои особенности. Для смазывания движущихся частей масло подается прямо в камеру сгорания через специальное отверстие, поэтому сгорает вместе с топливно-воздушной смесью как в двухтактном двигателе.
Как и любая техническая конструкция, роторный мотор обладает своими преимуществами и недостатками.

Достоинствами роторно-поршневого двигателя

  1. Обладая малым весом и габаритами, роторный мотор имеет больше возможностей для достижения правильной развески и улучшения управляемости, а так же делает автомобиль более просторным в салоне;
  2. более высокая удельная мощность по сравнению с классическими моторами;
  3. более ровная и широкая полка крутящего момента;
  4. отсутствие кривошипно-шатунного механизма, клапанов, пружин, газораспределительного механизма, а вместе с ним и распредвалов, ремня грм или цепи;
  5. хорошая сбалансированность и плавность работы РПД, которую можно сравнить с работой рядной «шестерки»;
  6. меньшая склонность к детонации;
  7. отсутствие кривошипно-шатунного механизма, а вследствие этого отсутствие необходимости преобразования возвратно-поступательного движения поршней во вращение коленчатого вала, делает РПД более оборотистым нежели обычный мотор;

Недостатки

  1. Необходимость применения эксцентрикового механизма для соединения ротора и вала увеличивает давление между трущимися деталями, что вместе с высокой температурой повышает износ двигателя. Именно поэтому выдвигаются повышенные требованию к качеству масла и периодичности его смены;
  2. быстрый износ уплотнителей ротора вследствие малой площади пятна контакта и высокому перепаду давлений. Таким образом, роторный мотор быстро теряет свой КПД, экологические показатели ухудшаются;
  3. линзовидная форма камеры сгорания гораздо хуже отдает тепло, нежели сферическая камера сгорания, что обуславливает склонность к перегреву;
  4. низкие показатели экономичности на малых и средних оборотах, по сравнению с обычным двигателем внутреннего сгорания;
  5. роторный мотор имеет очень высокие требования к обработке деталей и квалификации персонала при производстве данного типа двигателя;
  6. необходимость добавления масла во время рабочих тактов РПД обуславливает плохие экологические характеристики;

Современные реалии

В настоящее время наибольших успехов в производстве роторных двигателей добились инженеры корпорации Mazda. Последняя генерация их двигателя Ванкеля, под названием «Renesis», совершила настоящий прорыв. Им удалось не только решить главные проблемы данного типа ДВС, такие как повышенный расход топлива и токсичность, но и снизить потребление масла на 50%, тем самым доведя экологические показатели до норм Euro 4. Новое поколение РПД Mazda могут использовать в качестве топлива как бензин, так и водород, что делает этот мотор интересными и перспективными для использования в будущем.

Автомобильная индустрия постоянно развивается. Неудивительно, что появляются альтернативные технологии, которые тем мне менее редко появляются в массовом производстве. Именно к таким можно причислить роторные двигатели.

Важно! Бурный толчок в развитии автомобилестроения дало изобретение двигателя внутреннего сгорания. Как результат машины стали ездить на жидком топливе, и началась бензиновая эра.

Машины с роторным двигателем

Роторно-поршневой двигатель был изобретён компанией NSU. Создателем аппарата стал Вальтер Фройде. Тем не менее данное устройство в научных кругах носит имя другого учёного, а именно Ванкеля.

Дело в том что над этим проектом работал дуэт инженеров. Но основная роль в создании устройства принадлежала именно Фройде. В то время как он трудился над роторной технологией, Ванкель работал над другим проектом, который закончился ничем.

Тем не менее в результате подковёрных игр теперь мы все знаем этот аппарат как роторный двигатель Ванкеля. Первая рабочая модель была собрана в 1957 году. Автомобилем первоиспытателем стал NSU Spider. В то время он смог развить скорость в сто пятьдесят километров. Мощность мотора «Паука» составляла 57 л. с.

«Паук» с роторным двигателем выпускался с 1964 по 1967 год. Но массовым так и не стал. Тем не менее автопроизводители не поставили крест на этой технологии. Мало того, они выпустили ещё одну модель — NSU Ro-80, и она стала настоящим прорывом. Большую роль сыграл правильный маркетинг.

Обратите внимание на название. Уже в нём содержится указание на то, что машина оснащена роторным двигателем. Пожалуй, результатом этого успеха стала установка данных моторов, на такие известные автомобили, как:

Больше всего популярности роторные двигатели получили в стране «Восходящего солнца». Японская компания Mazda пошла на рисковый по тем временам шаг и стала производить автомобили с использованием данной технологии.

Первой ласточкой от компании «Мазда» стала машина Cosmo Sport. Нельзя сказать, что она снискала огромную популярность, но свою аудиторию она нашла. Тем не менее это был лишь первый шаг выхода роторных двигателей на японский рынок, а вскоре, и на мировой.

Японские инженеры не просто не отчаялись, а наоборот, стали работать с утроенной силой. Результатом их трудов стала серия, которую с благоговением вспоминают все уличные гонщика в любой стране мира — Rotor-eXperiment или сокращённо RX.

В рамках этой серии было выпущено несколько легендарных моделей, среди которых Mazda RX-7. Сказать, что эта машина с роторным двигателем была популярна, всё равно что промолчать. Миллионы фанатов уличных гонок начинали именно с неё. При относительно низкой цене, она имела просто невероятные технические характеристики:

Машина является настоящим произведением искусства, она легка и манёвренна, а её двигатель вызывает восхищение. При описанных выше характеристиках он имеет объём всего в 1,3 литра. В нём две секции, а рабочее напряжение 13В.


Внимание! Mazda RX-7 выпускалась с 1978 по 2002. За это время было произведено около миллиона машин с роторными двигателями.

К сожалению, последняя модель этой серии была выпущена в 2008 году. Mazda RX8 завершила легендарную линейку. Собственно на этом историю роторного двигателя в массовом производстве можно считать завершённой.

Принцип работы

Многие автомобильные эксперты считают, что конструкцию обычного поршневого аппарата нужно оставить в далёком прошлом. Тем не менее миллионам машин нужна достойная замена, может ли им стать роторный двигатель, давайте разберёмся.

Принцип работы роторного двигателя базируется на давлении, которое создаётся при сжигании топлива. Основной частью конструкции является ротор, который отвечает за создание движений нужной частоты. В результате энергия передаётся на сцепление. Ротор выталкивает её, передавая на колёса.

Ротор имеет форму треугольника. Материалом конструкции служит легированная сталь. Деталь находится в овальном корпусе, в котором, собственно, и происходит вращение, а также ряд важных для выработки энергии процессов:

  • сжатие смеси,
  • впрыск топлива,
  • создание искры,
  • подача кислорода,
  • слив отработанного сырья.

Главная особенность устройства роторного двигателя заключается в том, что ротор имеет крайне необычную схему передвижения. Результатом подобного конструкторского решения являются три полностью изолированные друг от друга ячейки.

Внимание! В каждой ячейки происходит определённый процесс.

В первую ячейку поступает воздушно-топливная смесь. В полости происходит перемешивание. Дальше ротор перемещает полученную субстанцию в следующий отсек. Именно здесь проходит сжатие и воспламенение.

В третьей ячейке удаляется использованное топливо. Слаженная работа трёх отсеков как раз и даёт ту удивительную производительность, которая была продемонстрирована на примере автомобилей из серии RX.

Но главный секрет устройства кроется совсем в другом. Дело в том, что эти процессы не возникают один за другим, они происходят моментально. Как результат всего за один оборот проходит три такта.

Выше была представлена схема работы базового роторного мотора. Многие производители стараются модернизировать технологию, чтобы добиться больше производительности. Некоторым это удаётся, другие же терпят поражение.

Японским инженерам удалось добиться успеха. Уже упомянутые выше двигатели «Мазда» имеют до трёх роторов. Во сколько в таком случае возрастёт производительность, вы можете себе представить.

Приведём наглядный пример. Возьмём обычный мотор РПД с двумя роторами и найдём ближайший аналог — шестицилиндровый двигатель внутреннего сгорания. Если же добавить в конструкцию ещё одни ротор, то разрыв будет и вовсе колоссальным — 12 цилиндров.

Виды роторных двигателей

Множество автокомпаний бралось за производство роторных двигателей. Неудивительно, что было создано много модификаций, каждая из которых имеет свои особенности:

  1. Роторный двигатель с разнонаправленным движением. Ротор здесь не вращается, а как бы качается вокруг своей оси. Процесс сжатия происходит между лопатками мотора.
  2. Пульсирующе-вращательный роторный двигатель. Внутри корпуса два ротора. Сжатие проходит между лопастями этих двух элементов, когда они сближаются и удаляются.
  3. Роторный двигатель с уплотнительной заслонкой — данная конструкция до сих пор широко задействуется в пневматических моторах. Для роторных двигателей внутреннего сгорания существенно переделывается камера, в которой проходит воспламенение.
  4. Роторный двигатель, работающий за счёт вращательных движений. Считается, что именно эта конструкция является наиболее технически совершенной. Здесь нет деталей, которые совершают возвратно-поступательные движения. Поэтому роторные двигатели такого типа легко достигают 10 000 оборотов в минуту.
  5. Планетарно-вращательный роторный двигатель — самая первая модификация, изобретённая двумя инженерами.

Как видите, наука не стоит на месте, немалое количество видов роторных моторов позволят надеяться на дальнейшее развитие технологии в отдалённом будущем.

Достоинства и недостатки роторного двигателя

Как видите, роторные моторы пользовались определённой популярностью в своё время. Мало того, действительно, легендарные машины были оснащены моторами такого класса. Чтобы понять, почему данный аппарат устанавливался на передовые модели японских машин, нужно узнать все его достоинства и недостатки.

Достоинства

С предыстории, представленной ранее, вы уже знаете, что роторный двигатель в своё время привлёк большое внимание производителей моторов, на то было несколько причин:

  1. Повышенная компактность конструкции.
  2. Малый вес.
  3. РПД хорошо сбалансирован и создаёт при работе минимум вибраций.
  4. Количество запчастей в моторе на порядок меньше, чем в поршневом аналоге.
  5. РПД обладает высокими динамическими качествами

Самое же главное достоинство РПД — высокая удельная мощность. Авто с роторным двигателем может разогнаться до 100 километров без переключения на высокие передачи при сохранении большого количества оборотов.

Важно! Использование роторного двигателя позволяет добиться повышенной устойчивости автомобиля на дороге благодаря идеальной развесовке.

Недостатки

Вот и пришло время больше узнать, почему, несмотря на все преимущества, большинство производителей перестали устанавливать роторные двигатели на свои автомобили. К недостаткам РПД причисляют:

  1. Повышенный расход топлива при работе на низких оборотах. В самых требовательных к ресурсам машинам он может достигать 20—25 литров на 100 километров пробега.
  2. Сложность в изготовлении. На первый взгляд конструкция роторного двигателя намного проще, чем у поршневого. Но дьявол кроется именно в деталях. Их изготовить крайне непросто. Геометрическая точность каждой запчасти должна быть на идеальном уровне, иначе ротор не сможет пройти эпитрохоидальную кривую с должным результатом. РПД требует при своём изготовлении высокоточное оборудование, которое стоит немалых денег.
  3. Роторный двигатель часто перегревается. Это связано с необычным строением камеры сгорания. К сожалению, даже спустя много лет инженерам не удалось исправить данный дефект. Избыток энергии, вырабатываемой при сгорании топлива нагревает цилиндр. Это сильно изнашивает мотор и сокращает срок его эксплуатации.
  4. Также роторный двигатель страдает перепадами давления. Результат подобного эффекта быстрый износ уплотнителей. Ресурс работы одного качественно собранного РПД лежит в диапазоне от 100 до 150 тысяч километров пробега. После прохождения данного рубежа без капитального ремонта уже не обойтись.
  5. Сложная процедура смены масла. Потребление роторным двигателем масла на 1000 километров составляет 600 миллилитров. Чтобы детали получали надлежащую смазку масло необходимо менять один раз на 5000 км. Если же этого не сделать, то становится крайне вероятным серьёзное повреждение ключевых узлов агрегата.

Как видите, несмотря на выдающиеся преимущества РПД имеет ряд весомых недостатков. Тем не менее конструкторские подразделения в ведущих автомобильных фирмах до сих пор пытаются модернизировать эту технологию, и кто знает, возможно, однажды, у них это получится.

Итоги

Роторные двигатели имеют множество весомых преимуществ, они хорошо сбалансированы, позволяют быстро наращивать обороты и обеспечивают набор скорости до 100 км за 4—7 секунд. Но есть у роторных моторов и недостатки, главный из которых маленький срок эксплуатации.

Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.

Немного истории

В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков — Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.

Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство роторных моторов стали сразу же приобретать одна автомобильная компания за другой.

Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. Роторный двигатель внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.

В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.

В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.


Основы устройства роторного двигателя

Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД — ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни — статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.

Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.

  • На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
  • Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
  • На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
  • При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).


Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.

Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.

Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.

Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.

Типы роторных двигателей

Древнейшие роторные двигатели — это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:

  • герметично закрыта;
  • постоянно контактировать с внешней средой.


Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация роторных моторов следующая.

  1. Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
  2. Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
  3. Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
  4. Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
  5. Двигатели с ротором, совершающим планетарное движение.

Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. Двигатель Ванкеля относится к пятому пункту из представленного выше списка.

Преимущества РПД

Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.

РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.

Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.


Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.

Высокий расход топлива РПД

Устройство и принцип работы роторного двигателя на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.

Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.

В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.

Другие важные недостатки

Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.


В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.

Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.

Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.

В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.


На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.

Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.

Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс. км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.

Роторно-поршневые двигатели Мазды

В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.

Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.

С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.

На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.

В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.

Главное отличие внутреннего устройства и принципа работы роторного двигателя от ДВС заключается в полном отсутствии двигательной активности, при этом удается добиться высоких оборотов работы мотора. У роторного двигателя или иначе двигателя Ванкеля, есть и ряд других преимуществ, их мы и рассмотрим подробнее.

Общий принцип устройства роторного двигателя

РПД облачен в овальный корпус для оптимального размещения ротора, имеющего треугольную форму. Отличительная особенность ротора в отсутствии шатунов и валов, что значительно упрощает конструкцию. По сути, ключевыми деталями РД являются ротор и статор. Основная двигательная функция в таком типе мотора осуществляется за счет движения ротора, расположенного внутри корпуса, имеющего схожесть с овалом.

Принцип действия основан на высокоскоростном движении ротора по окружности, в результате создаются полости для запуска устройства.

Почему роторные двигатели не пользуются спросом?

Парадокс роторного двигателя заключается в том, что при всей простоте конструкции он не столь востребован, как двигатель внутреннего сгорания, имеющий весьма сложные конструктивные особенности и сложности при осуществлении ремонтных работ.

Разумеется, роторный двигатель не лишен недостатков, иначе он бы нашел широкое применение в современном автопроме, а возможно мы бы и не узнали про существование ДВС, ведь роторный был сконструирован значительно раньше. Так зачем же так усложнять конструкцию, попытаемся разобраться.

Явными недочетами роторного мотора можно считать отсутствие надежной герметизации в камере сгорания. Это легко объяснить конструктивными особенностями и условиями работы мотора. В ходе интенсивного трения ротора со стенками цилиндра происходит неравномерный нагрев корпуса и, как следствие, металл корпуса расширяется от нагрева лишь частично, что и приводит к выраженным нарушениям герметизации корпуса.

Для усиления герметичных свойств, особенно при условии выраженной разницы температурных режимов между камерой и системой впуска или выпуска, сам цилиндр изготавливают из разных металлов и размещают их в разных частях цилиндра, для улучшения герметичности.

Для запуска мотора используют всего две свечи, это связано с конструктивными особенностями мотора, позволяющими выдавать на 20% больше КПД, в сравнении с двигателем внутреннего сгорания, за одинаковый промежуток времени.

Роторный двигатель Желтышева — принцип работы:

Преимущества роторного двигателя

При малых габаритах он способен развивать высокую скорость, однако есть в этом нюансе и большой минус. Несмотря на малые габариты, именно роторный двигатель потребляет огромное количество горючего, а вот ресурс работы мотора составляет всего 65 000 км. Так, двигатель всего в 1,3 л потребляет до 20 л. топлива на 100 км. Возможно, это и стало основной причиной отсутствия популярности данного вида моторов для массового потребления.

Цена на бензин во все времена считается актуальной проблемой человечества, учитывая, что мировые запасы нефти расположены на Ближнем востоке, в зоне постоянных боевых конфликтов, цены на бензин остаются достаточно высокими, и в ближайшей перспективе нет тенденций для их снижения. Это приводит к поиску решений по минимальному потреблению ресурсов не в ущерб мощности, в чем и заключается главный довод в пользу ДВС.

Все это в совокупности определило положение роторных двигателей, как подходящий вариант для спорткаров. Однако известный по всему миру производитель авто «Мазда», продолжил дело изобретателя Ванкеля. Японские инженеры всегда стараются извлекать из невостребованных моделей максимум пользы путем модернизации и применения инновационных технологий, что позволяет сохранять лидирующие позиции на мировом автомобильном рынке.

Принцип работы роторного двигателя Ахриевых на видео:

Новая модель «Мазда», оснащенная роторным двигателем, по мощности не уступает передовым немецким моделям, выдавая до 350 лошадиных сил. При этом расход топлива был несравнимо высоким. Инженерам-конструкторам «Мазда» пришлось уменьшить мощность до 200 лошадиных сил, что позволило нормализовать потребление топлива, однако компактные размеры двигателя позволили наделить авто дополнительными преимуществами и составить достойную конкуренцию европейским моделям авто.

В нашей стране роторные двигатели не прижились. Были попытки установить их на транспорт специализированных служб, но этот проект не был профинансирован в должном объеме. Поэтому все успешные разработки в данном направлении принадлежат японским инженерам из компании «Мазда», намеренной в ближайшее время показать новую модель авто с модернизированным двигателем.

Как работает роторный мотор Ванкеля на видео

Принцип работы роторного двигателя

РПД работает за счет вращения ротора, так идет передача мощности на коробку передач через сцепление. Преобразующий момент заключается в передаче энергии топлива колесам за счет вращения ротора, изготовленного из легированной стали.

Механизм работы роторного-поршневого двигателя:

  • сжатие горючего;
  • впрыск топлива;
  • обогащение кислородом;
  • горение смеси;
  • выпуск продуктов сгорания топлива.

Как работает роторный двигатель показано на видео:

Ротор закреплен на специальном устройстве, при вращении он образует независимые друг от друга полости. В первой камере происходит наполнение воздушно-топливной смесью. В дальнейшем она тщательно перемешивается.

Затем смесь переходит в другую камеру, где происходит сжатие и воспламенение, благодаря наличию двух свечей. В дальнейшем смесь перемещается в следующую камеру, из нее вытесняются части переработанного топлива, которые выходят из системы.

Так происходит полный цикл работы роторного-поршневого двигателя, основанного на трех тактах работы за всего лишь один оборот ротора. Именно японским разработчикам удалось существенно модернизировать роторный двигатель и установить в нем сразу три ротора, что позволяет значительно увеличить мощность.

Принцип работы роторного двигателя Зуева:

На сегодня, усовершенствованный двухроторный двигатель сравним с двигателем внутреннего сгорания с шестью цилиндрами, а трехроторный по мощности не уступает 12-ти цилиндровому двигателю внутреннего сгорания.

Не стоит забывать и про компактный размер двигателя и простоту устройства, позволяющую при необходимости осуществлять ремонт или полную замену основных агрегатов мотора. Таким образом, инженерам компании «Мазда» удалось подарить вторую жизнь этого простого и производительного устройства.

Роторный двигатель представляет собой двигатель внутреннего сгорания, устройство которого в корне отличается от обычного поршневого двигателя.
В поршневом двигателе в одном и том же объеме пространства (цилиндре) выполняются четыре такта: впуск, сжатие, рабочий ход и выпуск. Роторный двигатель осуществляет те же такты, но все они происходят в различных частях камеры. Это можно сравнить с наличием отдельного цилиндра для каждого такта, причем поршень постепенно перемещается от одного цилиндра к другому.

Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

В этой статье мы расскажем о том, как работает роторный двигатель. Для начала рассмотрим принцип его работы.

Принцип работы роторного двигателя

Ротор и корпус роторного двигателя Mazda RX-7. Эти детали заменяют поршни, цилиндры, клапаны и распредвал поршневого двигателя.

Как и поршневой, роторный двигатель использует давление, которое создается при сгорании топливовоздушной смеси. В поршневых двигателях, это давление создается в цилиндрах, и приводит поршни в движение. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания образуется в камере, сформированной частью корпуса, закрытой стороной треугольного ротора, который используется вместо поршней.

Ротор вращается по траектории, напоминающую линию, нарисованную спирографом. Благодаря такой траектории, все три вершины ротора контактируют с корпусом, образуя три разделенных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Это обеспечивает поступление топливовоздушной смеси в двигатель, сжатие, полезную работу при расширении газов и выпуск выхлопа.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей с роторным двигателем. RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторным двигателем, начиная с Cosmo Sport 1967 года. Однако RX-7 не производится с 1995 года, но идея роторного двигателя не умерла.

Mazda RX-8 оснащена роторным двигателем под названием RENESIS. Этот двигатель был назван лучшим двигателем 2003 г. Он является атмосферным двухроторным и производит 250 л.с.

Строение роторного двигателя

Роторный двигатель имеет систему зажигания и систему впрыска топлива, схожие с используемыми в поршневых двигателях. Строение роторного двигателя в корне отличается от поршневого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых выполняет роль поршня. Каждая сторона ротора имеет углубление, что повышает скорость вращения ротора, предоставляя больше пространства для топливовоздушной смеси.

На вершине каждой грани расположена металлическая пластина, которая разделяет пространство на камеры. Два металлических кольца на каждой стороне ротора формируют стенки этих камер.

В центре ротора расположено зубчатое колесо с внутренним расположением зубьев. Оно сопрягается с шестерней, закрепленной на корпусе. Такое сопряжение задает траекторию и направление вращения ротора в корпусе.

Корпус (статор)

Корпус имеет овальную форму (форму эпитрохоиды, если быть точным). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три изолированных объемах газа.

В каждой части корпуса происходит один из процессов внутреннего сгорания. Пространство корпуса разделено для четырех тактов:

  • Впуск
  • Сжатие
  • Рабочий такт
  • Выпуск
Порты впуска и выпуска расположены в корпусе. В портах отсутствуют клапаны. Выпускной порт непосредственно соединен с выхлопной системой, а впускной порт — с дросселем.

Выходной вал

Выходной вал (обратите внимание на эксцентриковые кулачки)

Выходной вал имеет закругленные выступы-кулачки, расположенные эксцентрично, т.е. смещены относительно центральной оси. Каждый ротор сопряжен с одним из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. При вращении ротор толкает кулачки. Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Сбор роторного двигателя

Роторный двигатель собирается слоями. Двухроторный двигатель состоит из пяти слоев, удерживаемых длинными болтами, установленными по кругу. Охлаждающая жидкость проходит через все части конструкции.

Два крайних слоя имеют уплотнения и подшипники для выходного вала. Они также изолируют две части корпуса, в которых расположены роторы. Внутренние поверхности этих частей являются гладкими, что обеспечивает надлежащее уплотнение роторов. Впускной порт подачи расположен в каждой из крайних частей.

Часть корпуса, в которой расположен ротор (обратите внимание на расположение выпускного порта)

Следующий слой включает корпус ротора овальной формы и выпускной порт. В этой части корпуса установлен ротор.

Центральная часть включает два впускных порта — по одному для каждого ротора. Она также разделяет роторы, поэтому ее внутренняя поверхность является гладкой.

В центре каждого ротора расположено зубчатое колесо с внутренним расположением зубьев, которое вращается вокруг меньшей шестерни, установленной на корпусе двигателя. Она определяет траекторию вращения ротора.

Мощность роторного двигателя

В центральной части расположен впускной порт для каждого ротора

Как и поршневые двигатели, в роторном двигателе внутреннего сгорания используется четырехтактный цикл. Но в роторном двигателе такой цикл осуществляется иначе.

За один полный оборот ротора эксцентриковый вал выполняет три оборота.

Основным элементом роторного двигателя является ротор. Он выступает в роли поршней в обычном поршневом двигателе. Ротор установлен на большом круглом кулачке выходного вала. Кулачок смещен относительно центральной оси вала и выступает в роли коленчатой рукояти, позволяя ротору вращать вал. Вращаясь внутри корпуса, ротор толкает кулачок по окружности, поворачивая его три раза за один полный оборот ротора.

Размер камер, образованных ротором, изменяется при его вращении. Такое изменение размера обеспечивает насосное действие. Далее мы рассмотрим каждый из четырех тактов роторного двигателя.

Впуск

Такт впуска начинается при прохождении вершины ротора через впускной порт. В момент прохождения вершины через впускной порт, объем камеры приближен к минимальному. Далее объем камеры увеличивается, и происходит всасывание топливовоздушной смеси.

При дальнейшем повороте ротора, камера изолируется, и начинается такт сжатия.

Сжатие

При дальнейшем вращении ротора, объем камеры уменьшается, и происходит сжатие топливовоздушной смеси. При прохождении ротора через свечи зажигания, объем камеры приближен к минимальному. В этот момент происходит воспламенение.

Рабочий такт

Во многих роторных двигателях установлено две свечи зажигания. Камера сгорания имеет достаточно большой объем, поэтому при наличии одной свечи, воспламенение происходило бы медленнее. При воспламенении топливовоздушной смеси образуется давление, приводящее ротор в движение.

Давление сгорания вращает ротор в сторону увеличения объема камеры. Газы сгорания продолжают расширяться, вращая ротор и создавая мощность до момента прохождения вершины ротора через выпускной порт.

Выпуск

При прохождении ротора через выпускной порт, газы сгорания под высоким давлением выходят в выхлопную систему. При дальнейшем вращении ротора, объем камеры уменьшается, выталкивая оставшиеся выхлопные газы в выпускной порт. К тому моменту, как объем камеры приближается к минимальному, вершина ротора проходит через впускной порт, и цикл повторяется.

Необходимо отметить, что каждая из трех сторон ротора всегда вовлечена в один из тактов цикла, т.е. за один полный оборот ротора осуществляется три рабочих такта. За один полный оборот ротора, выходной вал совершает три оборота, т.к. на один оборот вала приходится один такт.

Различия и проблемы

По сравнению с поршневым двигателем, роторный двигатель имеет определенные отличия.

Меньше движущихся деталей

В отличие от поршневого двигателя, в роторном двигателе используется меньше движущихся деталей. Двухроторный двигатель включает три движущиеся детали: два ротора и выходной вал. Даже в простейшем четырехцилиндровом двигателе используется не менее 40 движущихся деталей, включая поршни, шатуны, распредвал, клапаны, клапанные пружины, коромысла, ремень ГРМ и коленвал.

Благодаря уменьшению количества движущихся деталей, повышается надежность роторного двигателя. По этой причине некоторые производители вместо поршневых двигателей используют роторные на своих воздушных судах.

Плавная работа

Все части роторного двигателя вращаются непрерывно в одном направлении, а не постоянно меняют направление движения, как поршни в обычном двигателе. В роторных двигателях используются сбалансированные вращающиеся противовесы, предназначенные для гашения вибраций.

Подача мощности также обеспечивается более плавно. В связи с тем, что каждый такт цикла протекает за поворот ротора на 90 градусов, и выходной вал совершает три оборота на каждый оборот ротора, каждый такт цикла протекает за поворот выходного вала на 270 градусов. Это значит, что двигатель с одним ротором обеспечивает подачу мощности при 3/4 оборота выходного вала. В одноцилиндровом поршневом двигателе, процесс сгорания происходит на 180 градусах каждого второго оборота, т.е. 1/4 каждого оборота коленвала (выходной вал поршневого двигателя).

Медленная работа

В связи с тем, что ротор вращается со скоростью, равной 1/3 скорости вращения выходного вала, основные движущиеся детали роторного двигателя движутся медленнее, чем детали в поршневом двигателе. Благодаря этому, также обеспечивается надежность.

Проблемы

Роторные двигатели имеют ряд проблем:
  • Сложное производство в соответствии с нормами состава выбросов.
  • Затраты на производство роторных двигателей выше по сравнению с поршневыми, так как количество производимых роторных двигателей меньше.
  • Расход топлива у автомобилей с роторным двигателей выше по сравнению с поршневыми двигателями, в связи с тем, что термодинамический КПД снижен из-за большого объема камеры сгорания и низкого коэффициента сжатия.

Проходной роторный поршневой двигатель

В основном это легковые автомобили, катера и значительная часть грузового парка находящегося в индивидуальном пользовании. Сегодня человек в своей деятельности должен использовать сотни лошадиных сил, чтобы оперативно решать возникающие проблемы. Однако бурный рост потребления энергетических мощностей индивидуального пользования требует высокого качества применяемых преобразователей энергии, поскольку их работа связано с нагрузкой на окружающую среду.

Поршневые ДВС часто уже не справляются с современными требованиями, которые предъявляются к тепловым преобразователям индивидуального пользования. В поисках замены поршневого ДВС изобретатели все чаще обращаются к роторным машинам.

Однако из всех автомобильных фирм только Мазда решилась поставить на поток роторный двигатель Ванкеля. Он по масса-габаритным характеристикам значительно превосходит поршневые двигатели, имеет меньше деталей. Однако его широкое использование сдерживается рядом существенных причин. К главным из них можно отнести малый ресурс двигателя, которого от силы хватает на 100 000 км пробега. 

Попытки решить проблему долговечности двигателя пока успеха не имеет. Однако основные технические характеристики, которые позволяет роторное исполнение теплового преобразователя, близки к характеристикам турбореактивной техники, но при этом обладают экономичностью поршневого двигателя, что заставляет постоянно искать пути совершенствования РПД. Как известно, РПД Ванкеля состоит из корпуса, в котором вершины треугольного ротора совершают эпитрохоидную траекторию, обеспечивая необходимые замкнутые полости переменного объема для сжатия рабочего тела, подвода тепловой энергии и ее преобразования в энергию вращающегося вала. Анализируя работу двигателя Ванкеля, можно заметить, что вершины треугольного ротора совершают свою траекторию под воздействием, линии эпитрохоиды корпуса в отличие от ДВС, где смена направления движения поршня определяет коленчатый вал.

Массивный ротор в свою очередь имя большую скорость оказывает значительное сопротивление на сложных поворотах линии эпитрохоиды и, несмотря на обильную смазку, быстро изнашивает трущиеся детали двигателя. Помимо этого, вершины ротора, имеющие малую контактную поверхность, под разными углами скользят по трущейся поверхности корпуса, что ведет к еще большей скорости разрушения уплотнений. К сожалению, линия эпитрохоиды совместно с эксцентриковым механизмом является конструктивной особенностью роторного поршневого двигателя Ванкеля, и на сегодняшний день схема Ванкеля — лучшее решение для РПД, несмотря на низкий ресурс двигателя. Однако можно признать, что дальнейшее улучшение характеристик двигателя Ванкеля лежит на пути применения еще более дорогостоящих материалов при незначительной эффективности.

Другое решение создания замкнутых полостей переменного объема, в полной мере использующая все преимуществ роторно-поршневого механизма можно найти путем установки плотной разделительной стенки в радиальной плоскости цилиндрического корпуса, которая откроется в нужный момент и пропустит рабочую часть ротора в точку начала цикла. В этом случае ротор жестко связан с выходным валом, определяющим траекторию движения ротора без возвратно поступательной составляющей. Трение вращающегося ротора по цилиндрическому корпусу позволит создать большую площадь контакта трущихся поверхностей с неизменным углом касания. В итоге трущиеся поверхности не испытывают паразитное давление, параллельно с этим значительно улучшается уплотнение за счет увеличения поверхности контакта и снижается вибрация двигателя.

Единственным относительно сложным узлом двигателя, который требует технической проработки и испытания является уплотнительная стенка пропускающая зуб ротора после завершения цикла. Реализовать ее можно, установив на пути ротора дополнительный синхронно вращающийся цилиндр, охваченный корпусом. Он работает как вращающаяся часть подшипника скольжения, имеющего паз, который развернувшись, пропускает зуб ротора, словно через турникет. Работа пропускного цилиндра при совершении рабочего цикла заключается только в создании надежного уплотнения между камерами.

Эти уплотнения обеспечиваются в двух направлениях цилиндра. Одно уплотнение проходит по линии скольжения цилиндра в корпусе с характеристиками подшипника скольжения, где уплотнительная способность цилиндра сомнений не вызывает. На втором направлении уплотнения цилиндр катится по поверхности малого радиуса ротора. Это наиболее сложный участок уплотнения с характеристиками подобному роликовому или игольчатому подшипнику, который и является основой работы над пропускным РПД. Представляется, что с технической части на пути к созданию перспективного роторного двигателя свободного от недостатков РПД Ванкеля стоит лишь вопрос уплотнения между катящимися цилиндрами. Переход же зуба через паз цилиндра происходит в технологическое время при отсутствии давления между камерами. Схема боковых уплотнений успешно решается в РПД Ванкеля, и ее можно позаимствовать.

Вторым отличием проходного РПД является компоновка функциональных узлов двигателя по схеме газотурбинного двигателя. Выделение компрессора камеры сгорания и преобразователя в отдельные конструктивные узлы может значительно улучшить экологические показатели выхлопных газов, поскольку топливо будет сгорать в специально приспособленной камере, где легко можно поддерживать расход температуру и давление рабочего тела.

Учитывая разные условия работы компрессора и преобразователя, появится возможность оптимизации узлов под конкретную задачу сжатия воздуха или преобразования энергии полученного горячего газа.

Сергей ДЖАНШИЕВ,
Станислав ПОНЯТОВСКИЙ

Технологии


Полезно знать. Роторно-поршневой двигатель Феликса Ванкеля


Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Как самому полировать фары автомобиля?

Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Роторно-волновой двигатель в сравнении с лопаточными и поршневыми машинами:

ДВСГТУРоторно-волновой двигатель
Полный цикл рабочего тела осуществляется в одном цилиндре (вспомогательные такты заставляют конструировать органы газораспределения)Процессы цикла распределены между отдельными агрегатами (отсутствие органов газораспределения)Процессы цикла распределены между отдельными агрегатами (отсутствие органов газораспределения)
Высокое давление и температура сгорания топливо-воздушной смесиНизкое давление и температура сгорания топливо-воздушной смесиВысокое давление и температура сгорания топливо-воздушной смеси
Оптимальная работа при а (коэфф. избытка воздуха), близких к 1.Оптимальная работа с а от 3+5 и вышеОптимальная работа при а , близких к 1
‘Хорошая экономичностьНизкая экономичностьВысокая экономичность
Оптимальный диапазон реализуемых мощностей от 0,1 до 1000 кВтОптимальная мощность от 1000 до 100000 кВтОптимальная мощность от 1 до 100000 кВт
Каждый тип объемной машины работает на своем сорте топливаПотребляет любой вид жидкого или газообразного топливаПотребляет любое жидкое, газообразное, твердое распыленное топливо
Двигатель работает с охлаждениемДвигатель работает без охлажденияДвигатель работает без охлаждения
Работа сопровождается неполным расширением отработанных газовПолное расширение отработанных газовПолное расширение отработанных газов
Эффективное глушение выхлопаНеэффективное глушение выхлопаОтсутствие необходимости глушениявьшюпа
Высокий вес силовой установки: 1+20 кг/кВтНизкий вес силовой установки: до 0,1 кг/кВтВес силовой установки в пределах 0,1+0,25 кг/кВт
При движении звеньев механизма в цепи присутствуют «мертвые точки». Для их преодоления устанавливается маховикОтсутствие «мертвых точек» при движении механизмаОтсутствие «мертвых точек» при движении механизма
Неполное уравновешивание инерционных сил и их моментовНеуравновешенных сил и моментов не возникаетПолное уравновешивание инерционных сил, или вообще неуравновешенных сил не возникает
Большие потери на трение (15+20%)Низкие потери на трение (2+4%)Низкие потери на трение (3+6%)
Выбраны резервы роста эффективного КПДВыбраны резервы роста эффективного КПДСуществует тенденция роста эффективного кпд

Принцип работы роторного двигателя

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!


Роторный двигатель в разрезе


Ротор роторного двигателя


Камера роторного двигателя

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень. Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа. В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.


Выходной вал роторного двигателя

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Как самостоятельно полировать автомобиль?

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Конструктивные особенности роторного мотора

Хотя роторный мотор конструктивно имеет меньше деталей, его принцип работы несколько сложнее. Также в устройстве роторного двигателя применены элементы из разных материалов (чугун, алюминий). Еще имеются особые покрытия (например, хром).

Статоры (корпусы роторов) имеют металлические вставки из особой стали, интегрированные в алюминиевый корпус. На деле, статор больше похож на цилиндр с хонингованной гильзой. В свою очередь, боковые корпусы выполнены из чугуна, в них сделаны впускные и выпускные окна. На крайних статорах крепятся шестерни.

Сам ротор является поршнем и шатуном, сделан из облегченного чугуна. Н каждой стороне ротора есть камера сгорания и уплотнители для сохранения герметичности. Во внутренней части ротора стоит роторный подшипник, напоминающий вкладыш коленвала.

  • На обычном поршне традиционного ДВС поршень имеет 3 кольца – пара компрессионных и маслосъемное кольцо. В свою очередь, ротор имеет апексы (уплотнители вершин ротора). Апексы играют роль компрессионных колец. Указанные элементы прижимаются к стенке статора пружиной, а также они прижаты за счет центробежной силы.

Функцию второго пояса компрессионных колец выполняют боковые, а также угловые уплотнения. Они тоже прижимаются пружинами. Эти боковые уплотнители выполнены из металлокерамики, в то же время угловые уплотнители чугунные. Дополнительно имеются уплотнения для изоляции, чтобы отработавшие газы не попадали во впускные окна через зазоры, которые образуются между самим ротором и боковым корпусом соответственно.

Еще с двух сторон ротора имеются особые масляные уплотнения (по аналогии с маслосъемными кольцами), которые удерживают масло, поступающее во внутреннюю полость ротора для охлаждения.

Кстати, система смазки роторного ДВС сложная, включает в себя радиатор охлаждения масла, а также целую группу из нескольких типов масляных форсунок. Форсунки интегрированы в эксцентриковый вал для охлаждения роторов, также они установлены в статоры.

Еще масло подается и в рабочую полость, смешиваясь с горючей смесью и выгорая вместе с топливным зарядом. На деле, роторный мотор весьма требователен к качеству масла. Если заливать неподходящую смазку, агрегат коксуется, возникает детонация и т.д.

Также добавим, что система питания простая, есть несколько форсунок (пара форсунок перед впускными окнами, а также во впускном коллекторе). Что касается зажигания, использованы две свечи на один ротор. Это сделано по причине того, что камеры сгорания сами по себе получились длинными. В результате, чтобы добиться равномерного и полноценного сгорания смеси, используют две свечи, причем их электроды отличаются. При замене свечей важно обращать на это внимание.

Преимущества роторного двигателя

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-х цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-х цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Малые габариты + высокая мощность

Компактность системы вместе с высоким КПД (сравнительно с обычным ДВС) позволяет из миниатюрного 1,3-литрового мотора выдавать порядка 200-250 л.с. Правда, вместе с главным недостатком конструкции в виде высокого расхода топлива.

Недостатки роторных моторов

Самые главные проблемы при производстве роторных двигателей:

  • Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
  • Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
  • Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
  • Роторные двигатели в силу конструкции ограничены в ресурсе — в среднем это порядка 60-80 тыс. км

Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.

Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.

Антикоррозийная обработка кузова своими руками

Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л.с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.

Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб, однако проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.

Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.

Подведем итоги

С учетом приведенной выше информации становится понятно, почему роторный двигатель не получил широкого распространения даже с учетом целого ряда преимуществ. Прежде всего, небольшой ресурс, необходимость частого и затратного облуживания, а также сложность ремонта РПД являются серьезными недостатками силовых установок данного типа.

Рекомендуем также прочитать статью о том, что такое двигатель на водороде. Из этой статьи вы узнаете, какие особенности имеет водородный двигатель, а также какие перспективы имеет двигатель на водороде.

По этой причине следует отдельно изучить все нюансы, рассмотренные выше, особенно если к покупке рассматривается автомобиль с роторным двигателем. Например, Мазда RX-8 на вторичном рынке может показаться отличным вариантом, так как данные авто продаются по привлекательной цене на фоне конкурентов с аналогичными характеристиками.

Однако на практике такой автомобиль может требовать замены или серьезного и дорогостоящего ремонта силового агрегата. Более того, даже если с двигателем все в порядке, не стоит рассчитывать на большой ресурс, а также потенциальным владельцам следует готовиться к более высоким расходам на плановое обслуживание роторного двигателя по сравнению с форсированными поршневыми ДВС (как атмосферными, так и с наддувом).

Где применяют роторно-поршневые двигатели?

Изначально, разработка роторно-поршневых двигателей велась для спортивных автомобилей. Ведь для гоночных автомобилей не столь важен большой ресурс, так как ремонт поршневых двигателей тоже требовался и после первого заезда.

В серийном производстве РПД устанавливался на автомобили немецкого производства. Это был седан представительского класса NSU Ro 80. Автомобиль для своего времени был достаточно современным, так как имел привлекательный дизайн и хорошие аэродинамические свойства. Однако, ввиду серьезных недостатков роторно-поршневых двигателей, связанных со слишком частым техническим обслуживанием, получил отрицательную оценку, в связи с чем, стал оснащаться обычными поршневыми двигателями. Это связано с тем, что двигатель приходил в негодность уже после 50 тысяч километров, что являлось малоэкономичным показателем.

В настоящее время роторно-поршневые двигатели изготавливают только два завода в мире – это ВАЗ (Россия) и Mazda (Япония).

Mazda может вернуть в серию роторный мотор уже в ближайшие годы

A CENTURY OF DEFYING CONVENTION: MAZDA 1920-2020
Mazda RX-7: Redefining rotary-powered driving fun
Leverkusen, 06/04/2020

The joy of driving, lightweight design and the rotary engine: three elements that define Mazda’s DNA – and continue to fascinate the team at the Hiroshima-based carmaker. One Mazda stands out from all the rest for giving all these elements a new level of meaning, cementing the compact rotary engined sports car in the minds of driving enthusiasts in Europe and around the world.

That model? The Mazda RX-7. Launched in 1978, Mazda’s first mass-market sports car would go on to become the best-selling rotary powered vehicle in history. And it also propelled the brand’s success on the race track to unprecedented levels.

The distinctive howl of the RX-7’s twin-rotor powerplant rocked race tracks in Europe and beyond from the beginning, winning the British Saloon Car Championship’s 1,600-2,300cm3 class in 1980 and 1981 and demonstrating its reliability by capturing the chequered flag at the 24 Hours of Spa, also in 1981. It was a golden age elsewhere, too. In the US, the RX-7 won over 100 IMSA races, more than any other model of any brand, dominating the GTU class (under 2,500cm3 ) including the 24 Hours of Daytona for an unparalleled 12 consecutive years (from 1982-93). The RX-7 also proved itself in the Australian Endurance Championship, winning from1982 through 1984, as well as that country’s Bathurst 12 Hour (champion 1992-95).

 

Proven on the raceway

This extensive experience gained racing the RX-7 would flow into the 710PS four-rotor Mazda 787B, which shocked the piston-powered racing establishment in 1991 by driving to victory at the illustrious 24 Hours of Le Mans. It remains the only winning car without a piston engine, and unquestionably one of the greatest moments in the history of rotary power.

The achievement is all the more astounding considering that the future of the rotary engine was in jeopardy when Mazda began developing the RX-7. The carmaker had offered rotaries in most of its models until the oil crisis of 1973-74, when skyrocketing fuel prices pushed the peppy but thirsty powerplants out of favour with consumers. Mazda decided to drop the engines for most of its sedans, hatchbacks and wagons, and might have abandoned them entirely – as had every other carmaker. But then-head of R&D Kenichi Yamamoto resisted, arguing how crucial a differentiator the rotary was for the company.

Yamamoto, who led the team of engineers that developed Mazda’s first rotary engines in the 1960s, set out to overhaul the existing 12A engine and significantly improve fuel economy. Among other things, his team added more durable apex seals – a problem spot – and improved lubrication. They then helped design the ideal vehicle for it. Small and light yet smooth running, powerful and rev-happy, the rotary was perfect for a sports car. And the RX-7, a sleek, low-slung coupe with a wedge-shaped nose and wraparound window on the rear hatch, was built specifically for this engine.

 

Creating a rotary icon

The first RX-7 generation (“FB” platform), which went on sale in Japan in 1978 before arriving in Europe the following year, was an immediate sensation. With a kerb weight of just over 1 tonne, the 12A’s 100-135PS (depending on market) went a long way in terms of performance. The front mid-engine layout – the compact engine sat behind the front axle – driving the rear wheels with near-perfect weight distribution also delivered amazing handling. The aerodynamic RX-7 punched well above its price class and was tremendously fun to drive, delivering a special connection between the driver and car. The 1,146cm3 twin-rotor 12A was later joined by 160PS turbo version for Japan, while North America got a slightly larger 13B powerplant with fuel injection.

The second-generation RX-7 (“FC”) introduced in 1985 featured a Porsche-inspired design and a number of performance improvements such as Mazda’s DTSS (Dynamic Tracking Suspension System) and turbocharging. Forced induction, it turns out, is very well suited to rotary engines thanks to their exhaust flow characteristics, and quite effective for boosting mid-range torque. The 1.3-litre 13B was standard for all markets now, and although the RX-7 would be offered in Europe initially with a naturally aspirated 150PS engine, 180PS and later 200PS twin-scroll turbo versions would follow. The higher-powered model could achieve a 6sec 0-100km/h time and a top speed of 240km/h.

The third and final generation (“FD”) that arrived in 1992 was a genuine performance car. A new sequential twin turbocharger boosted output from the latest 13B engine to 239PS on the European version. Said by fans to be the best handling of all RX-7s, the 5.3sec 0-100km/h sprint and 250km/h top speed (limited) put the 1,300kg two-seater in a league with high-end sports cars – fitting for the brand that had just won at Le Mans. Unfortunately, the RX-7 was discontinued in most of Europe by 1996 due to emissions regulations, although Mazda continued to produce cars for right-hand drive markets, eventually boosting power output on later Japan-only models to as high as 280PS.

 

Smashing record after record

The year 2002 marked the end of one of the most exceptional sports cars in history. A total of 811,634 were produced between 1978 and 2002, by far the most of any rotary model. Along the way, modified versions of each generation set land speed records in their class at the Bonneville Salt Flats in the US in 1978 (FB, 296km/h), 1986 (FC, 383.7km/h) and 1995 (FD, 389km/h).

The RX-7 spirit lives on. In the Mazda RX-8, which followed in 2003, and by laying the foundation for many engineering innovations to come. Among these were hydrogen-powered rotary Mazdas like the RX-8 Hydrogen RE, which ran on either h3 or petrol, and the Mazda Premacy Hydrogen RE Hybrid, an MPV featuring an electric drive motor and a dual-fuel rotary. Later, the company developed a prototype Mazda2 EV with a small single-rotor engine used as a range extender. A similar system could find its way onto the Mazda MX-30, a brand new battery electric crossover SUV arriving at dealerships this year.

Particularly among enthusiasts, the RX-7 remains the icon of rotary powered sports cars and indeed rotary production cars. Mazda made great leaps with the RX-7 in terms of lightweight engineering, sporty design and driving fun, expertise it has applied to and evolved for every current Mazda model. The vehicle that perhaps best embodies Mazda’s reputation for and dedication to the unconventional, the RX-7 continues to influence designers and engineers working on the Mazdas of tomorrow.

Схема, показывающая циклы роторного двигателя [45].

Контекст 1

… Однако дизайн будущих, современных, эффективных и экологически безопасных транспортных средств потребует, помимо прочего, значительных улучшений в системах трансмиссии. Чтобы определить текущее состояние технологий и то, как легковая автомобильная промышленность использует инновации для продвижения энергоэффективных и экологически чистых решений, а также какие будущие тенденции можно выделить из текущих событий и направлений исследований в отрасли, в этой статье представлен общий обзор соответствующая рецензируемая и научная литература, за которой следует резюме исследования и важные выводы в заключении.Тем не менее, объем предмета данной статьи обширен, а длина обзора ограничена. Таким образом, простого обзора определенных тем в области энергетики и окружающей среды, применимых к автомобильной промышленности, должно быть достаточно, включая ограниченные цитаты, чтобы читатель мог глубже понять их. По общему признанию, выбор покрытия субъективен. Однако повсюду особое внимание уделяется возможностям для исследований и разработок (НИОКР). В конце 19 века инновации в технологиях ДВС открывали новые возможности для применения этого нового источника энергии способами, которые могли помочь перемещать людей и материалы.К концу года двигатель внутреннего сгорания стал наиболее многообещающей новой технологией для обеспечения более легкой транспортировки, а также таких способов транспортировки, как воздушный полет, которые в противном случае были бы невозможны [1]. Эффективность ранних разработок была более важна для повышения производительности, чем для экономии топлива [2], но в этот период произошли некоторые важные разработки, которые будут иметь важные последствия для будущих направлений в более эффективных конструкциях и эксплуатации двигателей [3].Эффективность современных ДВС измеряется удельным расходом топлива на тормоз (BSFC). Экономия топлива двигателя обычно выражается как BSFC, отношение массы топлива, потребляемого на единицу механической работы, производимой валом двигателя. Относительные значения BSFC включают конкретные условия эксплуатации, которым подвергается двигатель. В течение только что завершившегося десятилетия наиболее экономичный (то есть минимальный) BSFC составлял около 0,27 кг / кВтч для бензинового двигателя SI, в то время как для дизельных двигателей CI он был ниже, около 0.20 кг / кВтч [4]. Двигатели внутреннего сгорания также сделают другие повороты в эволюции, которые повлияют на BSFC, включая стандартный поршневой двигатель, а также инновационный, но требовательный к топливу роторный двигатель, которые будут обсуждаться позже. В середине 19 века был разработан ряд так называемых свободнопоршневых атмосферных двигателей на основе принципа, впервые продемонстрированного швейцарским инженером Исааком де Ривазом в 1827 году [5]. В этих ранних моделях использовался поршень, который был прикреплен к длинной зубчатой ​​рейке, которая перемещалась снизу под действием силы расширения газа в результате горения, техника, которая обеспечивала движение без ограничений [5].Частичный вакуум, который был создан во время этой фазы работы, вынудил поршень вернуться в исходное положение и завершить рабочий ход. На рубеже 20-го века и позже поршневой ДВС стал предпочтительной силовой установкой в ​​легковых автомобилях, почти все из миллиарда автомобилей, произведенных в мире в течение 20-го века, были оснащены четырехтактными двигателями, работающими на бензине. ДВС [6]. Сердцем двигателя является поршень, который движется вперед и назад внутри цилиндра за четыре цикла или «тактов».Четырехтактный поршневой цикл работает следующим образом: 1). На первом такте (так называемом «такте впуска» или «всасывания») поршень опускается, заполняя цилиндр смесью воздуха и бензина, всасываемой через открытый впускной клапан. ; 2). На втором такте («сжатие») поршень поднимается, поскольку впускной клапан закрывается, тем самым сжимая смесь бензин / воздух; 3). На предпоследнем такте («мощность») поршень снова опускается вниз, поскольку смесь бензина и воздуха воспламеняется и взрывается; и, 4).На последнем такте («выпуске») поршень снова поднимается, выталкивая отработанные газы из открытого теперь выпускного клапана. Этот четырехтактный поршневой цикл показан на рисунке 1. Менее распространенный, чем версия с поршневым приводом, двигатель Ванкеля, тем не менее, использовался в нескольких коммерческих приложениях. Как показано на Рисунке 2 ниже, двигатель Ванкеля имеет ротор с тремя точками, который соединен с карданным валом. Ротор вращается в камере, которая плотно прилегает к корпусу и имеет слегка овальную форму; Эта конфигурация создает правильные условия для приложения рабочего хода к каждой из трех сторон ротора, когда они проходят мимо единой свечи зажигания двигателя [5].В некоторых конфигурациях два или даже более роторов устанавливаются коаксиально; однако в этих схемах рабочие такты должны быть рассчитаны по времени последовательно. Хотя двигатель Ванкеля обычно весит примерно на 25 процентов меньше, чем двигатели с поршневым приводом, поскольку он имеет только две движущиеся части (т. Е. Ротор и выходной вал), уровни расхода топлива для этих типов роторных двигателей высоки, а выбросы выхлопных газов также относительно высокое содержание загрязняющих веществ по сравнению с поршневыми двигателями. Описание работы роторного двигателя, предоставленное ассоциацией Mazda RX7 [7], указывает, что: 1).Роторный двигатель работает на сжатии поступающего воздуха, который в это время смешивается с бензином. 2). На пике сжатия свечи зажигания зажигаются, зажигая сжатый газ и обеспечивая мощность двигателя. 3). Выхлоп выходит из двигателя, и процесс повторяется. 4). Благодаря своей конструкции роторный двигатель может генерировать гораздо больше оборотов в минуту, чем стандартный поршневой двигатель, и они очень долговечны [7]. В среднем частота вращения двигателей Ванкеля составляет около 5 500 об / мин. NSU Ro80 был первым серийным автомобилем, в котором использовался двигатель Ванкеля; тем не менее, этой серийной версии предшествовал открытый двухместный экспериментальный прототип (NSU Spyder).В то время как лицензии на двигатель Ванкеля были приобретены Alfa Romeo, Peugeot-Citroën, Daimler-Benz, Rolls-Royce, Toyota, Volkswagen-Audi и другими, базирующаяся в Японии Mazda была единственным современным производителем легковых автомобилей, использующим двигатель Ванкеля. двигатель с существующим серийным автомобилем. На протяжении многих лет проводились исследования по использованию двигателей Ванкеля для самолетов и была произведена ограниченная версия мотоцикла с двигателем Ванкеля, но эти инициативы не вызвали большого интереса [5]. По словам этих исследователей, в то время как Ванкель стал директором своего собственного исследовательского центра в Линдау на Боденском озере на юге Германии, Mazda продолжала совершенствовать роторный двигатель, и к моменту смерти Ванкеля в 1988 году купе Mazda RX-7 превратилось в купе. успешный, если не самый продаваемый спортивный автомобиль с двигателем Ванкеля.Однако во всех случаях повышение соответствующих показателей BSFC как роторных двигателей, так и поршневых двигателей различных типов стало предметом все большего количества исследований и разработок в ответ на стремительный рост цен на энергию и растущий потребительский спрос, особенно со стороны растущих экономических центров, таких как Китай. , Индия, Бразилия и Малайзия. Таким образом, преобладающим силовым агрегатом остается бензиновый четырехтактный двигатель с искровым зажиганием в подавляющем большинстве современных легковых автомобилей, который более экономичен, чем их двухтактные аналоги, а также выделяет меньше вредных веществ.Уравновешивание этого углеродного следа заключается в том, что транспортные средства с двухтактным двигателем, такие как мотоциклы, легче и, следовательно, требуют меньшего количества топлива для работы и дешевле в производстве, чем их четырехтактные аналоги во всех моделях легковых автомобилей [4]. . Чтобы рассмотреть эту тему в перспективе, по состоянию на 1966 год расходы на шины для легковых автомобилей составляли приблизительно 100 миллионов фунтов стерлингов (сто миллионов британских фунтов стерлингов) [8]. В сегодняшнем денежном выражении такие затраты были бы экспоненциально выше даже с поправкой на инфляцию.Все, что снижает оптимальные характеристики транспортного средства на проезжей части, снижает топливную эффективность, а трение всех типов всегда было проклятием для автомобильных инженеров. Несмотря на связанные с этим проблемы, количество задействованных шин (около миллиарда с лишним в любой момент) означает, что даже небольшое улучшение характеристик шин легковых автомобилей может привести к экономии миллионов баррелей нефти вместе с сопутствующее сокращение выбросов парниковых газов.Характеристики шин — это мера коэффициента трения, который представляет собой отношение силы трения к нормальной силе, вызывающей скольжение, выраженное безразмерным значением (т. Е. Мера силы трения, возникающей между протекторами резиновой шины и поверхностью дороги. делится на нагрузку, действующую на шину [9]. В настоящее время легковые автомобили и легкие грузовики обеспечивают большую часть пассажирских перевозок, и в большинстве этих типов транспортных средств используются легковые шины. По данным Транспортного исследовательского совета США, большинство фургонов и пикапов , а внедорожники, которые федеральное правительство классифицирует как легкие грузовики, считаются легковыми автомобилями [9].Несмотря на технологические инновации, позволившие создать шины с более длительным сроком службы, чем три десятилетия назад или около того, шины для легковых автомобилей по-прежнему требуют замены каждые несколько лет в результате естественного износа и примерно 200 миллионов новых …

Контекст 2

… более распространенный, чем версия с поршневым приводом, двигатель Ванкеля, тем не менее, использовался в нескольких коммерческих приложениях. Как показано на Рисунке 2 ниже, двигатель Ванкеля имеет ротор с тремя точками, который соединен с карданным валом….

Как работает роторный двигатель?

► Как работает двигатель Ванкеля
► Чем они отличаются от 4-тактного
► Почему они возвращаются

Подобно более обычным бензиновым двигателям, роторный двигатель использует топливо, воспламеняемое искрой для выработки энергии, но, помимо этого, он во многом отличается от обычного автомобильного двигателя; в первую очередь, как он берет расширяющиеся газы и тепло сгорания и превращает их в движение, чтобы толкать вашу машину.

Как работает роторный двигатель?

В нормальном двигателе сгорание действует на набор поршней, которые производят линейное движение внутри цилиндров двигателя. Поршни поднимаются и опускаются, как ноги велосипедиста-толкателя, и прикреплены к коленчатому валу, который является компонентом, преобразующим это движение вверх и вниз в круговое движение, приводящее в движение колеса.

В роторном двигателе все основные внутренние компоненты вращаются в основном круговыми движениями, поэтому это более простой и эффективный способ передачи энергии от сжигания бензина до вращения колес.Таким образом, роторный двигатель имеет меньше движущихся частей, он меньше, легче и мощнее для своей вместимости.

В то время как Mazda, без сомнения, является чемпионом по роторным двигателям, японский бренд — не единственный производитель, который баловался этой идеей.

Также, как и в обычных поршневых двигателях, роторный двигатель может быть продублирован для увеличения мощности и мощности. Большинство роторных моделей было «сдвоенным» ротором, но Mazda создала версии с тремя и четырьмя роторами.

Однако, как и следовало ожидать, у этой гениальной идеи есть недостатки.

Запечатанная судьба

Во-первых, изнашиваются специальные уплотнения (их можно услышать, называемые торцевыми, концевыми или верхними уплотнениями), которые помогают создавать сжатие, необходимое для горения. Когда это происходит, роторные двигатели начинают терять мощность и также могут сжигать масло. Замена уплотнителей — большая работа.

Выбросы и экономика

В то время как характеристики мощности роторного двигателя очень хороши, они не так хороши, когда дело доходит до экономии топлива, и влияние на выбросы также отрицательно.Турбонаддув и каталитические нейтрализаторы в последних разработках помогли в определенной степени, но не настолько, чтобы сохранить принцип с сегодняшними строгими правилами.

Абсолютная мощность

В то время как роторный двигатель со свободными оборотами делает автомобили, приводимые в движение им, увлекательными и увлекательными, это достигается за счет низкой мощности и особенно крутящего момента. Эта уникальная производительность ограничивает двигатель для конкретных применений и в основном для спортивных автомобилей.

Многие автопроизводители возились с роторными двигателями, но только Mazda начала их массовое производство.А когда это произошло в 1960-х и 70-х годах, низкая надежность роторного двигателя чуть не поставила компанию на колени. Но современные технологии и материалы означают, что у роторного двигателя может быть будущее, и если вы когда-либо ездили на нем, вы поймете, насколько они восхитительно плавные и полные характера.

Что дальше?

С тех пор, как Mazda прекратила выпуск RX-8 в 2012 году, автомобили с роторным двигателем не были доступны в течение длительного времени, казалось, что так и останется из-за присущих роторным конструктивным недостаткам.

Однако Mazda недавно подтвердила, что возродит культовый роторный двигатель и что она нашла способы решить свои инженерные задачи.

Детали по-прежнему очень легкие, и модель, знаменующая возрождение, еще не объявлена, но вы, возможно, снова сможете путешествовать с помощью этого необычного силового агрегата.

Схема поворотного двигателя

  1. Home
  2. Схема поворотного двигателя

Тип фильтра: Все время Последние 24 часа Прошлая неделя Прошлый месяц

Результаты листинга Схема поворотного двигателя

Схема поворотного двигателя Моя электрическая схема

8 часов назад Ac Gear Двигатель Электропроводка Схема New Weg 12 Lead Двигатель Электропроводка Схема Elegant Dc Схема подключения .Мы собираем много фотографий о Схема роторного двигателя . и, наконец, мы загружаем его на наш сайт. Многие хорошие изображения в нашем Интернете — это лучший выбор изображений для Rotary Motor Diagram . .