Схема работы дизельного двигателя: Дизельные двигатели. Устройство и принцип работы

Содержание

Дизельные двигатели. Устройство и принцип работы

Все больше появляется автомобилей, у которых характерное постукивание из-под капота выдает тип установленного мотора. Разберем устройство, принцип работы и особенности дизельных двигателей.

Особенности дизельного двигателя, такие как экономичность, высокий крутящий момент и более дешевое топливо, делают его предпочтительным вариантом. Дизели последних поколений вплотную приблизились к бензиновым моторам по шумности, сохраняя при этом преимущества в экономичности и надежности.


КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

По конструкции дизельный двигатель не отличается от бензинового — те же цилиндры, поршни, шатуны. Правда, клапанные детали существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия намного выше (19-24 единиц против 9-11 у бензинового мотора). Именно этим объясняется большой вес и габариты дизельного двигателя в сравнении с бензиновым.

Принципиально отличие заключается в способах формирования топливно-воздушной смеси, ее воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает чистый воздух. В конце сжатия, когда он нагревается до температуры 700-800оС, в камеру сгорания форсунками, под большим давлением впрыскивается топливо, которое почти мгновенно самовоспламеняется.

Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Экологические характеристики тоже лучше — при работе на бедных смесях выбросы вредных веществ заметно меньше, чем у бензиновых моторов.

К недостаткам относят повышенную шумность и вибрацию, меньшую мощность и трудности холодного пуска. У современных дизелей эти проблемы не являются столь очевидными.


ТИПЫ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

Существует несколько типов дизельных двигателей, различие между которыми заключено в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания — 

их называю дизелями с непосредственным впрыском — топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. Непосредственный впрыск применялся в основном на низкооборотных двигателях большого рабочего объема. Это было связано с трудностями процесса сгорания, а также повышенным шумом и вибрацией.

Благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить его экономичность, снизить шум и вибрацию.

 

Наиболее распространенным является другой тип дизеля — с раздельной камерой сгорания. Впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение начинается в вихревой камере, а затем продолжается в основной камере сгорания.

При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Вихрекамерные двигатели составляют большинство среди устанавливаемых на легковые автомобили и джипы (около 90 %).


УСТРОЙСТВО ТОПЛИВНОЙ СИСТЕМА ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Важнейшей системой дизеля является система топливоподачи. Ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.

Главными элементами топливной системы дизеля являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.


ТНВД — топливный насос высокого давления.

ТНВД предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и управляющих действий водителя. По своей сути современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера. 

Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые уже сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п. На современных внедорожниках обычно применяются ТНВД распределительного типа.

ТНВД распределительного типа.  Насосы этого типа получили широкое распространение на легковых дизелях. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время эти насосы предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.


Форсунки дизеля.
Другим важным элементом топливной системы является форсунка. Она вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе, а тип распылителя определяет форму факела топлива, которая имеет важное значение для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.

Форсунка на двигателе работает в очень тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания.

Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.


Топливные фильтры дизеля.

Топливный фильтр, несмотря на его простоту, является важнейшим элементом дизельного мотора. Его параметры, такие, как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.

Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.


КАК ПРОИСХОДИТ ЗАПУСК ДИЗЕЛЬНОГО ДВИГАТЕЛЯ?

Холодный пуск дизеля обеспечивает система предпускового подогрева.  Для этого в камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900о

С, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа. 

Погасание контрольной лампы свидетельствует о готовности к запуску. Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30оС, разумеется, при условии соответствия сезону масла и дизтоплива.


ТУРБОНАДДУВ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате увеличивается мощность двигателя.

Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы».

Турбодизель имеет и некоторые недостатки, связанные с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя и не превышает обычно 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Подробнее в статье: что такое турбокомпрессор.


СИСТЕМА COMMON-RAIL ДЛЯ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.

В результате в дизелях с системой Common-Rail расход топлива сокращается на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи и снижается шумность работы мотора. 

Дизельный двигатель — принцип работы

                                                                                                          Дизельный двигатель, наряду с бензиновым, является одним из двух самых распространенных типов поршневых двигателей внутреннего сгорания. Принцип его работы базируется на самовоспламенении воздушно-топливной смеси, которая подается в камеры сжигания под давлением.

Благодаря этому горючее нагревается и самовоспламеняется, что является главным отличием дизельного двигателя от бензинового и выступает основной причиной всех конструктивных и эксплуатационных изменений в силовом агрегате этого типа, а также напрямую влияет на сферу применения и частоту его использования. В статье подробно рассматривается история создания и совершенствования дизельного двигателя, устройство и принцип работы подобного оборудования, а также его основные отличия и преимущества по сравнению с бензиновой силовой установкой.

 

 

История создания и совершенствования

Первые научные разработки, касающиеся возможности использовать для воспламенения горючего в тепловой машине сжатого до высокого давления топлива, были осуществлены в 20-30-х годах 19-го века. На практике этот принцип был реализован выдающимся немецким изобретателем и инженером Рудольфом Дизелем, который в 1892 году оформил патент на изобретение двигателя оригинальной конструкции, получивший название дизель-мотор в честь его создателя. Через 3 года документ был признан США. В течение нескольких лет Дизель зарегистрировал еще несколько патентов на различные модификации дизельного двигателя.

Первый работающий агрегат был изготовлен в конце 1896 года, а его испытания прошли практически сразу – 28 января следующего года. В качестве горючего первые дизельные двигатели использовали растительные масла и легкие нефтепродукты. Силовая установка практически сразу же стала показывать высокий КПД, будучи еще и очень удобной в эксплуатации. Но в первые годы после изобретения дизельные двигатели применялись, главным образом, в тяжелых паровых машинах.

Существенно расширить сферу практического использования дизельных агрегатов позволили два ключевых усовершенствования. Первое заключалось в применении в качестве топлива керосина, что первым использовал в 1898 году другой великий инженер того времени – родившийся в России швед Рудольф Нобель. Вторым серьезным рационализаторским решением стало изобретение топливного насоса высокого давления (ТНВД), который заменил используемый ранее для сжатия горючего компрессор.

Серьезный вклад в усовершенствования ТНВД внес в 20-е годы 20-го века Роберт Бош. Он изобрел и внедрил модель встроенного насоса и бескомпрессорной форсунки, применение которых привело к существенному уменьшению габаритов дизельного двигателя, что, в свою очередь, позволило устанавливать его сначала на общественный и грузовой транспорт, а во второй половине 30-х годов – впервые использовать на легковых машинах. Дальнейшие улучшения рассматриваемого агрегата, в частности использование специального дизельного топлива, позволили силовой установке на этом типе горючего успешно конкурировать с бензиновыми двигателями, постоянно увеличивая занимаемую долю рынка.

Отличие от бензинового двигателя

Главное отличие дизельного двигателя от бензинового было упомянуто выше. Оно состоит в отсутствии системы зажигания, что объясняется использованием принципа самовоспламенения топливно-воздушной смеси в результате нагнетания давления и вызванного этим нагрева горючего. Необходимо отметить несколько ключевых следствий разницы между рассматриваемыми типами силовых установок.

Главные положительные для дизельного двигателя моменты состоят в следующем. Во-первых, отсутствие системы зажигания делает конструкцию агрегата заметно проще, повышая надежность и долговечность. Во-вторых, компрессионное воспламенение топлива обеспечивает более полное и эффективное сгорание, в результате чего повышается КПД силовой установки и снижается количество вредных выбросов.

Основным негативным следствием указанного выше отличия между двигателями внутреннего сгорания выступают более существенные требования к прочности и качеству изготовления клапанов и других деталей дизельных агрегатов. Это связано с тем, что они эксплуатируются под серьезной нагрузкой, связанной с повышенным давлением топливно-воздушной смеси.

Устройство

И дизельный, и бензиновый агрегаты относятся к поршневым двигателям внутреннего сгорания, а потому имеют сходное устройство. Основными конструктивными частями силовой установки на дизельном топливе являются такие:

1. Блок цилиндров. Основа любого двигателя. Используется для размещения всех систем и узлов силового агрегата. Различаются по трем основным параметрам – числу цилиндров, схеме их расположения и способу охлаждения. Как правило, количество цилиндров является четным, максимальное их число составляет 16. Чаще всего встречаются двигатели с 2-я, 4-я, 6-ю или 8-ю цилиндрами.

Важным элементом рассматриваемого узла является так называемая ГБЦ или головка блока цилиндров. Она создает закрытое пространство, в котором происходит непосредственное сжигание топливной смеси.

2. Кривошипно-шатунный механизм. Основное назначение этого узла двигателя – преобразование перемещения поршня внутри гильзы, являющегося возвратно-поступательным, в движение коленвала, которое относится к вращательным. Главной деталью механизма считается коленвал, подвижно соединенный с блоком цилиндров, что обеспечивает вращение вала.

Другая важная деталь – маховик, который крепится к одному из концов коленвала. Его задача – передать крутящий момент к другим узлам транспортного средства. Ко второму концу коленвала крепится шкив и приводная шестерня топливно-распределительной системы.

3. Цилиндропоршневая группа. Включает в себя цилиндры или гильзы, поршни или плунжеры, шатуны и поршневые пальцы. Отвечает за процесс сжигания топлива с последующей передачей образовавшейся энергии для дальнейших преобразований. Камера сжигания представляет собой пространство внутри гильзы, которое с одной стороны ограничивается ГБЦ, а с другой — поршнем. Главное требование к цилиндропоршневой группе дизельного двигателя – герметичность, прочность и долговечность.

4. Топливно-распределительная система. Функциональное назначение – своевременная подача горючего в камеры сгорания и отвод из двигателя продуктов сжигания топливно-воздушной смеси. В дизельном агрегате основу системы составляют два насоса. Первый из них – низкого давления – отвечает за перемещение горючего из бака к двигателю.

Назначение второго – ТНВД – несколько шире и заключается в определении нужного количества и времени впрыска топлива, а также в обеспечении необходимого уровня давления в камере сгорания. Именно топливный насос высокого давления и соединенные с ним форсунки являются ключевыми элементами дизельного двигателя, обеспечивающими его впечатляющие эксплуатационные и технические параметры.

5. Система смазки. Предназначается для уменьшения показателей трения между отдельными узлами и деталями силовой установки. В качестве смазочного материала используются как различные масла, так и, что характерно для отдельных механизмов, непосредственно дизельное топливо. Устройство системы смазки предусматривает наличие масляного насоса, различных емкостей и соединяющих трубопроводов.

6. Система охлаждения. Основное функциональное назначение данного элемента дизельного двигателя очевидно и состоит в поддержании такого уровня температуры, который является оптимальным для работающего агрегата. Для этого используются два метода – принудительный отвод тепла от узлов двигателя и охлаждение их при помощи воздуха или жидкости. В качестве последней обычно используется вода или антифриз.

7. Дополнительные узлы турбина и интеркулер. Турбонаддув или турбонагнетатель позволяет увеличить давление в камере сгорания, что ведет к росту производительности двигателя. Интеркулер предназначен для дополнительного и более эффективного охлаждения горячего воздушного потока, который создается в процессе эксплуатации дизельного агрегата.

Отдельного упоминания заслуживает еще одна важная часть любого современного дизельного двигателя – электрооборудование и автоматика. Именно различные приборы управления и контроля над работой агрегата позволяют добиться главного преимущества, характерного для подобных силовых установок – высокого КПД.

Принцип работы

Дизельные двигатели делятся на двух- и четырехтактные. Первый вариант в сегодняшних условиях используется крайне редко, а потому детально рассматривать его попросту не имеет смысла. Стандартный принцип работы обычного четырехтактного двигателя предполагает, что вполне логично, 4 основных этапа:

1. Впуск. Коленвал поворачивается в диапазоне между 0 и 180 градусами. На этой стадии воздух подается в цилиндр.

2. Сжатие. Положение коленвала изменяется со 180 до 360 градусов. Это обеспечивает движение поршня к так называемой верхней мертвой точке (ВМТ), что приводит к сжатию воздуха в цилиндре в 16-25 раз.

3. Рабочий ход с последующим расширением. Коленвал осуществляет перемещение между 360 и 540 градусами. В камеру сжигания через форсунки впрыскивается топливо, которое при смешивании с воздухом воспламеняется. Это происходит чуть раньше, чем поршень достигает ВМТ.

4. Выпуск. Коленвал завершает оборот, перемещаясь между 540 и 720 градусами. В результате очередного перемещения поршня в верхнюю часть цилиндра из камеры сгорания удаляются отработанные газы. После этого цикл начинается заново.

Основные разновидности

Основным параметром, который используется для классификации дизельных двигателей, выступает конструкция камеры сжигания. По этому параметру различают два основных типа рассматриваемых силовых установок, на которых используется

· разделенная камера сгорания. Подача горючего производится в специальную камеру, которая называется вихревой и размещается в головке блока, соединяясь с цилиндром при помощи канала. Наличие такого дополнительного элемента позволяет добиться увеличения уровня нагнетания, что положительно сказывается на способности смеси к самовоспламенению;

· неразделенная камера сгорания. Более простая, а потому надежная конструкция, при использовании которой топливо подается непосредственно в пространство над поршнем, которое и выступает камерой сгорания. Это позволяет заметно снизить расход топлива, что, наряду с надежностью механизма, стало ключевой причиной широко распространения именно такого типа дизельных двигателей.

Особенно популярными дизельные агрегаты с неразделенной камерой сгорания стали после появления ТНВД системы Common Rail. Ее использование позволяет обеспечить оптимальный уровень давления, количества и времени впрыскивания топлива для последующего сжигания. Таким образом, достигаются все основные преимущества двигателей с разделенной камерой сгорания без присущих им недостатков.

Основные достоинства и недостатки

Широкое распространение и успешная конкуренция дизельных двигателей с бензиновыми объясняется рядом впечатляющих преимуществ. Главными из них выступают:

· КПД, достигающий 40% на обычных установках и 50% на дизельных двигателях с турбонаддувом. Такие показатели являются попросту недосягаемыми для агрегатов, использующих в качестве топлива бензин;

· мощность. Крутящий момент дизельного двигателя обеспечивается даже на малых оборотах, что гарантирует автомобилю уверенный и быстрый разгон;

· экологичность. Сгорание топлива под высоким давлением приводит к уменьшению количества образующихся в процессе эксплуатации двигателя выхлопных газов. В сегодняшних условиях этому плюсы дизелей придается все большее значение;

· надежность. Как правило, моторесурс дизельного агрегата примерно в полтора-два раза превосходит аналогичный показатель бензинового конкурента. Кроме того, отсутствие системы зажигания позволяет избавиться от многих традиционных проблем двигателей на бензине, например, слабой искры на свечах или их залива.

В числе недостатков, присущих дизельному двигателю, прежде всего, необходимо выделить два. Первый – это несколько более высокая стоимость транспортных средств, оборудованных этим типом силовой установки. Разница в цене обычно варьируется от 10 до 20%.

Второй минус – необходимость существенных эксплуатационных расходов. Это объясняется серьезными требованиями к качеству изготовления и уровню технического обслуживания автомобилей с дизельными двигателями. Однако, обращение в солидную компанию за приобретением, а также последующим обслуживанием, комплектованием и ремонтом сведет к минимуму недостатки агрегата, оставив в полной сохранности его впечатляющие достоинства.

Принцип работы дизельного двигателя — фото и видео процесса

Дизельным двигателям удалось пройти длительный и успешный путь развития от неэффективных и загрязняющих экологию агрегатов начала двадцатого века, до супер экономных и абсолютно беззвучных, которые сегодня устанавливаются на добрую половину всех выпускаемых автомобилей. Но, несмотря на такие удачные модификации, общий принцип их действия, отличающий дизельные моторы от бензиновых, остался все тем же. Постараемся рассмотреть данную тему подробнее.

В чем основные отличия дизельных двигателей от бензиновых?

Уже видно из самого названия, что дизельные двигатели работают не на бензине, а на дизельном топливе, которое также называют соляркой, ДТ или просто дизелем. Вникать во все подробности химических процессов перегонки нефти мы не будем, скажем только, что и бензин и дизель производят из нефти. Во время перегонки нефть делится на различные фракции:

  • газообразные – пропан, бутан, метан;
  • нарты (короткие цепочки углеводов) – используются для производства растворителей;
  • бензин – взрывоопасная и быстро испаряющая прозрачная жидкость;
  • керосин и дизель – жидкости с желтоватым оттенком и более вязкой структурой, чем у бензина.

То есть солярка производится из более тяжелых фракций нефти, ее важнейшим показателем является воспламеняемость, определяемая цетановым числом. Также ДТ характеризуется большим содержанием серы, которое, однако, стараются всеми силами уменьшать, чтобы топливо соответствовало экологическим стандартам.

Как и бензин, дизель делится на разные виды в зависимости от температурных режимов:

  • летний;
  • зимний;
  • арктический.

Стоит также заметить, что дизельное топливо производят не только из нефти, но и из различных растительных масел – пальмового, соевого, рапсового и др., смешанных с техническим спиртом – метанолом.

Однако, заливаемое топливо – это не главное отличие. Если мы посмотрим на бензиновый и дизельный двигатели “в разрезе”, то разницы никакой визуально не заметим – те же поршни, шатуны, коленчатый вал, маховик и так дальше. Но разница есть и она очень существенная.

Принцип работы дизельного двигателя

В отличие от бензиновых, в дизеле совсем по другому принципу происходит зажигание воздушно-топливной смеси. Если в бензиновых – как в карбюраторных, так и инжекторных – движках сначала происходит приготовление смеси, а затем ее воспламенение с помощью искры от свечи зажигания, то в дизеле в камеру сгорания поршня нагнетается воздух, затем воздух сжимается, разогреваясь до температур 700 градусов, и вот в этот момент в камеру попадает топливо, которое тут же взрывается и толкает поршень вниз.

Дизельные двигатели – четырехтактные. Рассмотрим каждый такт:

  1. Такт первый – поршень движется вниз, открывается впускной клапан, тем самым в камеру сгорания попадает воздух;
  2. Такт второй – поршень начинает подниматься, воздух начинает под давлением сжиматься и разогреваться, именно в этот момент через форсунку впрыскивается солярка, происходит ее возгорание;
  3. Такт третий – рабочий, происходит взрыв, поршень начинает двигаться вниз;
  4. Такт четвертый – открывается выпускной клапан и все отработанные газы выходят в выпускной коллектор или в патрубки турбины.

Конечно, все это происходит очень быстро – несколько тысяч оборотов в минуту, требуется очень слаженная работа и подгонка всех узлов – поршней, цилиндров, распределительного вала, шатунов коленвала, а самое главное датчиков – которые в секунду должны передавать на CPU сотни импульсов для мгновенной обработки и вычисления необходимых объемов воздуха и солярки.

Дизельные двигатели выдают больший коэффициент полезного действия, именно поэтому их используют на грузовых авто, комбайнах, тракторах, военной технике и так далее. ДТ более дешевое, но нужно отметить, что сам двигатель обходится дороже в эксплуатации, потому что уровень компрессии здесь почти в два раза выше, чем в бензиновом, соответственно нужны поршни особой конструкции, а все используемые узлы, детали и материалы усиленные, то есть стоят дороже.

Также очень строгие требования предъявляются к системам подачи топлива и отвода отработанных газов. Ни один дизель не сможет работать без качественного и надежного ТНВД – топливного насоса высокого давления. Он обеспечивает корректную подачу топлива на каждую форсунку. Кроме того на дизелях используются турбины – с их помощью отработанные газы используются повторно, тем самым повышая мощность двигателя.

Есть у дизеля и некоторый ряд проблем:

  • повышенный шум;
  • больше отходов – топливо более маслянистое, поэтому нужно регулярно проводить замену фильтров, следить за выхлопом;
  • проблемы со стартом, особенно холодным, используется более мощный стартер, топливо быстро густеет при понижении температуры;
  • дорого обходится ремонт, особенно топливной аппаратуры.

Одним словом – каждому свое, дизельные двигатели характеризуются большей мощностью, ассоциируются с мощными внедорожниками и грузовиками. Для простого же горожанина, который ездит на работу – с работы и по выходным выезжает за город, хватит и маломощного бензинового движка.

Видео, на котором показан весь принцип работы дизельного двигателя внутреннего сгорания

Загрузка…

Поделиться в социальных сетях

Принцип работы дизельной системы — Denso

Система впрыска топлива находится в самом сердце дизельного двигателя. Система нагнетает и впрыскивает топливо в  камеру сгорания с воздухом под большим давлением.

Система впрыска дизельного топлива включает в себя:

  • ТНВД — нагнетает давление топлива
  • Топливопровод высокого давления — подает топливо в топливную форсунку
  • Топливная форсунка — впрыскивает топливо в цилиндр
  • Топливоподкачивающий насос — подает топливо из бака
  • Топливный фильтр — фильтрует топливо

В некоторых баках на дне фильтра находится седиметр, отделяющий воду от топлива.

Функции системы

Четыре основные функции системы впрыска дизельного топлива:

Подача топлива

Такие элементы насоса, как цилиндр и плунжер, встроены в корпус впрыскивающего насоса. Когда плунжер под воздействием кулачка поднимается, топливо под высоким давлением подается в инжектор.

Регулировка количества топлива

В дизельных двигателях забор воздуха происходит практически постоянно, вне зависимости от скорости вращения или нагрузки. Если количество впрыска меняется вместе со скоростью двигателя, а регулировка впрыска остается неизменной, то мощность и расход топлива изменятся. Эффективная мощность двигателя почти пропорциональна количеству впрыска, и это регулируется при помощи педали газа.

Установка момента впрыска

Задержка впрыска — это время между моментом впрыска топлива, зажигания и сгорания и моментом достижения максимального давления сгорания. Вне зависимости от скорости двигателя этот период времени остается постоянной величиной. Для изменения момента впрыска используется таймер, что помогает достичь оптимального сгорания.

Распыление топлива

Когда впрыскивающий насос нагнетает давление топлива, которое потом распыляется через распылитель форсунки, то топливо полностью смешивается с воздухом, что улучшает зажигание. Результат — полное сгорание.  

Дизельный двигатель. Устройство и принцип работы. —

Время и техника идут вперед, и все больше появляется на дорогах автомобилей, у которых лишь характерное постукивание из-под капота выдает тип установленного мотора.

В данной статье разберем устройство, принцип работы и конструктивные особенности дизельных двигателей.

Особенности дизельного двигателя, такие как экономичность, высокий крутящий момент во всем диапазоне оборотов, делают его предпочтительным вариантом. Современные дизели последних поколений вплотную приблизились к бензиновым моторам по шумности и удельным характеристикам, сохраняя при этом преимущества в экономичности и надежности.

Конструктивные особенности дизельных двигателей

По конструкции дизельный двигатель не отличается от обычного бензинового — те же цилиндры, поршни, шатуны. Правда, клапанные детали существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (19-24 единиц против 9-11 у бензинового двигателя). Именно этим объясняется большой вес и габариты дизельного двигателя в сравнении с бензиновым.

Принципиально отличие заключается в способах формирования топливно-воздушной смеси, ее воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает чистый воздух. В конце сжатия, когда он нагревается до температуры 700-800 градусов цельсия, в камеру сгорания форсунками, под большим давлением (10-30 МПа) впрыскивается топливо, которое почти мгновенно самовоспламеняется.

Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать меньше топлива и работать на очень бедных смесях, что определяет более высокую экономичность. Экологические характеристики такого двигателя тоже лучше — при работе на бедных смесях выбросы вредных веществ заметно меньше, чем у бензиновых моторов.

К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Стоит отметить, что это относится в большей степени к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

Дизельные двигатели с непосредственным впрыском

Существует несколько типов дизельных двигателей, различие между которыми заключено в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания — их называю дизелями с непосредственным впрыском — топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне.

До недавнего времени непосредственный впрыск применялся в основном на низкооборотных двигателях большого рабочего объема. Это было связано с трудностями организации процесса сгорания, а также повышенными шумом и вибрацией.

В последние годы благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить его экономичность, снизить шум и вибрацию.

Дизельные двигатели с раздельной камерой сгорания

Наиболее распространенным на легковых автомобилях пока является другой тип дизельного мотора — с раздельной камерой сгорания. В них впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что значительно улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение в этом случае начинается в вихревой камере, а затем продолжается в основной камере сгорания.

При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Вихрекамерные двигатели составляют подавляющее большинство среди устанавливаемых на легковые автомобили и джипы (около 90 %).

Устройство топливной система дизельного двигателя

Важнейшей системой дизеля, определяющей надежность и эффективность его работы, является система топливоподачи. Основная ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.

Главными элементами топливной системы дизеля являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.

ТНВД — топливный насос высокого давления.

ТНВД предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и управляющих действий водителя. По своей сути современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера. 

Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые уже сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п. На современных внедорожниках обычно применяются ТНВД распределительного типа.

ТНВД распределительного типа. Насосы этого типа получили широкое распространение на легковых дизелях. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время эти насосы предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

Форсунки дизеля.

Другим важным элементом топливной системы является форсунка. Она вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе, а тип распылителя определяет форму факела топлива, которая имеет важное значение для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.

Форсунка на двигателе работает в очень тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.

Топливные фильтры дизеля.

Топливный фильтр, несмотря на его простоту, является важнейшим элементом дизельного мотора. Его параметры, такие, как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.

Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.

Как происходит запуск дизельного двигателя?

Холодный пуск дизеля обеспечивает система предпускового подогрева. Для этого в камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900* С, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива.

Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30оС, разумеется, при условии соответствия сезону масла и дизтоплива.

Турбонаддув дизельного двигателя

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы».

Система Common-Rail

Пример двигателя: Nissan YD22DDTi

Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.

В результате в дизелях с системой Common-Rail расход топлива двигателем сокращается примерно на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи и снижается шумность работы мотора.

Специалисты автотехцентра Nissan имеют богатый опыт диагностики и ремонта дизельныйх двигателей и ТНВД.

Звоните и приезжайте — 8 (912) 220-85-27

Принцип работы дизельного двигателя. — Автомастер

Принцип работы дизельного двигателя.

Подробности

Принцип работы дизельного двигателя немного отличается от принципа работы бензинового. Отличие это состоит в том, что смесеобразование происходит уже внутри самого цилиндра, у бензинового же двигателя приготовление смеси происходит снаружи. В цилиндр она подается уже готовой. Существенным отличием является воспламенение рабочей смеси. В бензиновом двигателе воспламенение происходит от свечи зажигания, а в дизельном происходит самовоспламенение.

    Теперь разберем рабочие циклы четырехтактного дизельного двигателя:
  1. Такт впуска.

    Рис 1 – Такт впуска.

    1 – впускной клапан. 2 – выпускной клапан. 3 – топливная форсунка.

    За первый такт, поршень перемещается от верхней мертвой точки ВМТ к нижней НМТ. Впускной клапан 1 открыт, выпускной 2 закрыт. За счет создаваемого разрежения в цилиндре, вовнутрь устремляется порция воздуха.
  2. Такт сжатия.

    Рис 2 — Такт сжатия.

    На этом этапе, оба клапана как впускной, так и выпускной закрыты. Поршень перемещается из НМТ в ВМТ, сжимая воздух. Давление в камере достигает 5 МПа, а температура воздуха за счет сжатия возрастает до 700 градусов Цельсия.
  3. Такт расширения или рабочий ход.

    Рис 3 — Такт расширение. Рабочий ход.

    При достижении поршнем верхней мертвой точки (при максимальном давлении в цилиндре), через форсунку, под высоким давлением, создаваемым топливным насосом закачивается порция топлива. Форсунка распыляет топливо, которое смешиваясь с горячим воздухом самовоспламеняется. В результате горения, температура в камере резко повышается до 1800 градусов Цельсия, вместе с ней в разы увеличивается и давление 11 МПа. Поршень, передвигаясь от верхней мертвой точки к нижней мертвой точки, совершает полезную работу. В конце такта температура падает до 700 — 800 градусов, давление снижается до 0.3 – 0.5 МПа.
  4. Такт выпуска.

    Рис 4 – Такт выпуска.

    Выпускной клапан 2 открывается, и поршень выталкивает отработанные газы. Температура и давление опускаются до 500 градусов и 0.1 МПа.

Далее рабочие циклы повторяются.

Подробнее об устройстве и осбеностях конструкции дизельных двигателей.

Принцип работы и устройство дизельного двигателя — Рамблер/авто

Конструктивные особенности и эксплуатационные характеристики предопределили страсть или отторжение автомобилистов по отношению к агрегатам на «тяжелом топливе». Так как же работает дизельный двигатель, каково его устройство, принцип работы и преимущества?

Времена, когда автомобиль с дизельными моторами ассоциировались с чадящими и тихоходными, давно остались за поворотом. Каждый автомобилист знает, что транспортное средство с агрегатом на «тяжелом топливе» издает характерные тарахтящие звуки, его выхлоп странно пахнет. Современные моторы награждают своих владельцев умеренным расходом топлива, впечатляющей эластичностью (крутящим моментом, доступным в относительно широком диапазоне оборотов) и иногда ошеломительной динамикой на зависть некоторым бензиновым автомобилям. Но при этом они требовательны к качеству солярки, а ремонт компонентов топливной системы может быть весьма дорогим.

Особенности конструкции

Дизельные двигатели, разумеется, не имеют таких колоссальных отличий как роторно-поршневой двигатель Ванкеля, устройство которого абсолютно не похоже на «анатомию» традиционного ДВС, но у него имеется ряд особенностей, которые проводят между ним и бензиновыми моторами черту.

У дизеля также есть кривошипно-шатунный механизм, но его степень сжатия существенно выше — 19-24 единицы против 9-11 единиц соответственно. Принципиальное отличие дизельного двигателя от бензинового заключается в том, как формируется, воспламеняется и сгорает топливно-воздушная смесь.

У дизельного ДВС отсутствуют свечи зажигания и, соответственно, воспламенение топливно-воздушной смеси происходит от сжатия. При этом, воздух и солярка подаются раздельно. Также следует отметить, что практически ни один современный дизель не обходится без системы наддува, которая используется для повышения рабочих характеристик агрегата. Для оптимизации наддува в максимально широком диапазоне оборотов используются турбонагнетатели с изменяемой геометрией. Дизельный агрегат имеет более высокий коэффициент полезного действия, но он тяжелее, не имеет дроссельную заслонку и выдает больший крутящий момент при низких оборотах, нежели бензиновый ДВС.

Принцип работы дизельного двигателя

Как работает дизельный двигатель и, самое главное, как происходит воспламенение топлива в камере сгорания, если у агрегата данного типа нет свечей зажигания? Сперва воздух поступает в цилиндры. В конце такта сжатия, когда поршень почти достиг верхней мертвой точки, температура воздуха в камере сгорания достигает высоких значений (порядка 700-800 градусов) и затем в цилиндры впрыскивается дизельное топливо, которое воспламеняется самостоятельно, без искрового зажигания. Тем не менее, свечи в дизельном агрегате все-таки есть, но то — свечи накаливания, а не зажигания, которые нагревают камеру сгорания для облегчения запуска двигателя в холодное время.

Они представляет собой спираль (бывают с металлической и керамические), могут быть установлены в вихревой камере или в форкамере (если речь идет об агрегатах с раздельной камерой сгорания) или непосредственно в камере сгорания (если она нераздельная). При включении зажигания свечи накаливания практически мгновенно, за считанные секунды они раскаляются до температур в районе тысячи градусов и нагревают воздух в камере сгорания, облегчая процесс самовоспламенения топливно-воздушной смеси.

Типы дизельных двигателей

Широко распространены моторы с раздельной камерой сгорания — топливо впрыскивается в специальную камеру в головке блока над цилиндром и соединенную с ним каналом, а процесс горения происходит не совсем так как у бензиновых ДВС. В этой вихревой камере поток воздуха интенсивнее закручивается, что способствует более эффективному смесеобразованию и самовоспламенению, которое продолжается в основной камере сгорания. Кстати, дизельные моторы с раздельной камерой сгорания менее шумные из-за того, что применение вихревой камеры снижает интенсивность нарастания давления при самовоспламенении.

У дизелей с неразделенной камерой сгорания процесс самовоспламенения происходит непосредственно в надпоршневом пространстве. Агрегаты данного типа несколько шумнее.

Что такое Common Rail

Common Rail — современная система впрыска топлива, разработанная компанией Bosch и использующая принцип подачи солярки к форсункам от топливной рампы, являющейся аккумулятором высокого давления. Common Rail позволяет сделать агрегат тише, при этом более экономичным и экологичным. Еще одним преимуществом использования общей топливной рампы являются широкие возможности регулировки давления топлива и момента его впрыска, поскольку эти процессы разделены.

Система включает в себя ТНВД (топливный насос высокого давления), пьезоэлектрические форсунки, топливную рампу, регулятор давления топлива и клапан дозирования топлива. Интересно, что на заре своей эволюции дизельные агрегаты имели не в пример более простую топливную аппаратуру с механическими форсунками и несопоставимо более низким давлением солярки на фоне современных систем.

Дитя прогресса

Не так давно дизельные моторы были экологически «грязными» и достаточно слабыми, но с некоторых пор агрегаты данного типа кардинально изменились, а отдельные представители племени достойны спорткаров. К таковым относится рядный шестицилиндровый мотор BMW объемом 3,0 л с четырьмя турбонагнетателями.

Кстати, конструкция этого мотора наглядно демонстрирует собой прогресс агрегатов на «тяжелом топливе». Техношедевр оснащен двумя малоинерционными турбонагнетателями низкого давления и еще двумя высокого, причем один из них вступает в дело за пределами 2500 об/мин. Пьезофорсунки впрыскивают топливо под колоссальным давлением в 2500 бар. На выходе — 400 л.с. и 760 Нм. Интересно, что 450 Нм доступны уже при 1000 об/мин! Вот такие они, современные дизельные двигатели.

Видео дня. Судебные приставы начали отслеживать по камерам машины водителей-должников

Как работает дизельный двигатель

Традиционно, дизельные двигатели всегда считались шумными, вонючими и слабый двигатели мало пользы, кроме грузовиков, такси и фургонов. Но дизельные двигатели и их система впрыска стали более совершенными, В 80-е годы эта ситуация изменилась. В Великобритании в 1985 г. было почти Продано 65000 дизельных автомобилей (около 3,5% от общего количества проданных автомобилей), по сравнению с 5380 в 1980 году.

Двигатель воспламенения от сжатия

Многие автомобильные дизели основаны на существующих конструкциях бензиновых двигателей, но с усилением основных компонентов, чтобы они могли выдерживать более высокое давление.Топливо подается с помощью ТНВД и дозатора, которые обычно устанавливаются сбоку от блока цилиндров. Никакой системы электрического зажигания не требуется.

Основным преимуществом дизельных двигателей перед бензиновыми двигателями является их более низкая эксплуатационные расходы. Отчасти это связано с большей эффективностью высоких коэффициент сжатия дизельный двигатель и отчасти из-за более низкой цены на дизель топливо — хотя разница в цене варьируется, поэтому преимущество использования дизельный автомобиль будет немного дешевле, если вы живете в районе с дорогими дизельное топливо Межсервисные интервалы также часто бывают длиннее, но многие дизельные модели требуют более частой замены масла, чем их бензиновые аналоги.

Повышение мощности

Главный недостаток дизельного автомобиля — меньшая производительность по сравнению с бензиновые двигатели эквивалентной мощности. Один из способов решения проблемы — просто увеличить размер двигателя, но это часто приводит к значительному увеличению веса. Некоторые производители добавляют турбокомпрессоры к их двигателям, чтобы заставить их конкурентоспособны с точки зрения производительности; Среди них Rover, Mercedes, Audi и VW. производители турбодизелей.

Как работают дизельные двигатели

Индукция

Когда поршень начинает двигаться по каналу, впускной клапан открывается, и воздух всасывается.

Сжатие

Впускной клапан закрывается в конце хода. Поршень поднимается, чтобы сжать воздух.

Зажигание

Топливо впрыскивается в верхней части такта.Он воспламеняется и заставляет поршень опускаться.

Выхлоп

При движении поршня вверх выпускной клапан открывается, и сгоревший газ выходит.

Дизельный двигатель работает иначе, чем бензиновый, даже если они общие основные компоненты, и оба работают на четырехтактном цикл . Главный различия заключаются в способе воспламенения топлива и в том, как регулируется.

В бензиновом двигателе топливно-воздушная смесь воспламеняется от искра .В дизеле двигатель зажигание достигается сжатие только воздуха. Типичное сжатие соотношение для дизельного двигателя это 20: 1 по сравнению с 9: 1 для бензинового двигателя. При таком сильном сжатии воздух нагревается до температуры, достаточно высокой, чтобы воспламенять топливо самопроизвольно, без искры и, следовательно, система зажигания.

Бензиновый двигатель всасывает переменное количество воздуха за одно всасывание Инсульт , то точное количество в зависимости от открытия дроссельной заслонки. С другой стороны, дизельный двигатель рука всегда втягивает одинаковое количество воздуха (при каждой частоте вращения двигателя) через нерегулируемый впускной тракт, который открывается и закрывается только впуском клапан (нет ни карбюратор ни дроссельной заслонки).

Когда поршень достигает эффективного конца своего индукция ход, вход клапан закрывается. Поршень, приводимый в движение силой других поршней и импульс маховик , поднимается на вершину цилиндр , сжимая воздух примерно в двадцатую часть своего первоначального объем .

Когда поршень достигает максимума своего хода, точно отмеренное количество дизельное топливо впрыскивается в камера сгорания . Тепло от сжатия немедленно воспламеняет топливно-воздушную смесь, вызывая ее возгорание и расширение.Эта силы поршень вниз, поворачивая коленчатый вал .

По мере продвижения поршня вверх цилиндр на ход выпуска , выпускной клапан открывается и позволяет сгоревшим и расширенным газам проходить по выхлопная труба . В конце такта выпуска цилиндр готов к новому плата из воздуха.

Конструкция двигателя

Основные компоненты дизельного двигателя похожи на компоненты бензинового двигателя. и выполнять ту же работу. Однако деталей дизельного двигателя приходится производить много сильнее, чем их аналоги с бензиновым двигателем, из-за гораздо более высоких нагрузок участвует.

Стены дизеля Блок двигателя обычно намного толще блока разработаны для бензинового двигателя, и у них есть больше перемычек, чтобы обеспечить дополнительные прочность и поглощать стрессы. Помимо большей прочности, сверхмощный block также может более эффективно снижать шум.

Поршни, шатуны , коленчатые валы и подшипник шапки должны быть сделаны сильнее своих собратьев с бензиновым двигателем. В крышка цилиндра дизайн должен сильно отличаться из-за топливные форсунки а также из-за формы своего горение и вихревые камеры.

Инъекция

Прямой впрыск

Прямой впрыск означает, что топливо впрыскивается непосредственно в камеру сгорания в верхней части днища поршня. Форма камеры лучше, но труднее заставить топливо правильно смешиваться с воздухом и гореть без резкого, характерного дизельного «стука».

Для любого двигатель внутреннего сгорания для бесперебойной и эффективной работы топливо и воздух необходимо тщательно перемешать.Проблемы смешивания топлива и воздуха являются особенно хорош в дизельном двигателе, где воздух и топливо вводятся на разное время в течение цикла и должны перемешиваться внутри цилиндров.

Существует два основных подхода: прямой и непрямой впрыск. Традиционно использовалась непрямая инъекция, потому что это самый простой способ введения турбулентность так, чтобы впрыскиваемый топливный спрей хорошо смешивался с сжатый воздух в камере сгорания.

В двигателе с непрямым впрыском имеется небольшая спиральная вихревая камера (также называется камерой предварительного сгорания), в которую инжектор впрыскивает топливо прежде, чем он достигнет самой основной камеры сгорания.Вихревая камера создает турбулентность в топливе, чтобы оно лучше смешивалось с воздухом при горении камера.

Недостатком этой системы является то, что вихревая камера эффективно становится часть камеры сгорания. Это означает, что камера сгорания как в целом неправильной формы, что вызывает проблемы с горением и затрудняет эффективность.

Непосредственный впрыск

Непрямой впрыск

Непрямой впрыск означает, что топливо впрыскивается в небольшую камеру предварительного сгорания. Это приводит к основной камере сгорания. Такая конструкция нарушает идеальную форму камеры сгорания.

Двигатель с прямым впрыском не имеет вихревой камеры, в которую подается топливо. впрыскивается — топливо попадает прямо в камеру сгорания. Инженеры должны очень внимательно относиться к конструкции камеры сгорания. в головке поршня, чтобы обеспечить достаточную турбулентность.

Контроль скорости

Свечи накаливания

Для предварительного нагрева головки цилиндров и блока цилиндров перед холодным запуском в дизельном топливе используются свечи накаливания.Они выглядят как короткие короткие свечи зажигания и подключены к электрической системе автомобиля. Элементы внутри очень быстро нагреваются после подачи питания. Свечи накаливания активируются либо вспомогательным положением переключателя на рулевой колонке, либо отдельным переключателем. На последних моделях они автоматически отключаются, когда двигатель запускается и разгоняется до скорости выше холостого хода.

Дизельный двигатель не дросселируется, как бензиновый двигатель, поэтому количество воздуха всасывается при любой частоте вращения двигателя всегда одинаково.Обороты двигателя регулируется исключительно количеством топлива, впрыснутого в камеру сгорания — чем больше топлива в камере, тем интенсивнее сгорание и произведено.

ускоритель педаль соединена с дозатором двигателя система впрыска, а не дроссельная заслонка, как на бензине двигатель.

Остановка дизеля по-прежнему включает выключение ключа зажигания, но, скорее, чем отсечение искр, это закрывает электрический соленоид что отсекает подача топлива на форсунку насос узла учета и распределения топлива.В этом случае двигателю необходимо использовать небольшое количество топлива, прежде чем он начнет работать. остановка. На самом деле, дизельные двигатели останавливаются быстрее, чем бензиновые. потому что гораздо более сильное сжатие оказывает большее замедляющее действие на двигатель.

Запуск дизеля

Как и в случае с бензиновыми двигателями, дизельные двигатели запускаются поворотом электрический мотор , с которого начинается воспламенение от сжатия цикл. Когда холодно, однако дизельные двигатели сложно запустить просто потому, что.сжатие воздух не приводит к температуре, достаточно высокой для воспламенения топлива.

Чтобы обойти проблему, производители поместиться свечи накаливания . Это маленькие электронагреватели, питаемые от автомобильной аккумулятор , которые включены несколько секунд перед попыткой запуска двигателя.

Дизельное топливо

Топливо, используемое в дизельных двигателях, сильно отличается от бензина. это немного менее очищенный, что приводит к более тяжелому, более вязкому и менее летучий жидкость .Эти физические характеристики часто приводят к тому, что именуется «дизельное топливо» или «мазут». На дизельных насосах в гараже привокзалы его часто называют «дерв», сокращенно от «дорога с дизельным двигателем». транспортных средств.

Дизельное топливо может немного затвердеть или даже затвердеть на очень холоде. Погода. Это усугубляется тем фактом, что он может поглощать очень маленькие количество воды, которая может замерзнуть. Все виды топлива поглощают крошечные количества вода из атмосферы и утечка в подземные резервуары довольно часто.Дизельное топливо выдерживает содержание воды до 50 или 60. частей на миллион без проблем — чтобы представить это в перспективе, это примерно четверть кружки воды на каждые десять галлонов топлива.

Замерзание или восковая депиляция могут блокировать топливопроводы и форсунки и предотвратить двигатель не работает. Вот почему в очень холодную погоду вы будете время от времени можно увидеть людей, играющих в паяльные лампы на топливных магистралях своих грузовиков.

ZOIL | Основы дизельного двигателя


Дизельный двигатель — это двигатель внутреннего сгорания , который использует воспламенение от сжатия для воспламенения топлива при его впрыске в двигатель.

Чтобы понять, как работают дизельные двигатели, полезно сравнить различия между дизельным двигателем и бензиновым двигателем. Основные отличия бензинового двигателя от дизельного:

  • Бензиновый двигатель принимает смесь газа и воздуха, сжимает ее и воспламеняет смесь искрой. Дизельный двигатель забирает воздух, сжимает его, а затем впрыскивает топливо в сжатый воздух. Тепло сжатого воздуха самопроизвольно воспламеняет топливо.Дизельный двигатель не имеет свечи зажигания.
  • Бензиновый двигатель сжимает в соотношении от 8: 1 до 12: 1, а дизельный двигатель сжимает в соотношении от 14: 1 до 25: 1. Более высокая степень сжатия дизельного двигателя приводит к повышению эффективности.
  • Бензиновые двигатели обычно используют либо карбюрацию, при которой воздух и топливо смешиваются задолго до того, как воздух поступает в цилиндр, либо впрыск топлива через порт, при котором топливо впрыскивается непосредственно перед тактом впуска (вне цилиндра).Следовательно, в бензиновом двигателе все топливо загружается в цилиндр во время такта впуска, а затем сжимается. Сжатие топливно-воздушной смеси ограничивает степень сжатия двигателя — если он слишком сильно сжимает воздух, топливно-воздушная смесь самопроизвольно воспламеняется и вызывает детонацию. В дизельных двигателях используется прямой впрыск топлива, то есть дизельное топливо впрыскивается непосредственно в цилиндр. Дизельный двигатель сжимает только воздух, поэтому степень сжатия может быть намного выше. Чем выше степень сжатия, тем больше генерируется мощность.
  • Форсунки для дизельного топлива, в отличие от бензиновых, должны выдерживать температуру и давление внутри цилиндра и при этом подавать топливо в виде мелкого тумана. Чтобы туман равномерно распределялся по цилиндру, некоторые дизельные двигатели оснащены специальными впускными клапанами или камерами предварительного сгорания. Более новые дизельные двигатели оснащены топливной системой Common Rail высокого давления. См. «Основы дизельной топливной системы» для получения дополнительной информации об этом типе топливной системы.
  • Дизельные двигатели могут быть оснащены свечой накаливания. Когда дизельный двигатель холодный, в процессе сжатия температура воздуха может не повыситься настолько, чтобы воспламениться топливо. Свеча накаливания представляет собой электрически нагреваемую проволоку, которая способствует зажиганию топлива при холодном двигателе. Свечи накаливания обычно устанавливаются на небольших дизельных двигателях. Бензиновые двигатели не требуют свечей накаливания, поскольку они не зависят от самовозгорания.

ШАГ
1

ВПУСКНОЙ (ВНИЗ) ХОД 1 |
Поршень движется вниз, всасывая воздух в цилиндр

.

ШАГ
2

ХОД СЖАТИЯ (ВВЕРХ) 1 |
Поршень движется вверх, сжимая недавно втянутый воздух в цилиндр
Прежде чем поршень достигнет верхней мертвой точки (ВМТ), дизельное топливо впрыскивается непосредственно в цилиндр
Результат — сгорание дизельного топлива

ШАГ
3

ВПУСКНОЙ ХОД (ВНИЗ) 2 |
Поршень опускается, но впускной и выпускной клапаны не открываются

ШАГ
4

ДВИГАТЕЛЬ КОМПРЕССИИ (ВВЕРХ) 2 |
Поршень движется вверх, вытесняя сгоревшее дизельное топливо из цилиндра в виде выхлопа

.

ШАГ
5

Процесс повторяется

Дизельный двигатель предлагает эффективный способ выработки энергии.Он основан на сжатии для сгорания, что приводит к повышению топливной экономичности по сравнению с другими типами двигателей. E-ZOIL производит различные присадки к дизельному топливу, специально разработанные для дизельных двигателей. К ним относятся:

Дизельный двигатель

Тип двигателя внутреннего сгорания, в котором топливо воспламеняется путем впрыска его в горячий воздух под высоким давлением в камере сгорания. У него нет ни карбюратора, ни системы зажигания. Топливо впрыскивается в виде очень тонкой струи через сопло в камеру сгорания.Там он воспламеняется от тепла сжатого воздуха, которым была заполнена камера. Дизельный двигатель работает в фиксированной последовательности событий, которая может быть достигнута за четыре или два такта. Двухтактный низкооборотный (то есть от 70 до 120 об / мин) дизель используется в главных силовых установках, так как он может напрямую соединяться с гребным винтом и валом. Среднеоборотный четырехтактный двигатель (250 — 1200 об / мин) используется для вспомогательного оборудования, такого как генераторы переменного тока, а также для главной силовой установки с коробкой передач.

Четырехтактный дизельный двигатель напоминает бензиновый двигатель, поскольку он работает по четырехтактному циклу, а именно: впуск, сжатие, мощность и выхлоп. Когда поршень опускается на такте впуска воздуха, более низкое давление в цилиндре позволяет воздуху попасть в цилиндр через впускной клапан, который открывается непосредственно перед верхней мертвой точкой.

Когда поршень пройдет нижнюю мертвую точку и начинает подниматься, впускной клапан закрывается, и движение поршня вверх сжимает заряд воздуха в цилиндре, вызывая быстрое повышение температуры.До завершения второго такта заправка мазута постепенно впрыскивается в цилиндр форсункой.

При сгорании топливовоздушного заряда газы расширяются. Они толкают поршень вниз и создают рабочий ход. Прежде чем поршень достиг нижней мертвой точки, выпускной клапан открывается, и, когда поршень снова поднимается вверх, сгоревшие газы вытесняются через выпускной клапан. Непосредственно перед верхней мертвой точкой впускной клапан открывается, и цикл начинается снова.

Высокоскоростной Дизельный двигатель — Главный поршневой двигатель с номинальной частотой вращения 1400 об / мин или выше.

Среднеоборотный дизельный двигатель — Двигатель поршневого типа с диапазоном частот вращения от 400 до 1200 об / мин.

Низкооборотный дизельный двигатель — Двигатель крейцкопфа с номинальной частотой вращения менее 400 об / мин.

Из руководства по проекту Wärtsilä 46:

С диаметром цилиндра 46 см и ходом поршня 58 см номинальная мощность двигателя Wärtsilä 46F составляет 1250 кВт / цилиндр при 600 об / мин. Вспомогательное оборудование, такое как насосы, термостаты и модуль смазочного масла, может быть встроено в двигатель или отдельно.Al-соединения сконцентрированы в нескольких точках, чтобы сократить монтажные работы.

Основные компоненты

1. Блок двигателя

Блок цилиндров выполнен из чугуна с шаровидным графитом в виде единой детали для всех номеров цилиндров. Крышки коренных подшипников фиксируются снизу двумя винтами с гидравлическим натяжением. Блок двигателя направляет их вбок как вверху, так и внизу. Горизонтальные боковые винты с гидравлическим натяжением поддерживают крышки коренных подшипников.

2. Коленчатый вал

Коленчатый вал выкован цельно. Противовесы установлены на каждой перемычке. Высокая степень балансировки обеспечивает равномерную и толстую масляную пленку для всех подшипников.

3. Шатун

Шатун из легированной стали кован и обработан с круглым сечением. Нижний конец разделен по горизонтали, чтобы можно было снимать поршень и шатун через гильзу цилиндра. Все болты шатуна затянуты гидравлически.Подшипник поршневого пальца — трехметаллический. Масло подается к подшипнику поршневого пальца и к поршню через отверстие в шатуне.

4. Коренные подшипники и подшипники шатуна

Подшипники шатуна трехметаллического типа со стальной задней частью, футеровкой из свинцовой бронзы и мягким толстым слоем качения. В качестве основных подшипников используются как трехметаллические, так и биметаллические подшипники.

5. Гильза цилиндра

Гильза цилиндра центробежного литья имеет высокий и жесткий буртик для минимизации деформаций.Материал футеровки — это специальный сплав серого чугуна, разработанный для обеспечения превосходной износостойкости и высокой прочности. Точный контроль температуры достигается за счет точно расположенных продольных отверстий для охлаждающей воды. Чтобы исключить риск полировки отверстия, гильза оснащена антиполированным кольцом. Пространство для охлаждающей воды между блоком и футеровкой закрыто двойными уплотнительными кольцами. Вверху гильза оснащена кольцом, препятствующим полировке, чтобы исключить полировку отверстия и снизить расход смазочного масла.

6. Поршневые и поршневые кольца

Поршень составной конструкции с юбкой из чугуна с шаровидным графитом и стальной головкой. Юбка поршня смазывается под давлением, что обеспечивает контролируемое распределение масла по гильзе цилиндра при любых условиях эксплуатации. Масло через шатун подается в охлаждающий канал в верхней части поршня. Канавки поршневых колец закалены для обеспечения хорошей износостойкости. Комплект поршневых колец состоит из двух направленных компрессионных колец и одного подпружиненного маслосъемного кольца.Все поршневые кольца имеют износостойкое хромирование.

7. Головка блока цилиндров

Головка блока цилиндров сконструирована так, что ее обслуживают всего четыре шпильки с гидравлической затяжкой. Клапанные клетки не используются, что обеспечивает очень хорошую динамику потока в канале выхлопных газов. Седла выпускных клапанов имеют водяное охлаждение, и все клапаны оснащены ротаторами клапана. Поверхности седел впускных клапанов покрыты стеллитом. Если двигатель предназначен только для работы с ДВП, выпускные клапаны также имеют стеллитовое покрытие.Двигатели, предназначенные для работы на HFO, имеют выпускные клапаны Nimonic.

Дополнительная информация: Руководство по проекту Wärtsilä 46

Что это такое и как они работают?

1) UTI является образовательным учреждением и не может гарантировать работу или зарплату.

2) Для получения важной информации об образовательном долге, заработках и показателях завершения студентов, которые посещали эту программу, а также для ознакомления с применимым раскрытием информации о доходной работе посетите веб-сайт www.uti.edu/disclosures.

3) Методология опроса: OnePoll опросил 2000 американцев в возрасте от 18 до 35 лет в Калифорнии, Аризоне, Техасе, Иллинойсе, Флориде, Северной Каролине, Нью-Джерси и Пенсильвании в октябре 2020 года. 2 Проводятся оплачиваемые производителем программы повышения квалификации UTI от имени производителей, определяющих критерии и условия приемки. Эти программы не являются частью аккредитации UTI. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.Для получения важной информации о долги за образование, заработки и показатели завершения студентов, посещавших эту программу, можно найти на сайте www.uti.edu/disclosures.

6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату. ИМП образовательное учреждение и не может гарантировать работу или заработную плату.

7) Для завершения некоторых программ может потребоваться более одного года.

10) Финансовая помощь и стипендии доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.

11) См. Подробные сведения о программе для получения информации о требованиях и условиях, которые могут применяться.

12) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2016-2026), www.bls.gov, просмотренных 24 октября 2017 года. Прогнозируемое количество годовых Вакансии, по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200.Вакансии включают вакансии в связи с ростом и чистые замены.

14) Программы поощрения и право сотрудников на участие в программе остаются на усмотрение работодателя и доступны в определенных местах. Могут применяться особые условия. Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.

15) Оплачиваемые производителем программы повышения квалификации проводятся Группой специального обучения UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI.

16) Не все программы аккредитованы ASE Education Foundation.

21) GI Bill® является зарегистрированным товарным знаком Департамента по делам ветеранов США (VA). Более подробная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.

22) Грант «Приветствие за служение» доступен всем ветеранам, имеющим право на участие, во всех местах на территории кампуса. Программа Yellow Ribbon одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.

24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня. Выпускники, которые выбирают специальные дисциплины NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые прошли факультативные занятия, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.

25) Расчетная годовая средняя заработная плата техников и механиков по обслуживанию автомобилей в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г.Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например, сервисный писатель, смог инспектор и менеджер по запасным частям. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников и механиков по обслуживанию автомобилей в Содружестве Массачусетс (49-3023) составляет от 29 050 до 45 980 долларов (данные за май 2018 г., штат Массачусетс, США, 10 сентября) 2020).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2019 г. Сервисные техники и механики, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

26) Расчетная годовая средняя заработная плата сварщиков, резчиков, паяльщиков и паяльщиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121), составляет от 33 490 до 48 630 долларов. ( Массачусетс, данные за май 2018 г., данные за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую оплату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 доллара и 14,03 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Сварщики, резаки, паяльщики и брейзеры, просмотрено в сентябре 14, 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов и связанных с ними автомобилей в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, занятых в качестве ремонтников автомобилей и связанных с ними (49-3021), в Содружестве Массачусетс составляет от 31 360 до 34 590 долларов. ( Массачусетс, данные за май 2018 г., данные за 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве дизельных техников . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в штате Массачусетс составляет от 29 730 до 47 690 долларов США (Массачусетс, штат Массачусетс, данные за май 2018 г. , просмотрено 10 сентября 2020 г.). Информация о заработной плате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных дизельных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

30) Расчетная средняя годовая зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетс: Средняя годовая заработная плата начального уровня для лиц, работающих в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28700 долларов США (Массачусетс по труду и развитию рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: Министерство труда США оценивает почасовую заработную плату в размере 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов, соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. , Motorcycle Mechanics, просмотр 14 сентября 2020 г.)) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих механиками моторных лодок и техниками по обслуживанию (49-3051) в Содружестве Массачусетса. составляет от 31 280 до 43 390 долларов (данные за май 2018 г. , Массачусетс, США, 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в размере 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 доллара и 10,82 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2019 г., Механика моторных лодок и Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или зарплату.

34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по ЧПУ. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, оператор ЧПУ, ученик. слесарь и инспектор по обработанным деталям. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г., данные за май 2018 г., данные за 10 сентября 2020).Информация о заработной плате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

40) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое количество годовых вакансий по классификации должностей: Механики автобусов и грузовиков и специалисты по дизельным двигателям, 24 500 человек. Вакансии включают вакансии, связанные с ростом и чистым замещением.

41) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено 8 сентября 2020 г. Прогнозируемое количество годовых вакансий по классификации должностей: Автомеханики и механики, 61 700. Вакансии включают вакансии, связанные с ростом и чистым замещением.

42) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое количество годовых вакансий по классификации должностей: сварщики, резаки, паяльщики и паяльщики, 43 400 человек.Вакансии включают вакансии, связанные с ростом и чистым замещением.

48) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Для получения важной информации об образовательном долге, доходах и показателях завершения студентов, посещавших эту программу, посетите сайт www.uti.edu/disclosures.

Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета высшего образования штата Иллинойс.

Понимание цикла — двухтактный цикл дизельного двигателя

Если вы прочитали «Как работают двухтактные двигатели», то узнали, что одно большое различие между двухтактными и четырехтактными двигателями — это количество мощности, которое двигатель может производить. Свеча зажигания срабатывает в два раза чаще в двухтактном двигателе — один раз на каждый оборот коленчатого вала, по сравнению с одним разом на каждые два оборота в четырехтактном двигателе. Это означает, что двухтактный двигатель может производить в два раза больше мощности , чем четырехтактный двигатель того же размера.

В статье о двухтактном двигателе также объясняется, что цикл бензинового двигателя, в котором газ и воздух смешиваются и сжимаются вместе, на самом деле не идеально подходит для двухтактного подхода. Проблема в том, что несгоревшее топливо просачивается каждый раз, когда цилиндр заправляется топливовоздушной смесью. (Подробности см. В разделе «Как работают двухтактные двигатели».)

Объявление

Оказывается, дизельный подход, который сжимает только воздух, а затем впрыскивает топливо непосредственно в сжатый воздух, намного лучше подходит для двухтактного цикла.Поэтому многие производители больших дизельных двигателей используют этот подход для создания двигателей большой мощности.

На рисунке показана компоновка типичного двухтактного дизельного двигателя:

В верхней части цилиндра обычно находятся два или четыре выпускных клапана, которые открываются одновременно. Также имеется инжектор дизельного топлива (показан желтым наверху). Поршень удлиненный, как в бензиновом двухтактном двигателе, поэтому он может действовать как впускной клапан. В нижней части хода поршня поршень открывает отверстия для забора воздуха.Всасываемый воздух сжимается турбонагнетателем или нагнетателем (голубой). Картер герметичен и содержит масло, как в четырехтактном двигателе.

Двухтактный дизельный цикл выглядит так:

  1. Когда поршень находится в верхней части своего хода, цилиндр содержит заряд сильно сжатого воздуха. Дизельное топливо впрыскивается форсункой в ​​цилиндр и немедленно воспламеняется из-за тепла и давления внутри цилиндра.Это тот же процесс, который описан в «Как работают дизельные двигатели».
  2. Давление, создаваемое сгоранием топлива, толкает поршень вниз. Это рабочий ход .
  3. Когда поршень приближается к нижней части своего хода, все выпускные клапаны открываются. Выхлопные газы устремляются из цилиндра, сбрасывая давление.
  4. Когда поршень выдвигается вниз, он открывает отверстия для впуска воздуха. Сжатый воздух заполняет цилиндр, вытесняя остатки выхлопных газов.
  5. Выпускные клапаны закрываются, и поршень начинает двигаться обратно вверх, снова закрывая впускные отверстия и сжимая свежий заряд воздуха. Это ход сжатия .
  6. Когда поршень приближается к верхней части цилиндра, цикл повторяется с шага 1.

Из этого описания вы можете увидеть большую разницу между дизельным двухтактным двигателем и бензиновым двухтактным двигателем: в дизельной версии цилиндр заполняется только воздухом, а не газом и воздухом, смешанными вместе.Это означает, что двухтактный дизельный двигатель не страдает ни одной из экологических проблем, характерных для бензинового двухтактного двигателя. С другой стороны, двухтактный дизельный двигатель должен иметь турбонагнетатель или нагнетатель, а это значит, что на бензопиле вы никогда не встретите двухтактный дизель — это было бы слишком дорого.

Дизельный двигатель

— Energy Education

Рис. 1 Схема рядного четырехцилиндрового двигателя. Поршни серые, коленчатый вал зеленый, блок прозрачный [1]

Дизельный двигатель — это тип теплового двигателя внутреннего сгорания, работающего от дизельного топлива.Эти двигатели работают с небольшими электрическими генераторами, называемыми дизельными генераторами, часто в отдаленных районах, а также с двигателями легковых и грузовых автомобилей (как больших, так и малых).

Процессы

Зажигание топлива

В дизельных двигателях топливо воспламеняется за счет сжатия. Температура молекул газа повышается, когда объем уменьшается из-за закона идеального газа (если газ не охлаждается одновременно). На это полагаются дизельные двигатели. Поршень сжимает воздух в цилиндре (см. Рис. 1), в результате чего он становится очень горячим.Затем дизельное топливо распыляется в форсунках, и в горячий воздух распыляется туман. Горячий воздух немедленно воспламеняет топливо, обеспечивая воспламенение. [2]

Это зажигание заставляет дизельное топливо сгорать кислородом из атмосферы, который превращает химическую энергию в повышенную температуру, что позволяет газу выталкиваться обратно на поршень, см. Рис. 1.

В холодном состоянии в дизельных двигателях используется нагретый кусок металла, называемый свечой накаливания, для зажигания дизельного топлива. [3]

Запуск

Запуск дизельного двигателя сложнее, чем запуск бензинового из-за того, что дизельные двигатели воспламеняют топливо.Дизельный стартер должен быть достаточно мощным, чтобы сжимать газ внутри цилиндров, воспламеняя дизельную смесь с воздухом. Это требует более высокого потребления мощности, чем традиционный двигатель с искровым зажиганием, поэтому дизельные двигатели имеют более прочные батареи.

Детали дизельного двигателя

Блок

Блок — это основа двигателя. Это большой металлический блок, обычно из алюминия или стали, с прорезанными в нем отверстиями для цилиндров.

Цилиндры

Цилиндры двигателя — это то место, где выполняется работа.Топливо впрыскивается в цилиндры, где оно воспламеняется за счет сжатия дизельного топлива и воздуха вместе, что приводит к взрыву. Этот взрыв перемещает поршни, выполняя работу, позволяя транспортному средству двигаться вперед.

Поршни

Поршни — это устройства, которые скользят вверх и вниз внутри цилиндров. Их работа заключается в том, чтобы входить и выходить, соединенные с коленчатым валом, чтобы сжимать воздух, впрыскиваемый в камеру, — это вызывает нагрев воздуха. Объем воздуха, поступающего в камеру, сжимается примерно в 14-25 раз по сравнению с исходным объемом. [4]

Распредвал

основная статья

Распределительный вал — это устройство, которое управляет синхронизацией двигателя. Работа распределительного вала — регулировать, когда топливо впускается в двигатель, а когда выпускается выхлоп. Эта, казалось бы, простая работа может сильно повлиять на производительность двигателя.

Форсунки

Топливная форсунка предназначена для распыления топлива. Это означает превращение жидкого топлива в туман, что резко увеличивает площадь его поверхности.Это позволяет топливу сгорать быстрее, давая больший импульс поршню. Топливные форсунки являются улучшением по сравнению с карбюраторами, потому что они требуют меньшего обслуживания и лучше распыляют топливо. Впрыск топлива позволяет повысить эффективность двигателя, что может привести к увеличению мощности и увеличению расхода топлива.

Коленчатый вал

основная статья

Коленчатый вал является наиболее важной частью двигателя, потому что он соединяет части вместе и позволяет двигателю создавать мощность.Его цель — превратить линейное (вверх и вниз) движение поршней во вращательное движение. Один конец коленчатого вала прикреплен к распределительному валу с помощью зубчатого ремня. Другой конец подключен к маховику, который регулирует мощность, выходящую из двигателя, что-то вроде сетевого фильтра для вашего компьютера.

Стартер

Это одно из самых больших отличий дизельного двигателя от бензинового. Поскольку дизельные двигатели воспламеняют свое топливо за счет сжатия, стартер должен иметь возможность вызывать это сжатие, чтобы двигатель начал двигаться.Это означает, что аккумулятор на автомобиле с дизельным двигателем должен быть более мощным, чем аккумулятор на автомобиле с бензиновым двигателем.

Для дальнейшего чтения

Список литературы

Диаграмма давление-объем (pV) и как работа выполняется в ДВС — x-engineer.org

Двигатель внутреннего сгорания — это тепловой двигатель . Принцип его работы основан на изменении давления и объема внутри цилиндров двигателя. Все тепловые двигатели характеризуются диаграммой давление-объем , также известной как диаграмма pV , которая в основном показывает изменение давления в цилиндре в зависимости от его объема для полного цикла двигателя.

Кроме того, работа , производимая двигателем внутреннего сгорания, напрямую зависит от изменения давления и объема внутри цилиндра.

К концу этого руководства читатель должен уметь:

  • понять значение диаграммы pV
  • как нарисовать диаграмму pV для 4-тактного двигателя внутреннего сгорания
  • при впуске и выпуске клапаны приводятся в действие во время цикла двигателя
  • , когда зажигание / впрыск производится во время цикла двигателя
  • как работа создается двигателем внутреннего сгорания
  • какая разница между указанным и работа тормоза
  • каков механический КПД двигателя

Давайте начнем с рассмотрения pV-диаграммы четырехтактного атмосферного двигателя внутреннего сгорания.

Изображение: диаграмма давление-объем (pV) для типичного 4-тактного ДВС

где:

S — ход поршня
V c — зазорный объем
V d — смещенный (рабочий) объем
p 0 — атмосферное давление
W — работа
ВМТ — верхняя мертвая точка
НМТ — нижняя мертвая точка
IV — впускной клапан
EV — выпускной клапан
IVO — открытие впускного клапана
IVC — закрытие впускного клапана
EVO — открытие выпускного клапана
EVC — закрытие выпускного клапана
IGN (INJ) — зажигание (впрыск)

Диаграмма давление-объем (pV) построена путем измерения давления внутри цилиндра и его значения в зависимости от угла поворота коленчатого вала на протяжении всего цикл двигателя (720 °).

Давайте посмотрим, что происходит в цилиндре во время каждого хода поршня, как изменяются давление и объем внутри цилиндра.

Обратите внимание, что синхронизация впускных и выпускных клапанов имеет опережение и задержку относительно положения поршня. Например, впускной клапан открывается во время такта выпуска поршня и закрывается во время такта сжатия. В то же время, когда начинается такт впуска, выпускной клапан еще некоторое время открыт.Открытие выпускного клапана происходит до завершения рабочего хода.

ВПУСК (a-b)

Цикл двигателя начинается в точке a . Впускной клапан уже открыт, и поршень движется от ВМТ к НМТ. Объем постоянно увеличивается, поскольку поршень перемещается по длине хода. Максимальный объем достигается, когда поршень находится в НМТ. Давление ниже атмосферного во время всего хода, потому что движение поршня создает объем, а воздух втягивается внутрь цилиндра из-за эффекта вакуума.

СЖАТИЕ (b-c)

После того, как поршень прошел НМТ, начинается такт сжатия. В этой фазе объем начинает уменьшаться, а давление увеличиваться. Требуется некоторое время, пока давление в цилиндре не превысит атмосферное, чтобы впускной клапан оставался открытым даже после прохождения поршнем НМТ. По мере того, как поршень приближается к ВМТ, давление постепенно увеличивается. Примерно за 25 ° до ВМТ запускается зажигание, и давление быстро повышается до максимального.

МОЩНОСТЬ (c-e)

После события зажигания / впрыска давление в цилиндре резко возрастает, пока не достигнет максимальных значений p max . Значение максимального давления зависит от типа двигателя, на каком топливе он используется. Для обычного двигателя легкового автомобиля максимальное давление в цилиндре может составлять около 120 бар (бензин) или 180 бар (дизель). Рабочий ход начинается, когда поршень движется от ВМТ к НМТ. Высокое давление в цилиндре толкает поршень, поэтому объем увеличивается, а давление начинает постепенно падать.

ВЫХЛОП (e-a)

После рабочего хода поршень снова находится в НМТ. Объем цилиндра снова на максимальном значении, а давление около минимального (атмосферное давление). Поршень начинает двигаться в сторону ВМТ и выталкивает сгоревшие газы из цилиндра.

Как видите, давление и объем внутри цилиндров двигателя постоянно меняются. Мы увидим, что работа, производимая ДВС, зависит от изменений давления и объема.

Работа Вт [Дж] — это произведение силы F [Н] , которая толкает поршень, и смещения, которым в нашем случае является ход S [м] .

\ [W = F \ cdot S \ tag {1} \]

Мы знаем, что давление — это сила, разделенная на площадь, поэтому:

\ [F = p \ cdot A_p \ tag {2} \]

, где p [ Па] давление внутри цилиндра и A p 2 ] — площадь поршня.

Замена (2) в (1) дает:

\ [W = p \ cdot A_p \ cdot S \ tag {3} \]

Мы знаем, что умножая расстояние на площадь, мы получаем объем, следовательно:

\ [W = p \ cdot V \ tag {4} \]

Это мгновенная работа , произведенная в цилиндре для определенного давления и объема. Чтобы определить работу для полного цикла двигателя, нам нужно интегрировать мгновенную работу:

\ [W = \ int F \ cdot dx = \ int p \ cdot A_p \ cdot dx \ tag {5} \]

, где x ход поршня.

Произведение между ходом поршня и площадью поршня дает дифференциальный объем dV , смещенный поршнем:

\ [dV = A_p \ cdot dx \ tag {6} \]

Замена (6) в (5 ) дает работу , произведенную в цилиндре за полный цикл :

\ [\ bbox [# FFFF9D] {W = \ int p \ cdot dV} \ tag {7} \]

Поскольку подавляющее большинство Если двигатель внутреннего сгорания имеет несколько цилиндров, мы собираемся ввести более подходящий параметр для количественной оценки работы, которым является удельная работа w [Дж / кг] .

\ [w = \ frac {W} {m} \ tag {8} \]

, где м [кг] — масса топливовоздушной смеси внутри цилиндров за полный цикл.

Мы можем также определить удельный объем v [m 3 / кг] как:

\ [v = \ frac {V} {m} \ tag {9} \]

Производная от удельного объем будет:

\ [dv = \ frac {1} {m} \ cdot dV \ tag {10} \]

, откуда мы можем записать:

\ [dV = m \ cdot dv \ tag {11} \]

Замена (7) в (8) дает:

\ [w = \ frac {1} {m} \ int p \ cdot dV \ tag {12} \]

Из (11) и (12) получаем математическое выражение удельной работы для полного цикла двигателя:

\ [\ bbox [# FFFF9D] {w = \ int p \ cdot dv} \]

Работа, производимая внутри цилиндров двигателя, называется , указывается удельная работа , w i [Дж / кг] . Что мы получаем на коленчатом валу, так это удельная работа тормоза w b [Дж / кг] . Это называется «тормозной», потому что при испытании двигателей на испытательном стенде они подключаются к тормозному устройству (гидравлическому или электрическому), которое имитирует нагрузку.

Чтобы получить работу тормоза, мы должны вычесть из указанной работы все потери двигателя. Потери связаны с внутренним трением и вспомогательными устройствами, которые требуют энергии от двигателя (масляный насос, водяной насос, нагнетатель, компрессор кондиционера, генератор и т. Д.). Эти потери равны удельной работе на трение w f [Дж / кг] .

\ [w_b = w_i — w_f \]

Глядя на указанную выше диаграмму давление-объем (pV), мы можем увидеть, что есть две отдельные области:

  • верхняя область, образованная во время тактов сжатия и увеличения ( + W)
  • нижняя область, образующаяся во время тактов выпуска и впуска (-W), также называемая насосная работа

В зависимости от значения давления всасывания рабочая область нагнетания может быть отрицательной или положительной. Для атмосферных двигателей насосная работа отрицательна, потому что она использует энергию двигателя для выталкивания выхлопных газов из цилиндров и всасывания свежего воздуха во время впуска.

Для бензиновых атмосферных двигателей из-за дросселирования всасываемого воздуха насосные потери выше и максимальны на холостом ходу. Дизельные двигатели более эффективны, чем бензиновые, потому что на впуске нет дроссельной заслонки, а нагрузка регулируется посредством впрыска топлива.

Если разделить удельный крутящий момент тормоза на указанный удельный крутящий момент, мы получим механический КПД двигателя η м [-] :

\ [\ bbox [# FFFF9D] {\ eta_m = \ frac {w_b} {w_i}} \]

Для большинства двигателей механический КПД составляет около 80-85% при полной нагрузке (широко открытая дроссельная заслонка) и падает до нуля на холостом ходу, когда весь крутящий момент двигателя используется для поддержания холостого хода. скорость, а не движущая сила.

Добавить комментарий

Ваш адрес email не будет опубликован.