Поршневые двигатели внутреннего сгорания: Общее устройство поршневых двигателей внутреннего сгорания

Содержание

Поршневой двигатель внутреннего сгорания — это… Что такое Поршневой двигатель внутреннего сгорания?

4-тактный цикл двигателя внутреннего сгорания
Такты:
1. Всасывание горючей смеси.
2. Сжатие.
3. Рабочий ход.
4. Выхлоп. Двухтактный цикл.
Такты:
1. При движении поршня вверх — сжатие топливной смеси в текущем цикле и всасывание смеси для следующего цикла в полость под поршнем.
2. При движении поршня вниз — рабочий ход, выхлоп и вытеснение топливной смеси из-под поршня в рабочую полость цилиндра. Блок цилиндров 4-х цилиндрового ДВС

Поршневой двигатель — двигатель внутреннего сгорания, в котором тепловая энергия расширяющихся газов, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень.
Поступательное движение поршня преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом.

Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (бензорезок (бензо-болгарок), газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий.

Мощность поршневых двигателей внутреннего сгорания колеблется в пределах от нескольких ватт (двигатели авиа-, мото- и судомоделей) до 75 000 кВт (судовые двигатели).

В качестве топлива в поршневых двигателях внутреннего сгорания используются:

  • жидкости — бензин, дизельное топливо, спирты, биодизель;
  • газы — сжиженный газ, природный газ, водород, газообразные продукты крекинга нефти, биогаз;
  • монооксид углерода, вырабатываемый в газогенераторе, входящем в состав топливной системы двигателя, из твёрдого топлива (угля, торфа, древесины).

Полный цикл работы двигателя складывается из последовательности тактов — однонаправленных поступательных ходов поршня. Различают двухтактные и четырёхтактные двигатели.
Число цилиндров в разных поршневых двигателях колеблется от 1-го до 24-х. Объём цилиндра — это произведение площади поперечного сечения цилиндра на ход поршня. Суммарный объём всех цилиндров обычно называют объёмом двигателя. По способу смесеобразования делятся:

  • Двигатели с внутренним смесеобразованием (воспламенение от сжатия рабочего тела). Эти двигатели, в свою очередь, подразделяются на:
    • Дизельные, работающие на дизельном топливе или природном газе (с добавлением 5 % дизельного топлива для обеспечения воспламенения топливной смеси). В этих двигателях сжатию подвергается только воздух, а при достижении поршнем точки максимального сжатия в камеру сгорания впрыскиваеся топливо, которое воспламеняется при контакте с воздухом, нагретым при сжатии до температуры в несколько сотен градусов Цельсия.
    • Компрессионные двигатели. В них, в отличие от дизельных, топливо подается вместе с воздухом (как в бензиновых двигателях). Такие двигатели требуют особого состава топлива (обычно в его основе — диэтиловый эфир) и точной регулировки степени сжатия, так как от нее зависит момент воспламенения смеси. Компрессионные двигатели используются главным образом в авиа- и автомоделях;
    • Калильные двигатели. Схожи по принципу действия с компрессионными, но имеют калильную свечу, накал которой поддерживается за счёт сгорания топлива на предыдущем такте.Такие двигатели также требуют особого состава топлива (обычно в его основе — метанол, касторовое масло и нитрометан). Используются главным образом в авиа- и автомоделях;
  • Воспламенение от горячих частей двигателя (калоризаторные), обычно — днища поршня. Приводные двигатели прокатных станов (топливо-мартеновский газ).

Двигатели с внутренним смесеобразованием имеют (как в теории, так и на практике) более высокий КПД и вращающий момент за счёт более высокой степени сжатия.

В рамках технической термодинамики работа поршневых двигателей внутреннего сгорания в зависимости от особенностей их циклограмм описывается термодинамическими циклами Отто, Дизеля, Тринклера, Аткинсона или Миллера.

Эффективный КПД поршневого ДВС не превышает 60%. Остальная тепловая энергия распределяется, в основном, между теплом выхлопных газов и нагревом конструкции двигателя. Поскольку последняя доля весьма существенна, поршневые ДВС нуждаются в системе интенсивного охлаждения. Различают системы охлаждения:

  • воздушные, отдающие избыточное тепло окружающему воздуху через ребристую внешнюю поверхность цилиндров; используются в двигателях сравнительно небольшой мощности (десятки л.с.), или в более мощных авиационных двигателях, работающих в быстром потоке воздуха;
  • жидкостные, в которых охлаждающая жидкость (вода, масло или антифриз) прокачивается через рубашку охлаждения (каналы, созданные в стенках блока цилиндров), и затем поступает в радиатор охлаждения, в котором теплоноситель охлаждается потоком воздуха, созданным вентилятором. Иногда в жидкостных системах в качестве теплоносителя используется металлический натрий, расплавляемый теплом двигателя при его прогреве.

Основные параметры двигателя

С работой поршневого двигателя внутреннего сгорания связаны следующие параметры.

  • Верхняя мёртвая точка (в. м. т.) — крайнее верхнее положение поршня.
  • Нижняя мёртвая точка (н. м. т.) — крайнее нижнее положение поршня.
  • Радиус кривошипа — расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки
  • Ход поршня — расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).
  • Такт — часть рабочего цикла, происходящего при движении поршня из одного крайнего положения в другое.
  • Объём камеры сгорания — объём пространства над поршнем, когда он находится в верхней мертвой точке.
  • Рабочий объём цилиндра — объём, освобождаемый поршнем при перемещении его от верхней мертвой точки к нижней мертвой точке.
  • Полный объем цилиндра — объём пространства над поршнем при нахождении его в нижней мёртвой точке. Полный объём цилиндра равен сумме рабочего объёма цилиндра и объёма камеры сгорания.
  • Литраж двигателя для многоцилиндровых двигателей — это произведение рабочего объёма на число цилиндров.
  • Степень сжатия — отношение полного объёма цилиндра к объёму камеры сгорания.

Ссылки

Классификация поршневых двигателей внутреннего сгорания

 

По каким признакам классифицируются поршневые двигатели внутреннего сгорания?

Поршневые двигатели внутреннего сгорания классифицируются по таким признакам. По способу осуществления рабочего процесса – на двигатели с внешним смесеобразованием (карбюраторные и газовые) и внутренним смесеобразованием (дизельные).

По способу воспламенения горючей смеси – на двигатели с принудительным воспламенением (карбюраторные и газовые) и самовоспламенением (дизельные). В карбюраторных и газовых двигателях горючая смесь воспламеняется электрической искрой, образующейся с помощью системы зажигания. В дизельных двигателях горючая смесь самовоспламеняется под действием высокой температуры, возникающей при сжатии воздуха в цилиндре двигателя.
По числу тактов двигатели делятся на двух- и четырехтактные. По роду применяемого топлива – на двигатели легкого или светлого топлива (бензин, спирты), тяжелого топлива (дизельное топливо, соляровое масло, нефть) и двигатели газообразного топлива (метан, водород, пропанобутановые смеси).

По количеству цилиндров – на одноцилиндровые и многоцилиндровые. По расположению цилиндров – на вертикальные (однорядные), V-образные (двухрядные) и горизонтальные (оппозитные). В оппозитном двигателе угол между цилиндрами составляет 180°. По типу охлаждения – на двигатели с жидкостным и воздушным охлаждением. По рабочему объему (литражу) двигатели делятся на микролитражные с рабочим объемом до 1,2 л, малолитражные (от 1,2 до 1,8 л), среднего литража (от 1,8 до 3,5 л) и большого литража (свыше 3,5 л).

В зависимости от каких факторов выбирается двигатель?

Принятие того или иного двигателя для установки на автомобиле зависит от типа транспортного средства, на которое он должен устанавливаться, его назначения, грузоподъемности, скорости движения.

***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Двигатели»

газовый, двигатель, дизельный, карбюраторный, литраж, смесь, топливо, цилиндр

Смотрите также:

Двигатели внутреннего сгорания поршневые. Определение и метод измерения мощности двигателя. Дополнительные требования при измерении выбросов продуктов сгорания согласно ISO 8178 – РТС-тендер

              

ГОСТ ISO 14396-2015

МКС 27.020

Дата введения 2017-04-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1. 0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Центральный научно-исследовательский дизельный институт» (ООО «ЦНИДИ») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 5

2 ВНЕСЕН МТК 235 «Двигатели внутреннего сгорания поршневые»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 12 ноября 2015 г. N 82-П)

За принятие проголосовали:

Краткое наименование страны по
 МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Армгосстандарт

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 июня 2016 г. N 669-ст межгосударственный стандарт ГОСТ ISO 14396-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2015 г.

5 Настоящий стандарт идентичен международному стандарту ISO 14396:2002* Reciprocating internal combustion engines — Determination and method for the measurement of engine power — Additional requirements for exhaust emission tests in accordance with ISO 8178 (Двигатели внутреннего сгорания поршневые. Определение и метод измерения мощности двигателя. Дополнительные требования при измерении выбросов продуктов сгорания согласно ISO 8178).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

Международный стандарт ISO 14396:2002 разработан техническим комитетом ISO/TC 70 «Двигатели внутреннего сгорания поршневые».

Перевод с английского языка (en).

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и межгосударственных стандартов, на которые даны ссылки, имеются в национальных органах по стандартизации.

В разделе «Нормативные ссылки» и тексте стандарта ссылки на международные стандарты актуализированы.

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия — идентичная (IDT)

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты» (по состоянию на 1 января текущего года), а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Настоящий стандарт распространяется на судовые, тепловозные и промышленные поршневые двигатели внутреннего сгорания (ДВС), а также может быть применен для двигателей внедорожной техники. Стандарт устанавливает требования к методам определения мощности указанных двигателей при измерении вредных выбросов в соответствии с ISO 8178, а также дополнительные требования к установленным стандартом ISO 15550.

Данный стандарт устанавливает дополнительные требования к условиям корректировки мощности регулируемых двигателей в зависимости от атмосферных условий и не может применяться при определении значений выбросов нерегулируемых двигателей.

Настоящий стандарт должен использоваться только совместно со стандартом ISO 15550, чтобы полностью определять требования, специфичные для конкретного применения двигателя.

В настоящем стандарте использованы нормативные ссылки на следующие стандарты*:

_______________

* Таблицу соответствия национальных стандартов международным см. по ссылке. — Примечание изготовителя базы данных.     

ISO 3104:1994 Petroleum products — Transparent and opaque liquids — Determination of kinematic viscosity and calculation of dynamic viscosity (Нефтепродукты. Прозрачные и непрозрачные жидкости. Определение кинематической вязкости и расчет динамической вязкости)

ISO 3675:1998 Crude petroleum and liquid petroleum products — Laboratory determination of density — Hydrometer method (Нефть сырая и жидкие нефтепродукты. Лабораторные методы определения плотности или относительной плотности. Ареометрический метод)

ISO 5164:1990 Motor fuels — Determination of knock characteristics — Research method (Моторное топливо. Определение антидетонационных свойств. Исследовательский метод)

ISO 5165:1998 Petroleum products — Determination of the ignition quality of diesel fuels — Cetane engine method (Нефтепродукты. Определение воспламеняемости дизельных топлив. Цетановый моторный метод)

ISO 15550:2002 Reciprocating internal combustion engines — Determination and method for the measurement of engine power — General requirements (Двигатели внутреннего сгорания поршневые. Определение и метод измерения мощности двигателя. Общие требования)

ASTM D240-00 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Стандартный метод определения теплоты сгорания жидких углеводородных топлив с помощью калориметрической бомбы)

ASTM D3338-00 Standard Test Method for Estimation of Net Heat of Combustion of Aviation Fuels (Стандартный метод оценки полезной теплоты сгорания авиационных топлив).

В настоящем стандарте применены следующие термины с соответствующими определениями, приведенными в таблице 1.

Таблица 1

Термин (в алфавитном порядке)

Определение (см. ISO 15550, номер пункта)

контрольные испытания (production conformity test)

3.5.4

корректировка мощности (power correction)

3.3.10

мощность двигателя для ISO 8178 (engine power for ISO 8178)

3.3.3.3

нагрузка (load)

3.3.11

объявленная мощность (declared power)

3.3.1

объявленная частота вращения двигателя (declared engine speed)

3. 2.4

объявленная промежуточная частота вращения двигателя (declared intermediate engine speed)

3.2.5

регулирование двигателя (engine adjustment)

3.2.1

частота вращения двигателя (engine speed)

3.2.3

частота вращения двигателя при максимальном крутящем моменте (engine speed at maximum torque)

3.2.7

специальные испытания (special test)

3.5.3

топливоподача (fuel delivery)

3.4.2

При объявлении промежуточной частоты вращения двигателя должны быть приняты во внимание следующие требования:

— для двигателей, предназначенных для работы в определенном диапазоне частоты вращения при полной нагрузке, промежуточной частотой вращения двигателя является объявленная частота вращения при максимальном крутящем моменте, если она находится в интервале от 60% до 75% объявленной частоты вращения.

Если объявленная частота вращения при максимальном крутящем моменте составляет менее 60% от объявленной частоты вращения, то промежуточная частота вращения должна приниматься равной 60% от объявленной частоты вращения.

Если объявленная частота вращения при максимальном крутящем моменте составляет более 75% от объявленной частоты вращения, то промежуточная частота вращения должна приниматься равной 75% от объявленной частоты вращения:

— для двигателей, не предназначенных для всережимной работы по внешней характеристике при полной нагрузке в установившемся режиме, промежуточная частота вращения обычно выбирается в диапазоне от 60% до 70% от объявленной частоты вращения.

     

В настоящем стандарте применены обозначения и сокращения в соответствии с таблицами 2 и 3 ISO 15550.

В качестве стандартных исходных условий для определения стандартной мощности ИСО и соответствующего ей удельного расхода топлива приняты условия в соответствии с разделом 5 ISO 15550.

Применяется метод 2 в соответствии с пунктом 6.3 ISO 15550.

Действуют требования пунктов 6.3.4.1-6.3.4.14 ISO 15550 со следующими дополнениями.

a) Условия измерения мощности двигателя зависят от того, имеет ли двигатель заданную заводскую регулировку, рассчитанную на работу при максимальном значении топливоподачи в любых условиях, или же он допускает регулировки, с помощью которых может быть отрегулирован на заданную мощность.

Для регулируемого двигателя с самовоспламенением от сжатия (дизеля) проверка мощности производится при таких регулировках системы топливоподачи, при которых двигатель будет развивать мощность, заданную изготовителем, при условии, что оборудование этого двигателя соответствует требованиям таблицы 1 (графа 5) ISO 15550.

Все оборудование и все вспомогательные устройства согласно таблице 1 (графа 5) ISO 15550 перед испытаниями должны быть сняты.

Существует ряд устройств, необходимых только для работы приводимого от двигателя оборудования, которое может устанавливаться на двигателе и приводиться от него. Такие устройства перед испытаниями также должны быть сняты. Примерами подобных устройств являются:

— воздушный компрессор для тормозной системы;

— насос гидроусилителя руля;

— компрессор системы пневмоподвески;

— компрессор кондиционера;

— навесной редуктор.

В случаях, когда указанные устройства не могут быть сняты, потребляемая ими мощность должна быть определена и добавлена к измеренной мощности двигателя. Если эта мощность превышает 3% максимальной мощности, развиваемой двигателем при частоте вращения, на которой ведутся испытания, то ее величина может быть проверена надзорным органом.

b) Измерения мощности для ISO 8178 должны производиться при работе на том же топливе, что используется при измерениях выбросов по ISO 8178. Если заинтересованные стороны не договорились об ином, выбор топлива для испытаний должен производиться в соответствии с требованиями таблицы 12 ISO 15550.

На двигатели с самовоспламенением от сжатия (дизели), работающие на дизельном топливе, требования по значениям температуры топлива, приводимые в 6.3.4.11, подпункт b), ISO 15550, не распространяются. Для этих двигателей температура топлива должна быть равна 313 K (40°С).

________________

Приведенные предельно допустимые значения соответствуют законодательным нормативам выбросов для внедорожной техники.

Если используется топливо, отличное от дизельного, его температура может отличаться.

Требования пункта 6.3.5 ISO 15550 не действуют и заменяются нижеследующими.

Для двигателей, работающих при переменной частоте вращения, измерения должны проводиться при различных значениях частоты вращения, число которых должно быть достаточным для того, чтобы полностью определить характеристику мощности между минимальным и максимальным значениями частоты вращения, рекомендованными изготовителем. Значение мощности в каждой точке определяется как среднее по результатам, как минимум, двух измерений.

Для двигателей, работающих при постоянной частоте вращения, и двигателей установок, в которых крутящий момент зависит от частоты вращения (например, двигателей, работающих на винт фиксированного шага), измерения должны проводиться при объявленной мощности и объявленной частоте вращения.

7.1 Для целей настоящего стандарта применяется метод корректировки мощности, установленный в разделе 7 ISO 15550.

7.2 Испытания должны проводиться в помещении с системой кондиционирования воздуха, атмосферные условия в котором могут регулироваться таким образом, чтобы значение коэффициента корректировки поддерживалось как можно ближе к единице. Если двигатель оборудован такой системой автоматического регулирования температуры, в которой при полной нагрузке и при температуре воздуха, равной 298 K (25°С), нагретый воздух на впуск не подается, то испытания должны вестись в обычном режиме; при этом показатель степени температурной составляющей в формуле коэффициента корректировки (пункты 7. 3 или 7.4.2 ISO 15550) должен быть принят равным нулю (т.е. температурная коррекция отсутствует).

Требования раздела 8 ISO 15550 не действуют и заменяются нижеследующими.

Для измерений выбросов вредных веществ после завершения измерений мощности двигателя должны применяться методы измерения, регламентированные ISO 8178.

Требования к отчету об испытаниях, содержащиеся в пунктах 9.2.2.1 и 9.2.2.2 ISO 15550, дополняются требованиями, приведенными в пунктах 9.2 и 9.3 настоящего стандарта.

Общие сведения

Фирменное название или марка двигателя:

Тип и паспортный номер двигателя:

Семейство двигателей:

Условия испытаний

Давления, измеренные при объявленной частоте вращения:

a) полное атмосферное давление;

кПа

b) давление водяного пара;

кПа

c) противодавление отработавших газов

кПа

Местонахождение точки измерения противодавления отработавших газов:

Разрежение на впуске:

Па

Абсолютное давление во входном тракте:

Па

Температуры, измеренные при объявленной частоте вращения:

a) воздуха на впуске;

K

b) воздуха на выходе из воздухоохладителя;

K

c) охлаждающей жидкости:

K

— на выходе охлаждающей жидкости

K

— в контрольной точке в случае двигателя с воздушным охлаждением

K

d) смазочного масла:

— точка измерения

K

e) топлива:

— на входе в карбюратор/в систему впрыска топлива

K

— в расходомере топлива

K

Характеристики нагрузочного устройства

Изготовитель

Модель:

Тип:

Диапазон мощности:

Характеристики топлива для двигателей с искровым зажиганием, работающих на жидком топливе

Изготовитель и тип:

Технические характеристики:

Октановое число топлива по исследовательскому методу (RON) согласно ISO 5164:

Октановое число топлива по моторному методу (MON) согласно ISO 5164:

Процентное содержание и тип оксигенатов:

%

Плотность при 288 K (по ISO 3675):

г·см

Измеренная низшая теплота сгорания, согласно ASTM D240-00 или расчетная низшая теплота сгорания согласно ASTM D3338-00:

кДж/кг

Характеристики топлива для двигателей с искровым зажиганием, работающих на газообразном топливе

Изготовитель:

Технические характеристики:

Давление хранения:

кПа

Давление подачи:

кПа

Низшая теплота сгорания:

кДж/кг

Характеристики топлива для двигателей с воспламенением от сжатия, работающих на жидком топливе

Изготовитель:

Характеристики топлива:

Цетановое число (по ISO 5165):

Вязкость при 40°С (по ISO 3104):

мм·с

Плотность (при 288 K по ISO 3675):

г·см

Измеренная низшая теплота сгорания согласно ASTM D240-00 или расчетная низшая теплота сгорания согласно ASTM D3338-00:

кДж/кг

Характеристики топлива для двигателей с воспламенением от сжатия, работающих на газообразном топливе

Система подачи газа:

Характеристики газа:

Соотношение «газ/дизельное топливо»

Низшая теплота сгорания:

кДж/кг

Смазка

Изготовитель:

Технические характеристики:

Класс вязкости SAE:

      Ненужное зачеркнуть.

      Существует также стандарт ASTM.

     

Протоколируемые результаты должны быть представлены в форме таблицы 2.

Таблица 2 — Протоколируемые результаты

Параметр

Результат

Ед. изм.

Частота вращения двигателя

об/мин

Измеренный крутящий момент

Н·м

Измеренная мощность

кВт

Измеренный расхода топлива

г·с

Барометрическое давление

кПа

Давление водяного пара

кПа

Температура воздуха на впуске

K

Атмосферный фактор ()

Коэффициент корректировки мощности

Расход топлива с учетом коррекции

г·с

ВСЕГО (А)

кВт

Мощность оборудования и вспомогательных устройств, установленных на двигателе, которая должна добавляться к значениям мощности, приведенным в таблице 1 ISO 15550: — (см. пункты 9.2.2.1.12 и 9.2.2.2.13 ISO 15550)

N 1

кВт

N 2

кВт

N 3

кВт

ВСЕГО (В)

кВт

Мощность оборудования и вспомогательных устройств, не установленных на двигателе, но требуемых согласно пункту 4 (таблица 1) ISO 15550, которая должна вычитаться: —

N 1

кВт

N 2

кВт

N 3

кВт

ВСЕГО (С)

кВт

Мощность для ISO 8178

(А) + (В) — (С)

кВт

Крутящий момент для ISO 8178

Н·м

Удельный расход топлива

г/(кВт·ч)

Температура охладителя на выходе/в контрольной точке

K

Температура смазочного масла в точке измерения

K

Температура воздуха за компрессором

K

Температура топлива перед ТНВД

K

Температура воздуха за воздухоохладителем

K

Давление воздуха за компрессором

кПа

Давление воздуха за воздухоохладителем

кПа

Разрежение на впуске

Па

Противодавление на выпуске

кПа

Подача топлива за такт или рабочий цикл

мм

Для двигателей с искровым зажиганием откорректированный расход топлива рассчитывается как измеренный расход топлива, умноженный на коэффициент коррекции мощности. Откорректированный расход топлива используется только для расчетных целей. Для двигателей с воспламенением от сжатия откорректированный расход топлива равен измеренному расходу топлива.

Рассчитывается по откорректированным значениям мощности и расхода топлива.

Ненужное зачеркнуть.

     

10.1 Отклонение мощности двигателя, измеренной при сертификационных испытаниях (специальных испытаниях), от мощности двигателя, объявленной изготовителем, не должно превышать ±2% или 0,3 кВт (имеется в виду наибольшая из указанных величин) при объявленной частоте вращения двигателя и ±4% — при любых других значениях частот вращения.

10.2 Мощность двигателя, измеренная при его контрольных испытаниях, может отличаться на ±5% от мощности, объявленной изготовителем, если не оговорено иное.

Приложение ДА


(справочное)

Таблица ДА.1

Обозначение и наименование ссылочного международного стандарта

Степень соответствия

Обозначение и наименование межгосударственного стандарта

ISO 3104:1994 Нефтепродукты. Прозрачные и непрозрачные жидкости. Определение кинематической вязкости и расчет динамической вязкости

MOD

ГОСТ 33-2000 (ИСО 3104-94) Нефтепродукты. Прозрачные и непрозрачные жидкости. Определение кинематической вязкости и расчет динамической вязкости

ISO 3675:1998 Нефть сырая и жидкие нефтепродукты. Лабораторные методы определения плотности или относительной плотности. Ареометрический метод

NEQ

ГОСТ 3900-85 Нефть и нефтепродукты. Методы определения плотности

ISO 5164:1990 Моторное топливо. Определение антидетонационных свойств. Исследовательский метод


*

ISO 5165:1998 Нефтепродукты. Определение воспламеняемости дизельных топлив. Цетановый моторный метод

MOD

ГОСТ 32508-2013 Топливо дизельное. Определение цетанового числа

ISO 15550:2002 Двигатели внутреннего сгорания поршневые. Определение и метод измерения мощности двигателя. Общие требования

NEQ

ГОСТ 10150-2014 Двигатели внутреннего сгорания поршневые. Общие технические условия

ГОСТ 10448-2014 Двигатели внутреннего сгорания поршневые. Приемка. Методы испытаний

ASTM D240-00 Стандартный метод определения теплоты сгорания жидких углеводородных топлив с помощью калориметрической бомбы

NEQ

ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания

ASTM D3338-00 Стандартный метод оценки полезной теплоты сгорания авиационных топлив


*

* Соответствующие межгосударственные стандарты отсутствуют. До разработки и утверждения рекомендуется использовать перевод на русский язык данных международных стандартов.

Примечание — В настоящей таблице использованы следующие условные обозначения степени соответствия стандарта:

— MOD — модифицированный стандарт;

— NEQ — неэквивалентный стандарт.

[1]

ISO 5163:1990

Motor and aviation-type fuels — Determination of knock characteristics — Motor method (Топливо для автомобильных и авиационных двигателей. Определение антидетонационных свойств. Моторный метод)

[2]

ISO 8178-1:1996

Reciprocating internal combustion engines — Exhaust emission measurement — Part 1: Test-bed measurement of gaseous and particulate exhaust emissions (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 1: Измерение выбросов газов и частиц на испытательных стендах)

[3]

ISO 8178-2

Reciprocating internal combustion engines — Exhaust emission measurement — Part 2: Measurement of gaseous and particulate exhaust emissions at site (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 2. Измерение выбросов газов и частиц в условиях эксплуатации)

[4]

ISO 8178-3

Reciprocating internal combustion engines — Exhaust emission measurement — Part 3: Definitions and methods measurement of exhaust gas smoke under steady-state conditions (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 3. Определение и методы измерения дымности выхлопных газов в стационарном режиме)

[5]

ISO 8178-4

Reciprocating internal combustion engines — Exhaust emission measurement — Part 4: Steady-state test cycles for different engine applications (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 4. Испытательные циклы для различных режимов работы двигателей)

[6]

ISO 8178-5

Reciprocating internal combustion engines — Exhaust emission measurement — Part 5: Test fuels (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 5. Топливо для испытаний)

[7]

ISO 8178-6

Reciprocating internal combustion engines — Exhaust emission measurement — Part 6: Report on measuring results and test report (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 6. Отчет о результатах измерения и испытания)

[8]

ISO 8178-7

Reciprocating internal combustion engines — Exhaust emission measurement — Part 7: Engine family determination (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 7. Определение семейства двигателей)

[9]

ISO 8178-8

Reciprocating internal combustion engines — Exhaust emission measurement — Part 8: Engine group determination (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 8. Определение группы двигателей)

[10]

ISO 8178-9

Reciprocating internal combustion engines — Exhaust emission measurement — Part 9: Test cycles and test procedures for test bed measurement of exhaust gas smoke emissions from compression ignition engines operating under transient conditions (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 9: Циклы и методики испытаний для стендовых измерений дымовыделения отработавших газов от двигателей внутреннего сгорания в неустановившемся режиме)

[11]

ISO 8178-10

Reciprocating internal combustion engines — Exhaust emission measurement — Part 10: Test cycles and test procedures for field measurement of exhaust gas smoke emissions from compression ignition engines operating under transient conditions (Двигатели внутреннего сгорания поршневые. Измерение выброса продуктов сгорания. Часть 10: Циклы и методики испытаний для измерений в полевых условиях дымовыделения отработавших газов от двигателей внутреннего сгорания в неустановившемся режиме)

УДК 621.436:006.354

МКС 27.020

IDT

Ключевые слова: двигатели внутреннего сгорания поршневые, определение мощности, измерение выброса продуктов сгорания

Принцип работы поршневых двигателей

Работа поршневых двигателей внутреннего сгорания основана на использовании силы давления газов при расширении их вслед­ствие нагрева внутри цилиндра. Нагреваются газы от сгорания в цилиндре жидкого или газообразного топлива, перемешанного с воздухом, причем с целью лучшего перемешивания жидкого топлива с воздухом его тщательно распыляют и по возможности испаряют.

Газы, нагревшиеся при этом, стремясь расшириться, давят на стенки камеры сгорания и цилиндра, а также на днище поршня. Поршень под действием давления газов движется к н.м.т. и через шатун передает воспринимаемое им давление газов коленчатому валу, сообщая последнему вращательное движение.

Так в цилиндре двигателя происходят два основных процесса: сгорание смеси и расширение продуктов сгорания, вследствие чего химическая энергия топлива превращается в тепловую, затем частич­но в механическую энергию. Для обеспечения непрерывной работы двигателя в его цилиндры должны периодически поступать все новые и новые порции воздуха и топлива, а продукты сгорания соответственно удаляться. Для этого в конструкции двигателя пре­дусматривают механизмы, позволяющие осуществлять вспомога­тельные процессы, связанные со сменой рабочего тела в цилиндрах.

В двигателе (см. рис. 1) впуск смеси воздуха с топливом и выпуск отработавших газов, т. е. смена рабочего тела в цилиндре, осущест­вляется с помощью клапанов, управляемых специальным механизмом газораспределения, кинематически связанным с колен­чатым валом. Совместная работа кривошипно-шатунного механизма и механизма газораспределения позволяют осуществлять необхо­димую для непрерывного действия двигателей последовательность в чередовании комплекса основных и вспомогательных процессов в каждом цилиндре.

Совокупность последовательных процессов, периодически повто­ряющихся в каждом цилиндре двигателя и обусловливающих непрерывную его работу, называется рабочим циклом.

Рабочий цикл в поршневых двигателях внутреннего сгорания состоит из пяти процессов: впуска, сжатия, сгорания, расширения и выпуска. В двигателе рабочий цикл может быть осуществлен по следующей широко применяемой схеме:

1. В процессе впуска поршень перемещается от в.м.т. к н.м.т., а освобождающая надпоршневая полость цилиндра заполняется смесью воздуха с топливом, называемой горючей смесью. Горючая смесь поступает (засасывается) в цилиндр двигателя через открываю­щийся к этому времени клапан.

Горючая смесь и продукты сгорания, всегда остающиеся в объе­ме камеры сжатия от предыдущего цикла, смешиваясь между собой, образуют рабочую смесь. Тщательно приготовленная рабочая смесь повышает эффективность сгорания топлива, поэтому ее подготовке уделяется большое внимание во всех типах поршневых двигателей.

Количество горючей смеси, поступающее в цилиндр за один рабочий цикл, называется свежим зарядом, а продукты сгорания, остающиеся в цилиндре к моменту поступления в него свежего заряда — остаточными газами.

Чтобы повысить эффективность работы двигателя, стремятся увеличить абсолютную величину свежего заряда и его весовую долю в рабочей смеси.

2. В процессе сжатия оба клапана закрыты и поршень, перемещаясь от н.м.т. кв.м.т. и уменьшая объем надпоршневой полости, сжимает рабочую смесь (в общем случае рабочее тело). Сжатие рабочего тела ускоряет процесс сгорания и этим предопределяет возможную полноту использования тепла, выделяющегося при сжигании топлива в цилиндре.

Двигатели внутреннего сгорания строятся с возможно большей степенью сжатия, которая в случаях принудительного зажигания смеси достигает значения 10—12, а при использовании принципа самовоспламенения топлива выбирается в пределах 14—22.

3. В процессе сгорания происходит окисление топлива кислородом воздуха, входящего в состав рабочей смеси, вследствие чего давление в надпоршневой полости резко возрастает.

В рассматриваемой схеме рабочая смесь в нужный момент вбли­зи в.м.т. поджигается от постороннего источника с помощью электрической искры высокого напряжения (порядка 15 кв). Для подачи искры в цилиндр служит свеча зажигания, которая ввер­тывается в головку цилиндра.

Для двигателей с воспламенением топлива от тепла, выде­ляющегося от предварительно сжатого воздуха, запальная свеча не нужна. Такие двигатели снабжаются специальной форсункой, через которую в нужный момент в цилиндр впрыскивается топливо под давлением в 100÷300 кГ/см2(≈ 10—30 Мн/м2) и более.

4. В процессе расширения раскаленные газы, стремясь расши­риться, перемещают поршень от в.м.т. к н.м.т. Совершается рабочий ход поршня, который через шатун передает давление на ша­тунную шейку коленчатого вала и проворачивает его.

5. В процессе выпуска поршень перемещается от н.м.т. к в.м.т. и через второй открывающийся к этому времени клапан, выталки­вает отработавшие газы из цилиндра. Продукты сгорания остаются только в объеме камеры сгорания, откуда их нельзя вытеснить поршнем. Непрерывность работы двигателя обеспечивается после­дующим повторением рабочих циклов.

Процессы, связанные с подготовкой рабочей смеси к сжиганию ее в цилиндре, а также освобождением цилиндра от продуктов сгора­ния, в одноцилиндровых двигателях осуществляются движением поршня за счет энергии маховика, которую он накапливает в про­цессе рабочего хода.

В многоцилиндровых двигателях вспомогательные ходы каж­дого из цилиндров выполняются за счет работы других (соседних) цилиндров. Поэтому эти двигатели в принципе могут работать без маховика.

Для удобства изучения рабочий цикл различных двигателей расчленяют на процессы или, наоборот, группируют процессы рабо­чего цикла с учетом положения поршня относительно мертвых точек в цилиндре. Это позволяет все процессы в поршневых двигателях рассматривать в зависимости от перемещения поршня, что более удобно.

Часть рабочего цикла, осуществляемая в интервале перемещения поршня между двумя смежными мертвыми точками, называется тактом.

Такту, а следовательно, и соответствующему ходу поршня присваивается название процесса, который является основным при данном перемещении поршня между двумя его мертвыми точками (положениями).

В двигателе каждому такту (ходу поршня) соответствуют, например, вполне определенные основные для них процессы: впуск, сжатие, расширение, выпуск. Поэтому в таких двигателях различают такты: впуска, сжатия, расширения и выпуска. Каждое из этих четырех названий соответственно при­сваивается ходам поршня.

В любых поршневых двигателях внутреннего сгорания рабочий цикл складывается из рассмотренных выше пяти процессов по ра­зобранной выше схеме за четыре хода поршня или всего за два хода поршня. В соответствии с этим поршневые двигатели подразделяют на двух- и четырехтактные.

Особенности протекания рабочих циклов в различных двух- и четырехтактных двигателях будут подробно рассмотрены после ознакомления с применяемыми в них топливами и принципами приготовления рабочей смеси.

 

 

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г.


Newer news items:

Older news items:


Комбинированный роторно-поршневой двигатель внутреннего сгорания

Изобретение относится к двигателестроению, а именно к комбинированным двигателям внутреннего сгорания, и может быть использовано в качестве привода в различных машинах, стационарных и передвижных энергетических установках в автомобильной, тракторной, электроэнергетической и других отраслях промышленности, связанных с изготовлением и эксплуатацией различных транспортных средств и силовых установок. Изобретение объединяет в один механизм поршневой двигатель внутреннего сгорания, роторный двигатель внешнего сгорания и центробежный вытяжной насос.

Известны поршневые ДВС с дополнительной турбиной, отдающие мощность на коленчатый вал, — в этой схеме энергия отработавших газов поршневого ДВС совершает работу в газовой турбине, которая посредством механической передачи поступает на коленчатый вал поршневого двигателя. То есть часть процесса расширения происходит в лопаточной машине (газовой турбине). К достоинствам схемы следует отнести преобразование энергии отработавших газов в механическую, что позволяет повысить КПД агрегата. К недостаткам следует отнести сложность согласования моментно-скоростных характеристик поршневого ДВС и газовой турбины (для этих целей приходится применять гидротрансформатор). Наилучшие результаты достигаются при работе поршневого ДВС при высоких давлениях наддува (от приводного компрессора или турбокомпрессора). На практике такая схема (под торговой маркой Turbo Compound) используется в двигателях большегрузных автомобилей Scania.

Так как при масштабировании массогабаритных параметров турбины в сторону уменьшения ТТХ (тактико-технические характеристики — совокупность количественных характеристик единицы техники описывающих ее возможности) турбины резко ухудшаются, значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) остаются, то такая, так называемая, компаудная схема нашла некоторое распространение только в больших двигателях для большегрузных грузовиков и судов.

Снижение характеристик турбины при уменьшении ее размеров описывается характеристическим коэффициентом Парсонса, который характеризует окружной КПД турбины в целом и который возрастает с увеличением числа ступеней, диаметра дисков и частоты вращения вала турбины. Таким образом, два параметра коэффициента Парсонса — «число ступеней» и «диаметр дисков» напрямую пропорциональны линейным размерам турбины.

Известен двигатель британской фирмы «Ilmor Engineering», представленный на выставке «Engine EXPO 2009», пятитактный ДВС, который можно применить на автомобиле. Три цилиндра 5-тактного двигателя внутреннего сгорания имеют разный внутренний диаметр. Меньшие (высокого давления) — первый и третий — работают по обычному четырехтактному циклу. Средний (низкого давления) использует остаточное расширение отработавших газов из меньших цилиндров в двухтактном режиме. Недостатком этой системы следует считать существенное усложнение конструкции двигателя из-за размещения дополнительного цилиндра.

В роторных ДВС необходимость цикла сжатия приводит или к необходимости эксцентрического вращения ротора вокруг вала (двигатель Ванкеля), что, общепризнано, приводит к многочисленным недостаткам такого рода двигателей, или для обеспечения планетарного вращения ротора приходится выносить камеру сгорания, куда выдавливается сжимаемая ротором смесь и где происходит зажигание смеси, за приделы рабочей камеры двигателя, в которой происходит вращение ротора (патенты RU 2161708, RU 2163678). Что в свою очередь приводит к усложнению конструкции, снижению характеристик смеси и падению компрессии в камере сгорания, и, как следствие, к потерям мощности, что является существенными недостатками этих двигателей.

Иными словами, поршневой ДВС хорошо отрабатывает цикл сжатия, но теряет мощность при преобразовании поступательных движений поршней во вращения вала, роторные ДВС хорошо крутят вал, но плохо отрабатывают цикл сжатия.

Поэтому логично использовать ротор как двигатель внешнего сгорания, рабочее тело для которого поставляет поршневой ДВС.

Известны роторные двигатели внешнего сгорания, например роторный двигатель с уплотнительными заслонками, которые движутся, совершая возвратно-поступательные движения в корпусе роторного двигателя.

В представленном изобретении отработанные газы поршневого ДВС отводятся в находящийся с ним на одном валу роторный двигатель. Таким образом, вал двигателя проворачивается под воздействием как движения поршней в цилиндрах поршневого ДВС, в которых происходит сгорание топлива, так и под воздействием на лопатки ротора давления отработанных газов из поршневого ДВС.

Использование ротора вместо турбины или цилиндра низкого давления позволит создать комбинированные двигатели широкого диапазона и литража, в том числе и малолитражные, в отличие от двигателей Turbo Compound, и не вносить изменений в конструкцию поршневых ДВС, как в случае двигателя Ilmor Engineering.

Отработанные газы из поршневого ДВС отводятся в рабочую камеру роторного двигателя, объем которой превышает рабочий объем цилиндра поршневого ДВС настолько, чтобы в конце рабочего цикла давление газов в рабочей камере роторного двигателя было ниже атмосферного (в зависимости от типа поршневого ДВС в 3-6 раз), что дает максимальное использование остаточной энергии выходных газов.

Отработанные газы в конце рабочего цикла из роторного двигателя удаляются центробежным насосом приводимым в движение общим рабочим валом поршневого ДВС и роторного двигателя.

На Фиг. 1, Фиг. 2 представлена схема и соотношение основных элементов комбинированного роторно-поршневого двигателя: поршневой двигатель, роторный двигатель, вытяжной центробежный насос, рабочий вал гибридного двигателя.

На Фиг. 3 представлена схема отвода отработанных газов из поршневого двигателя в соосный с ним роторный двигатель, где поршневой двигатель представлен в продольном разрезе, а роторный двигатель в поперечном сечении.

На Фиг. 4, Фиг. 5, Фиг. 6 представлены основные элементы роторного двигателя и последовательно циклы его работы.

На Фиг. 7 представлено поперечное сечение роторного двигателя.

На Фиг. 8 представлено поперечное сечение вытяжного центробежного насоса.

На Фиг. 9 представлена схема отвода отработанных газов из поршневого двигателя в соосный с ним роторный двигатель, где поршневой двигатель и роторный двигатель представлены в продольном разрезе.

Комбинированный роторно-поршневой двигатель внутреннего сгорания состоит из поршневого ДВС с рабочим валом — 1, рабочим поршнями — 2 и 3, клапанами выпуска отработанных газов из цилиндров поршневого ДВС — 4, коллектора отвода отработанных газов — 5, входов коллектора отработанных газов в рабочую камеру ротора — 6, ротора — 7, корпуса рабочей камеры роторного двигателя — 8, корпуса внешней камеры вокруг роторного двигателя и вытяжного центробежного насоса — 9, находящегося на одном рабочем валу с поршневым двигателем и ротором вытяжным насосом — 10, выходных отверстий для отработанных газов из рабочей камеры роторного двигателя — 11, задвижек, формирующих в рабочей камере роторного двигателя между ними и лопатками (крыльями) ротора рабочие области давления на лопатки (крылья) ротора отработанных газов — 12, возвратных пружин задвижек — 13.

Работа комбинированного роторно-поршневого двигателя внутреннего сгорания происходит следующим образом.

Лопатки (крылья) ротора 7 и задвижки 12 разбивают объем рабочей камеры роторного двигателя на четыре зоны. Две зоны a1 и а2, включающие в себя входы коллекторов отработанных газов 5 через отверстия 6 в рабочую камеру роторного двигателя, и две зоны b1 и b2, включающие в себя отверстия для выхода отработанных газов 11, Фиг. 4.

Отработанные газы из поршневого ДВС, выходящие последовательно из цилиндров 2 или 3, через коллектор отработанных газов 5, поступают через отверстия 6 в зоны a1 и а2. В зонах a1 и а2, таким образом, возникает повышенное давление. Одновременно в зонах b1 и b2, из-за работы соосного с поршневым двигателем и роторным двигателем вытяжного насоса 10, возникает пониженное давление.

Таким образом, ротор 7 испытывает давление на плоские части лопаток и получает импульс к вращению, вращает вал двигателя 1 общего с поршневым ДВС, увеличивая мощность и КПД всей системы, Фиг. 5.

По мере движения ротора 7 задвижки 12 сдвигаются внутрь корпуса роторного двигателя или от давления на них ротора дугообразными сторонами своих лопаток (крыльями), или посредством механизма синхронизации. При достижении лопатками (крыльев) ротора 7 отверстий 11 происходит удаление газов из рабочей камеры ротора, Фиг. 6.

При дальнейшем вращении ротора происходит полное выдавливание задвижек 12 за пределы рабочей камеры роторного двигателя, так что они не мешают лопаткам (крыльями) ротора 7 занять исходное положение, после чего давление тела ротора 7 на задвижки 12 прекращается и возвратные пружины 13 возвращают их обратно, формируя зоны a1 и а2.

Ротор возвращается в положение Фиг. 4, которое можно назвать верхней мертвой точкой ротора, и готов принять выхлоп газов от следующего цилиндра, сопряженного и синхронизированного с ним, поршневого ДВС.

Отработанные газы через отверстия 11 попадают в область, ограниченную корпусом внешней камеры вокруг роторного двигателя и вытяжного насоса 9, откуда удаляются вытяжным центробежным насосом 10, соосным с валом двигателя 1.

Комбинированный роторно-поршневой двигатель внутреннего сгорания, состоящий из поршневого двигателя внутреннего сгорания и расположенных на его рабочем валу заключенных в общую камеру роторного двигателя, объем рабочей камеры которого превышает объем цилиндра поршневого двигателя внутреннего сгорания настолько, чтобы в конце рабочего цикла роторного двигателя, в рабочую камеру которого отводятся отработанные газы из поршневого двигателя внутреннего сгорания, давление газов в рабочей камере роторного двигателя было несколько ниже атмосферного, и вытяжного насоса, удаляющего отработанные газы из роторного двигателя, поступающие в общую для роторного двигателя и вытяжного насоса камеру, за ее приделы.


Поршневые двигатели в МГТУ, профиль бакалавриата

Экзамены, минимальные баллы, бюджетные места, проходные баллы, стоимость обучения на программе Поршневые двигатели, Московский государственный технический университет им. Н.Э. Баумана

Сводная информация

202120202018

Проходной балл 2020: от 187   arrow_downward 35

Мест: 44   arrow_upward 12

Комбинация ЕГЭ 1

ЕГЭ — мин. баллы 2021

Математика (профиль) — 39

Русский язык — 40

Предмет по выбору абитуриента (или)

Физика — 39

Информатика — 44


Посмотрите варианты

Сводная информация

202120202018

Минимальный балл 2021: от 118   arrow_downward 44

Мест: 5   arrow_downward 10

Стоимость: от 302533 ⃏

Комбинация ЕГЭ 1

ЕГЭ — мин. баллы 2021

Математика (профиль) — 39

Русский язык — 40

Предмет по выбору абитуриента (или)

Физика — 39

Информатика — 44


Посмотрите варианты

Параметры программы

Квалификация:  Бакалавриат;

Форма обучения:   Очная;

Язык обучения:  Русский;

На базе:  11 классов;

Срок обучения:  4 года;

Курс:  Полный курс;

Военная кафедра:  есть;

Общежитие:  есть;

По учредителю:  государственный;

Город:  Москва;

Варианты программы

Статистика изменения проходного балла по годам

Проходные баллы на бюджет

2017: 227

2019: 222

2020: 187

Проходные баллы на платное

2017: 159

2019: 162

2020: 118

О программе

Студенты изучают теплофизику, механику жидкости и газа, механику твердого тела, процессы смесеобразования и сгорания в двигателях, процессы в системах двигателей, методы компьютерного проектирования, исследования и доводки двигателей нового поколения, физическое и математическое моделирование, автоматизацию управления и научных исследований двигателей и их систем, принципы создания экологически чистых двигателей и энергоустановок, методы диагностирования технического состояния и научные основы организации сервисного обслуживания двигателей, маркетинг и менеджмент, современные информационные технологии для обеспечения полного жизненного цикла двигателей и энергоустановок.

Дисциплины, изучаемые в рамках профиля:

  • Иностранный язык;
  • Математический анализ;
  • Аналитическая геометрия;
  • Химия;
  • Экология техносферы;
  • Начертательная геометрия;
  • Инженерная и компьютерная графика;
  • Информатика;
  • История;
  • Линейная алгебра и функции нескольких переменных;
  • Интегралы и дифференциальные уравнения;
  • Физика;
  • Сопротивление материалов;
  • Термодинамика;
  • Теория механизмов и машин;
  • Материаловедение;
  • Детали машин и основы конструирования/Детали машин;
  • Философия;
  • Электротехника/Электротехника и электроника;
  • Поршневые и комбинированные двигатели внутреннего сгорания

Дополнительные баллы к ЕГЭ от вуза

Золотой значок ГТО — 4

Аттестат с отличием — 10

Диплом СПО с отличием — 10

Портфолио/олимпиады — до 10

Волонтерство — до 3

Основы работы двигателей внутреннего сгорания

Тепловые двигатели — это машины, в которых химическая энергия топлива преобразуется сначала в тепловую энергию, а затем в механическую работу. К тепловым двигателям относятся паровые машины, паровые турбины, поршневые двигатели внутреннего сгорания (ДВС). газотурбинные двигатели (ГТД), комбинированные турбо-поршневые двигатели, реактивные двигатели.

Особенность применяемых на тепловозах двигателей внутреннего сгорания поршневого типа состоит в том, что превращение химической энергии в тепловую, совершающееся при сгорании топлива, происходит непосредственно в самом рабочем цилиндре

Рис 11. Принципиальная схема двигателя внутреннего сгорания в течение очень короткого времени (тысячных долей секунды) при высоких температурах. Это и обусловливает преимущества поршневых ДВС — малые тепловые и гидравлические потери и высокий коэффициент полезного действия, а также компактность.

Процесс превращения тепла в двигателях внутреннего сгорания в работу можно проследить по схеме, изображенной на рис. 11. Поступивший в цилиндр двигателя через клапан 5 воздух сжимается поршнем и нагревается при этом до температуры 600-650 °С, что выше температуры самовоспламенения распыленного жидкого топлива. В конце сжатия в нагретый воздух впрыскивается через форсунку 4 топливо, которое воспламеняется и сгорает. В результате сгорания топлива в цилиндре 2 образуются газы с высокой температурой и давлением. Под давлением газов поршень 1 перемещается вниз и совершает работу. Во время расширения температура и давление газов понижаются. Отдав часть тепла на совершение работы, отработавшие газы выбрасываются в атмосферу через выпускной клапан 3 при движении поршня 1 вверх, а свежий воздух вновь поступает в цилиндр. Затем все повторяется снова. Двигатели внутреннего сгорания имеют шатунно-кривошипный механизм, состоящий из поршня 1, шатуна 6, кривошипа 7 и вала 8. Этот механизм преобразует возвратно-поступательное движение поршня во вращательное движение вала.

В течение одного оборота кривошипа поршень 2 раза изменяет направление движения. Это происходит в так называемых «мертвых» положениях (или «мертвых» точках) механизма, которые характерны тем, что сила, действующая на поршень, находящийся в одном из этих положений, не вызывает вращающего момента на кривошипе. Между поршнем, находящимся в верхней мертвой точке (в.м.т.), и крышкой цилиндра заключен объем пространства сжатия или камеры сжатия. Отношение полного объема цилиндра к объему камеры сжатия называется степенью сжатия.

Для удовлетворения нужд народного хозяйства двигатели внутреннего сгорания поставляются промышленностью в разнообразном исполнении: мощностью от I до 20 000 кВт в одном агрегате, с числом цилиндров от 1 до 20 и более, частотой вращения вала от 120 до 6000 об/мин.

Двигатели современных тепловозов имеют мощность от 400 до 5000 кВт, частоту вращения вала 750- 1500 об/мин, число цилиндров от 4 до 20. Они расходуют от 200 до 230 г дизельного топлива на 1 кВт-ч выработанной энергии. Удельная масса тепловозных двигателей внутреннего сгорания составляет от 2,5 до 18,5 кг/(кВт-ч)

Способы зажигания топлива. По способу воспламенения топлива поршневые двигатели внутреннего сгорания делятся на двигатели с принудительным зажиганием (низкого сжатия) и с самовоспламенением (высокого сжатия) — дизели. На тепловозах применяются исключительно двигатели высокого сжатия — дизели типов: Д100, Д45, Д50, М750, Д49, Д70. Они значительно экономичнее и мощнее, чем двигатели низкого сжатия.

Двигатели низкого сжатия работают на легком топливе (бензине и керосине). В этих двигателях в цилиндры засасывается не воздух, а рабочая смесь (пары бензина и воздух). Смесь сжимается до температуры, меньшей, чем температура ее самовоспламенения, поэтому зажигание смеси осуществляется принудительно от постороннего источника. В большинстве случаев применяется электрическое зажигание: в цилиндр двигателя вставляют электрическую свечу, включенную в цепь высокого напряжения. В определенный момент цепь тока высокого напряжения замыкается, вследствие чего между электродами овечи возникает искра, которая и воспламеняет рабочую смесь в цилиндре. Двигатели низкого сжатия устанавливают на автомобилях.

В цилиндры двигателей высокого сжатия поступает чистый воздух, который и сжимается. В конце сжатия, когда температура воздуха будет достаточно высокой, топливо в распыленном виде впрыскивается через форсунку в цилиндр и воспламеняется.

Дизели четырехтактные и двухтактные. Четырехтактными называются дизели, у которых полный рабочий цикл — поступление воздуха >в цилиндр, перемешивание и сгорание топлива, расширение газов и удаление их из цилиндра — осуществляется за четыре хода поршня (такта), т. е. за 2 оборота коленчатого вала. У двухтактных двигателей полный рабочий цикл в цилиндре происходит за два хода поршня, т. е. за один оборот коленчатого вала. Следует подчеркнуть, что у четырехтактных дизелей продувка и зарядка цилиндра свежим воздухом происходят Иначе, чем у двухтактных, само же смешение топлива с воздухом и сгорание рабочей смеси у обоих типов дизелей одинаково. Обычно задается вопрос — какой из этих типов дизелей лучше? На протяжении многих лет в различных отраслях народного хозяйства применяются и четырехтактные и двухтактные дизели. Однако качество дизеля определяет не его тактность, а надежность, экономичность, конструкционная и технологическая отработанность, долговечность и, наконец, правильный выбор типа дизеля для данного рода службы. Четырехтактные дизели имеют, как правило, меньший удельный расход топлива, меньшую тепловую напряженность, так как в единицу времени совершают меньшее количество тепловых и силовых циклов, чем двухтактные при тех же условиях.

В двухтактных дизелях проще система газораспределения, но в них хуже очищаются и продуваются свежим воздухом цилиндры. Вместе с тем с 1 л рабочего объема цилиндра при прочих равных условиях у двухтактных дизелей снимается на 60-70 % большая мощность, чем у четырехтактных. Однако с увеличением давления наддува (см. ниже) все яснее вырисовывается преимущество четырехтактных дизелей перед двухтактными для тепловозов, так как четырехтактные дизели с газотурбинным наддувом имеют более простую систему воздухо-снабжения, более высокую экономичность, а главное — лучшую приспособляемость к переменным эксплуатационным нагрузкам и разным сортам топлива и масла.

На тепловозах ТЭЗ, ТЭ7, тепловозах типов 2ТЭ10, М62 и ТЭП60 установлены двухтактные дизели (2Д100, 10Д100, 14Д40 и 11Д45), а на тепловозах 2ТЭ116, ТЭП70, ТЭМ7, ТЭМ2, ТЭМ1, ЧМЭ2, ЧМЭЗ, ТГМ4 и ТГМЗ, а также на дизель-поездах — четырехтактные дизели (типов Д49, ПД1М, Д50, КбБЗЮт М756). Как показывает мировая практика, четырехтактных дизелей строится 65-70 %, а остальные — двухтактные. Двигатели низкого сжатия, за исключением маломощных, изготовляют только четырехтактными.

Способы смесеобразования в дизелях. По способу образования горючей смеси (смесеобразования) дизели делятся на однокамерные — со струйным распыливанием (рис. 12,а) и двухкамерные, которые подразделяются на вихрекамерные с выносной камерой в крышке (рис. 12,6), предкамерные (рис. 12,в) и с камерой в поршне (рис. 12,г).

Наибольшее распространение получили дизели со струйным распыливанием, так как при этом способе смесеобразования расход топлива (при нормальных нагрузках) наименьший. Особенно такие двигатели экономичны при мало изменяющихся нагрузках и частотах вращения. Однако при переменных режимах работы у этих двигателей проявляются существенные недостатки. На малых нагрузках и холостом ходу у них ухудшаются распы-ливание топлива и перемешивание его с воздухом. Кроме того, дизели со струйным распыливанием требуют высококачественного топлива и очень точного изготовления и хорошего содержания топливной аппаратуры.

На тепловозах применяются, как правило, дизели с однокамерным струйным смесеобразованием. На таких дизелях установлены топливные насосы (секции) плунжерного типа высокого давления (до 90 МПа) и форсунки закрытого типа. При нагнетании топлива игла форсунки поднимается и топливо под высоким давлением через отверстия в распылителе диаметром 0,30-0,40 мм впрыскивается в камеру сгорания в виде мельчайших капель, которые перемешиваются с воздухом, воспламеняются и сгорают. Величина порции впрыснутого топлива в цилиндр изменяется поворотом плунжера. Управляет величиной подачи регулятор дизеля.

Для образования качественной смеси топлива с воздухом при струйном смесеобразовании необходимо правильно выбирать фор.му камеры сжатия в соответствии с направлением, количеством и дальнобойностью топливных струй, мелкостью распыливания топлива и вихревыми движениями воздуха в камере.

Сущность двухкамерного смесеобразования (см. рис. 12,6 и в) заключается в том, что при ходе поршня к верхнему положению сжатый воздух из цилиндра с объемом Уц перетекает в выносную камеру объемом Ув. Выносная камера может иметь объем 20-60 % общего объема камеры сжатия Ус. Благодаря тангенциальному направлению соединительного канала воздух, вытесняемый поршнем в вихревую камеру (см. рис. 12,6), получает

Рис 12. Схемы способов распыливания топлива и смесеобразования:

а — струйное; б — вихрекамерное; я — предкамсрное; г — объемно-пленочное; 1 — форсунка; 2

вращательное движение, что способствует хорошему перемешиванию воздуха с впрыскиваемым топливом.

В дизелях с предкамерным смесеобразованием (см. рис. 12,в) во время сжатия воздух перетекает в предкамеру, куда при невысоком давлении (7-10 МПа) впрыскивается дизельное топливо. Здесь топливо воспламеняется и частично сгорает. Все топливо в предкамере сгорать не может, так как для этого не хватает воздуха. В результате частичного сгорания топлива давление в предкамере быстро возрастает, и газы вместе с несгоревшим топливом выбрасываются в цилиндр, где происходит догорание топлива. Таким образом, хорошее смешение топлива с воздухом обеспечивается тут в основном потоком горячего газа.

При двухкамерном смесеобразовании, как правило, применяются простые и надежные в работе насосы и форсунки. Однако вследствие больших поверхностей охлаждения имеют место повышенные тепловые потери, а также потери энергии при перетекании воздуха и продуктов сгорания через соединительные каналы. Поэтому дизели с двухкамерным смесеобразованием имеют невысокую экономичность.

В двигателях с камерой в поршне (см. рис. 12,г) осуществляется объемно-пленочное смесеобразование. Хорошее качество процесса достигается тем, что факел топлива направляется на горячие стенки поршня и делится на две части: меньшая распыливается в пространстве камеры, а большая, попадая на внутренние стенки камеры поршня, образует тонкую пленку. Создаваемые в процессе движения поршня потоки воздуха как бы сдувают со стенок камеры пары топлива, которые хорошо перемешиваются с воздухом и сгорают. При двухкамерном смесеобразовании качество смеси и ее сгорание мало зависят от нагрузочного и скоростного режима работы двигателя.

⇐ | Технические и тяговые характеристики магистральных и маневровых тепловозов | | Тепловозы: Механическое оборудование: Устройство и ремонт | | Наддув дизелей | ⇒

Поршни двигателя внутреннего сгорания — x-engineer.org

Поршень является составной частью двигателя внутреннего сгорания. Основная функция поршня — преобразовывать давление, создаваемое горящей топливовоздушной смесью, в силу, действующую на коленчатый вал. Легковые автомобили имеют поршни из алюминиевого сплава, а грузовые автомобили также могут иметь поршни из стали и чугуна.

Поршень является частью кривошипно-шатунного механизма (также называемого кривошипно-шатунным механизмом ), который состоит из следующих компонентов:

  • поршень
  • поршневые кольца
  • шатун
  • коленчатый вал

Изображение: Привод коленчатого вала двигателя (кривошипно-шатунный механизм) Предоставлено: Rheinmetall

Поршень также выполняет второстепенные функции двигателя. утечки газа из нее и проникновение масла в камеру сгорания

  • направляет движение шатуна
  • обеспечивает непрерывную смену газов
  • в камере сгорания

  • создает переменного объема в камере сгорания
  • Изображение: поршни Kolbenschmidt
    Кредит: Kolbenschmidt

    Форма поршня в основном зависит от типа двигателя внутреннего сгорания.Поршни бензиновых двигателей обычно легче и короче по сравнению с поршнями дизельных двигателей. Геометрия поршня имеет множество тонкостей из-за сложности его рабочей среды, но основными частями поршня являются:

    • поршень головка , также называемая верхняя часть или головка : верхняя часть поршня который вступает в контакт с давлением газа в камере сгорания
    • кольцевой ремень : верхняя средняя часть поршня, когда поршневые кольца расположены
    • выступ штифта : нижняя средняя часть поршня который содержит поршневой палец
    • юбка поршня : область под кольцевым ремнем

    Изображение: оси поршневого пальца и юбки

    Изображение: Основные детали поршня
    Кредит: [3]

    где:

    1. верх поршня
    2. верхняя площадка
    3. кольцевой ремень
    4. распорки
    5. фиксатор штифта
    6. выступ штифта
    7. pis тонный палец
    8. поршневые кольца
    9. юбка поршня

    Поршень соединен с шатуном через поршневой палец (7).Штифт позволяет поршню вращаться вокруг оси штифта. Штифт удерживается в поршне с помощью фиксатора пальца (5).

    После днища поршня доходит до кольцевого ремня (также называемого кольцевой зоной) (3). Большинство поршней имеют три кольцевых канавки, в которые устанавливаются поршневые кольца. Верхнее кольцо называется компрессионным кольцом , среднее на нем — скребковое кольцо , а нижнее кольцо — маслосъемное кольцо . Компрессионное кольцо должно герметизировать камеру сгорания, чтобы предотвратить утечку внутренних газов в блок двигателя.Маслоуправляющее кольцо соскабливает масло со стенок цилиндра, когда поршень находится на рабочем или выпускном такте. Среднее кольцо выполняет комбинированную функцию обеспечения сжатия в цилиндре и удаления излишков масла со стенок цилиндра.

    Юбка поршня (8) удерживает поршень в равновесии внутри цилиндра. Обычно он покрывается материалом с низким коэффициентом трения, чтобы уменьшить потери на трение. В отверстии для пальца или втулки (6) поршня находится поршневой палец (7), который соединяет поршень с шатуном.

    Геометрические характеристики поршня

    Поршни должны правильно работать в широком диапазоне температур, от -30 ° C до 300-400 ° C. В то же время он должен быть достаточно легким, чтобы иметь низкую инерцию и обеспечивать высокие обороты двигателя. Ниже представлена ​​пара геометрических характеристик поршня.

    Овальность поршня

    Из-за процесса сгорания температура внутри цилиндров двигателя достигает сотен градусов Цельсия.Поршень является одним из основных компонентов, который поглощает часть выделяемого тепла и отводит его в моторное масло. Поскольку ось поршневого пальца содержит больше материала, чем ось юбки, тепловое расширение вдоль оси пальца немного выше, чем тепловое расширение вдоль оси юбки. По этой причине поршень имеет овальную форму, диаметр по оси пальца на 0,3-0,8% меньше диаметра по оси юбки [6].

    Изображение: Овальность поршня

    Поршень конической формы

    Форма поршня не идеальна для цилиндра.При низкой температуре зазор между поршнем и цилиндром двигателя больше по сравнению с высокими температурами. Кроме того, зазор не является постоянным по длине поршня, он меньше вокруг верхней части поршня по сравнению с областью юбки поршня. Это необходимо для большего теплового расширения головки поршня, поскольку она содержит больший объем металла.

    Изображение: Зазор поршня (коническая форма)

    Изображение: Тепловое расширение поршня (если цилиндрическая форма)

    Смещение поршневого пальца

    Движение поршня внутри цилиндра имеет 3 градуса свободы, 1 первичный и 2 вторичных:

    • по вертикальной оси цилиндра, между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ) (основная, ось Y)
    • вокруг Ось пальца (вторичная, α — угол)
    • вдоль оси юбки (вторичная, ось x)

    Первичное движение создает крутящий момент на коленчатом валу, это желательно с механической точки зрения.Вторичные движения происходят из-за комбинации нескольких факторов: двунаправленного движения шатуна и зазора между поршнем и цилиндром. Оба вторичных движения вызывают трение о стенки цилиндра, а также шум, вибрацию (удар поршня).

    Изображение: Осевое усилие поршня и смещение пальца

    Когда коленчатый вал вращается по часовой стрелке, левая сторона цилиндра называется осевой стороной (TS) , а противоположная сторона — противодействующей стороной (ATS). .Удары поршня могут происходить с обеих сторон цилиндра. Удар поршня возбуждает блок двигателя и проявляется в виде поверхностных вибраций, которые в конечном итоге излучаются в виде шума вблизи двигателя [9]. Еще одно неудобство заключается в том, что когда поршень движется через ВМТ и ВТС, на коленчатый вал создается повышенная нагрузка, поскольку поршень совмещен с центром вращения коленчатого вала.

    Смещение поршневого пальца — это несоосность между центром отверстия поршневого пальца и центром коленчатого вала.За счет этого в конструкции улучшаются шумовые характеристики двигателя из-за ударов поршня в ВМТ. Это основная проблема NVH (шумовая вибрация и резкость) для инженеров-технологов, которые хотят устранить тревожные шумы везде, где они могут. Вторая причина — повышение мощности двигателя за счет уменьшения внутреннего трения в TS и ATS.

    Смещение пальца снижает механическое напряжение, возникающее в соединительной штанге, когда она достигает ВМТ или НМТ, потому что шатун не должен толкать поршень в противоположном направлении в конце хода.Это смещение заставляет стержень перемещаться по дуге в ВМТ и НМТ.

    Механические нагрузки на поршень

    Поршень является составной частью двигателя внутреннего сгорания (ДВС) (ДВС) , который должен выдерживать наибольшие механические и термические нагрузки. Из-за поршня мощность ДВС ограничена. В случае очень высокой термической или механической нагрузки поршень выходит из строя в первую очередь (по сравнению с блоком цилиндров, клапанами, головкой блока цилиндров). Это связано с тем, что поршень должен быть компромиссом между массой и устойчивостью к механическим и термическим нагрузкам.

    Циклическое нагружение поршня из-за [6]:

    • сила газа от давления в цилиндре
    • сила инерции от колебательного движения поршня и
    • поперечная сила от опоры силы газа наклонным шатуном, а сила инерции колеблющегося шатуна

    определяет механическую нагрузку .

    Вертикальные силы, действующие на поршень, состоят из: сил давления, , создаваемых расширяющимися газами, и сил инерции, , создаваемых собственной массой поршня [10].

    \ [F_ {p} = F_ {gas} + F_ {ineria} \]

    Силы инерции намного меньше сил давления и имеют наибольшую интенсивность, когда поршень меняет направление, в ВМТ и НМТ.

    Изображение: Напряжение поршня по Мизесу и механическая деформация
    Кредит: [7]

    Изображение: Вертикальные силы поршня зависят от угла поворота коленчатого вала
    Кредит: [7]

    Вышеуказанные силы поршня рассчитываются с использованием передовых методов анализа методом конечных элементов для алюминиевого поршня, используемого в легковых автомобилях с дизельным двигателем [7].

    Процесс сгорания имеет разные характеристики для дизельного и бензинового ДВС. В дизельном двигателе пиковое давление газа при сгорании может достигать 150 — 160 бар. В бензиновом двигателе максимальное давление ниже 100 бар. Из-за более высокого давления поршни дизельного двигателя должны выдерживать более высокие механические нагрузки.

    Чтобы работать без сбоев в таких суровых условиях, поршни дизельных двигателей конструируются более тяжелыми, прочными и имеют большую массу.Недостатком является более высокая инерция, более высокие динамические силы, поэтому максимальная частота вращения двигателя ниже. Одна из причин, по которой дизельные двигатели имеют более низкую максимальную скорость (около 4500 об / мин) по сравнению с бензиновыми двигателями (около 6500 об / мин), — это более тяжелые механические компоненты (поршни, шатуны, коленчатый вал и т. Д.).

    Термические нагрузки на поршень

    Головка поршня находится в прямом контакте с горящими газами внутри камеры сгорания, поэтому подвергается высоким термическим и механическим нагрузкам .В зависимости от типа двигателя (дизельный или бензиновый) и типа впрыска топлива (прямой или непрямой) головка поршня может быть плоской или содержать чашу .

    Тепловая нагрузка от температуры газа в процессе сгорания также является циклической нагрузкой на поршень. Он действует в основном во время такта расширения на поршне со стороны камеры сгорания. В других тактах, в зависимости от принципа действия, тепловая нагрузка на поршень снижается, прерывается или даже оказывает охлаждающий эффект во время газообмена.Как правило, передача тепла от горячих дымовых газов к поршню происходит в основном за счет конвекции, и лишь небольшая часть является результатом излучения.

    Изображение: Рабочие температуры поршня
    Кредиты: [3]

    Тепло, выделяемое при сгорании, частично поглощается поршнем. Большая часть тепла передается через площадь кольца поршня (около 70%). Юбка поршня отводит 25% тепла, а остальное передается на поршневой палец, шатун и масло.Более высокая частота вращения двигателя означает более высокую температуру поршня . Это происходит потому, что накопленное тепло не успевает рассеяться между двумя последовательными циклами сгорания. В то же время более высокая нагрузка на двигатель означает более высокую температуру поршня, потому что при этом сгорает больше воздушно-топливной смеси, которая выделяет больше тепла.

    Изображение: Распределение температуры в поршне бензинового двигателя
    Кредит: [6]

    Изображение: Распределение температуры в поршне дизельного двигателя с каналом охлаждения
    Кредит: [6]

    Изображение: Тепловая нагрузка поршня
    Кредиты: [7]

    Что касается такта расширения, продолжительность действия тепловой нагрузки от сгорания очень мала.Следовательно, только очень небольшая часть составляющей массы поршня, вблизи поверхности на стороне сгорания, следует за циклическими колебаниями температуры. Таким образом, почти вся масса поршня достигает квазистатической температуры, которая, однако, может иметь значительные локальные изменения.

    Охлаждение поршня

    По мере увеличения удельной мощности в современных двигателях внутреннего сгорания поршни подвергаются возрастающим тепловым нагрузкам. Поэтому эффективное охлаждение поршня требуется чаще, чтобы обеспечить безопасность эксплуатации.

    Изображение: 2009 Ecotec 2.0L I-4 VVT DI Turbo (LNF) Головка поршня и масляная форсунка
    Кредит: GM

    Температуру поршня можно снизить за счет циркуляции масла в средней части поршня. Это может быть достигнуто с помощью маслоструйных устройств, установленных на блоке цилиндров, которые впрыскивают моторное масло через отверстие, когда поршень находится близко к нижней мертвой точке (НМТ).

    Компания Tenneco Powertrain разработала новый стальной поршень для дизельных двигателей с «герметичной на весь срок службы» охлаждающей камерой в головной части, что позволяет поршням безопасно работать при температурах в головке более чем на 100 ° C выше действующих ограничений.

    Изображение: технология охлаждения поршня EnviroKool
    Кредит: Tenneco

    Для формирования коронки EnviroKool внутри поршня с помощью сварки трением создается встроенный охлаждающий канал, который затем заполняется высокотемпературным маслом и инертным газом. Эта камера постоянно закрыта приварной заглушкой. Согласно Tenneco Powertrain, технология EnviroKool позволяет преодолеть температурные ограничения обычных открытых галерей, в которых в качестве теплоносителя используется смазочное масло.

    Типы поршней

    Геометрия поршня ограничена из-за кубатуры ДВС. Поэтому основной способ увеличения механического и термического сопротивления поршня — увеличение его массы. Это не рекомендуется, потому что поршень с большой массой имеет большую инерцию, которая преобразуется в высокие динамические силы, особенно при высоких оборотах двигателя. Сопротивление поршня можно улучшить за счет оптимизации геометрии, но всегда будет компромисс между массой, механическим и термическим сопротивлением.

    На первый взгляд поршень кажется простым компонентом, но его геометрия довольно сложна:

    Изображение: Техническое описание поршня дизеля
    Кредит: Kolbenschmidt

    Изображение: Техническое описание бензинового поршня
    Кредит: Kolbenschmidt

    Обозначения:

    1. Диаметр чаши
    2. днище поршня
    3. камера сгорания (чаша)
    4. кромка днища поршня
    5. верхняя площадка поршня
    6. канавка под компрессионное кольцо
    7. посадочная площадка кольца
    8. основание канавки
    9. углубление под кольцо
    10. стороны канавки
    11. канавка маслосъемного кольца
    12. отверстие возврата масла
    13. выступ поршневого пальца
    14. расстояние до канавки
    15. канавка для стопорного кольца
    16. расстояние до ступицы поршня
    17. расстояние до ступицы поршня
    18. ступенчатая кромка
    19. Диаметр поршня 90 ° C относительно отверстия под поршневой палец 90 014
    20. отверстие под поршневой палец
    21. глубина чаши
    22. юбка
    23. зона кольца
    24. высота сжатия поршня
    25. длина поршня
    26. канал маслоохладителя
    27. держатель кольца
    28. втулка болта
    29. окно измерения диаметра
    30. развал коронки

    Как видите, между дизельными и бензиновыми поршнями есть существенные различия.

    Поршни дизельного двигателя должны выдерживать более высокие давления и температуры, поэтому они больше, крупнее и тяжелее. Они могут быть изготовлены из алюминиевых сплавов, стали или их комбинации. Поршень дизеля содержит часть камеры сгорания в головке поршня. Из-за формы поперечного сечения головки поршня поршень дизельного двигателя также называют поршнем с головкой омега.

    Поршни для бензиновых двигателей легче и предназначены для более высоких оборотов двигателя.Они изготавливаются из алюминиевых сплавов и обычно имеют плоскую головку. Бензиновые двигатели с непосредственным впрыском (DI) имеют специальные головки, позволяющие направлять поток топлива качающимся движением.

    Ниже вы можете увидеть несколько изображений дизельных и бензиновых (бензиновых) двигателей в высоком разрешении.

    Изображение: Поршень LS9 6.2L V-8 SC (алюминий, бензиновый / бензиновый двигатель с непрямым впрыском)
    Кредит: GM

    Изображение: Поршень Ecotec 2.0L I-4 VVT DI Turbo (LNF) (алюминиевый, бензиновый / бензиновый двигатель с прямым впрыском)
    Кредит: GM

    Изображение: Поршень дизельного двигателя автомобиля с кольцами (алюминий, дизель)
    Кредит: Kolbenschmidt

    Изображение: Поршень из моностали (сталь, дизель) )
    Кредит: Tenneco

    Материалы поршней

    Большинство поршней для автомобильной промышленности изготавливаются из алюминиевых сплавов .Это потому, что алюминий легкий, обладает достаточной механической прочностью и хорошей теплопроводностью. Есть тяжелые применения, коммерческие автомобили, в которых используются поршни из стали , которые более устойчивы к более высоким давлениям и температурам в камере сгорания.

    Алюминиевые поршни изготавливаются из литых или кованых жаропрочных алюминиево-кремниевых сплавов. Есть три основных типа алюминиевых поршневых сплавов. Стандартный поршневой сплав представляет собой эвтектический сплав Al-12% Si, содержащий дополнительно ок.По 1% каждого из Cu, Ni и Mg [3].

    Основными алюминиевыми сплавами для поршней являются [3]:

    • эвтектический сплав (AlSi12CuMgNi): литой или кованый
    • заэвтектический сплав (AlSi18CuMgNi): литой или кованый
    • специальный эвтектический сплав (AlSi12Cu4Ni только
    • , потому что cast2Mg) алюминиевый сплав имеет более низкую прочность, чем чугун, поэтому необходимо использовать более толстые секции, поэтому не все преимущества легкого веса этого материала реализуются. Кроме того, из-за более высокого коэффициента теплового расширения алюминиевые поршни должны иметь больший рабочий зазор.С другой стороны, теплопроводность алюминия примерно в три раза выше, чем у железа. Это, вместе с большей толщиной используемых секций, позволяет алюминиевым поршням работать при температурах примерно на 200 ° C ниже, чем чугунные [8].

      В некоторых случаях прочность и износостойкость поршней из алюминиевого сплава недостаточны для удовлетворения требований по нагрузке, поэтому используются черные материалы (например, чугун, сталь). Существует несколько методов использования черных металлов в производстве поршней:

      • в качестве местного армирования, вставок из черных металлов (т.е.g., опоры колец)
      • в виде удлиненных частей композитных поршней (например, днища поршня, болтов)
      • поршней, полностью изготовленных из чугуна или кованой стали

      Изображение: композитный поршень для тяжелого двигателя — поперечное сечение
      Кредит: [8]

      Изображение: Композитный поршень для дизельных судовых двигателей
      Кредит: Warstila

      В поршнях и поршнях используются два типа черных металлов компоненты [6]:

      • чугун :
        • аустенитный чугун для держателей колец
        • чугун с шаровидным графитом для поршней и юбок поршней
      • сталь
        • хромомолибденовый сплав (42CrMo4)
        • хромомолибден-никелевый сплав (34CrNiMo6)
        • молибден-ванадиевый сплав (38MnVS6)

      чугун обычно имеют содержание углерода> 2%.Поршни высоконагруженных дизельных двигателей и другие высоконагруженные компоненты двигателей и конструкции машин преимущественно изготавливаются из сферолитического чугуна M-S70. Этот материал используется, например, для изготовления цельных поршней и юбок поршней в композитных поршнях [6].

      Сплавы железа, обозначенные как стали, обычно имеют содержание углерода менее 2%. При нагревании они полностью превращаются в ковкий (пригодный для ковки) аустенит. Поэтому сплавы железа отлично подходят для горячей штамповки, такой как прокатка или ковка.

      Поршневые технологии

      Существует несколько передовых поршневых технологий, каждая из которых имеет цель увеличения механического и / или термического сопротивления, снижения коэффициента трения или уменьшения общей массы (сохраняя в то же время механические и термические свойства).

      Ниже вы можете найти примеры современных поршней, производимых на заводе Kolbenschmidt , каждый с уникальными технологиями.

      Изображение: Поршень дизеля с охлаждающим каналом, втулкой болта и держателем кольца
      Кредит: Kolbenschmidt

      Изображение: Шарнирно-сочлененный поршень дизеля с кованной верхней стальной частью и алюминиевой юбкой
      Кредит: Kolbenschmidt

      Изображение: Поршень бензинового двигателя в облегченной конструкции LiteKS® с держателем кольца
      Кредит: Kolbenschmidt

      Изображение: Литые держатели колец из чугуна многократно увеличивают долговечность первой кольцевой канавки дизельных поршней.Kolbenschmidt является лидером в разработке соединения Alfin с держателем кольца
      Кредит: Kolbenschmidt

      Изображение: Канавки под кольцо с твердым анодированием предотвращают износ и микросварку поршней для бензиновых двигателей
      Кредит: Kolbenschmidt

      Изображение: Поршни KS Kolbenschmidt имеют специальное покрытие LofriKS®, NanofriKS® или графит на юбке поршня. Они уменьшают трение внутри двигателя и обеспечивают хорошие характеристики при аварийной работе. Покрытия LofriKS® также используются по акустическим причинам.Их использование сводит к минимуму шумы от хлопка поршня. NanofriKS® является дальнейшим развитием испытанного и испытанного покрытия LofriKS® и дополнительно содержит наночастицы оксида титана для повышения износостойкости и долговечности покрытия.
      Кредит: Kolbenschmidt

      Изображение: Юбки поршней с железным покрытием (Ferrocoat ®) гарантируют надежную работу при использовании в алюминиево-кремниевых поверхностях цилиндров (Alusil®).
      Кредит: Kolbenschmidt

      Изображение: Отверстия поршневого пальца специальной формы (Hi-SpeKS®) повышают динамическую грузоподъемность станины поршневого пальца, тем самым увеличивая долговечность поршня
      Кредит: Kolbenschmidt

      Ниже вы можете найти примеры современных поршней, производимых компанией Tenneco Powertrain (ранее Federal Mogul) , каждый из которых отличается уникальными технологиями.

      Изображение: Поршень Elastothermic® (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)

      Характеристики: поршень с охлаждающим каналом
      улучшает мощность и расход топлива уменьшенных бензиновых двигателей
      — канал эластотермического охлаждения снижает температуру днища поршня на около 30 ° C.
      — снижение температуры первой кольцевой канавки примерно на 50 ° C, что приводит к уменьшению отложений нагара и износа канавок и колец для длительного срока службы; низкий расход масла и удар на
      ; — снижение риска неконтролируемого возгорания, например, при низкой скорости предварительного нагрева. зажигание

      Кредит: Tenneco Powertrain (Federal Mogul)

      Изображение: Алюминиевые поршни дизельного двигателя

      Характеристики:
      — оптимизированное расположение каналов для максимального охлаждения может привести к снижению температуры обода барабана до 10%
      — улучшенный боковой заброс методы значительно улучшают конструктивную устойчивость (даже при тонкостенных конструкциях)
      — реструктуризация обода камеры сгорания и дно стакана может увеличить усталостный ресурс до 100%.

      Кредит: Tenneco Powertrain (Federal Mogul)

      Изображение: поршни для дизельных двигателей из моностали (стальные поршни для дизельных автомобилей большой грузоподъемности или промышленного применения)

      Поршень Monosteel® обеспечивает прочность и охлаждение, чтобы удовлетворить самые жесткие требования к двигателям на рынках тяжелых и промышленных двигателей, включая новое поколение давлений срабатывания двигателя, необходимых для дорожных правил Евро VI и выше.

      Прочная конструкция, состоящая из сварных с помощью инерционной сварки кованых стальных секций, образующих большие охлаждающие галереи, позволяет поршням Monosteel выдерживать возрастающие механические нагрузки. Эволюция Monosteel включает в себя последние разработки для промышленных двигателей с большим диаметром цилиндра, а также использование тонкостенных легких поковок и отливок для дизельных двигателей легковых автомобилей.

      Основные характеристики продукта:
      — большая закрытая структурная галерея с превосходным охлаждением обода чаши и кольцевой канавки, уменьшающим деформацию канавки и улучшающим контроль масла и газового уплотнения
      — профилированное отверстие под палец без втулки
      — юбка по всей длине для стабильного поршня динамика, снижение риска кавитации гильзы и улучшение кольцевого уплотнения.
      — процесс обеспечивает гибкость материала с возможностью выбора материала коронки для уменьшения коррозии или окисления и / или выбора материала юбки для повышения технологичности.

      Кредит: Tenneco Powertrain (Federal Mogul)

      Изображение: Поршни с покрытием EcoTough® (алюминиевый поршень для бензиновых / бензиновых легких или тяжелых автомобилей)

      Поршень с покрытием EcoTough® обеспечивает важные преимущества, которые помогают удовлетворить потребности клиентов в более эффективные конструкции двигателей, в том числе сниженный расход топлива и выбросы CO 2 . Он сочетает в себе низкий износ и низкое трение в одном применении и снижает расход топлива на 0,8% по сравнению с обычными покрытиями поршней.

      Ключевые преимущества:
      — совместима с существующей и усовершенствованной отделкой внутренних отверстий цилиндров и может быть беспрепятственно внедрена в серийное производство двигателей в качестве рабочих изменений
      — состав обеспечивает большую толщину, чем поршни с традиционными покрытиями, обеспечивая дополнительную защиту
      — соответствует строгим экологическим стандартам ; не содержит токсичных растворителей.
      — запатентованное усовершенствованное покрытие юбки поршня с твердыми смазочными материалами и армированием углеродными волокнами, специально разработанное для тяжелых условий работы с бензином.
      — Снижение трения в силовом цилиндре (поршень + кольца) на 10% по сравнению сстандартные покрытия, повышение экономии топлива до 0,4% / сокращение выбросов CO 2 в европейских испытаниях ездового цикла
      — уменьшение износа на 40% по сравнению со стандартными бензиновыми покрытиями, повышенная надежность современных бензиновых двигателей с наддувом DI
      — EcoTough® — это запатентованное покрытие FM

      Кредит: Tenneco Powertrain (Federal Mogul)

      Изображение: Поршень DuraBowl® (алюминиевый поршень для дизельных легких или тяжелых автомобилей)

      Усиление поршня DuraBowl® Особенности частичного переплавления кромки чаши :
      — чрезвычайное улучшение структуры алюминиевого материала, созданное локализованным переплавом с использованием технологии TIG.
      — до 4 раз улучшенная долговечность в двигателях с высокой удельной мощностью по сравнению с поршнями без переплавки барабана.Допускает форму камеры сгорания, подвергающуюся высоким нагрузкам.
      — Технология FM DuraBowl® расширяет пределы алюминиевых поршней в самых сложных условиях за счет увеличения усталостной прочности (циклов) поршня

      Авторы и права: Tenneco Powertrain (Federal Mogul)

      Изображение: Elastoval II сверхлегкие поршни (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)

      Технология бензиновых поршней Avanced Elastoval® II основана на:
      — глубоких карманах под коронкой
      — наклонных боковых панелях
      — облегченной конструкции опоры пальца
      — тонких стенках 2.5 мм
      — оптимизированная площадь юбки и гибкость
      — Высокоэффективный сплав FM S2N

      Характеристики и преимущества включают:
      — снижение веса на 15% по сравнению с бензиновыми поршнями предыдущего поколения
      — обеспечивает удельную мощность до 100 кВт / л
      — оптимизировано характеристики шума и трения
      Совместимость с опцией держателя кольца alfin для увеличения пикового давления в цилиндре и устойчивости к детонации

      Кредит: Tenneco Powertrain (Federal Mogul)

      Часто задаваемые вопросы о поршнях

      Для чего используются поршни?

      Поршни используются в двигателях внутреннего сгорания для передачи усилия на шатун и коленчатый вал, создавая крутящий момент двигателя.Поршни преобразуют давление газа из камеры сгорания в механическую силу.

      Что такое поршень и как он работает?

      Поршень — это компонент двигателя внутреннего сгорания, сделанный из алюминия или стали, используемый для преобразования давления газа из камеры сгорания в механическую силу, передаваемую на шатун и коленчатый вал.

      Из чего сделан поршень?

      Поршень может быть изготовлен из цветных металлов, алюминия (Al) или черных металлов, таких как чугун или сталь .

      Какие бывают два типа поршневых колец?

      Два типа поршневых колец: компрессионные кольца и масляные кольца.

      Какие два основных типа поршневых двигателей?

      Двумя основными типами поршневых двигателей являются: дизельный, поршневых двигателей и бензиновых (бензиновых) поршневых двигателей. Функция материала, два основных типа поршня: алюминиевый поршень и стальной поршень .

      Каков срок службы поршней?

      Поршень должен служить в течение всего срока службы автомобиля, если условия эксплуатации являются номинальными (нормальная смазка, регулярное обслуживание двигателя, отсутствие чрезмерной нагрузки, отсутствие чрезмерной температуры). В нормальных условиях эксплуатации поршень должен прослужить не менее 300000 км до 500000 км и более.

      Что вызывает отверстия в поршнях?

      Обычно аномально высокие температуры вызывают плавление поршней, или детонация двигателя может вызвать трещины в поршнях.Неисправные форсунки могут подавать чрезмерное количество топлива в цилиндры, что может вызвать аномально высокую температуру сгорания и частичное оплавление поршней.

      Как узнать, повреждены ли поршни?

      Если поршень поврежден, наиболее вероятными симптомами являются: потеря мощности из-за потери сжатия, чрезмерный дым в выхлопе или необычный шум двигателя.

      Можно ли починить сломанный поршень?

      Сломанный поршень не подлежит ремонту, его необходимо заменить.Поршень имеет очень жесткие геометрические допуски, которые, скорее всего, не будут соблюдены после ремонта. Кроме того, их механические и термические свойства будут изменены после ремонта, что приведет к дальнейшим повреждениям. Сломанный поршень может вызвать серьезные повреждения блока цилиндров, шатуна, клапанов и т. Д. И требует немедленной замены.

      Можно ли водить машину с неисправным поршнем?

      Вы можете ездить с плохим поршнем, но это не рекомендуется. Повреждение поршня может привести к значительному выходу из строя блока цилиндров, коленчатого вала, шатунов, клапанов и т. Д.Если не заменить поврежденный поршень, это может привести к полному отказу двигателя.

      Повредит ли мой двигатель удар поршня?

      Удар поршня повредит двигатель, оставьте без присмотра. Удар поршня в течение длительного времени приведет к повреждению гильзы цилиндра и самого поршня.

      Уходит ли поршень при нагревании?

      Поршень частично уходит, когда двигатель прогрет. Удар поршня вызван чрезмерным износом гильзы цилиндра или самого поршня.Когда двигатель нагревается, поршень имеет тепловое расширение, и зазор между поршнем и цилиндром уменьшается, что приводит к уменьшению ударов поршня.

      Могу ли я ехать с хлопком поршня?

      Можно ездить с хлопком поршня, но долго водить не рекомендуется. Удар поршня вызовет износ самого поршня и гильзы цилиндра. Удар поршня также может вызвать трещины в поршне, что может привести к полному отказу двигателя, если его оставить без присмотра.

      Что вызывает износ юбки поршня?

      Износ юбки поршня вызван недостаточной смазкой гильзы цилиндра маслом.В нормальном рабочем состоянии система смазки разбрызгивает масло на цилиндры, чтобы избежать прямого контакта между юбкой поршня и цилиндром. При неисправности системы смазки или недостаточном уровне масла на стенках цилиндра не будет достаточно масла, и юбка поршня будет значительно изнашиваться.

      Ссылки

      [1] Клаус Молленхауэр, Хельмут Чоеке, Справочник по дизельным двигателям, Springer, 2010 г.
      [2] Хироши Ямагата, Наука и технология материалов в автомобильных двигателях, Woodhead Publishing in Materials, Кембридж, Англия, 2005 г. .
      [3] The Aluminium Automotive Manual, European Aluminium Association, 2011.
      [4] Heisler, Heinz, Vehicle and Engine Technology, Society of Automotive Engineers, 1999.
      [5] QinZhaoju et al., Поршневая термомеханическая муфта дизельного двигателя моделирование и многопрофильная оптимизация проекта, Примеры в теплотехнике, Том 15, ноябрь 2019 г.
      [6] Испытания поршней и двигателей, Mahle GmbH, Штутгарт, 2012 г.
      [7] Скотт Кеннингли и Роман Моргенштерн, Тепловые и механические нагрузки в Область чаши сгорания легковых дизельных поршней из AlSiCuNiMg; Пересмотрено с акцентом на расширенный анализ методом конечных элементов и инструментальные методы тестирования двигателей, Federal Mogul Corporation, SAE Paper 2012-01-1330.
      [8] T.K. Гарретт и др., Автомобиль, 13-е издание, Баттерворт-Хайнеманн, 2001.
      [9] Н. Долатабади и др., Об идентификации событий удара поршня в двигателях внутреннего сгорания с использованием трибодинамического анализа, Механические системы и обработка сигналов, Том 58 –59, июнь 2015 г., страницы 308-324, Elsevier, 2014.
      [10] Клаус Молленхауэр и Гельмут Чоеке, Справочник по дизельным двигателям, Springer-Verlag Berlin Heidelberg, 2010.

      По любым вопросам, наблюдениям и запросам по этой статье , используйте форму комментария ниже.

      Не забывайте ставить лайки, делиться и подписываться!

      Все, что вы когда-либо хотели знать о поршнях — Характеристика — Автомобиль и водитель

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Кусочки алюминия внутри вашего двигателя живут в огненном аду. При полностью открытой дроссельной заслонке и 6000 об / мин поршень бензинового двигателя подвергается воздействию силы почти 10 тонн каждые 0.02 секунды, поскольку повторяющиеся взрывы нагревают металл до температуры более 600 градусов по Фаренгейту.

      В наши дни этот цилиндрический Аид жарче и интенсивнее, чем когда-либо, а с поршнями, вероятно, станет только хуже. По мере того, как автопроизводители стремятся к повышению эффективности, производители поршней готовятся к будущему, в котором самые мощные безнаддувные бензиновые двигатели вырабатывают 175 лошадиных сил на литр по сравнению со 130 сегодня. С турбонаддувом и увеличенной мощностью возникают еще более жесткие условия. За последнее десятилетие рабочие температуры поршней поднялись на 120 градусов, а пиковое давление в цилиндрах увеличилось с 1500 фунтов на квадратный дюйм до 2200.

      Поршень рассказывает историю двигателя, в котором он находится. Заводная головка может показывать отверстие, количество клапанов и то, впрыскивается ли топливо непосредственно в цилиндр. Однако конструкция и технология поршня также могут многое сказать о более широких тенденциях и проблемах, стоящих перед автомобильной промышленностью. Чтобы придумать изречение: как автомобиль едет, так и двигатель; и как двигатель едет, так и поршень. Стремясь к улучшенной экономии топлива и снижению выбросов, автопроизводители требуют более легких поршней с меньшим коэффициентом трения, способных выдерживать более жесткие условия эксплуатации.Именно эти три проблемы — долговечность, трение и масса — отнимают рабочие дни поставщиков поршней.

      Во многих отношениях развитие бензиновых двигателей идет по пути, проложенному дизелями 15 лет назад. Чтобы компенсировать 50-процентное увеличение пикового давления в цилиндре, некоторые алюминиевые поршни теперь имеют железную или стальную вставку для поддержки верхнего кольца. Самым горячим бензиновым двигателям скоро потребуется охлаждающая галерея или закрытый канал на нижней стороне головки, который более эффективно отводит тепло, чем современный метод простого распыления масла на нижнюю часть поршня.Сквиртеры выстреливают маслом в небольшое отверстие в нижней части поршня, которое питает галерею. Однако эту, казалось бы, простую технологию нелегко изготовить. Создание полого канала означает отливку поршня в виде двух частей и их соединение посредством трения или лазерной сварки.

      На поршни приходится не менее 60 процентов трения двигателя, и улучшения здесь напрямую влияют на расход топлива. Снижающие трение пластыри, пропитанные графитом, нанесенные трафаретной печатью на юбку, теперь стали почти универсальными.Поставщик поршней Federal-Mogul экспериментирует с конической поверхностью масляного кольца, которая позволяет уменьшить натяжение кольца без увеличения расхода масла. Более низкое трение кольца может разблокировать до 0,15 лошадиных сил на цилиндр.

      Автопроизводители также жаждут новых покрытий, снижающих трение между деталями, которые трутся или вращаются друг о друга. Твердое и скользкое алмазоподобное покрытие, или DLC, перспективно для гильз цилиндров, поршневых колец и пальцев на запястье, где оно может устранить необходимость в подшипниках между пальцем и шатуном.Но это дорого и мало применяется в современных автомобилях.

      «[Производители] часто обсуждают DLC, но вопрос о том, попадут ли они в серийные автомобили или нет, — говорит Йоахим Вагенбласт, старший директор по разработке продукции немецкого поставщика автозапчастей Mahle.

      Все более сложное компьютерное моделирование и более точные методы производства также позволяют создавать более сложные формы. В дополнение к чашам, куполам и углублениям клапана, необходимым для зазора и достижения определенной степени сжатия, асимметричные юбки имеют меньшую и более жесткую область на упорной стороне поршня, чтобы уменьшить трение и концентрацию напряжений.Переверните поршень, и вы увидите конические стенки толщиной чуть более 0,1 дюйма. Более тонкие стенки требуют более жесткого контроля допусков, которые уже измеряются в микронах или тысячных долях миллиметра.

      Более тонкие стены также требуют лучшего понимания теплового расширения объекта, который иногда должен нагреваться ниже нуля до нескольких сотен градусов за считанные секунды. Металл в вашем двигателе не расширяется равномерно при нагревании, поэтому оптимизация допусков требует опыта проектирования и точной обработки для создания небольших эксцентриситетов в деталях.

      «Ничто из того, что мы делаем, не бывает прямым или круглым», — говорит Кери Вестбрук, директор по проектированию и технологиям Federal-Mogul. «Мы всегда вносим какую-то компенсацию».

      Поршни дизельных двигателей претерпевают собственную эволюцию, поскольку пиковое давление в цилиндрах возрастает до 3600 фунтов на квадратный дюйм. Mahle и Federal-Mogul прогнозируют переход от литого алюминия к поршням из кованой стали. Сталь плотнее алюминия, но в три раза прочнее, что делает поршень более устойчивым к более высоким давлениям и температурам без увеличения веса.

      Сталь позволяет заметно изменить геометрию за счет уменьшения высоты сжатия поршня, определяемой как расстояние от центра пальца запястья до вершины заводной головки. На эту площадь приходится 80 процентов веса поршня, поэтому чем короче, тем легче. Важно то, что меньшая высота сжатия приводит не только к усадке поршней. Это также позволяет сделать блок двигателя короче и легче, так как высота палубы уменьшается.

      Mahle производит стальные поршни для передовых турбодизелей, таких как четырехкратный призер Ле-Мана Audi R18 TDI и двигатель Mazda LMP2 Skyactiv-D.Компания начнет поставки своих первых стальных поршней для легкового серийного дизельного двигателя, 1,5-литрового четырехцилиндрового двигателя Renault, в конце этого года.

      Неизменная актуальность двигателя внутреннего сгорания обусловлена ​​непрерывной эволюцией его компонентов. Поршни не сексуальны. Они не такие модные, как литий-ионные батареи, такие сложные, как трансмиссия с двойным сцеплением, и не такие интересные, как дифференциал с векторизацией крутящего момента. Тем не менее, после более чем столетия автомобильного прогресса поршни возвратно-поступательного действия продолжают вырабатывать большую часть энергии, которая движет нами.

      1. Феррари F136

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Применения: Ferrari 458 Italia (показан) , 458 Spider

      Тип двигателя: DOHC V-8

      Рабочий объем: 274 куб. Дюймов, 4497 ​​куб.

      Удельная мощность: 125,0 л.с. / л.

      Макс.скорость двигателя: 9000 об / мин

      Диаметр отверстия: 3.70 дюйм

      Вес: 2,1 фунта

      2. Ford Fox

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Применения: Ford Fiesta (показан) , Focus

      Тип двигателя: рядный трехцилиндровый с турбонаддувом DOHC

      Рабочий объем: 61 куб. Дюйм, 999 куб.

      Конкретный вывод: 123.1 л.с. / л

      Макс.скорость двигателя: 6500 об / мин

      Диаметр цилиндра: 2,83 дюйма

      Вес: 1,5 фунта

      3. Cummins ISB 6,7

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Применения: Ram Heavy Duty (показан)

      Тип двигателя: дизельный рядный шестицилиндровый двигатель с турбонаддувом

      Рабочий объем: 408 куб. Дюймов, 6690 куб.

      Конкретный вывод: 55.3 л.с. / л

      Макс.скорость двигателя: 3200 об / мин

      Диаметр цилиндра: 4,21 дюйма

      Вес: 8,9 фунта

      4. Ford Coyote

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Применения: Ford F-150, Mustang (показан)

      Тип двигателя: DOHC V-8

      Рабочий объем: 302 куб. Дюймов, 4951 куб.

      Конкретный вывод: от до 84.8 л.с. / л

      Макс.скорость двигателя: 7000 об / мин

      Диаметр цилиндра: 3,63 дюйма

      Вес: 2,4 фунта

      5. Fiat Fire 1.4L Turbo

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Приложения: Dodge Dart; Fiat 500 Abarth (на рисунке) , 500L, 500 Turbo

      Тип двигателя: рядный четырехцилиндровый SOHC с турбонаддувом

      Рабочий объем: 83 куб. Дюйма, 1368 куб.

      Конкретный вывод: от до 117.0 л.с. / л

      Макс.скорость двигателя: 6500 об / мин

      Диаметр цилиндра: 2,83 дюйма

      Вес: 1,5 фунта

      6. Cummins ISX15

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Применения: тяжелых грузовика (показан International Prostar)

      Тип двигателя: дизельный рядный шестицилиндровый SOHC с турбонаддувом

      Рабочий объем: 912 куб. Дюймов, 14 948 куб.

      Конкретный вывод: от до 40.1 л.с. / л

      Макс.скорость двигателя: 2000 об / мин

      Диаметр цилиндра: 5,39 дюйма

      Вес: 26,4 фунта

      7. Chrysler LA-Series Magnum V-10

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Применения: Dodge Viper (показан)

      Тип двигателя: толкатель V-10

      Рабочий объем: 512 куб. Дюймов, 8382 куб.

      Конкретный вывод: 76.4 л.с. / л

      Макс.скорость двигателя: 6400 об / мин

      Диаметр цилиндра: 4,06 дюйма

      Вес: 2,8 фунта

      8. Ford EcoBoost 3.5L

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Приложения: Ford Expedition, Explorer Sport, F-150 (показан) , Taurus SHO, Transit; Линкольн МКС, МКТ, Навигатор

      Тип двигателя: с двойным турбонаддувом DOHC V-6

      Рабочий объем: 213 куб. Дюймов, 3496 куб.

      Конкретный вывод: от до 105.8 л.с. / л

      Макс.скорость двигателя: 6500 об / мин

      Диаметр цилиндра: 3,64 дюйма

      Вес: 2,6 фунта

      9. Toyota 2AR-FE

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Приложения: Scion TC (показан) ; Тойота Камри, РАВ4

      Тип двигателя: DOHC рядный четырехцилиндровый

      Рабочий объем: 152 куб. Дюйма, 2494 куб.

      Конкретный вывод: от до 72.2 л.с. / л

      Макс.скорость двигателя: 6500 об / мин

      Диаметр цилиндра: 3,54 дюйма

      Вес: 2,5 фунта

      10. Цепная пила Stihl MS441

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Применения: MS441 Цепная пила C-M Magnum (на рисунке) , MS441 Цепная пила C-MQ Magnum

      Тип двигателя: двухтактный одноцилиндровый

      Рабочий объем: 4 куб. Дюйма, 71 куб.

      Конкретный вывод: 79.7 л.с. / л

      Макс.скорость двигателя: 13500 об / мин

      Диаметр цилиндра: 1,97 дюйма

      Вес: 0,4 ​​фунта

      11. Chrysler Hellcat 6.2L

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Приложения: Dodge Challenger SRT Hellcat

      Тип двигателя: толкатель V-8 с наддувом

      Рабочий объем: 376 куб. Дюймов, 6166 куб.

      Конкретный вывод: 114.7 л.с. / л

      Макс.скорость двигателя: 6200 об / мин

      Диаметр цилиндра: 4,09 дюйма

      Вес: 3,0 фунта

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      По мере увеличения нагрузки на поршни возрастают и требования к шатунам. Более высокое давление сгорания приводит к большим нагрузкам на стержни, соединяющие поршни с кривошипом.За редким исключением экзотических деталей из титана, шатуны обычно либо изготавливаются из порошковой стали, сжимаются и нагреваются в форме, либо выковываются из стальной заготовки для более эффективных применений. Главный технологический сдвиг — это треснувшие крышки шатунов как для металлических, так и для кованых шатунов. Раньше шток и крышка кривошипа изготавливались как отдельные детали. Стержни с треснувшими крышками выходят из формы как одна деталь в форме гаечного ключа. Конец шатунной шейки протравливается, а затем с помощью пресса защелкивается надвое.Полученная неровная поверхность улучшает выравнивание; обеспечивает более надежное соединение крышки со стержнем; и позволяет получить более тонкий и легкий узел шатуна.

      РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

      Неметаллические поршни: Керамика и композиты отличаются меньшим тепловым расширением, меньшим весом и большей прочностью и жесткостью по сравнению с алюминием.В 1980-х годах Mercedes-Benz использовал грант правительства Германии для создания двигателя 190E с поршнями из углеродного композита, который без проблем пробегал 15 000 миль. Несмотря на то, что технология хороша, производство было ограничивающим фактором. Исследование НАСА, проведенное в 1990 году, показало, что изготовление одного поршня из углеродно-углеродной заготовки стоило 2000 долларов. Альтернативой был трудоемкий процесс ручной укладки.

      Роторы Ванкеля: Хорошо, хорошо, мы знаем, что это не возвратно-поступательный поршень, но чугунный треугольный ротор является аналогом поршня двигателя Ванкеля, потому что он преобразует энергию сгорания в крутящий момент.Поскольку на горизонте нет новой Mazda RX, наша единственная надежда на роторное возрождение, похоже, — это Audi, которая дразнила нас расширителем диапазона типа Ванкеля в своей гибридной концепции Audi A1 e-tron 2010 года.

      Овальные поршни: В то время, когда двухтактные двигатели для мотоциклов были нормой, Honda представила четырехтактный двигатель на Мировом Гран-при мотоциклов в 1979 году. Он считается одним из самых странных двигателей в истории. Мотоцикл Honda NR500 GP был оснащен двигателем V-4 с V-образным вырезом под углом 100 градусов, овальными цилиндрами с восемью клапанами на каждом и двумя шатунами на поршень.Герметизация овальных поршней оказалась сложной задачей (первоначально компания Соитиро Хонда поставляла поршневые кольца для Toyota), но это было одной из наименьших проблем команды. Мотоциклы регулярно снимались с гонок World GP и иногда не попадали в квалификацию. В течение трех лет Honda вернулась к традиционному двухтактному гоночному двигателю.

      Двигатели с оппозитными поршнями : Дизельный двухтактный двигатель с оппозитными поршнями и оппозитными цилиндрами (OPOC) EcoMotors обеспечивает повышение эффективности на целых 15 процентов по сравнению с обычным двигателем с воспламенением от сжатия.Поместив камеру сгорания между двумя поршнями, компания устранила головки цилиндров и клапанный механизм, которые являются источниками значительных потерь тепла и трения. Двигатель OPOC с меньшим количеством деталей также должен быть дешевле и легче, если он не окажется на полке с фантастическим карбюратором Fish.

      Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

      Основы работы поршневого двигателя

      Многие люди всю свою жизнь водят машину, даже не понимая, как работают машины. У этих знаний есть много преимуществ. Курсы обучения водителей отлично подходят для обучения людей правилам дорожного движения, но многие из них даже не охватывают основы механики.

      Сегодня на дорогах большинство автомобилей имеют двигатели внутреннего сгорания. Это тип поршневого двигателя, в котором поршни используются для преобразования давления в движение.Хотя это может показаться сложным, самый простой способ понять ваш двигатель — изучить различные части и то, что они делают во время этих циклов.

      Преимущества понимания вашего двигателя

      Есть много причин иметь фундаментальное представление о том, как работает двигатель вашего автомобиля. Во-первых, это даст вам преимущество при покупке автомобиля, потому что вы сможете сравнивать разные автомобили в зависимости от того, что находится под капотом. Когда у вас есть собственный автомобиль, знание двигателя поможет облегчить обслуживание автомобиля и устранение механических проблем.

      Точно так же, если вам когда-нибудь понадобится сдать автомобиль в ремонт, знакомство с двигателем поможет вам понять, какие работы необходимо выполнить и почему. Вы также можете определить, действительно ли в некоторых предлагаемых ремонтах нет необходимости.

      Основные компоненты двигателя внутреннего сгорания

      В основе двигателя автомобиля лежат цилиндры. У большинства машин их четыре, шесть или восемь штук. Внутри каждого цилиндра находится поршень, который скользит вверх и вниз и при этом вращает коленчатый вал, прикрепленный к коробке передач, которая, в свою очередь, приводит в движение колеса автомобиля.Цилиндры также оснащены клапанами, которые впускают воздух и топливо и позволяют выходить выхлопным газам. Топливо внутри двигателя воспламеняется свечами зажигания, и это сгорание приводит в движение поршни.

      Четырехтактный цикл

      Двигатели внутреннего сгорания, которыми оснащены многие современные легковые и грузовые автомобили, обычно работают по четырехтактному циклу, и эти четыре стадии — это впуск, сжатие, сгорание и выпуск. Поскольку в автомобилях обычно есть по крайней мере четыре цилиндра, которые запускаются последовательно, цилиндры всегда проходят разные стадии цикла, а это означает, что всегда есть поршень, приводящий в движение коленчатый вал.

      • Цикл впуска : Во время цикла впуска впускной клапан цилиндра открывается, когда поршень движется вниз по цилиндру, и вакуум, создаваемый движениями поршня вниз, всасывает воздух и топливо в камеру сгорания цилиндра.
      • Цикл сжатия : Как только поршень достигает дна цилиндра, впускной клапан закрывается и сжимает воздух и топливо внутри камеры сгорания.
      • Цикл сгорания : Поршни всегда движутся вверх и вниз, поскольку поршень движется вверх, он сжимает воздух и топливо в камере сгорания.Как только это происходит, свеча зажигания используется для воспламенения топлива и воздуха, и в результате взрыв толкает поршень обратно вниз.
      • Выпускной цикл : Во время последней стадии цикла выпускной клапан открывается, когда поршень достигает дна цилиндра, и оставшееся топливо и воздух выпускаются из камеры сгорания.

      Знание основ работы двигателя транспортного средства полезно при покупке и обслуживании автомобиля, и это может даже помочь вам диагностировать проблемы, когда что-то идет не так.Изучение двигателя вашего автомобиля — лишь один из компонентов комплексного обучения водителей, но во многих случаях эти знания могут помочь вам выбраться из затора.

      Чтобы узнать больше о своей машине и получить навыки вождения, которые помогут вам и другим в безопасности на дороге, запишитесь на занятия в Western Slope Driving School в Литтлтоне. Мы являемся лучшим в регионе институтом вождения как для начинающих, так и для опытных водителей.

      Достижения в двигателях внутреннего сгорания со свободным поршнем: всесторонний обзор

      https: // doi.org / 10.1016 / j.applthermaleng.2021.116679Получить права и контент

      Основные моменты

      Рассмотрены последние достижения в различных типах двигателей внутреннего сгорания со свободным поршнем.

      Обобщены основные проблемы технологии двигателей внутреннего сгорания со свободным поршнем.

      Обсуждаются направления исследований свободнопоршневых двигателей внутреннего сгорания.

      Abstract

      Двигатели внутреннего сгорания со свободным поршнем (FPICE) имеют много потенциальных преимуществ, таких как простая конструкция, высокая эффективность преобразования, возможность работы с несколькими видами топлива и разные типы выходной мощности, поскольку движение их поршня не ограничивается система коленчатого вала.Таким образом, FPICE привлекают большое внимание во всем мире на протяжении многих десятилетий. Согласно недавним исследованиям, типичные типы FPICE включают линейный генератор двигателя внутреннего сгорания со свободным поршнем, гидравлический двигатель внутреннего сгорания со свободным поршнем, генератор с линейным двигателем Джоуля и миниатюрные FPICE. В этой статье в основном рассматриваются последние достижения в этих типах FPICE. Во-первых, кратко представлены первые результаты исследований FPICE. После этого более подробно рассматриваются последние достижения в типичных типах FPICE.К ним относятся принципы работы, динамические характеристики поршня, характеристики и стратегии управления для различных типов FPICE. Наконец, обсуждаются тенденции исследований и будущее развитие FPICE. Отмечается, что для каждого типа FPICE существует множество перспективных исследований, включая оптимизацию производительности, разработку соответствующих систем управления и изучение будущих приложений.

      Ключевые слова

      Двигатели внутреннего сгорания со свободным поршнем

      Последние достижения в исследованиях

      Всесторонний обзор

      Рекомендуемые статьиЦитирующие статьи (0)

      Полный текст

      © 2021 Опубликовано Elsevier Ltd.

      Рекомендуемые статьи

      Ссылки на статьи

      Двигатель внутреннего сгорания — конструкция двигателя внутреннего сгорания — цилиндр, топливо, коленчатый вал и поршень

      Двигатели внутреннего сгорания обычно используют возвратно-поступательное движение, хотя газовая турбина , ракетные и роторные двигатели являются примерами других типов двигателей внутреннего сгорания. Однако поршневые двигатели внутреннего сгорания являются наиболее распространенными и используются в большинстве автомобилей, грузовиков, мотоциклов и других машин с приводом от двигателя.

      Самыми основными компонентами двигателя внутреннего сгорания являются цилиндр, поршень и коленчатый вал. К ним прикреплены другие компоненты, которые увеличивают эффективность возвратно-поступательного движения и преобразуют это движение во вращательное движение коленчатого вала. Топливо должно поступать в цилиндр, а выхлоп, образованный взрывом топлива, должен обеспечивать выход из цилиндра. Также необходимо произвести зажигание или зажигание топлива. В поршневом двигателе внутреннего сгорания это делается одним из двух способов.

      Дизельные двигатели также называют двигателями сжатия, поскольку они используют сжатие для самовоспламенения топлива. Воздух сжимается, то есть выталкивается в небольшое пространство цилиндра. Сжатие вызывает нагревание воздуха; когда топливо попадает в горячий сжатый воздух, топливо взрывается. Давление , создаваемое сжатием, требует, чтобы дизельные двигатели были более прочными и, следовательно, тяжелее, чем бензиновые двигатели, но они более мощные и требуют менее дорогостоящего топлива.Дизельные двигатели обычно используются в больших транспортных средствах, таких как грузовики и тяжелая строительная техника, или в стационарных машинах.

      Бензиновые двигатели также называют двигателями с искровым зажиганием, потому что они зависят от искры электричества, которая вызывает взрыв топлива в цилиндре. Этот газовый двигатель легче дизельного двигателя и требует более очищенного топлива.

      В двигателе цилиндр размещен внутри блока цилиндров, достаточно прочного, чтобы сдерживать взрывы топлива.Внутри цилиндра находится поршень, который точно соответствует цилиндру. Поршни обычно имеют куполообразную форму вверху и полую внизу. Поршень прикреплен через шатун, установленный в полой нижней части, к коленчатому валу, который преобразует движение поршня вверх и вниз в круговое движение. Это возможно, потому что коленчатый вал не прямой, а имеет изогнутую часть (по одной на каждый цилиндр), называемую кривошипом.

      Аналогичная конструкция приводит в движение велосипед. При езде на велосипеде верхняя часть ноги человека похожа на поршень.От колена до ступни нога действует как шатун, который прикрепляется к коленчатому валу с помощью кривошипа или педального узла велосипеда. Когда сила прикладывается к верхней части ноги, эти части начинают двигаться. Возвратно-поступательное движение голени преобразуется во вращательное или вращательное движение коленчатого вала.

      Обратите внимание, что при езде на велосипеде нога делает два движения, одно вниз и одно вверх, чтобы завершить цикл вращения педалей. Это так называемые удары. Поскольку двигатель также должен всасывать топливо и снова выпускать топливо, большинство двигателей используют четыре хода для каждого цикла, который совершает поршень.Первый ход начинается, когда поршень оказывается в верхней части цилиндра, называемой головкой цилиндра. По мере его опускания в цилиндре создается разрежение . Это потому, что поршень и цилиндр образуют герметичное пространство. Когда поршень опускается, пространство между ним и головкой блока цилиндров увеличивается, а количество воздуха остается прежним. Этот вакуум помогает подавать топливо в цилиндр, подобно действию легких. Поэтому этот ход называется тактом впуска.

      Следующий ход, называемый тактом сжатия, происходит, когда поршень снова подталкивается вверх внутри цилиндра, сжимая или сжимая топливо в более тесное и тесное пространство. Сжатие топлива в верхней части цилиндра вызывает нагревание воздуха, что также нагревает топливо. Сжатие топлива также облегчает воспламенение и делает взрыв более мощным. У расширяющихся газов взрыва меньше места, а это означает, что они будут сильнее давить на поршень, чтобы уйти.

      В верхней части такта сжатия топливо воспламеняется, вызывая взрыв, толкающий поршень вниз. Этот ход называется рабочим ходом, и это ход, при котором вращается коленчатый вал. Последний ход, такт выпуска, снова поднимает поршень вверх, который вытесняет выхлопные газы, образовавшиеся в результате взрыва, из цилиндра через выпускной клапан. Эти четыре удара также обычно называют «сосание, сжатие, удар и удар». Двухтактные двигатели исключают такты впуска и выпуска, комбинируя их с тактами сжатия и увеличения мощности.Это позволяет создать более легкий и мощный двигатель — по сравнению с размером двигателя — требующий менее сложной конструкции. Но двухтактный цикл — менее эффективный метод сжигания топлива. Остаток несгоревшего топлива остается внутри цилиндра, что препятствует сгоранию. Двухтактный двигатель также воспламеняет топливо в два раза чаще, чем четырехтактный двигатель, что увеличивает износ деталей двигателя. Поэтому двухтактные двигатели используются в основном там, где требуется двигатель меньшего размера, например, на некоторых мотоциклах, и с небольшими инструментами.

      Для горения требуется присутствие кислорода, поэтому для воспламенения топливо необходимо смешать с воздухом. В дизельных двигателях топливо подается непосредственно для реакции с горячим воздухом внутри цилиндра. Однако двигатели с искровым зажиганием сначала смешивают топливо с воздухом вне цилиндра. Это делается либо через карбюратор, либо через систему впрыска топлива. Оба устройства испаряют бензин и смешивают его с воздухом в соотношении , что составляет примерно 14 частей воздуха на каждую часть бензина.Дроссельная заслонка в карбюраторе регулирует количество воздуха, смешиваемого с топливом; на другом конце дроссельная заслонка контролирует, сколько топливной смеси будет отправлено в цилиндр.

      Вакуум, создаваемый при движении поршня вниз по цилиндру, втягивает топливо в цилиндр. Поршень должен точно входить в цилиндр, чтобы создать этот вакуум. Резиновые компрессионные кольца, вставленные в канавки поршня, обеспечивают герметичность посадки. Бензин поступает в цилиндр через впускной клапан.Затем бензин сжимается в цилиндр следующим движением поршня в ожидании воспламенения.

      Двигатель внутреннего сгорания может иметь от одного до двенадцати или более цилиндров, которые действуют вместе в точно рассчитанной по времени последовательности для приведения в движение коленчатого вала. Велосипедиста на велосипеде можно описать как двухцилиндровый двигатель, в котором каждая нога помогает другой создавать мощность для управления велосипедом и подтягивать друг друга в цикле движений. Автомобили обычно имеют четырех-, шести- или восьмицилиндровые двигатели, хотя также доступны двух- и двенадцатицилиндровые двигатели.Количество цилиндров влияет на рабочий объем двигателя, то есть на общий объем топлива, прошедшего через цилиндры. Больший рабочий объем позволяет сжигать больше топлива, создавая больше энергии для привода коленчатого вала.

      Искра попадает через свечу зажигания, расположенную в головке блока цилиндров. Искра вызывает взрыв бензина. Свечи зажигания содержат два металлических конца , называемых электродами, которые проходят вниз в цилиндр. У каждого цилиндра своя свеча зажигания.Когда через свечу зажигания проходит электрический ток , ток перескакивает с одного электрода на другой, создавая искру.

      Этот электрический ток исходит от батареи . Однако ток батареи недостаточно силен, чтобы вызвать искру, необходимую для воспламенения топлива. Поэтому он проходит через трансформатор , который значительно увеличивает его напряжение или силу. Затем ток можно направить на свечу зажигания.

      Однако в случае двигателя с двумя или более цилиндрами искра должна направляться в каждый цилиндр по очереди.Последовательность срабатывания цилиндров должна быть рассчитана так, чтобы, пока один поршень находился в рабочем такте, другой поршень находился в такте сжатия. Таким образом, сила, действующая на коленчатый вал, может поддерживаться постоянной, что позволяет двигателю работать плавно. Количество цилиндров влияет на плавность работы двигателя; чем больше цилиндров, тем постояннее усилие на коленчатом валу и тем плавнее будет работать двигатель.

      Время срабатывания цилиндров регулируется распределителем.Когда ток поступает в распределитель, он направляется к свечам зажигания через провода, по одному на каждую свечу зажигания. Механические распределители — это, по сути, вращающиеся роторы, которые по очереди подают ток в каждый провод. Электронные системы зажигания используют компьютерные компоненты для выполнения этой задачи.

      В самых маленьких двигателях используется аккумулятор, который при разряде просто заменяется. Однако в большинстве двигателей предусмотрена возможность перезарядки батареи, используя движение вращающегося коленчатого вала для выработки тока обратно в батарею.

      Поршень или поршни давят на коленчатый вал и тянут вверх, вызывая его вращение. Это преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала возможно, потому что для каждого поршня коленчатый вал имеет кривошип, то есть секцию, установленную под углом к движению вверх и вниз положения . На коленчатом валу с двумя или более цилиндрами эти кривошипы также установлены под углом друг к другу, что позволяет им работать согласованно. Когда один поршень толкает кривошип вниз, второй кривошип толкает его поршень вверх.

      Большое металлическое колесо, похожее на маховик, прикреплено к одному концу коленчатого вала. Он предназначен для поддержания постоянного движения коленчатого вала. Это необходимо для четырехтактного двигателя, поскольку поршни совершают рабочий ход только один раз на каждые четыре хода. Маховик обеспечивает импульс для переноса коленчатого вала во время его движения до тех пор, пока он не получит следующий рабочий ход. Это достигается за счет инерции, то есть принципа, согласно которому движущийся объект стремится оставаться в движении.Как только маховик приводится в движение поворотом коленчатого вала, он продолжает двигаться и вращать коленчатый вал. Однако чем больше цилиндров в двигателе, тем меньше ему нужно будет полагаться на движение маховика, потому что большее количество поршней будет поддерживать вращение коленчатого вала.

      После того, как коленчатый вал вращается, его движение можно адаптировать для самых разных целей, прикрепив шестерни, , ремни или другие устройства. Колеса можно заставить вращаться, пропеллеры можно заставить вращаться, или двигатель можно использовать просто для выработки электроэнергии.К коленчатому валу также прикреплен дополнительный вал, называемый распределительным валом, который открывает и закрывает впускные и выпускные клапаны каждого цилиндра в последовательности с четырехтактным циклом поршней. Кулачок — это колесо, имеющее более или менее форму яйца, с длинным и коротким концом. К распределительному валу крепится несколько кулачков в зависимости от количества цилиндров двигателя. Сверху кулачков установлены толкатели, по два на каждый цилиндр, которые открывают и закрывают клапаны. Когда распределительный вал вращается, короткие концы позволяют толкателям отводить назад от клапана, заставляя клапан открываться; длинные концы кулачков толкают стержни назад к клапану, снова закрывая его.В некоторых двигателях, называемых двигателями с верхним расположением кулачка, распределительный вал опирается непосредственно на клапаны, что устраняет необходимость в узле толкателя. Двухтактные двигатели, поскольку впуск и выпуск достигаются за счет движения поршня над портами или отверстиями в стенке цилиндра, не требуют распределительного вала.

      Коленчатый вал может приводить в действие еще два компонента: системы охлаждения и смазки. Взрыв топлива создает сильное тепло, которое быстро приведет к перегреву двигателя и даже к расплавлению, если он не будет должным образом рассеян или отведен.Охлаждение достигается двумя способами: через систему охлаждения и, в меньшей степени, через систему смазки.

      Есть два типа систем охлаждения. В системе жидкостного охлаждения используется воды , которую часто смешивают с антифризом для предотвращения замерзания. Антифриз снижает температуру замерзания, а также повышает точку кипения воды. Вода, которая очень хорошо собирает тепло, прокачивается вокруг двигателя через ряд каналов, содержащихся в рубашке.Затем вода циркулирует в радиаторе, который содержит множество трубок и тонких металлических пластин, увеличивающих площадь поверхности воды. Вентилятор, прикрепленный к радиатору, пропускает воздух по трубке, дополнительно снижая температуру воды . И насос, и вентилятор приводятся в действие движением коленчатого вала.

      В системах с воздушным охлаждением для отвода тепла от двигателя используется воздух, а не вода. В большинстве мотоциклов, многих небольших самолетов и других машин, движение которых создает большую часть ветра , используются системы с воздушным охлаждением.В них металлические ребра прикреплены к внешней стороне цилиндров, создавая большую площадь поверхности; когда воздух проходит через ребра, тепло, передаваемое к металлическим ребрам от цилиндра, уносится воздухом.

      Смазка двигателя жизненно важна для его работы. Движение частей друг относительно друга вызывает сильное трение , которое нагревает и вызывает износ деталей. Смазочные материалы, например масло, образуют тонкий слой между движущимися частями. Прохождение масла через двигатель также помогает отводить часть выделяемого тепла.

      Коленчатый вал в нижней части двигателя упирается в картер. Он может быть заполнен маслом, или отдельный масляный поддон под картером служит резервуаром для масла. Насос подает масло по каналам и отверстиям к различным частям двигателя. Поршень также оснащен резиновыми маслосъемными кольцами в дополнение к компрессионным кольцам для перемещения масла вверх и вниз по внутренней части цилиндра. Двухтактные двигатели используют масло как часть своей топливной смеси, обеспечивая смазку двигателя и устраняя необходимость в отдельной системе.


      Двигатель внутреннего сгорания отказывается умирать — Проблема 7: Отходы

      Двигатель внутреннего сгорания — это пережиток прошлого. Это пережиток пара. Его детали были усовершенствованы, его материалы улучшены, а его мощность увеличена, но основной механизм — поршень, перемещающийся вверх и вниз в отверстии цилиндра — был изобретен до фонографа или лампочки.

      Являясь продуктом эпохи дешевой энергии в изобилии, двигатель внутреннего сгорания также является откровенно расточительным. В четырехтактном бензиновом двигателе — двигателе, который, скорее всего, установлен в вашей машине, моторной лодке, может быть, даже в вашем генераторе — поршень сначала приводится в движение вниз, всасывая воздух в цилиндр.Затем поршень совершает движение вверх, сжимая воздух; затем искра воспламеняет топливно-воздушную смесь, которая взрывается, толкая поршень вниз. Последний ход вверх выталкивает отработанную смесь. В этом цикле, состоящем из четырех тактов поршня, современный бензиновый двигатель обычно преобразует от 14 до 30 процентов энергии, запасенной в топливе, в полезную работу. Остальное теряется в виде тепла и трения.

      Установка этого двигателя на транспортное средство приводит к образованию отходов. Такие аксессуары, как водяные насосы и компрессоры кондиционеров, потребляют энергию, не способствуя движению вперед.Сопротивление качению шин приводит к потере топлива, как и трение в подшипниках и шестернях трансмиссии. Аэродинамическое сопротивление заставляет двигатель усердно работать только для поддержания постоянной скорости на шоссе. В общем, автомобиль, на котором вы едете, потребляет около 20 процентов энергии топлива при движении по дороге. Ясно, что эту машину, работающую с выбросами парниковых газов из нефти, уже давно пора сломать. Неудивительно, что каждый новый электромобиль, прорыв в химии аккумуляторов или обещание серийного производства автомобилей на топливных элементах звучит как объявление о смерти двигателя внутреннего сгорания.

      Электромобили, похоже, вот-вот забьют последние гвозди в гроб. Благодаря небольшому количеству движущихся частей, создающих трение, электродвигатели намного более эффективны — до 96 процентов потребляемой ими энергии превращается в полезную работу. Они выделяют очень мало отработанного тепла и, при использовании альтернативной энергии, могут производить электроэнергию без выбросов. Кроме того, автомобиль с электродвигателем имеет явные конструктивные преимущества. Его почти пологая кривая крутящего момента (фунт-фут в зависимости от скорости вращения двигателя) означает, что ему не нужна сложная трансмиссия, что снижает стоимость и в то же время повышает эффективность.Двигатели внутреннего сгорания обычно должны вращаться со скоростью несколько тысяч оборотов в минуту (об / мин) для достижения максимального крутящего момента, но электрические двигатели развивают максимальный крутящий момент в момент вращения вала. Вот что делает электромобили и гибриды такими приятными, даже если они не останавливаются.

      По всем этим причинам аргументы против поршневого двигателя очевидны. Кажется, его дни сочтены. Но реальность такова, что внутреннее сгорание никуда не денется. Не говори Илону Маску, но тепловая машина, если использовать удобное прозвище, вероятно, будет управлять дорогами как минимум до 2050 года.

      В стойкости двигателя внутреннего сгорания нельзя винить только рыночную инерцию или мощь Big Oil. Он выдерживает — и доминирует — потому что так легко приспосабливается. Миниатюрные версии приводных триммеров и бензопил. Огромные высокоэффективные модели приводят в движение бульдозеры и грузовые суда. В автомобиле этот двигатель может быть сконфигурирован как газовый сиппер с умеренными манерами или как гоночное устройство с высокими оборотами.

      Он прекрасно подходит для транспортировки, поскольку в нем используется топливо, которое в высшей степени портативно и энергоемко.«Жидкие углеводороды — это жидкое золото», — говорит Джон Б. Хейвуд, инженер-механик, почетный профессор Сун Джэ в Массачусетском технологическом институте. Бензиновый двигатель заправляется за несколько минут, после чего он может проехать от 400 до 500 миль. И топливо тоже можно приспосабливать: в прошлом веке, когда дороги улучшились и автомобили стали ездить быстрее, бензин был переработан, чтобы помочь двигателям извлекать его энергию.

      Короче говоря, долгая и насыщенная жизнь бензинового двигателя — это результат того, что палеоантрополог Рик Поттс называет отбором по изменчивости: идея о том, что в быстро меняющейся среде выживают только универсальные.Поттс, специалист по происхождению человека из Смитсоновского института, считает, что первые гоминиды преобладали благодаря своей гибкости. Климат, с которым наши предки столкнулись в раннем плейстоцене, сильно колебался, с частыми изменениями температуры, водоснабжения, источников пищи, растительности и конкуренции. «Они пережили это смутное время, потому что были универсальными специалистами», — говорит Поттс. Обладая длинными руками и длинными ногами, они могли лазить по деревьям в лесу или преодолевать километры по саванне. Обладая большим мозгом, они могли понять, как адаптироваться к меняющимся обстоятельствам, и изобрести социальные системы и технологии, которые помогут им справиться с этим.Они не были быстрее, сильнее или эффективнее других существ — они были более адаптивными.

      Поршневой двигатель выглядит как еще один пример выживания благодаря приспособляемости. Он дешев в строительстве, соответствует требованиям, предъявляемым к различным видам топлива и физическим схемам, и идет в ногу с развитием металлургии и борьбы с загрязнением окружающей среды. Постоянные усовершенствования означают, что сегодняшний двигатель внутреннего сгорания выбрасывает на 99 процентов меньше загрязнения, чем его предшественники в 1960-х годах.Автопроизводители напоминают нам, что в регионах с плохим качеством воздуха современные двигатели фактически выталкивают более чистый воздух через выхлопную трубу, чем поглощают. Сегодня, столкнувшись с задачей сокращения выбросов углекислого газа и ограничения энергопотребления, инженеры, отраслевые эксперты и инвесторы, которые лучше всего разбираются в двигателях, далеки от того, чтобы отказаться от внутреннего сгорания. Фактически, они увеличивают свои вложения. У этой старой технологии еще много миль.

      Немногие машины сегодня развились так же сильно, как двигатель внутреннего сгорания.Самые ранние версии были примитивными, медленными и ненадежными инструментами. Улучшения произошли с достижениями в металлургии и более глубоким пониманием процесса горения. Стартеры превратились из ручных кривошипов в кнопочные электрические устройства; электрические свечи зажигания гарантируют более стабильную и плавную работу. Изобретение жидкостного охлаждения позволило конструкторам перейти от примитивных одноцилиндровых двигателей к шести- и восьмицилиндровым двигателям, которые доминировали в автомобильной промышленности в середине 20-го века.Совсем недавно такие управляемые компьютером инновации, как точное управление распределением топлива в двигателе и улучшенная синхронизация открытия и закрытия клапана, позволили объединить высокую выходную мощность с плавной, равномерной работой на низких скоростях.

      Новые требования к двигателям внутреннего сгорания сосредоточены на выбросах, и профессор Джон М. ДеЧикко из Института энергетики Мичиганского университета считает, что бензиновый двигатель им также удовлетворит. «Существует множество возможностей для повышения эффективности, которые всегда будут подрывать альтернативы, насколько хватит глаз, — говорит ДеЧикко.«Горизонт эффективности простирается очень далеко в будущее». Чтобы решить эту новую задачу, производители доводят до совершенства все, от конструкции камеры сгорания до параметров трансмиссии и способа подачи топлива и воздуха в сердце двигателя.

      На рынке уже распространены турбокомпрессоры, система отключения цилиндров, прямой впрыск топлива и бесступенчатые коробки передач. По словам Майка Андерсона, главного инженера по бензиновым четырехцилиндровым двигателям в General Motors, уменьшение соотношения площади поверхности к объему в цилиндре за счет использования меньшего диаметра и более длинных ходов коленчатого вала уже увеличило количество миль на галлон.Так же улучшается конструкция камеры сгорания с помощью компьютерного моделирования.

      Андерсон также объясняет, что способ работы двигателя имеет решающее значение, поскольку каждый двигатель внутреннего сгорания имеет свою максимальную эффективность. «Мы хотим сделать этот островок эффективности как можно большим», — говорит он. Простое снижение трения также может принести большую выгоду: снижение его всего на 8 процентов сокращает расход топлива на 1 процент. Последняя версия 2-литрового двигателя GM с турбонаддувом снизила трение на 16 процентов по сравнению с его предшественником.

      Грядут изменения и в доставке топлива. Томас Апостолос, президент Ricardo, Inc., американского подразделения глобальной инженерной консалтинговой компании с почти 100-летним опытом разработки двигателей, ожидает включения прямого впрыска топлива с распылителем и обедненной стратифицированной заправки, в которой соотношение Из топлива в воздух уменьшается, но топливо концентрируется именно там, где оно больше всего необходимо.

      Бензиновый двигатель также может быть на грани объединения со своим целующимся кузеном, дизельным двигателем.В научных кругах этот брак был постоянной темой для обсуждения. Дизели выигрывают от отсутствия дросселирования: они управляют скоростью двигателя, изменяя подачу топлива, а не ограничивают поступление воздуха с помощью механического дросселя, который создает сопротивление и трение. Поскольку дизели инициируют сгорание с помощью внутреннего тепла, а не искры, они обычно имеют очень высокую степень сжатия — большое «сжатие» воздуха внутри цилиндра. Эти высокие давления позволяют извлекать больше работы из химической энергии, хранящейся в топливе.Пока инженеры экспериментируют с понижением степени сжатия в дизельных двигателях для снижения выбросов и повышением их в бензиновых двигателях, эти две технологии уже сближаются, говорит Билл Вёбкенберг, старший инженер, отвечающий за топливо, технические и нормативные вопросы Mercedes-Benz. СОЕДИНЕННЫЕ ШТАТЫ АМЕРИКИ.

      Один многообещающий пример: двигатель с воспламенением от сжатия с однородным зарядом (HCCI). В этом гибриде, что стало возможным благодаря улучшениям в компьютерном моделировании и управлении двигателем, внутреннее тепло двигателя воспламеняет равномерно распределенную смесь воздуха и топлива внутри цилиндра.В результате получается двигатель с чистой работой, который, по словам исследователей General Motors, может быть на 80 процентов эффективнее дизельного двигателя при примерно 50 процентах стоимости.

      Двигатели HCCI имели проблемы с поддержанием бесперебойной работы, поэтому в настоящее время планируется создать один двигатель с двумя режимами работы. Обычное сгорание будет использоваться для резкого ускорения, а режим HCCI будет использоваться для легких нагрузок, таких как круиз по шоссе. По словам Вобкенберга, Mercedes уже добился успеха с этой моделью в европейских приложениях.

      Назревают еще более радикальные идеи. Новые способы организации механической компоновки двигателей внутреннего сгорания могут обещать значительное повышение эффективности. Компания EcoMotors International в Мичигане, например, разрабатывает двигатель с оппозитными поршнями и оппозитными цилиндрами, который может производить одну лошадиную силу на фунт веса двигателя. Другие компании разрабатывают двигатели с двойным сжатием и двойным расширением, которые распределяют работу по дополнительным цилиндрам, разделяя циклы сжатия и мощности.

      Бензиновый двигатель — быстро движущаяся цель.На самом деле, ирония заключается в том, что он развивается быстрее, чем некоторые из технологий, которые угрожают его заменить. По словам ДеЧикко, выбросы углерода от автомобилей в США будут сокращаться на 2,1 процента в год, в то время как выбросы от электростанций сокращаются с прогнозируемой скоростью менее 1 процента в год. Именно на этих заводах, две трети из которых используют ископаемое топливо, используются электромобили. Фактически, Союз обеспокоенных ученых заявил в своем отчете, что транспортные средства с батарейным питанием не обладают явным преимуществом в парниковых условиях по сравнению с лучшими бензиновыми или гибридными моделями в США.С. утверждает, что в значительной степени полагается на электроэнергию, вырабатываемую углем.

      Даже средний бензиновый двигатель может скоро приблизиться к своему электрическому сопернику по количеству граммов углекислого газа, выделяемого на милю. «Ничего не позаимствовав из« Звездного пути », мы разработали программу Ford Focus с выбросом углекислого газа 97 граммов на километр», — говорит Апостолос о Рикардо. «К 2040 году мы получим 30 граммов, что сделает двигатели внутреннего сгорания конкурентоспособными по сравнению с электромобилями». И, конечно же, есть стоимость: батареи должны стать в 10 раз дешевле и в 100 раз повысить их удельную энергию, чтобы соответствовать бензиновым.Подключаемый гибрид Chevrolet Volt, например, оснащен батареей на 16 киловатт-часов, что составляет около 8000 долларов стоимости автомобиля. Он хранит энергетический эквивалент одного галлона бензина. «До масштабируемого бизнес-кейса еще далеко, — говорит ДеЧикко.

      Это не означает, что программы развития электричества и водорода бесполезны — они явно таковы. Но в борьбе с бензиновым двигателем им придется иметь дело не только с выдающимся исполнителем: им придется победить настоящего инженерного хамелеона.

      Норман Майерсон — редактор раздела «Автомобили» в The New York Times. Его транспортный парк включает гибрид Prius (седьмой Prius в семье), Camaro SS350 1967 года, хорошо подержанный универсал Volvo и два мотоцикла. Бывший дрэг-рейсер и органический фермер, он всегда увлекался изучением того, как все работает.

      Новый двигатель внутреннего сгорания — экологичный, чистый, эффективный бензиновый поршневой двигатель

      Принято считать, что двигатель внутреннего сгорания должен умереть.Страны рассматривали возможность запрета транспортных средств, работающих на топливе, после определенного срока в будущем, но ни одно из этих предложений не осталось неизменным. Но с ростом давления на автопроизводителей с целью создания более эффективных автомобилей с меньшим количеством выбросов, будущее поршневых двигателей выглядит мрачным.

      Этот пост был первоначально опубликован 1 декабря 2016 года. Он был обновлен и теперь включает новое видео от Engineering Explained.

      Но сейчас группа инженеров исследует способ сделать более чистый и экологичный двигатель внутреннего сгорания.И их решение заключается в установке стандартного четырехтактного двигателя поверх самого себя.

      Как объясняет Wired , оппозитно-поршневой двигатель давно был в умах автомобильных инженеров. Он заменяет клапанный механизм четырехтактного двигателя с открытыми впускными и выпускными портами, устраняя трение и сложность распределительного вала и клапанов. Но в течение десятилетий у нас не было средств для достаточно точного управления топливовоздушной смесью, чтобы воспользоваться присущей конструкции эффективностью.

      Теперь инженеры думают, что они наконец усовершенствовали конструкцию оппозитного поршня. Они надеются, что двигатель сможет использовать усовершенствованные поршневые двигатели за столетие с лишним, наряду с преимуществами противоположной компоновки, чтобы создать новый автомобиль с экологически чистым ходом, использующий уже имеющуюся заправочную инфраструктуру.

      Узнайте, как работает этот новый инновационный двигатель. Кто знает, когда-нибудь такой двигатель может оказаться под капотом вашей машины.

      Этот контент импортирован с YouTube.Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

      Если вы не можете просмотреть видео на YouTube выше, щелкните здесь.

      Чтобы еще раз взглянуть на эту многообещающую технологию, вот подробное описание Джейсона Фенске из Engineering Explained:

      Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

      Если вы не можете просмотреть видео на YouTube выше, щелкните здесь.

      Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

      .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *