Инжекторные двигатели: принцип работы, плюсы и минусы

Содержание

принцип работы, плюсы и минусы

Современный автомобильный мир ушел на несколько шагов вперед. И это не удивительно, ведь только так можно оставаться на плаву и получать хорошую прибыль. Особенно это касается силовых установок, которые устанавливаются на автомобили. Вы наверняка слышали такое словосочетание, как инжекторный двигатель. По сути, это всем известный карбюратор, только немного видоизмененный.

В нем также происходит процесс сгорания топлива и выделение мощности. Единственное отличие инжектора заключается в новой инжекторной системе подачи топливовоздушной смеси.

История

Многие знают, что первая система по образованию топливовоздушной смеси называлась карбюратор.

Она позволяет подавать топливо непосредственно в каждый цилиндр автомобиля и приводить его в движение. Что касается расположения, то изначально карбюратор устанавливался перед впускным коллектором и готовил качественную смесь.

С некоторым временем потребности современных водителей и конструкторов возросли в несколько раз. Из-за этого система не могла выдавать того желаемого результата, который хотели видеть все. Особенно это касается кораблестроения и самолетостроения. Дело в том, что в этих отраслях нужна огромная мощность и высокий КПД.

В результате этого конструкторы придумали совершенно новую систему, которая немного походила на дизельный двигатель, но имела стандартные свечи зажигания. Все это произошло в начале 40-х годов, именно в это время были сконструированы первые инжекторные двигатели.

Данный скачок позволил получить желаемый результат по мощности, но немного не подходил под экологическую безопасность. В результате, разработки пришлось на время прекратить до начала 70-х годов. Именно в это время американские конструкторы решили возродить подачу топлива непосредственно в цилиндры двигателя и сделать более усовершенствованную систему.

Устройство

В современных инжекторных двигателях топливо подается не самотеком, а при помощи небольшой системы, под названием форсунка.

Ее работа основана на считывании всевозможных датчиков, которые располагаются в двигателе. Благодаря этому топливовоздушная смесь дозируется небольшими порциями и подается именно в тот момент, когда это необходимо.

Что касается самого управления, то все держится на простом блоке управления, так называемом компьютере. Именно он и раздает небольшие команды каждой форсунке.

Инжекторная система имеет следующие компоненты:

  1. Топливная форсунка;
  2. Топливная рампа;
  3. Насос;
  4. Сам блок управления;
  5. И небольшая система датчиков.

Подробнее о каждом компоненте:

  • Топливная форсунка является основным компонентом, который и называют инжектором. Она позволяет своевременно подавать топливо и распылять его непосредственно в каждый цилиндр. В основе форсунки лежит простой корпус и электромагнитный клапан, который и осуществляет процесс открытия и закрытия форсунки. Что касается самого распыления, то оно происходит через специальное отверстие, управляемое клапаном.
  • Топливную рампу можно найти в любом современном инжекторном двигателе. Ее главное предназначение состоит в подводе топлива ко всем форсункам. Если говорить просто, то она соединяет все форсунки в единое целое.
  • Что касается топливного насоса, то он просто подает топливовоздушную смесь под давлением, сравнимую с давлением в несколько атмосфер. Без него бы топливо подавалось просто самотеком, как и в карбюраторном двигателе.
  • Мозгом системы является блок управления, который и отдает команды всем форсункам. По сути, это небольшой микроконтроллер, соединенный с большим количеством датчиков, форсунками, топливным насосом, системой зажигания, регулятором холостого хода и другими системами. Его главная задача состоит в сборе всей информации по состоянию двигателя и распределении топлива.
  • Датчики отвечают за измерение основных параметров силовой установки в реальном времени. В основном это расход воздуха, расположение коленвала, образование детонации в цилиндрах, температура, скорость транспортного средства и другое. Также можно встретить датчики, которые определяют включен ли кондиционер, ровная ли дорога и как располагается распределительный вал.

Принцип работы

  1. В силовом агрегате топливная смесь подготавливается вне камеры сгорания при помощи специального устройства. В результате движения поршня вниз определенное количество топлива всасывается в камеру сгорания.
  2. Далее идет основной процесс, так называемый рабочий ход. В это время происходит сжимание топлива и поджигание при помощи искры.
  3. В итоге все топливо сгорает и выделяется огромное количество тепла, которое идет на мощность инжекторного двигателя.
  4. В конце такта поршень движется вверх и открывается выпускной клапан, который и выводит отработавшие газы. Далее приоткрывается впускной клапан, и новая порция топлива поступает в цилиндр.

Данный процесс происходит в течение долгого времени, пока двигатель работает. Специалисты называют такой газообмен четырехтактным. То есть все это происходит за четыре такта:

  1. Впуск;
  2. Сжатие;
  3. Сгорание;
  4. Выпуск.

Чтобы совершить один такой цикл требуется два оборота коленвала. Чтобы потери мощности были минимальны, конструкторы придумали многоцилиндровые системы. Они позволяют выдавать огромное количество тепла и мощности.

В современном мире большую популярность получил четырехтактный инжекторный двигатель, что неудивительно. Дело в том, что он отличается не только техническими характеристиками, но и самими габаритами. В основе данной системы лежит порядок работы цилиндров.

Режимы работы

Сейчас можно встретить восемь режимов работы силового агрегата:

  1. При холодном пуске топливная смесь очень сильно обедняется. Это случается из-за того, что топливо очень плохо смешивается с воздухом. В результате не происходит того испарения, которое нужно. Такой способ работы двигателя очень сильно вредит деталям. То есть большое количество топлива оседает на стенках цилиндра и выпускных труб;
  2. Если вы заводите авто при низкой температуре, то на начальном этапе требуется очень обогащенная смесь. Для этого нужно подавать большее количество топлива, пока температура в камере сгорания не повысится до нужного значения;
  3. После пуска идет процесс прогрева инжекторного двигателя. Вы знаете, что во время пуска в мороз смесь очень бедная, образуется некая топливная пленка в выпускной трубе. Она исчезает только после достижения очень высокой температуры. В связи с этим топливную смесь нужно очень сильно обогащать;
  4. При частичной нагрузке необходимо поддерживать определенный состав топливовоздушной смеси. Если двигатель инжекторный не оснащен нейтрализатором, то обогащенность должна быть в пределах 1,05 – 1,2;
  5. При полной нагрузке дроссельная заслонка полностью открыта. Поступает большое количество воздуха, что очень хорошо. В этом режиме достигается максимальная мощность и крутящий момент;
  6. Во время ускорения заслона то открывается, то закрывается. В результате этого смесь кратковременно обедняется и происходит ограничение подачи топлива. Для предотвращения такого явления обогащение должно быть меньше 1;
  7. В холостом режиме происходит замедление, автомобиль двигается по инерции. В этом случае подача топлива полностью перекрывается;
  8. Если происходит увеличение высоты, то плотность воздуха уменьшается. Из этого следует, что двигаться в горах очень сложно, топливная смесь будет очень обогащена. Это может привести к трудному пуску силового агрегата и увеличению расхода топлива.

Преимущества и недостатки

Инжектор получил огромную популярность в современном мире. Это обусловлено следующими плюсами:

  1. Режим работы меняется автоматически, без использования человеческого фактора;
  2. Полностью отсутствует необходимость в ручной настройке;
  3. Двигатель очень экономичный;
  4. Полностью соответствует всем экологическим нормам;
  5. Очень легко запускать в любую погоду, нет потери мощности.

Кончено, без недостатков никуда. О них тоже стоит рассказать:

  1. Довольно высокая стоимость и обслуживание;
  2. Многие детали непригодны к ремонту. То есть их придется полностью выкидывать и менять на новые;
  3. Производить ремонт и обслуживание в домашних условиях практически невозможно. Для этого требуется специальное оборудование и опыт;
  4. Двигатель очень зависим от напряжения сети.

Типы инжекторной системы

Сейчас можно встретить три типа:

  1. Одноточечный впрыск;
  2. Многоточечный впрыск;
  3. Непосредственный впрыск.

Первый является самым простым и очень распространённым. Он не очень сильно начинен электроникой, что приводит к меньшему эффекту. Большим недостатком такой системы является то, что некая часть топлива теряется во время впрыска. То есть топливная смесь подается через форсунку во впускной коллектор, где происходит распределение по цилиндрам.

Следом идет многоточечный впрыск, который позволяет подавать топливо индивидуально в каждый цилиндр. Благодаря этому у вас не будет возникать вопрос: нужно ли прогревать инжекторный двигатель. Что касается самого распределения, то он мощнее и экономичнее. По многочисленным тестам можно увидеть, что мощность увеличивается на 7 процентов. К основным преимуществам можно отнести автоматическую настройку подачи топлива и впрыскивание вблизи клапана.

Непосредственный впрыск используется во многих современных автомобилях. Его особенность состоит в том, что подача топлива происходит непосредственно в каждый цилиндр. Ни одной капли смеси не будет расходоваться впустую. Если у вас возникает вопрос надо ли прогревать двигатель, то ответ очень простой. Это зависит от самого производителя и его рекомендаций. Некоторые рекомендуют прогревать силовой агрегат не очень долго, чтобы не навредить всем деталям. Каждый должен сам ответить на вопрос, надо ли ему прогревать двигатель, изучив рекомендации к своему авто.

Устройство инжектора и принцип работы инжектора на автомобилях

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Содержание статьи:

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

  • Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.
  • Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану.
  • Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

К механической части инжектора относится:
  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
  • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
  • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
  • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
  • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
  • Датчик детонации, расположен на блоке цилиндров;
  • Датчик скорости, установлен на коробке передач;
  • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Преимущества инжектора и его недостатки

Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

+ Преимущества — Недостатки
реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива; чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки; прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа; замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто; регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ; использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз. регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

И напоследок представляем вашему вниманию видео для более полного понимания принципа работы инжектора.

Принцип работы инжекторного двигателя, что такое инжекторный двигатель

Что такое инжекторный двигатель? Это разновидность двигателя с инжекторной системой подачи топлива. Данный вид двигателя обеспечивает экономичный расход топлива и уменьшение выбросов продуктов его сгорания в атмосферный воздух.

Основное его отличие от других типов состоит в особенностях работы системы подачи топлива. А именно, впрыскивание топлива осуществляется принудительно при помощи специального элемента для его дозирования (форсунки) в цилиндр или систему трубок и заслонок (впускной коллектор).

Инжекторные двигатели начали устанавливать с 1930х годов, но популярность они смогли завоевать только в конце 90хх годов.

Рис.№ 1. Современный инжекторный двигатель. Рис.№ 1. Современный инжекторный двигатель.

Типы инжекторных систем

Различают несколько типов данных систем в зависимости от способа подачи топлива, а именно:

  • Инжекторная система с центральной подачей топлива. Одна форсунка поставляет смесь топлива и воздуха в коллектор¸ после чего происходит её распределение по всем цилиндрам;
  • С многоточечной подачей. В этом варианте на каждый цилиндр имеется своя форсунка. Этот тип наиболее распространен. Чаще подача смеси осуществляется напрямую по цилиндру с последовательным топливовспрыском.

Выделяют также двух- и четырехтактные системы.

Такт – это все процессы, которые происходят в цилиндре за время одного ходя поршня.

Принцип работы инжекторного двигателя основан на сборе и оценке информации о состоянии двигателя и его работы с помощью специальных датчиков:

  • Датчик оборотов. Производит передачу сигнала о скорости, на основании этих данных блок управления рассчитывает необходимый расход топлива;
  • Датчик массового расхода воздуха. Измеряет силу воздушного потока;
  • Температуры антифриза. Проводит замеры температурного режима системы охлаждения и активирует работу вентилятора при необходимости;
  • Дроссельной заслонки. Осуществляет контроль положения заслонки дросселя и регулирует распределение топлива, которое попадает в камеру сгорания;
  • Кислорода в выхлопных газах. Фиксирует концентрацию кислорода в выхлопных газах. А также обеспечивает необходимую концентрацию газов и топлива в камере сгорания;
  • Детонации. Определяет силу взрыва в камере сгорания;
  • Положения распределительного вала. Участвует в согласовании подачи топлива и работы двигателя;
  • Температуры воздуха. Определяет температуру, которая поступает в двигатель. Контролёр инжектора (его «мозги») в результате обработки полученной информации, собранной от всех перечисленных приборов и устройств, регулирует работу следующих систем:
  • Форсунок. Это электромагнитный клапан, который осуществляет распыление топлива за счёт давления;
  • Электронасоса подачи топлива. Он контролирует давление в системе;
  • Модуля зажигания. Соответствует количеству свечей зажигания. Управляет их работой;
  • Регулятор холостого хода. Корректирует подачу воздуха в обход дроссельной заслонки на нейтральной передаче;
  • Вентилятор, охлаждающий мотор.

Рис. №2. Форсунки - основной элемент инжекторного двигателя, отвечающий за распыление топлива (жидкости или газа). Рис. №2. Форсунки — основной элемент инжекторного двигателя, отвечающий за распыление топлива (жидкости или газа).

Как работает инжектор

Каждый двигатель оснащен поршнями и цилиндрами. В них происходит преобразование тепловой энергии в механическую.

Рис. №3. Схема работы инжекторного двигателя и его устройство. Рис. №3. Схема работы инжекторного двигателя и его устройство.

Для осуществления этого процесса в инжекторном двигателе существует несколько этапов:

1 этап – такт впуска. Поршень в начале этого этапа находится в верхней мертвой точке. С началом работы двигателя стартер проворачивает посредством маховиков коленчатый вал. Датчик коленвала посылает блоку управления инжектора информацию о положении конкретного цилиндра. Датчик фаз анализирует такты. Блок управления получив данную информацию, открывает в нужном цилиндре форсунку на строго определенное время.

А вы знаете, что у некоторых двигателей имеется несколько клапанов впуска? Они увеличивают мощность двигателя, а соответственно и скоростные характеристики автомобиля;

2 этап – сжатие топливовоздушной смеси. Когда поршень достигает нижней мертвой точки, он начинает снова подниматься. Что приводит к сжатию смеси топлива и газов до размеров камеры сгорания. Клапаны в этот момент закрыты;

3 — этап рабочего хода. На этом этапе происходит поджигание свечой зажигания сжатой смеси воздуха и топлива. Что провоцирует взрыв, посредством увеличения давления на дне поршня. Это приводит к тому, что поршень опускается вниз до уровня нижней мертвой точки.

Клапаны впуска и выпуска закрыты для того, чтобы сила давления на поршень была достаточной для проворачивания коленчатого вала.

После взрыва блок управления регулирует момент зажигания для последующего цилиндра. А так же нормирует газовый состав топливовоздушной смеси. Это позволяет предельно эффективно использовать топливо и его сгорание;

4 этап – такт выпуска. Предыдущий этап приводит к открытию выпускного клапана. Поршень начинает двигаться вверх, выбрасывая газы, образовавшиеся в результате взрыва и сгорания.

Важно! Прогрев двигателя не оказывает влияния на показания датчика массового расхода воздуха и датчика взрыва, так как блок управления работает по специальным запрограммированным таблицам.

Чем отличается инжекторный двигатель от карбюраторного

Рис. №4. Инжекторный и карбюраторный двигателя. Рис. №4. Инжекторный и карбюраторный двигателя.

В работе и устройстве инжектора и карбюратора можно выделить следующие отличия:

  • В инжекторном двигателе подача смеси газов и топлива осуществляется в специальную камеру, в карбюраторном двигателе образование топливовоздушной смеси происходит в самом карбюраторе;
  • Смесь в инжекторном двигателе подается форсунками в цилиндры и в впускной коллектор принудительно. В карбюраторе этот процесс происходит само по себе;
  • В инжекторном двигателе форсунки подают строго дозированное количество топлива;
  • Инжекторная система обеспечивает мощность двигателя на 15% больше, чем карбюратор;
  • Инжектор более экономичен и экологически безопасен, чем карбюратор.

Применение инжекторных двигателей

Изначально инжекторные двигатели устанавливали в авиации. Особую популярность получили во времена Второй Мировой войны. Авиамоторы тогда создавали именно с этой системой.

Затем инжекторы стали устанавливать в автомобили. В процессе ввода в широкие круги, инжекторы стали вытеснять карбюраторные варианты двигателей. И с 2005 года автомобильные двигателя оснащены именно инжекторной системой подачи топлива.

Достоинства и недостатки инжекторного двигателя

К его плюсам можно отнести:

  • Экономичное потребление топлива;
  • Большая динамика двигателя;
  • Отсутствуют проблемы с запуском двигателя в холодное время года;
  • Более надежный в эксплуатации, чем карбюраторный вариант;
  • Нет необходимости ручного регулирования режимов его работы.

К недостаткам относят:

  • Дороговизна запчастей;
  • Сложная диагностика неисправностей;
  • Некоторые детали не подлежат ремонту;
  • Дорогие обслуживание и регулировка работы инжектора, ремонт требуется проводить в автомастерских;
  • Чувствительны к топливу плохого качества.

Заключение

Не смотря на перечисленные недостатки, инжекторные двигатели представляют собой современный вариант топливной системы, обеспечивающий большую мощность и экономичное расходование топлива. А также более безопасную комплектацию двигателей в плане влияния на экологию.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 5 из 5.

Принцип работы инжекторного двигателя

Автор admin На чтение 6 мин. Просмотров 77

Принцип работы двигателя внутреннего сгорания (ДВС) основан на сгорании небольшого количества топлива в ограниченном объеме. При этом высвобождающаяся энергия преобразуется за счет движения поршней в механическую энергию. Дозированное количество топлива обеспечивается карбюратором или специальным устройством – инжектором. Двигатели с такими устройствами называются инжекторными. Рабочий принцип инжекторного двигателя прост – подача в нужный момент времени нужного количества топлива в нужное место.
инжекторный двигательинжекторный двигатель

Как работает ДВС

Чтобы ясно понимать различие между двумя типами силовых устройств, необходимо предварительно коснуться того, как вообще работает ДВС. Существует несколько отличающихся типов, из которых самыми распространенными будут:

  1. бензиновые;
  2. дизельные;
  3. газодизельные;
  4. газовые;
  5. роторные.

Принцип работы мотора лучше всего можно понять на примере бензинового двигателя. Самый популярный из них – четырехтактный. Это означает, что весь цикл преобразования энергии, образующейся при сгорании топлива, в механическую осуществляется за четыре такта.
Устройство двигателя таково, что последовательность выполнения тактов следующая:

  • впуск – заполнение цилиндров топливом:
  • сжатие – подготовка топлива к сгоранию;
  • рабочий ход – преобразование энергии сгорания в механическую;
  • выпуск – удаление продуктов сгорания топлива.

Для обеспечения работы двигателя у каждого из них своя задача. Во время первого такта поршень опускается из верхнего положения до крайнего нижнего, открывается клапан (впускной) и цилиндр начинает заполняться топливно-воздушной смесью. Во втором такте клапана закрыты, а движение поршня происходит от нижнего положения к верхнему, смесь в цилиндре сжимается. Когда он доходит до верхнего положения, на свече проскакивает искра и поджигается смесь.

При ее сгорании образуется повышенное давление, которое заставляет двигаться поршень от верхнего положения к нижнему. После его достижения под действием инерции вращения коленвала поршень начинает двигаться опять вверх, при этом срабатывает выпускной клапан, продукты сгорания топлива выводятся наружу из цилиндра. Когда поршень дойдет до верхнего положения, закрывается выпускной, но зато открывается впускной клапан и весь цикл работы повторяется.

Все описанное выше можно увидеть на видео

О карбюраторе, его достоинствах и недостатках

Здесь необходимо сделать небольшое дополнение. Раз мы рассматриваем бензиновый мотор, то в нем подача бензина в цилиндры двигателя возможна различными способами. Исторически первой была разработана подача и дозировка бензина при помощи карбюратора. Это специальное устройство, которое обеспечивает необходимое количество топливно-воздушной смеси (ТВС) в цилиндрах.
карбюраторкарбюратор
Топливно-воздушной называется смесь воздуха и паров бензина. Она приготавливается в карбюраторе, специальном устройстве, для их смешивания в нужной пропорции, зависящей от режима работы двигателя. Будучи достаточно простым по своему устройству, карбюратор длительное время успешно работал с бензиновым мотором.
Однако по мере развития автомобиля выявились недостатки, с которыми в сложившихся к тому времени условиях уже было трудно мириться разработчикам двигателя. В первую очередь это касалось:

  • топливной экономичности. Карбюратор не обеспечивал экономного расходования бензина при внезапном изменении режима движения машины;
  • экологической безопасности. Содержание в отработанных газах токсичных веществ было достаточно высоким;
  • недостаточной мощности двигателя из-за несоответствия ТВС режиму движения автомобиля и его текущему состоянию.

Чтобы избавиться от отмеченных недостатков был реализован иной принцип подачи топлива в мотор – с помощью инжектора.

Про инжекторные моторы

У них есть еще одно название – впрысковые двигатели что, в общем-то, никоим образом не изменяет сути происходящих явлений. По выполняемой работе впрыск напоминает принцип, реализуемый в работе дизеля. В двигатель в нужный момент через форсунки инжектора впрыскивается строго дозированное количество топлива, и оно поджигается искрой со свечи, хотя при работе дизеля свеча не используется.
форсунки инжекторафорсунки инжектора
Весь цикл четырехтактного ДВС, рассмотренный ранее, остается неизменным. Основное отличие в том, что карбюратор готовит ТВС за пределами двигателя, и она потом поступает в цилиндры, а у инжекторного двигателя последних моделей бензин впрыскивается непосредственно в цилиндр.

Как это происходит, можно в деталях увидеть на видео

Подобное устройство мотора позволяет решить те проблемы, которые возникают при работе карбюратора. Использование инжектора обеспечивает по сравнению с карбюраторным вариантом следующие преимущества мотору:

  • повышение мощности на 7-10%;
  • улучшение показателей топливной экономичности;
  • снижение уровня токсичных веществ в составе выхлопных газов;
  • обеспечение оптимального количества топлива, зависящее от режима движения автомашины.

Это только основные достоинства, которые позволяет получить инжекторный двигатель. Однако у каждого достоинства есть и свои недостатки. Если карбюраторный мотор чисто механический и его можно отремонтировать практически в любых условиях, то для управления инжекторным требуется сложная электроника и целая система датчиков, из-за чего работы (регламентные и ремонтные) необходимо проводить в условиях сервисного центра.

Устройство впрыска

Если посмотреть, как выглядит устройство ДВС с впрыском вместо карбюратора, то можно выделить:

  • контроллер впрыска – электронное устройство, содержащее программу для работы всех составных узлов системы;
  • форсунки. Их может быть как несколько, так и одна, в зависимости от используемой системы впрыска;
  • датчик расхода воздуха, определяющий наполнение цилиндров в зависимости от такта. Сначала определяется общее потребление, а потом программно пересчитывается необходимое количество для каждого цилиндра;
  • датчик дроссельной заслонки (ее положения), устанавливающий текущее состояние движения и нагрузку на двигатель;
  • датчик температуры, контролирующий степень нагрева охлаждающей жидкости, по его данным корректируется работа двигателя и при необходимости начинается работа вентилятора обдува;
  • датчик фактического нахождения коленчатого вала обеспечивающий синхронизацию работы всех составных узлов системы;
  • датчик кислорода, определяющий его содержание в выхлопных газах;
  • датчик детонации контролирующий возникновение последней, для ее устранения по его сигналам меняется значение опережения зажигания.

датчик кислородадатчик кислорода
Вот примерно так выглядит в общих чертах система, обеспечивающая впрыск топлива, принцип работы должен быть вполне понятен из ее состава и назначения отдельных элементов.

Виды впрысковых систем

Несмотря на достаточно простое описание работы инжекторного мотора, приведенное ранее, существует несколько разновидностей, осуществляющий подобный принцип работы.

Одноточечный впрыск

Это самый простой вариант реализации принципа впрыска. Он практически совместим с любым карбюраторным двигателем, разница заключается в применении впрыска вместо карбюратора. Если карбюратор во впускной коллектор подает ТВС, то при одноточечном впрыске во впускной коллектор впрыскивается через форсунку бензин.

Как и в случае с карбюраторным мотором, при такте впуск двигатель всасывает готовую топливно-воздушную смесь, и его работа практически не отличается от работы обычного двигателя. Преимуществом такого мотора будет лучшая экономичность.
прямой впрыск топливапрямой впрыск топлива

Многоточечный впрыск

Представляет дальнейший этап совершенствования инжекторных моторов. Топливо по сигналам от контроллера подается к каждому цилиндру, но тоже во впускной коллектор, т.е. ТВС готовится вне цилиндра и уже в готовом виде поступает в цилиндр.
В таком варианте реализации принципа инжекторного двигателя возможно обеспечить многие из преимуществ, присущие впрысковому двигателю и отмеченные ранее.

Непосредственный впрыск

Является следующим этапом развития инжекторных двигателей. Впрыск топлива выполняется прямо в камеру сгорания, чем обеспечивается наилучшая эффективность работы ДВС. Итогом такого подхода является получение максимальной мощности, минимального расхода топлива и наилучших показателей экологической безопасности.

Инжекторный ДВС является следующим этапом в развитии бензинового мотора, значительно улучшающий его показатели. В моторах, использующих систему впрыска топлива, возрастает мощность, а также экономическая эффективность их работы, они отличаются значительно меньшим отрицательным влиянием на окружающую среду.

Мне нравится1Не нравится
Что еще стоит почитать

Принцип работы инжекторного двигателя

Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность.

Центром всей системы является ЭБУ (электронный блок управления).

Он носит много названий, «мозги», «компьютер» и так далее.

По сути да, это компьютер, в который заложено огромное количество таблиц по составу смеси, времени впрыска топлива и прочего.

Например, если обороты двигателя равны 1500, дроссельная заслонка открыта на 10 градусов, а расход воздуха составляет 23 кг, то в цилиндр будет поступать одно количество топлива. Если же вводные параметры изменяются, то и результат будет другим. Если с блоком управления возникают какие-то проблемы, например, слетает прошивка, то все идет прахом, двигатель либо начинает как попало работать, либо и вовсе перестает.

Датчики инжекторного двигателя

Все элементы можно поделить на исполнительные и датчики. 

Датчик массового расхода воздуха (ДМРВ)

Этот элемент устанавливается перед воздушным фильтром, прямо на входе. В основе его работы лежит принцип разницы показаний. Так, через две платиновые нити проходит электричество. В зависимости от температуры их сопротивление меняется. Одна из нитей надежно укрыта от потока воздуха, что делает ее сопротивление неизменным. Вторая же охлаждается потоком, и на основании разницы величин, по тем же таблицам, о которых сказано выше, ЭБУ рассчитывает количество воздуха.

Датчик абсолютного давлении и температуры двигателя (ДАД)

Он используется либо в качестве альтернативы, либо вместе с вышеописанным для более высокой точности снятия показаний. Если вкратце, в нем имеется две камеры, одна из которых герметична и имеет внутри абсолютный вакуум. Вторая же камера подсоединяется к впускному коллектору, где создается разрежение во время такта впуска. Между этими камерами имеется диафрагма, а так же пьезоэлементы. Они вырабатывают напряжение при движении диафрагмы. Далее сигнал идет на ЭБУ.

Датчик положения коленчатого вала (ДПКВ)

Если посмотреть на шкив коленвала инжекторного двигателя, то можно рассмотреть на нем гребенку. Она магнитная. По всему периметру установлены зубцы. Всего их должно быть 60 штук, через каждые 6 градусов. Но двух из них нет, они нужны для синхронизации. Датчик положение коленчатого вала имеет в своем составе намагниченный стальной сердечный, а так же медную обмотку. При прохождении зубцов в обмотке возникает индукционный ток, напряжение которого зависит от скорости вращения шкива.

Датчик фаз (ДФ)

Не все двигатели им оснащались раньше, но сейчас его можно встретить практически везде. Он работает по принципу датчика Холла, то есть имеет диск с катушкой, а так же прорезь. Как только прорезь попадает на датчик, выходное напряжение на нем нулевое. Этот момент означает верхнюю мертвую точку такта сжатия первого цилиндра. Нужно это для того, чтобы ЭБУ мог генерировать напряжение для зажигания в нужном цилиндре, а так же контролировать такты. Чтобы, например, форсунка не открылась во время рабочего хода.

Датчик детонации

Он устанавливается на блоке цилиндров инжекторного двигателя. Как только в двигателе возникает детонация, по блоку передается вибрация. Датчик представляет собой пьезоэлемент, который генерирует напряжение, чем сильнее вибрации, тем выше напряжение. Соответственно, ЭБУ на основании его показаний корректирует момент зажигания. Но об этом позже.

Датчик положения дроссельной заслонки (ДПДЗ)

По сути своей, это обычный потенциометр. Опорное напряжение на нем, как правило, составляет 5 вольт. Так вот, в зависимости от того, на какой угол отклоняется дроссельная заслонка, меняется напряжение на контрольном выводе. Все просто.

Датчик температуры охлаждающей жидкости (ДТОЖ)

Этот датчик нужен для определения температуры двигателя. Если на карбюраторном двигателе он нужен просто для включения и выключения электровентилятора, то здесь он представляет собой более сложное устройство. Это термосопротивление, величина которого меняется в зависимости от температуры. Соответственно, меняется и напряжение, при прохождении через него.

Датчик кислорода

Он устанавливается в выхлопной системе, существуют системы с двумя датчиками. Его задача – отслеживать количество свободного кислорода в выхлопных газах. Например, если его слишком много, то это значит, что смесь вся не сгорает, а значит, надо обогатить. Если же кислорода меньше, чем значится в нормативных таблицах ЭБУ, то ее надо обеднить.

Исполнительные элементы

Исполнительные элементы получили свое название за то, что именно они вносят коррективы в работу двигателя. ТО есть, блок управления получает сигнал от датчика, анализирует его, после чего отправляет сигнал на исполнительный элемент.

Топливный насос

Начнем с системы питания. Он установлен в баке и подает топливо в топливную рампу под давлением 3,2 – 3,5 Мпа. Это позволяет гарантировать качественный распыл топлива в цилиндры. Как только повышаются обороты двигателя, повышается и аппетит, а значит в рампу надо подавать большее количество топлива для сохранения давления. Насос начинает вращаться быстрее по команде блока управления. Большинство современных автомобилей, начиная примерно с 2013 года выпуска, оснащаются топливным модулем, который включает в себя насос и встроенный фильтр. Это существенно сказывается на стоимости замены фильтра, потому что менять надо весь модуль. Некоторые производители в инструкциях пишут, что модуль устанавливается на весь срок службы авто, однако не стоит верить, что какой-то фильтр способен проходить больше 2 сезонов.

Форсунка

После того, как топливо прошло всю цепь провода, оно попадает в форсунку, которая дозирует его подачу в цилиндр. Форсунка представляет собой электромагнитный клапан очень маленького диаметра, который обеспечивает распыл бензина в камеру сгорания. ЭБУ изменяет количество топлива, которое подается, при помощи временных промежутков, пока открыта форсунка. Как правило, это десятые доли секунды.

Регулятор холостого хода (РХХ)

Это тоже электромагнитный клапан, шток которого закрывает воздуховод, проходящий в обход дроссельной заслонки. В зависимости от напряжения, которое на него подает блок управления, он открывает этот самый канал.

Модуль зажигания

В принципе, это та же катушка зажигания, только их здесь четыре. При прохождении тока через первичную обмотку во вторичной коммутируется высокочастотный ток высокого напряжения, который подается на свечу.

Принцип работы инжекторного двигателя

Итак, после того, как мы разобрались в основных узлах инжекторного двигателя, посмотрим, как же он работает. После того как стартер провернул коленчатый вал, ДПКВ сообщил блоку управления, какой цилиндр в каком положении находится. В свою очередь, датчик фаз сообщил о тактах. Блок управления принял эту информацию к сведению и открыл форсунку в том цилиндре, в котором начинается такт впуска. Но открыл ее не просто так, а на строго определенный промежуток времени, который по таблицам соответствует показаниям ДМРВ или ДАД. Так сформировалась рабочая смесь.

Видео: как работает бензиновый инжекторный двигатель внутреннего сгорания

//www.youtube.com/embed/a4amlYFodZs?rel=1&wmode=transparent

После того как здесь такт впуска закончился, начинается сжатие, в это время впуск происходит в другом цилиндре. Здесь же поршень доходит до верхней мертвой точки, о чем говорит ДПКВ и ДФ, соответственно, пора подавать напряжение на модуль зажигания, в нужный цилиндр. Для этого в блоке управления стоит два транзистора, которые берут на себя по два цилиндра.

Дальше, когда взрыв произошел, ЭБУ смотрит на показания датчик детонации и корректирует момент зажигания уже для следующего по ходу цилиндра. Но это еще не все. После этого, когда газы дошли до датчика кислорода, блок управления корректирует состав смеси, а именно, время открывания форсунки, что позволяет максимально эффективно использовать топливо и его сгорание. Если ЭБУ распознает недостаток кислорода, но при этом дроссельная заслонка остается открытой, то приоткрывается регулятор холостого хода.

Прогрев двигателя и датчик температуры двигателя

Этот момент стоит рассмотреть отдельно, скажем так, это небольшое уточнение. Итак, прогревочный режим двигателя никак не связан с показаниями некоторых датчиков, то есть, от них ничего не зависит. В частности, это ДМРВ и ДАД, а так же датчик детонации. В блоке, как уже говорилось, заложены определенные таблицы, их очень много, миллионы. Так вот, во время прогревочного режима ЭБУ работает строго по этим таблицам и никак иначе. Это значит, что если в него прописано соотношение воздуха к топливу 14,1:1, то так оно и будет. Эта цифра является общепринятой нормой для рабочей температуры. Так вот, пока температура двигателя не достигнет той, которая прописана в прошивке блока управления, то прогревочный режим не отключится. После ЭБУ начинает работать по датчикам.

Основные принципы работы инжекторного двигателя

Инжекторная система имеет следующие компоненты:

  1. Топливная форсунка;
  2. Топливная рампа;
  3. Насос;
  4. Сам блок управления;
  5. И небольшая система датчиков.

Подробнее о каждом компоненте:

  • Топливная форсунка является основным компонентом, который и называют инжектором. Она позволяет своевременно подавать топливо и распылять его непосредственно в каждый цилиндр. В основе форсунки лежит простой корпус и электромагнитный клапан, который и осуществляет процесс открытия и закрытия форсунки. Что касается самого распыления, то оно происходит через специальное отверстие, управляемое клапаном.
  • Топливную рампу можно найти в любом современном инжекторном двигателе. Ее главное предназначение состоит в подводе топлива ко всем форсункам. Если говорить просто, то она соединяет все форсунки в единое целое.
  • Что касается топливного насоса, то он просто подает топливовоздушную смесь под давлением, сравнимую с давлением в несколько атмосфер. Без него бы топливо подавалось просто самотеком, как и в карбюраторном двигателе.
  • Мозгом системы является блок управления, который и отдает команды всем форсункам. По сути, это небольшой микроконтроллер, соединенный с большим количеством датчиков, форсунками, топливным насосом, системой зажигания, регулятором холостого хода и другими системами. Его главная задача состоит в сборе всей информации по состоянию двигателя и распределении топлива.
  • Датчики отвечают за измерение основных параметров силовой установки в реальном времени. В основном это расход воздуха, расположение коленвала, образование детонации в цилиндрах, температура, скорость транспортного средства и другое. Также можно встретить датчики, которые определяют включен ли кондиционер, ровная ли дорога и как располагается распределительный вал.

Принцип работы

  1. В силовом агрегате топливная смесь подготавливается вне камеры сгорания при помощи специального устройства. В результате движения поршня вниз определенное количество топлива всасывается в камеру сгорания.
  2. Далее идет основной процесс, так называемый рабочий ход. В это время происходит сжимание топлива и поджигание при помощи искры.
  3. В итоге все топливо сгорает и выделяется огромное количество тепла, которое идет на мощность инжекторного двигателя.
  4. В конце такта поршень движется вверх и открывается выпускной клапан, который и выводит отработавшие газы. Далее приоткрывается впускной клапан, и новая порция топлива поступает в цилиндр.

Данный процесс происходит в течение долгого времени, пока двигатель работает. Специалисты называют такой газообмен четырехтактным. То есть все это происходит за четыре такта:

  1. Впуск;
  2. Сжатие;
  3. Сгорание;
  4. Выпуск.

Чтобы совершить один такой цикл требуется два оборота коленвала. Чтобы потери мощности были минимальны, конструкторы придумали многоцилиндровые системы. Они позволяют выдавать огромное количество тепла и мощности.

В современном мире большую популярность получил четырехтактный инжекторный двигатель, что неудивительно. Дело в том, что он отличается не только техническими характеристиками, но и самими габаритами. В основе данной системы лежит порядок работы цилиндров.

Режимы работы

  1. При холодном пуске топливная смесь очень сильно обедняется. Это случается из-за того, что топливо очень плохо смешивается с воздухом. В результате не происходит того испарения, которое нужно. Такой способ работы двигателя очень сильно вредит деталям. То есть большое количество топлива оседает на стенках цилиндра и выпускных труб;
  2. Если вы заводите авто при низкой температуре, то на начальном этапе требуется очень обогащенная смесь. Для этого нужно подавать большее количество топлива, пока температура в камере сгорания не повысится до нужного значения;
  3. После пуска идет процесс прогрева инжекторного двигателя. Вы знаете, что во время пуска в мороз смесь очень бедная, образуется некая топливная пленка в выпускной трубе. Она исчезает только после достижения очень высокой температуры. В связи с этим топливную смесь нужно очень сильно обогащать;
  4. При частичной нагрузке необходимо поддерживать определенный состав топливовоздушной смеси. Если двигатель инжекторный не оснащен нейтрализатором, то обогащенность должна быть в пределах 1,05 – 1,2;
  5. При полной нагрузке дроссельная заслонка полностью открыта. Поступает большое количество воздуха, что очень хорошо. В этом режиме достигается максимальная мощность и крутящий момент;
  6. Во время ускорения заслона то открывается, то закрывается. В результате этого смесь кратковременно обедняется и происходит ограничение подачи топлива. Для предотвращения такого явления обогащение должно быть меньше 1;
  7. В холостом режиме происходит замедление, автомобиль двигается по инерции. В этом случае подача топлива полностью перекрывается;
  8. Если происходит увеличение высоты, то плотность воздуха уменьшается. Из этого следует, что двигаться в горах очень сложно, топливная смесь будет очень обогащена. Это может привести к трудному пуску силового агрегата и увеличению расхода топлива.

Преимущества и недостатки

  1. Режим работы меняется автоматически, без использования человеческого фактора;
  2. Полностью отсутствует необходимость в ручной настройке;
  3. Двигатель очень экономичный;
  4. Полностью соответствует всем экологическим нормам;
  5. Очень легко запускать в любую погоду, нет потери мощности.

Кончено, без недостатков никуда. О них тоже стоит рассказать:

  1. Довольно высокая стоимость и обслуживание;
  2. Многие детали непригодны к ремонту. То есть их придется полностью выкидывать и менять на новые;
  3. Производить ремонт и обслуживание в домашних условиях практически невозможно. Для этого требуется специальное оборудование и опыт;
  4. Двигатель очень зависим от напряжения сети.

Типы инжекторной системы

Сейчас можно встретить три типа:

  1. Одноточечный впрыск;
  2. Многоточечный впрыск;
  3. Непосредственный впрыск.

Первый является самым простым и очень распространённым. Он не очень сильно начинен электроникой, что приводит к меньшему эффекту. Большим недостатком такой системы является то, что некая часть топлива теряется во время впрыска. То есть топливная смесь подается через форсунку во впускной коллектор, где происходит распределение по цилиндрам.

Следом идет многоточечный впрыск, который позволяет подавать топливо индивидуально в каждый цилиндр. Благодаря этому у вас не будет возникать вопрос: нужно ли прогревать инжекторный двигатель. Что касается самого распределения, то он мощнее и экономичнее. По многочисленным тестам можно увидеть, что мощность увеличивается на 7 процентов. К основным преимуществам можно отнести автоматическую настройку подачи топлива и впрыскивание вблизи клапана.

Непосредственный впрыск используется во многих современных автомобилях. Его особенность состоит в том, что подача топлива происходит непосредственно в каждый цилиндр. Ни одной капли смеси не будет расходоваться впустую. Если у вас возникает вопрос надо ли прогревать двигатель, то ответ очень простой. Это зависит от самого производителя и его рекомендаций. Некоторые рекомендуют прогревать силовой агрегат не очень долго, чтобы не навредить всем деталям. Каждый должен сам ответить на вопрос, надо ли ему прогревать двигатель, изучив рекомендации к своему авто.

Устройство и принцип работы инжектора

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

  • Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.
  • Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану.
  • Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Инжекторный двигатель: устройство и принцип работы

Инжекторный двигатель представляет собой сложное устройство, обеспечивающее максимальную производительность автомобиля. В отличие от карбюраторных моделей, инжектор более экономичен и прост в обслуживании. Такие двигатели снабжены системой впрыскивания топлива, благодаря чему повышается мощность авто, а расходы топлива, наоборот, снижаются. Принцип работы инжекторного двигателя рассмотрен в нашей статье.

Принцип работы инжектора

Использование устройств с подобным алгоритмом действия поначалу коснулся авиастроительного производства. Ужесточение экологических норм привело к тому, что многие производители автомобилей отказались от применения карбюраторных двигателей, дальнейшее усовершенствование которых не приводило к желаемому результату.

Управление системой впрыскивания топлива проводится автоматизированной системой или бортовым компьютером. Проводится проверка состояния воздушно-топливной смеси и при ее соответствии происходит последовательный впуск топлива непосредственно во впускной клапан. Так обеспечивается более точный расход, а также быстрое сгорание топлива.

Устройство инжекторного двигателя можно охарактеризовать выполнением следующей последовательности:

  1. Нажатие на педаль газа открывает дроссельную заслонку. Это обеспечивает поступление воздуха в двигатель.
  2. Компьютер анализирует объем поступающего воздуха (в зависимости от усилия нажатия педали), после чего дает команду для подачи оптимального объема топлива.
  3. Специальный датчик контролирует количество поступающего в двигатель кислорода и его соответствие объему топлива.
  4. Топливный нанос перекачивает необходимый объем, после чего происходит его впрыск под давлением. В результате образуется мелкодисперсный туман, который быстро сгорает, приводя в движение механизмы вращения движущихся частей мотора.

Даже упрощенная схема показывает, насколько сложным является процесс движения автомобиля. Работа двигателя инжектора представляет собой замкнутую систему, в которой значение имеет каждая деталь. При выходе из строя любой составляющей, сигнал об этом поступает на электронную систему, после чего компьютер сам принимает решение о возможность дальнейшего движения. Это одновременно является достоинством и недостатком такого механизма, ведь при измененных условиях труда раскачать «вручную» систему не получиться, придется обращаться за квалифицированной помощью.

В чём особенности устройства?

Как показывает приведенная информация, главным отличием от более старых карбюраторных моделей является автоматическая подача топлива. Это ключевой момент, определяющий преимущества использования инжекторного устройства. Кроме того, существует еще несколько пунктов, которые выгодно отличают разницу между инжектором и карбюратором.

Ключевые отличия:

  • За счет того, что в карбюраторном двигателе создается определенный уровень давления, позволяющий засасывать воздушно-топливную смесь, а в инжекторе она подается автоматически, экономится мощность отдачи. Это позволяет в целом увеличить производительность авто на 10%. Показатель небольшой, но при длительной эксплуатации это существенная экономия топлива.
  • Быстрое реагирование на изменение условий движения. В инжекторе практически моментально происходит увеличение или уменьшение подачи топлива. Это позволяет маневрировать на дороге гораздо быстрей.
  • Система впрыскивания топлива обеспечивают легкий запуск двигателя.
  • Инжекторное устройство менее чувствительно к измененным погодным условиям. Расход топлива будет экономиться за счет того, что не требуется длительный прогрев двигателя.
  • Также такие устройства соответствуют более строгим современным экологическим стандартам. Уровень вредных выбросов, как правило, ниже на 50-70%, что в современном мире просто необходимо.

Среди главных недостатков — полная зависимость системы от исправности всех элементов. Инжектор снабжен несколькими датчиками, которые анализируют параметры топлива и условия эксплуатации. При выходе электроники из строя может понадобиться дорогостоящий ремонт.

Также при эксплуатации авто с инжекторным двигателем необходимо тщательней следить за состоянием используемого топлива. Форсунки, обеспечивающие подачу и распыление воздушно-топливной смеси, часто забиваются при использовании некачественного бензина. Вместе с тем, этот критерий очень сложно контролировать, особенно при длительной поездке, когда приходится заправляться на непроверенных точках. К недостаткам также можно отнести дорогостоящий ремонт в случае поломок. Самостоятельная починка электронной части на практике оказывается неудачным решением и может привести к необходимости восстановления системы, а это стоит немало.

ЭБУ

Главным центром управления инжектора является ЭБУ — электронный блок управления. В его задачи входит непосредственный контроль над работой всех систем, расходом и подачей топлива, а также сигнализирование о возможных неполадках в работе автомобиля. Отчеты о возможных сбоях в системе и алгоритм правильной работы храниться в специальных ячейках памяти,

В зависимости от модели, обычно есть три типа памяти устройства:

  1. ППЗУ требует однократного программирования, после чего сохраняются все алгоритмы действия для управления системой. Чип хранится на плате блока, при необходимости подлежит замене. Информация не подлежит удалению при сбоях сети, корректированию не поддается.
  2. ОЗУ — оперативное запоминающее устройство. Относится к временному хранилищу файлов. Также служит местом для расчета и анализа полученной информации. Располагается ОЗУ на печатной плате блока, при сбоях в сети информация стирается.
  3. ЭПЗУ представляет собой электрически программируемое запоминающее устройство. В основном используется для хранения информации для противоугонной системы (коды и пароли владельца). При нарушении ввода данных, двигатель не заведется. Такое хранилище не зависит от данных сети, информация сохраниться при любых ситуациях.

Форсунки

Заслонка, позволяющая контролировать впрыск топлива в систему, называется форсункой. Используется два типа системы подачи топлива. Моновпрыск сейчас практически не используется. При таком расположении форсунки топливо подается вне зависимости от открытия впускного клапана двигателя. К тому же, такое управление мало контролируется электроникой. Второй вид — распределительный впрыск представлен более совершенной системой. Благодаря нескольким форсункам, расположенным непосредственно вблизи каждого цилиндра, происходит направленный доступ горючего. Такая система четко регламентирует подачу топлива, а также увеличивает производительность двигателя. Тип управления инжектором также определяется ЭБУ и может быть точечным и последовательным.

Каталитический нейтрализатор

Этот элемент системы инжекторного двигателя предназначен для контроля выхлопов авто. Для его работы необходим датчик содержания кислорода в выхлопных газах (лямбда-зонд). При превышении допустимых значений проводится корректировка впрыска топлива, а также проводится процесс рециркуляции отработанных газов. Кроме того, в системе предусмотрены специальные катализаторы, уменьшающие содержание вредных примесей после сжигания топлива.

Датчики

Сложная система электронного управления подразумевает проверку и регулировку нескольких датчиков. При выходе из строя хотя бы одного элемента, ЭБУ выдает ошибку.

Основные датчики инжекторного двигателя:

  • ДМРВ (датчик массового расхода воздуха). Обеспечивает информацию о массе воздуха, поступающего в двигатель.
  • Лямбда-зонд (датчик кислорода). Определяет содержание кислорода в воздушно-топливной смеси. При помощи такой информации ЭБУ может выявить изменения топливной смеси и откорректировать ее значения.
  • Датчик дроссельной заслонки. Контролирует положение дроссельной заслонки, согласно которому блок управления может реагировать, увеличивая или сокращая подачу топлива по мере необходимости.
  • Датчик напряжения. Контролирует напряжение бортовой сети машины. Показания датчика при необходимости заставляют блок управления увеличить число оборотов холостого хода, если напряжение понижено (чаще всего при высоких электрических нагрузках).
  • Датчик контроля температуры охлаждающей жидкости. Дает сигнал о прогреве двигателя, после чего ЭБУ запускает работу других систем.
  • Датчик абсолютного давления. Следит за показателем давления во впускном коллекторе. От количества воздуха, которое поступает в двигатель, меняется потребление топливной смеси. Также этот показатель используется при определении производительности авто.
  • Датчик вращения коленвала. Скорость вращения коленчатого вала – один из определяющих факторов, которые влияют на расчет необходимой длительности импульса.

Преимущества инжектора уже оценили многие автолюбители. Снижается расход топлива, повышается производительность автомобиля, а также облегчается процесс его управления. Работа инжекторного двигателя обеспечивается непосредственным впрыском топлива в систему, на основании проанализированных данных о параметрах топливной смеси и режиме эксплуатации двигателя. Как работает инжекторный двигатель, его преимущества и недостатки по сравнению с карбюраторным устройством рассмотрены в нашей статье.

Дизельный двигатель, инжекторный двигатель. Система охлаждения

Двигатель – самая важная часть автомобиля. Именно благодаря этому агрегату машина приводится в движение. Нет двигателя – машина превращается в обычную повозку. Телегу. Только в эту телегу лошадей не запрячь.

При помощи двигателя энергия сгорания топлива или энергия электрическая преобразуются в механическую энергию, которая необходима для движения.

Традиционно на автомобилях применяются двигатели внутреннего сгорания на бензине или дизельном топливе, используются также газовые двигатели, всё чаще начинают применять гибридные двигатели, которые представляют собой симбиоз двигателя внутреннего сгорания и электродвигателя. Очень много разработок в области электрических двигателей. Однако, данный тип двигателя пока не получил широкого распространения.

Двигатели внутреннего сгорания

Бензиновые двигатели внутреннего сгорания

В цилиндрах таких двигателей сжатая воздушно-топливная смесь воспламеняется искрой. Мощность двигателя регулируется путем регулирования потока воздуха, при помощи дроссельной заслонки.

В автомобилях, возраст которых составляет 10 лет и старше, управление дросселем осуществлялось путем нажатия на педаль газ. На современных автомобилях тоже нужно нажимать на газ, но только для того, чтобы послать сигнал ЭБУ (электронному блоку управления, «мозгам»), управляющему дроссельной заслонкой.

Виды бензиновых двигателей

Бензиновые двигатели могут быть карбюраторными и инжекторными. Бензиновые двигатели различаются по числу и расположению цилиндров, по способу охлаждения (воздушное и масляное охлаждение), по способу наполнения цилиндров воздухом (атмосферные, с наддувом, компрессорные) и другие.

Карбюраторные бензиновые двигатели 

В карбюраторном двигателе горючая смесь приготавливается, собственно в карбюраторе. Основных видов карбюратора три:

  • поплавковый;
  • мембранно-игольчатый;
  • барботажный.

Барботажный карбюратор выполнен в виде бензобака с поднятой над топливом глухой доской, оснащенной двумя патрубками, подающей воздух в бак и отбирающей смесь в двигатель. Как видно из конструкции, данный карбюратор очень примитивен. Он является достаточно громоздким, малоэффективным и сильно зависящим от погодных условий. Кроме того, его применение небезопасно. Может случиться взрыв паров топливно-воздушной смеси.

Барботражный карбюратор схема

Барботражный карбюратор
1 — дроссельная заслонка

Мембранно-игольчатый карбюратор создан как самостоятельная часть, элемент автомобиля. Устройство состоит из нескольких камер, которые разделены мембранами и соединенны штоком с иглой на конце, которая запирает седло клапана подачи бензина. Достоинством данного карбюратора является то, что его можно размещать в любом положении, относительно поверхности земли. Недостаток – сложность настройки. Обычно такой карбюратор устанавливается на газонокосилки, бензорезы и т.п. Но в качестве вспомогательного устройства, его можно обнаружить на автомобиле ЗИЛ-138.

Поплавковые карбюраторы составляют подавляющее большинство существующих в природе карбюраторов. Именно поплавковые карбюраторы устанавливаются на автомобили. Стоит заметить, что модификаций данного типа карбюратора огромное множество. Но, в обязательном порядке, в его состав входит поплавковая камера и смесительная камера.

Инжекторные двигатели

Инжекторная система впрыска топлива стала активно применяться в 80-х годах прошлого века. Инжекторные двигатели отличаются от карбюраторных тем, что в инжекторной системы происходит принудительный впрыск топлива во впускной коллектор или цилиндр.

В настоящее время в большинстве инжекторных двигателей используется электронная система впрыска. А происходит это так: в контроллер с датчиков собирается всевозможная информация, в том числе о положении коленвала, положении дросселя, скорости автомобиля, температуры охлаждающей жидкости и входящего воздуха. На основании этих данных контроллер подает сигналы форсункам, системе зажигания, регулятору холостого хода и другим системам.

Инжектор, по сравнению с карбюратором имеет ряд преимуществ:

  • уменьшение расхода топлива;
  • упрощение запуска двигателя;
  • уменьшение вредных выбросов;
  • отсутствие необходимости в ручной настройке системы.

Но есть и недостатки:

  • постоянная необходимость в напряжении питания;
  • нужда в специальных познаниях, в случае ремонта.

По большому счету, именно требования к понижению количества выброса вредных веществ, заставило автопроизводителей перейти от карбюратора к инжектору. Катализаторы, которые ставят на инжекторные автомобили, способны работать при достаточно узком диапазоне химического состава веществ, выходящих через выхлоп. А обеспечить такой диапазон может только современная система впрыска.

Особенности современных бензиновых двигателей

Во многих моделях современных автомобилей применяется для каждой свечи своя отдельная катушка зажигания. Особенно характерно это для японских автомобилей.

Чтобы решить проблему «зависания» заслонок, во многих «больших» двигателях используют по два впускных и выпускных клапана на цилиндр.

Как уже было отмечено, в большинстве современных автомобилей используется электронная педаль газа.

Дизельный двигатель

Как и бензиновый, дизельный двигатель является агрегатом внутреннего сгорания. Только в качестве топлива в таком двигателе можно использовать широкий диапазон жидкостей: от керосина и мазута до пальмового и рапсового масла.

Принцип работы четырехтактного дизельного двигателя

1-й такт: открывается впускной клапан, «всасывая» в цилиндр воздух, после этого впускной клапан начинает закрываться, а выпускной – открываться.

2-й такт: поршень сживает воздух.

3-й такт: поршень двигается к верхней мертвой точке, в горячий воздух распыляется топливо, которое воспламеняется, а продукты сгорания двигают поршень вниз.

4-й такт: поршень идет вниз, продукты сгорания удаляются через выпускной клапан.

С некоторыми особенностями, но по такому принципу работают практически все ДВС с поршневой системой.

Особенности дизельного двигателя, топлива и автомобилей с дизельным двигателем:

  • — двигатель имеет КПД до 50 процентов;
  • — дизельный двигатель не имеет возможности набирать высоких оборотов. Топливо не успевает за короткое время догореть. По причине высокой механической напряженности детали дизельного двигателя дорогостоящие и массивные.
  • — дизельный автомобиль более экономичен и отзывчив в движении.
  • — дизельное топливо нелетучее, а следовательно более безопасное. Кстати, вредных веществ дизель выбрасывает меньше, чем бензиновый двигатель. Но, катализаторы, установленные на инжекторных автомобилях, нивелируют разницу.
  • — дизельное топливо при низких температурах часто застывает и парафинируется, что может означать одно: дизель труднее завести зимой.
  • — современные дизельные двигатели чаще всего идут в комплекте с турбинами и интеркуллерами.
Рекорды дизеля

В 2006 году автомобиль JCB Dieselmax, оснащенный дизельными двигателями развил скорость в 563 километра в час. Каждый из дизелей имел объем 5 литров и мощность 750 лошадиных сил.э

Самым большим дизельным двигателем является 14-ти цилиндровый судовой Wärtsilä-Sulzer RTA96-C, рабочий объем которого более 25 литров, мощностью 108920 лошадиных сил.

Wärtsilä-Sulzer RTA96-C

Wärtsilä-Sulzer RTA96-C

Самый мощный «грузовой» дизель MTU 20V4000 устанавливается на карьерные самосвалы «Либхерр». Он имеет конфигурацию V20, объем – 95,4 литра и мощность 4023 лошадиных силы.

Самый большой «легковой» дизель устанавливается на Ауди Кью 7. Его рабочий объем – 6 литров, он имеет V-образную форму и 12 цилиндров. Мощность двигателя – 500 лошадиных сил.

Газовый двигатель

В газовом двигателе в качестве топлива используются углеводороды. Он тоже относится к ДВС.

Газовое топливо, как правило, закачивается в баллон, установленный на автомобиле, под высоким давлением. Газовый редуктор понижает давление газовой жидкости или паров до атмосферного, через форсунки смесь впрыскивается в двигатель, где воспламеняется при помощи искры.

Комбинированные ДВС

Данный тип двигателя называется так потому, что он представляет собой комбинацию поршневого и лопаточного устройств.

Наиболее распространен среди комбинированных – поршневой двигатель с турбонагнетателем. Принцип действия такой: в результате действия выхлопных газов на лопатки турбины раскручивается её ротор, вал, а также ротор компрессора, нагнетающего кислород в двигатель. Таким образом, энергия выхлопных газов, которая без турбонагнетателя не использовалась бы, нашла свое применение.

Дополнительные системы, необходимые для ДВС

Двигатель автомобиля сравнивают с человеческим сердцем. Сердце не может функционировать без взаимодействия с другими органами в организме. Так и двигателю для нормальной работы нужно несколько дополнительных систем.

Конечно же, большинство двигателей не может работать без трансмиссии, потому что эффективен ДВС только в узком диапазоне оборотов. Впрочем, сейчас активно ведутся разработки по созданию гибридных двигателей, которые всегда должны работать в оптимальном режиме.

Двигателю нужны система зажигания, выхлопа и охлаждения. О последней стоит поговорить более подробно.

Система охлаждения двигателя внутреннего сгорания

Система охлаждения представляет собой набор устройств, которые подводят к конкретным элементам двигателя охлаждающую среду, отводящую от них в атмосферу лишнюю теплоту. Система охлаждения двигателя имеет целью поддержание температуры двигателя в рабочих параметрах.

Когда в цилиндре сгорает топливная смесь, температура достигает 2000 градусов. Охлаждающая жидкость обязана поддерживать температуру двигателя в пределах 80-90 градусов.

Система охлаждения двигателя может быть воздушной, жидкостной и гибридной.

Воздушное охлаждение

Воздушное охлаждение – самое простое из типов охлаждения двигателя. Оно может быть естественным и принудительным. Оно осуществляется путем установки развитого оребрения на внешней поверхности цилиндров. Такое охлаждение имеет значительные недостатки. Так воздух не может отводить значительные массы тепловой энергии. А некоторые участки двигателя подвергаются опасности локального перегрева. Воздушное охлаждение устанавливается на мопеды, мотоциклы, скутеры.

Принудительное воздушное охлаждение осуществляется путем установки вентиляторов, оребрения и помещения системы в защитный кожух. Здесь также существует опасность локального перегрева участков двигателя, которые недостаточно обдуваются воздухом. Кроме того, повышается уровень шума агрегата. В Советском союзе системой воздушного охлаждения был оснащен автомобиль Запорожец.

Дизельный грузовой автомобиль Татра до 2010 года оснащался системой принудительного воздушного охлаждения. Многие трактора, преимущественно легкие и средние используют аналогичную систему охлаждения.

Lombardini 11LD 626-3NR

Двигатель Lombardini 11LD 626-3NR — 4-х тактный трёхцилиндровый дизельный двигатель с горизонтальным расположением вала отбора мощности и воздушным охлаждением.

Жидкостное охлаждение

В данном типе систем охлаждения двигателей охлаждающая жидкость перемещается по замкнутому контуру. А тепло выдувается при помощи радиатора, установленного под капотом авто.

Жидкостная система охлаждения предусматривает следующие составные части:

  1. Рубашка охлаждения – полость, которая охватывает части двигателя нуждающиеся в охлаждении. По этой полости циркулирует охлаждающая жидкость.
  2. Помпа, которая обеспечивает циркуляцию жидкости по контуру.
  3. Термостат – устройство поддерживающее рабочую температуру жидкости. Если температура не достигла рабочей, то термостат направляет жидкость по малому кругу циркуляции.
  4. Радиатор. Он выводит тепло из системы.
  5. Вентилятор, создающий поток воздуха, направленный на радиатор для ускорения вывода тепла из системы.
  6. Расширительный бак.

Охлаждение масла

Очень часто, особенно в случаях с двигателями большой мощности, нуждается в охлаждении и масло. Масло охлаждается при помощи охлаждающей жидкости, или же при помощи воздуха, с использование отдельного радиатора.

Испарительная система охлаждения

При такой системе охлаждения охлаждающая жидкость или вода доводятся до кипения, в результате чего теплонагруженные элементы двигателя охлаждаются. Испарительная система охлаждения до сих пор применяется для понижения температуры мощных дизельных агрегатов в Китае.

История создания

Известно, что в 1807 году француз де Ривас сконструировал первый поршневой двигатель. Несмотря на то, что устройство, которое получило название «машина де Риваса», работала на сжиженном водороде, оно имело ряд признаков двигателя внутреннего сгорания. В частности, шатунно-поршневую группу, зажигание с искрой. Француз Ленуар в 1860 году сконструировал двухтактный газовый двигатель внутреннего сгорания. Мощность этого устройства составляла около 12 лошадиных сил, искра подавалась от внешнего источника, а коэффициент полезного действия не превышал 5 процентов. Между тем, двигатель Ленуара имел практическое применение. Его устанавливали некоторое время на лодки.

Немец Отто, изучив устройство Ленуара, построил в 1863 году атмосферный двухтактный одноцилиндровый двигатель, который имел КПД уже 15 процентов. При этом, топливо воспламенялось при помощи открытого пламени. В 1876 году все тот же Отто построил четырехтактный газовый ДВС.

А вот первый карбюраторный двигатель внутреннего сгорания был сконструирован в России в 1880-х годах. Его создателем стал О.С. Костович.

В 1885 году Даймлер и Майбах создали карбюраторный бензиновый двигатель. Сдела двигатель был для мотоцикла. Но в 1886 году его установили на автомобиль.

В 1897 году Дизель усовершенствовал двигатель Даймлера-Майбаха, оснастив его зажиганием. Через год в России на заводе «Людвиг Нобель» Г. Тлинкер доработал двигатель Дизеля, превратив его в двигатель высокого сжатия с воспламенением. Но широкое применение данный двигатель получил не как силовой агрегат автомобиля, а как стационарный тепловой двигатель. Мощность устройства составляла около 20 лошадиных сил. Главным его преимуществом была экономичность.

В начале 20-го века Коломенский завод выкупил у «Людвиг Нобель» лицензию на выпуск «русских дизелей». В 1908 году главный инженер этого завода патентует двухтактный дизельный двигатель с двумя коленвалами и противоположно-движущимися поршнями.

Параллельно происходила разработка бензиновых двигателей. В США изобретатели Харт и Парр разработали двухцилиндровый бензиновый двигатель. Он имел мощность в 30 лошадиных сил.

Так наступила эра автомобилей, самолетов, теплоходов и тепловозов. Королем в этой эре выбрали двигатель внутреннего сгорания.

Как работают двигатели с прямым впрыском

Какой двигатель будет приводить в движение ваш следующий автомобиль или грузовик? Если вы играли с идеей купить дизель из-за его экономии топлива (попробуйте почти 50 миль на галлон для Volkswagen Jetta TDI), что ж, вам, возможно, еще не нужно отказываться от проверенного и знакомого бензинового двигателя.

Это потому, что одна из технологий, которая делает дизели столь скупыми на топливо, также применяется и в бензиновых двигателях. Это называется прямым впрыском, и это относится к тому, как топливо попадает в камеру контролируемого взрыва двигателя, более известную как камера сгорания.

В бензиновом двигателе с системой впрыска топлива, предназначенном для садоводства, бензин идет более окольным путем, чем при использовании метода прямого впрыска. Такой непрямой подход приводит к неэффективности сжигания топлива и может привести к потере большого количества полезной энергии — и вы не получите максимальную отдачу от денег, потраченных на насос.

Однако в двигателе с прямым впрыском топливо пропускает период ожидания, который ему пришлось бы выдерживать в стандартном двигателе, и вместо этого направляется прямо в камеру сгорания.Это позволяет топливу сгорать более равномерно и тщательно. Для водителя это может привести к увеличению пробега и увеличению мощности колес.

В прошлом непосредственный впрыск создавал слишком много технических препятствий, чтобы его можно было использовать в массовых бензиновых автомобилях. Но с развитием технологий и повышенным давлением, направленным на то, чтобы автомобили работали более чисто и эффективно, похоже, что непосредственный впрыск бензина — или GDI, как его называют на отраслевом жаргоне — никуда не денется.Фактически, большинство крупных производителей автомобилей производят или планируют вскоре представить бензиновые автомобили, которые используют преимущества этой системы экономии топлива и повышения производительности.

Прочтите, чтобы узнать о гайках и болтах, поршнях и клапанах системы прямого впрыска.

,

Как работает система впрыска топлива

Для двигатель для бесперебойной и эффективной работы он должен быть обеспечен нужным количеством топливо / воздушная смесь в соответствии с ее широким спектром требований.

Система впрыска топлива

В автомобилях с бензиновым двигателем используется непрямой впрыск топлива. Топливный насос отправляет бензин в моторный отсек, а затем он впрыскивается во впускной коллектор с помощью инжектора. Имеется либо отдельный инжектор для каждого цилиндра, либо один или два инжектора во впускной коллектор.

Традиционно топливно-воздушная смесь регулируется карбюратор , инструмент, который отнюдь не идеален.

Его основным недостатком является то, что один карбюратор питает четыре цилиндр двигатель не может подавать в каждый цилиндр точно такую ​​же топливно-воздушную смесь, потому что некоторые цилиндры находятся дальше от карбюратора, чем другие.

Одно из решений — поместиться сдвоенные карбюраторы, но их трудно правильно настроить. Вместо этого многие автомобили теперь оснащаются двигателями с впрыском топлива, в которых топливо подается точными порциями.Двигатели, оборудованные таким образом, обычно более эффективны и мощны, чем карбюраторные, а также могут быть более экономичными и менее опасными. выбросы ,

Впрыск дизельного топлива

впрыск топлива система в автомобилях с бензиновым двигателем всегда косвенная, бензин впрыскивается во впускной патрубок многообразие или впускной порт, а не непосредственно в камеры сгорания , Это гарантирует, что топливо хорошо смешивается с воздухом перед тем, как попасть в камеру.

Много дизельные двигатели однако используется прямой впрыск, при котором дизельное топливо впрыскивается непосредственно в цилиндр, заполненный сжатым воздухом. Другие используют непрямой впрыск, при котором дизельное топливо впрыскивается в камеру предварительного сгорания специальной формы, которая имеет узкий канал, соединяющий ее с камерой сгорания. крышка цилиндра ,

В цилиндр втягивается только воздух. Он так сильно нагревается компрессия распыленное топливо, впрыскиваемое в конце ход сжатия самостоятельно воспламеняется.

Базовая инъекция

Все современные системы впрыска бензина используют непрямой впрыск. Специальный насос отправляет топливо под давление из топливный бак в моторный отсек, где, все еще находясь под давлением, он распределяется индивидуально по каждому цилиндру.

В зависимости от конкретной системы топливо попадает во впускной коллектор или впускной канал через инжектор , Это работает так же, как спрей сопло из шланг , чтобы топливо выходило в виде мелкого тумана.Топливо смешивается с воздухом, проходящим через впускной коллектор или канал, и топливно-воздушная смесь поступает в сгорание камера.

Некоторые автомобили имеют многоточечный впрыск топлива, при котором каждый цилиндр получает питание от собственной форсунки. Это сложно и может быть дорого. Чаще используется одноточечный впрыск, когда один инжектор питает все цилиндры, или один инжектор на каждые два цилиндра.

Форсунки

Форсунки, через которые распыляется топливо, вкручиваются соплами вперед либо во впускной коллектор, либо в головку блока цилиндров и расположены под углом так, чтобы струя топлива попадала во впускное отверстие. клапан ,

Форсунки бывают одного из двух типов, в зависимости от системы впрыска. Первая система использует непрерывный впрыск где топливо впрыскивается во впускное отверстие все время работы двигателя. Форсунка просто действует как распылительное сопло, разбивая топливо на мелкие брызги, но фактически не контролирует поток топлива. Количество распыляемого топлива увеличивается или уменьшается механическим или электрическим блоком управления — другими словами, это похоже на включение и выключение крана.

Другая популярная система — впрыск по времени (импульсный впрыск) где топливо доставляется пакетами, чтобы совпасть с индукционный инсульт цилиндра. Как и в случае непрерывного впрыска, впрыском по времени также можно управлять механически или электронно.

Самые ранние системы управлялись механически. Их часто называют впрыском бензина (сокращенно PI), и поток топлива регулируется механическим регулятором. Эти системы страдают от недостатков, заключающихся в том, что они сложны с механической точки зрения и плохо реагируют на нажатие педали газа.

Механические системы в настоящее время в значительной степени вытеснены электронный впрыск топлива (сокращенно EFi). Это происходит благодаря повышению надежности и снижению затрат на электронные системы управления.

Типы топливных форсунок

Форсунка механическая

Могут быть установлены два основных типа инжектора, в зависимости от того, управляется ли система впрыска механически или электронно.В механической системе инжектор Подпружиненный в закрытое положение и открывается давлением топлива.

Электронный инжектор

Форсунка в электронной системе также удерживается закрытой пружиной, но открывается с помощью электромагнит встроен в корпус инжектора. электронный блок управления определяет, как долго инжектор остается открытым.

Механический впрыск топлива

Lucas система механического впрыска топлива

В системе Lucas топливо из бака под высоким давлением перекачивается в топливный аккумулятор.Оттуда он попадает в распределитель топлива, который отправляет порцию топлива в каждую форсунку, откуда оно попадает во впускное отверстие. Воздушный поток регулируется заслонкой, которая открывается при нажатии на педаль акселератора. По мере увеличения потока воздуха распределитель топлива автоматически увеличивает поток топлива к форсункам, чтобы поддерживать правильную сбалансированность топливно-воздушной смеси. Для холодного запуска используется воздушная заслонка на приборной панели или, на более поздних моделях, микропроцессорный блок управления приводит в действие специальный инжектор холодного запуска, который впрыскивает дополнительное топливо для создания более богатой смеси.Как только двигатель прогреется до определенной температуры, термовыключатель автоматически отключает форсунку холодного пуска.

Механический впрыск топлива использовался в 1960-х и 1970-х годах многими производителями на своих высокопроизводительных спортивных автомобилях и спортивных седанах. Одним типом, установленным на многих британских автомобилях, включая Triumph TR6 PI и 2500 PI, была система Lucas PI, которая представляет собой систему с таймером.

А высокого давления электрический топливный насос установлен рядом с топливным баком, нагнетает топливо под давлением 100 фунтов на квадратный дюйм до уровня топлива аккумулятор ,Это в основном краткосрочный резервуар который поддерживает постоянное давление подачи топлива, а также сглаживает импульсы топлива, поступающие из насоса.

Из аккумулятор , топливо проходит через бумагу элемент фильтр а затем подается в блок управления дозатором топлива, также известный как распределитель топлива , Этот агрегат приводится в движение распределительный вал и его задача, как следует из названия, состоит в том, чтобы распределить топливо по каждому цилиндру в нужное время и в нужных количествах.

Количество впрыскиваемого топлива регулируется заслонкой, расположенной в воздухозаборнике двигателя.Заслонка находится под блоком управления и поднимается и опускается в ответ на воздушный поток — когда вы открываете дроссельную заслонку, «всасывание» из цилиндров увеличивает воздушный поток, и заслонка поднимается. Это изменяет положение челночного клапана в блоке управления дозированием, чтобы позволить большему количеству топлива впрыскиваться в цилиндры.

От дозатора топливо по очереди подается к каждой из форсунок. Затем топливо брызгает во впускное отверстие в головке блока цилиндров. Каждый инжектор содержит подпружиненный клапан, который удерживается закрытым за счет давления пружины.Клапан открывается только при впрыскивании топлива.

При холодном запуске вы не можете просто перекрыть часть воздушного потока, чтобы обогатить топливно-воздушную смесь, как в случае с карбюратором. Вместо этого ручное управление на приборной панели (напоминающее ручку воздушной заслонки) или, на более поздних моделях, data-term-id = «1915»> микропроцессор

,

Отправить ответ

avatar
  Подписаться  
Уведомление о