Автомобильный двигатель: Принцип работы и устройство двигателя

Виды автомобильных двигателей: описание, характеристики

Мало кто знает, что двигатель внутреннего сгорания был изобретён ещё 5 веков назад, легендарным инженером и конструктором Леонардо да Винчи. Но, после первого чертежа потребовалось ещё 300 лет, чтобы были созданы первые прототипы, которые могли полноценно работать.

Детали двигателя

Содержание

Виды двигателей

Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.

Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.

Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:

  • Паровая машина
  • Бензиновый двигатель
  • Карбюраторная система впрыска
  • Инжектор
  • Дизельные двигатели
  • Газовый двигатель
  • Электрические моторы
  • Роторно-поршневые ДВС

Паровая машина

Первым представителем полноценного двигателя внутреннего сгорания следует считать паровую машину, которая устанавливалась на все транспортные средства 19 века, до момента изобретения остальных видов моторов.

На то время паровыми движками оснащались паровозы, автомобили и даже примитивные трёхколёсные самоходные машины (напоминающие мотоциклы). Изобретение такого класса завоевало весь мир, но к концу 19 — начало 20 века стало неэффективное, поскольку транспортные средства на пару не могли развивать достаточно большую скорость.

Паровой двигатель

Бензиновый двигатель

Бензиновый двигатель — это ДВС средством питания, которого является бензин. Горючее подаётся с топливного бака при помощи насоса (механического или электрического) на систему впрыска. Итак, рассмотрим, какие бывают типы бензиновых моторов:

  • С карбюратором.
  • Инжекторного типа.

Современный мир привык, что большинство автомобилей имеет электронную систему впрыска топлива (инжектор).

Карбюраторная система впрыска

Карбюратор — это тип впрыскового устройства горючего во впускной коллектор с дальнейшим распределением по цилиндрам. Первый примитивный карбюратор был разработан в Германии ещё в конце 19 века и имеет почти 100 летнюю историю развития.

Карбюраторы бывают — одно-, двух-, четырех- и шестикамерные. Кроме этого существует достаточно много прототипов.

Принцип работы карбюратора достаточно простой: бензонасос подаёт топливо в поплавковую камеру, где бензин проходит сквозь жиклёры механическим путём (количество впрыскиваемого топлива регулирует водитель при помощи педали акселератора), и подаётся во впускной коллектор. Недостатком карбюратора стало то, что он чувствительный к регулировкам, а также не соответствует экологическим международным нормам.

Карбюраторный двигатель

Инжектор

Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.

С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.

Дизельные двигатели

Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

Дизель с турбонаддувом

Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.

Дизель с турбонаддувом

Газовый двигатель

Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.

Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.

Электрические моторы

Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.

Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.

Гибриды

Наверное, самые желаемые двигатели на сегодняшний день. Это смесь бензинового двигателя внутреннего сгорания и электромотора. Существует несколько вариантов работы такого движка.

  1. Мотор может работать на попеременном питании. Сначала движение производится на бензине, пока генератор заряжает батарею, а затем водитель может переключиться на электропитание.
  2. Двигатель и электромотор работают одновременно, что помогает сэкономить расход горючего на одно, и тоже расстояние с другими типами ДВС.

Гибридный двигатель

Роторно-поршневые ДВС

Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.

Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.

Водородный мотор

НОУ-ХАУ современного мира считается водородный двигатель. В автомобиль устанавливается установка водородного типа. Отличие от бензиновых моторов заключается в подаче топлива. Если у бензина топливо подаётся вовремя возврата поршня к ВТМ, то у водородного силового агрегата в момент, когда поршень возвращается к НТМ.

В будущем планируется создать водородный двигатель закрытого типа, когда не будет требоваться выброс отработанных газов, а также на 500 км автолюбитель сможет забить о заправке автомобиле.

Стоит понимать, что автомобили с таким мотором будут стоить весьма не дёшево, пока они полностью не вытеснят бензинового брата.

Вывод

Двигатели внутреннего сгорания имеют достаточно большое количество видов и типов, на любой вкус. Так, самыми популярными, по мировой статистике, считают бензиновые, дизельные и гибридные силовые агрегата. Но, все движется к тому, что человек хочет отойти от использования бензина и его аналогов и перейти полностью на электрику.

Автомобильные двигатели. Описание и технические термины.

Коротко о конструкции карбюраторного и инжекторного автомобильного двигателя.Названия и сокращения технических терминов и пояснения к ним
Не пугайтесь, вы не на лекции по теории конструирования всех двигателей на свете!

Первая часть статьи — упрощенное ознакомления с базовыми принципами работы некоторых, а не всех, двигателей.
Вторая часть статьи — описание популярных технических терминов и сокращений.

Особенности статьи:
1. Во-первых, рассмотрим только бензиновые двигатели, и только потому, что их больше всего.
2. Во-вторых, ознакомление короткое и адаптировано под автовладельца, а не высококвалифицированного автолюбителя.

     Итак, начинаем . Без начальной упрощенной теории не обойдемся.
Все цилиндровые тепловые двигатели можно условно разделить на две группы: двигатели внешнего сгорания и двигатели внутреннего сгорания. К двигателям внешнего сгорания относятся, в первую очередь, паровая машина и двигатель Стирлинга, а к двигателям внутреннего сгорания — традиционный бензиновый двигатель, а также двигатель Дизеля. Главное принципиальное отличие бензиновых и дизельных двигателей — это то, что в бензиновом двигателе подготовлена бензиново-воздушная смесь сжимается, а затем поджигается и сгорает, а в дизельном сжимается только воздух, в максимально сжатый воздух впрыскивается порция дизельного топлива (его названия — керосин, солярка ) и полученная воздушно-топливная смесь сама загорается при большом давлении (компрессионное зажигание), но в дизельном моторе есть и дополнительные средства для поджигания смеси (Жаров зажигания).

Чтобы статья не была слишком большой, дизельные двигатели пропускаем. Автовладельцы — дизелисты, для вас будет написана отдельная статья.

Химический процесс идет в двигателе вашей машины? Идеальный процесс вот такой:


Бензин и воздуха при идеальном сгорании дают двуокись углерода, он для нас не полезен и безвреден, потому что мы этот двуокись углерода выдыхаем, а также дают воду. Азот в реакции не вступает, он только входит и выходит, как в известном мультфильме.
Обратите внимание, при сгорании бензина образуется также вода, даже если воду не доливали в бензин на АЗС. Видели пар из выхлопной трубы зимой? Это подтверждает, что при сгорании бензина образуется также вода.
Чем лучше зформуемо топливную смесь, тем меньше вредных выбросов в воздух дает наша машина.

Подача и формирования топлива — главный признак, по которому бензиновые двигатели внутреннего сгорания делятся на инжекторные и карбюраторные.

Привычный двигатель, не «Мазератти» и не «Феррари», может нормально работать при скоростях от 800 оборотов в минуту до 7000 оборотов в минуту, его динамический диапазон, то есть соотношение максимальной скорости до последней, примерно равна 9 . Наиболее эффективно двигатель работает в достаточно узком диапазоне оборотов, примерно от 2000 до 3500 оборотов. При меньших скоростях очень уменьшается мощность двигателя и крутящий момент, при больших скоростях падает энергоэффективность мотора. Вот почему водителям новичкам несколько раз объясняют простые правила:
вверх едешь — надо, чтобы на тахометре было не менее , чем 2500-3000 ,
по ровному едешь — надо, чтобы на тахометре было
не более
чем 3000-3500 ,
вниз едешь — не нажимайте на педаль «газа», и следишь, чтобы на тахометре обороты было поменьше. Для выполнения этих правил новичков учат вовремя переходить на высшую или низшую передачу.

Содержание статьи

Терминология. Детонация, детонационное сгорание

При слишком большом сжатии бензиново-воздушной смеси возникает сгорания, при котором фронт огня распространяется в цилиндре в десятки раз быстрее, чем при обычном сгорании, эта скорость больше скорости звука,
Обычное сгорания. Фронт огня несет температуру возгорания в той части воздушно-топливной смеси, которая еще не сгорела.
Детонационное сгорание. Когда давление смеси слишком большой, между фронтом огня и несгоревших частью топливной смеси образуется чрезвычайно узкий промежуток воздушно-топливной смеси, который сжатый гораздо сильнее и имеет температуру, выше температуры возгорания, этот промежуток называется ударной волной. Уже НЕ огнем передается температура возгорания в той части смеси в цилиндре, которая еще не сгорела, а сама ударная волна передает эту температуру, в результате огонь распространяется в цилиндре двигателя с зазвуковою скоростью. Ударная волна при детонационно сгорании многократно отражается от стенок цилиндра, и этот быстрый процесс приводит к тому, что мы слышим в двигателе звуки, похожие на звонкие металлические удары.
Если захотелось слишком быстро разогнаться и водитель слишком сильно нажал на педаль «газа», он начинает слышать «дзинь-дзинь-дзинь» в двигателе, значит, детонация уже идет.

Для тех, кто о детонации «уже что-то слышал» от знакомых алкоголиков в гараже:
1. Поршень НЕ стучится о стенки цилиндра при детонации. Он и так движется в тесном контакте с стенками цилиндра.
2. НЕ пальцы вам стучат при детонации. Этот колокол создает чрезвычайно быстрый фронт огня в цилиндре при детонации. Хорошо разбиты пальцы также умеют стучать, но без «звона».
3. Октановое число топлива действительно повышается при добавлении в топливо различных примесей, и детонация уменьшается, но двигатель от тех примесей очень быстро портится.

Терминология. Октановое число

Бензин на заправках характеризуется октановым числом. Чем больше октановое число, тем больше можно сжимать такую топливную смесь без возникновения детонации.
Определение октанового числа проводится экспериментально. Есть специальные тестовые двигатели с изменяемой степенью сжатия в камере сгорания, и на этом двигателе определяют, при котором сжатии уже начинается детонация. Конечно, при таком тестировании нужны еще некоторые параметры, мы это уточнение пропускаем. Затем при определенном максимальном сжатии вместо бензина подают топливную смесь изооктана (который вообще не детонирует) и гептана (который детонирует всегда). Пропорция изооктана и гептана, что дает такие же детонационные характеристики, как у бензина, называется октановым числом этого бензина.
Никто не возит с собой баллоны с изооктаном и гептаном, чтобы проверить бензин на заправке. Тестовая установка (тестовый двигатель) время от времени калибруется с помощью смеси изооктана и гептана.

Терминология. Этилированный бензин

Ранее октановое число бензина повышали добавлением в бензин раствора тетраэтилсвинца, отсюда пошло название «этилирования бензина». Сейчас намного лучше добавки, никто тетраэтилсвинец не прибавляет, но название осталось.
Внимание! Добавление этанола в бензин (био-бензин) не является этилирования, и никак не связано с повышением октанового числа. Бензин, к которому добавлен этанол (как правило, этанол с примесями метанола), дает медленный фронт огня (это лучше для двигателя), меньшую температуру горения (это лучше для двигателя), уменьшение мощности двигателя на 3-5% (это хуже для кошелька , но бензин с этанолом обычно дешевле), значительно лучше и чище сгорания (это лучше для экологии), в целом добавления этанола является полезным действием, и оно не выгодно на максимально скоростных режимах двигателя, который традиционно не адаптирован под такую смесь.

Продолжаем. Очень коротко — о карбюраторные двигатели

Если собрать вместе все книги, написанные о карбюратор, они будут весить больше, чем ваш автомобиль. Итак, в цилиндры двигателя подается бензиново-воздушная смесь, в ней капли бензина по возможности маленькие, а соотношение количества бензина и воздуха по возможности такое, чтобы в цилиндрах не возникало детонационного сгорания бензина.
Формируется топливная смесь достаточно просто: в карбюраторе некоторая часть воздушного потока воздуха проходит через тоненькую трубочку эмульсионного канала, в канале на определенной высоте находится жидкость с приятным названием «бензин». Воздуха, движущегося в карбюраторе, согласно закону Бернулли, имеет тем меньше давление, чем быстрее движется. Благодаря уменьшенному давления бензин в эмульсионном канале поднимается вверх, а трубка эмульсионного канала имеет много дырочек, и чем выше поднимается уровень бензина, тем через большее количество дырочек он вытекает в эмульсионном накале и смешивается с воздухом, образуя бензиново-воздушной топливную смесь.

Не сомневайтесь, я несколько упростил. На некоторых режимах эта конструкция не очень справляется со своей задачей.
1. В начале значительной нагрузки на двигатель требуется дополнительное впрыска бензина в смесь, в карбюраторе для этого есть насос-ускоритель. Он дополнительно «пшикает» бензином во впускной коллектор при резком нажатии на педаль газа.
2. На холостом ходу лучше формировать топливную смесь отдельным каналом. Он так и называется: «канал холостого хода». В рабочей камере карбюратора немного трудно формировать небольшое количество смеси для холостого хода.
3. При работе холодного двигателя требуется больше разрежение воздуха в эмульсионной камере. Дополнительная воздушная заслонка ( «подсос») выполняет эту функцию.
4. На больших скоростях надо дополнительно формировать топливную смесь во второй камере карбюратора. Если по-простому сделать первую рабочую камеру карбюратора чуть больше, она будет плохо работать на средних и малых оборотах двигателя.
5. Если бы не экология, карбюратор можно было бы как-то терпеть. Чтобы не отравлять воздух картерными газами, их надо снова подавать в карбюратор для дожигания. На неновом двигателе давление картерных газов немного великоват, они наполнены микрокапельки грязного моторного мвсла. Это очень засоряет карбюратор, он бесконечно хочет прочистки.

Особенности карбюратора: топливная смесь формируется не нормально, экономичность может быть лучше, карбюратор относительно быстро загрязняется при некоторой изношенности стенок цилиндров и компрессионных колец на поршнях. Зимой заведения карбюраторного двигателя часто напоминает шаманство и танцы с бубном. Карбюратор только примерно адаптирован под разные режимы работы двигателя.

Терминология. Поршневые кольца

Это действительно кольца, и они находятся на поршне, который движется внутри цилиндра. Маслозьйомни кольца существуют для того, чтобы масло из картера двигателя (нижней части двигателя) по возможности не попадал в рабочую камеру сгорания в цилиндре, но все же смазывали стенки цилиндра.
Компрессионные кольца делают рабочую камеру цилиндра более плотной, по возможности не дают выхлопным газам прорываться в картер двигателя.
Масло в двигателе нужно не только для того, чтобы смазывать двигатель. Оно нужно, чтобы смазывать стенки цилиндров (это очень важно) и заодно смазывать все другие узлы двигателя (это тоже неплохо).

            Инжекторные двигатели. Здесь будет подробнее

Кто первый на практике применил прямой впрыск бензина в двигателе внутреннего сгорания? Конструкторы начали с дизельных двигателей. Система впрыска, которую разработал Рудольф Дизель, была довольно громоздкой и несовершенной, лучшие характеристики были в системы впрыска, разработанной Герберт Акройд Стюарт. А косвенный впрыск бензина впервые применил в 1902 году французский авиационный инженер Леон Лепелетье на авиационном двигателе «Антуанетта 8V». В 1916 году российские инженеры Микулин и Стечкина применили в авиационном двигателе косвенную систему впрыска бензина, этот двигатель так и не пошел в серийное производство.
( Уклоняемся от темы: в российской технической литературе по тупым упрямством напоминают лишь о конструкции Микулина и Стечкина. А дальше, мол, мировые конструкторы лишь немного эту конструкцию подкорректировали. Может, много дурного «патриотизма», а может, много лени, чтобы прочитать другую литературу).
Прямой впрыск бензина был применен на двигателе «Hesselman» шведского инженера Йонаса Хессельмана в 1925 году.

А вот первое массовое применение инжекторной системы формирования бензино-воздушной смеси было сделано в военной авиации. Это сделала фирма «Messerschmitt AG», авиастроительная фирма Германии, действовавшей в 1938-1945 и 1956-1968 годах. Первоначальное название фирмы — «Messerschmitt-Flugzeugbau Gesellschaft», эту фирму основал в 1923 году Вилли Мессершмитт. Прямой впрыск топлива на истребителях «Мессершмитт» давал возможность значительно большего маневрирования самолетом на больших высотах, без риска, что мотор заглохнет, и мощность мотора при этом была выше. В двигателях «Мессершмитт» была еще одна техническая новинка: переменный угол атаки лопастей пропеллера, это увеличивало тяговую силу на больших высотах. Конечно, эти двигатели конструктивно очень отличались от современных. Многие последующих изменений конструкторы сделали позже, без участия «Messerschmitt AG» и лично Вилли Мессершмитта.

От истории переходим к практике. Инжекторная система подачи топлива постепенно и уверенно вытесняет карбюраторную систему. Двигатели, имеющие такую ​​систему, называют инжекторными двигателями. Посмотрите на этот рисунок.

В конце 70-х годов 20-го века и начала 80-х годов инжекторный впрыск топлива в автомобильном двигателе набирает популярность (конечно, это не касается некоторых стран), а с началом 21-го века точечный инжекторный впрыск топлива частично вытесняется прямым инжекторным впрыском .
Что заставило конструкторов делать все эти изменения?
Главная причина перехода на инжекторе двигателя — экология. Конструкторы начали с каталитического нейтрализатора отработавших газов. Но катализатор эффективно работает только при сжигании в двигателе так называемой «стехиометрической» топливо-воздушной смеси (весовое соотношение воздух / бензин = 14,7: 1). Любое отклонение состава смеси от указанного приводит к падению эффективности двигателя. Для стабильной поддержки такого соотношения рабочей смеси карбюраторные системы уже не подходили.

Первые инжекторные системы были чисто механическими с незначительным использованием электронных компонентов. Но практика использования этих систем показала, что параметры смеси, на стабильность которых рассчитывали разработчики, изменяются при эксплуатации автомобиля. Выход был найден. В систему ввели обратная связь: в выпускную систему, перед катализатором, поставили датчик содержания кислорода в выхлопных газах, так называемый лямбда-датчик, или лямбда-зонд. По сигналам датчика кислорода электронный блок управления (ЭБУ) корректирует подачу топлива в двигатель, точно выдерживая нужный состав смеси. Блок ЭБУ может в литературе называться «контролер».

Инжекторные системы подачи топлива имеют перед карбюраторными следующие преимущества:
— точное дозирование топлива, следовательно, более экономный двигатель.
— снижение токсичности выхлопных газов.
— увеличение мощности двигателя примерно на 7-10%.
— улучшение динамических свойств автомобиля. Система впрыска немедленно реагирует на любые изменения нагрузки, изменяя параметры топливно-воздушной смеси.
— легкость запуска двигателя, независимо от погодных условий. И зимой тоже!

         Немного о конструкции. Датчики инжекторного двигателя

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, которая затем перечисляется программой в цилиндрическое цикловое наполнения. При неисправности датчика управления двигателем идет по аварийными таблицами.
Вместо датчика массового расхода воздуха в двигателе может быть датчик давления во впускном коллекторе. Разница небольшая, потому что давление во впускном коллекторе зависит от скорости прохождения воздуха в коллекторе. Это я опять вспомнил о законе Бернулли.
Неисправность этого датчика очень ухудшает движение автомобиля под нагрузкой (например, когда едете вверх). Иногда при неисправности этого датчика машина едет немного лучше с отключенным датчиком.

Датчик положения дроссельной заслонки — для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, обороты двигателя и циклового наполнения цилиндров двигателя топливной смесью.
Некоторые автомеханики называют этот датчик «позиционер», такая терминология популярна для дизельных двигателей.
Этот датчик традиционно находится на той же оси, на которой вращается дроссельного заслонка. Чем сильнее мы нажмем на «газ», тем больше открывается дроссельного заслонка, увеличивая количество воздуха, поступающего в цилиндры двигателя. Если бы мы очень плавно нажимали на педаль газа и чрезвычайно плавно отпускали ее, датчик положения дроссельной заслонки можно было бы выбросить. При резких изменениях рабочих режимов датчик помогает контроллеру более правильно дозировать подачу бензина в двигатель.

Датчик зачастую являются реостатным, это переменный резистор с тремя выводами. Современные датчики работают на эффекте Холла, и практически не изнашиваются.
Неисправность датчика очень ухудшает динамические характеристики двигателя, в некоторых редких случаях двигатель не заводится, но заводится с отключенным датчиком. С отключенным исправным датчиком машина едет гарантированно хуже.
Этот датчик является популярной причиной при решении многих проблем с холостым ходом: холостой ход великоват, женщин, нестабильный, зависают и держатся слишком большими холостые обороты, короче говоря, этот датчик должен быть исправным, потому что его неисправность или даже незначительное отклонение в характеристиках датчика от нормы очень портит нервы водителю.

Терминология. Дроссельного заслонка

Просто посмотрите на рисунок, как она работает. Она регулирует поток воздуха (или топливной смеси) во впускной коллектор двигателя. Коллектор распределяет этот поток на 4 цилиндра.
Считаем, что у нашего двигателя 4 цилиндра.


Продолжаем.
Датчик температуры охлаждающей жидкости
служит для определения коррекции подачи топлива и угла опережения зажигания, в зависимости от температуры двигателя, а заодно для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Значительно хуже, когда датчик «почти исправен», и контроллер доверяет сигнала с этого датчика. Очень часто в двигателе аж три датчики, которые измеряют температуру охлаждающей жидкости. Один датчик — для контроллера, второй — для индикации температуры водителю, а третий — для управления электровентилятором.
Не надо эти датчики путать с термостатом, который регулирует циркуляцию охлаждающей жидкости в двигателе, для поддержания стабильной температуры.

Терминология. Угол опережения зажигания

Топливная смесь сжимается в цилиндре именно к такому давлению, как нам надо, это сжатие рассчитан конструкторами, что перед нами не регулируется. Когда смесь максимально сжата, то есть поршень в цилиндре находится в верхней мертвой точке, эту смесь надо поджечь.
НЕТ, НЕ ТАК.
Поджечь надо немножко раньше. Ведь сгорания идет не моментально, и при различных оборотах двигателя мы должны враховуты скорость сгорания смеси, а значит, на более высоких оборотах надо поджигать смесь раньше, чем на низких оборотах. Параметр, якии характеризует эту закономерность, называется « угол опережения зажигания «.

Терминология. Верхняя мертвая точка — момент в работе двигателя, когда поршень в цилиндре максимально сжал топливную смесь, и уже не двигается ни вверх, ни вниз, при этом коленчатый вал продолжает крутиться. Очень важный параметр двигателя, который называется «компрессия» , меряют этот параметр именно в верхней мертвой точке поршня.
Понятно, что низкое положение поршня называется «нижняя мертвая точка».

Терминология. Компрессия двигателя — это давление бензиново-воздушной смеси в цилиндре двигателя в верхней мертвой точке работы поршня в цилиндре, это давление зависит от атмосферного давления, коэффициента сжатия в цилиндрах двигателя, и политропный показателя, который для бензина примерно равна 1.2. Компрессия двигателя не может быть больше, чем рассчитанная конструкторами.
Простой пример. В идеальном бензиновом двигателе с коэффициентом сжатия 10 компрессия будет 14 атмосфер, при стандартном атмосферном давлении.
Компрессия максимальная тогда, когда хорошо работают компрессионные кольца в поршнях, и правильно работает газораспределительный механизм.
Кто-то считает, что в статье неточности? Что при коэффициенте сжатия 10 компрессия будет 10 атмосфер? Нет, компрессия будет 14 атмосфер. Вы прогуляли урок физики, когда в школе учили уравнения состояния реального газа.

Продолжаем. Датчик положения коленчатого вала

Этот датчик служит для общей синхронизации системы управления двигателем, а также определения положения коленчатого вала в нужные моменты времени. При неисправности датчика или неконтакты в разъеме датчика работа двигателя невозможна. Неисправность всех остальных датчиков позволяет своим ходом то доехать до автосервиса.
Датчик положения коленчатого вала дает информацию в контроллер, когда любой поршень двигателя находится в верхней мертвой точке.
Одна из популярных конструкций датчика это индуктивный датчик, то есть катушка с намагниченным металлическим сердечником, на коленчатом валу находится диск, похожий на шестерню, в которой могло бы быть, например, 60 зубов, но два зуба отсутствуют. Зубы диска, проходя мимо намагниченного сердечника датчика, формируют небольшой импульсный сигнал на выводах датчика, этот сигнал поступает к контроллеру.

Датчик кислорода (лямбда-датчик, лямбда-зонд, λ-зонд ) предназначен для определения присутствия кислорода в отработавших газах, то есть в выхлопе. НЕ концентрации кислорода, а только присутствии кислорода в выхлопе.
Весь выхлоп, который после сгорания в цилиндрах поступает в выхлопной коллектор, проходит через внутренний элемент кислородного датчика. Через прорези в металлическом экране датчика часть потока выхлопных газов попадает на чувствительный элемент датчика. Кислородный датчик создает напряжение от 0 Вольт до 1 Вольта с помощью химической реакции между чувствительным элементом датчика и остатками кислорода в выхлопных газах, проходящих через этот элемент. Наружный воздух также попадает на датчик, и эта разница между содержанием кислорода в выхлопных газах и наружном воздухе фактически определяет выходное напряжение датчика. Наружный воздух попадает на датчик под изоляцией проводки.
Сигнальный вывод сделан так, чтобы наружный воздух, а не только выхлоп двигателя, также попадало на чувствительный элемент датчика. Таким образом, отсутствие кислорода в выхлопных газах, а значит, перезбагачена топливная смесь, формирует напряжение около 1 Вольта на сигнальном выводе датчика, а присутствие кислорода в выхлопе дает напряжение, близкое к 0 Вольт, это указывает на обедненную смесь. Таким образом, датчик дает возможность контролировать оптимальность соотношения топлива и воздуха в топливной смеси.

Есть конструкции кислородных датчиков с дополнительным подогревом, другие разогреваются раскаленными выхлопными газами.
Контроллер анализирует сигнал кислородного датчика только при значительных нагрузках двигателя. Во время холостого хода датчик хронически показывает на сигнальном выходе «0» .
Откуда это странное название датчика? Она ушла от греческой буквы «лямбда» ( λ ), используемый для обозначения соотношения количества воздуха и количества топлива в топливно-воздушной смеси. Смесь является идеальной (стехиометрической), если содержит именно столько воздуха, сколько его нужно для полного сгорания топлива. Например, для бензина это соотношение составляет около 14,7 (масса воздуха) / 1 (масса топлива).
Значение  λ = (реальное количество воздуха) / (нужное количество воздуха).
λ = 1 — стехиометрическая (теоретически идеальная) смесь;
λ > 1 — бедная смесь;
λ <1 — богатая смесь (избыток бензина, воздуха недостаточно для полного сгорания топлива).

Кислородный датчик никогда не портится внезапно, он медленно отравляется выхлопом при работе, или чуть быстрее отравляется от плохого бензина. Этот датчик, традиционно, служит не менее 100 тысяч километров. При неисправном или отключенном датчике двигатель работает, как и работал, только немного увеличенный расход бензина. При некоторых неисправностях датчика нарушена динамика движения автомобиля. НИКОГДА и НИГДЕ неисправность лямбда-датчика НЕ ПРИВОДИТ к тому, что двигатель не заводится.
У вас из-за неисправного лямбда-датчик не заводилось? Да нет, это вас на СТО разводили на деньги.

Датчик детонации служит для контроля за детонацией. При обнаружении детонации ЭБУ включает алгоритм уменьшения детонации, оперативно уменьшая угол опережения зажигания. Пока вы ездите на нормальном бензине, датчик детонации не вмешивается в работу двигателя. Также есть упрощенные конструкции двигателя без датчика детонации.

Эти датчики — главные для работы двигателя, есть и другие датчики

Еще один элемент конструкции двигателя, который появился с инжекторных двигателях, это адсорбер.

Терминология. Адсорбер.

Адсорбция — избирательное поглощение вещества из газового или жидкой среды поверхностным слоем твердого тела (адсорбента) или жидкости. Компонент, поглощаемой называют адсорбтивом, а то что помещается в адсорбенте — адсорбатом. Например, активированный уголь адсорбирует газы.
Обратите внимание: не АБСОРБЦИЯ, а АДСОРБЦИЯ. Для активированного угля характерна именно адсорбция.

Продолжаем. Адсорбер является элементом замкнутого круга рециркуляции паров бензина. Нормами Евро-2 с 1995 года и более поздними нормами запрещен прямой контакт вентиляции бензобака с атмосферой, адсорбер является обязательным, пары бензина должны собираться (адсорбироваться) и при продувке досылаться в цилиндры двигателя на дожигания (на заводе ВАЗ лишь недавно узнали об этой новость). На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, который всасывается двигателем, пары увлекаются этим потоком и дожигается в камере сгорания.
Неисправный клапан адсорбера может повышать давление топлива в обратном топливном канале ( «обратка»), при этом возможна ситуация, когда двигатель не заводится, но заводится с открытым бензобаком.

Разновидности инжекторных систем

Сейчас вы прочтете о различных инжекторные системы. Но без азбуки я не обойдусь. Немного азбуки.
Как работает игла популярного автомобильного электромагнитного инжектора?
Простой ответ. Она работает так: пшик-пшик-пшик … и пшикает бензином в двигатель.
Правильный ответ. Игла электромагнитного инжектора НЕ пшикает бензином в цилиндр двигателя или во впускной коллектор. Эта игла только открывает или закрывает канал, по которому бензин под давлением вытекает через отверстия специальной формы, при этом прекрасно распыляется на мелкие капли. Давление бензина поддерживается стабильным, а управление инжектором — это только подача командного сигнала на инжектор: открыть или закрыть.
Теперь легче понять проблемы, которые могут быть с инжектором.
Он может протекать. Перерасход бензина, плохо заводится горячий двигатель.
Он может не открываться, если хорошо забит грязью, или может плохо распылять бензин, если выпускные отверстия инжектора очень загрязнены. Двигатель или принципиально не заводится, или значительный перерасход бензина.

Теперь возвращаемся к рассмотрению разновидностей систем впрыска топлива в двигатель.
В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (моноинжектор, одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор у впускного клапана цилиндра) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как в дизельных двигателях).
Некоторые еще знает странное выражение «полный инжектор». В зависимости от фантазии, так могут называть или многоточечный впрыск или прямой впрыск.
А кое-кто даже может заявить о «механический впрыск». На самом деле он говорит о механическую систему управления впрыском, устаревшую и значительно хуже, чем электронная.

Моноинжектор эффективный и лучший от карбюратора. Значительный недостаток: при использовании моноинжектором, как и при использовании карбюратора, к 30% бензина оседает на стенках коллектора. Понятно, что этот бензин не сохраняется в коллекторе навсегда, он также попадает в цилиндры двигателя, но капли бензина при этом больше, и сгорания идет с меньшей эффективностью.

Более совершенными являются системы многоточечного впрыска, еще называют «распределено впрыска», в них подача топлива к каждому цилиндру осуществляется индивидуально. Распределенный впрыск экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов.
Технологическая мелочь: такое впрыска топлива может быть попарно-параллельным (одновременно 1 и 4 цилиндр, или 2 и 3 цилиндр), или фазированным (в каждый цилиндр — в свой момент времени).
Главные преимущества распределенного впрыска:
— возможность автоматической настройки на разных оборотах и лучшее наполнение цилиндров, в результате при той же максимальной мощности двигателя автомобиль разгоняется значительно быстрее;
— бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседания капель бензина во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.

Непосредственный впрыск бензина в цилиндры двигателя оптимизирует сгорание смеси и повышает КПД (коэффициент полезного действия) бензинового двигателя.
При этом он требует качественного бензина с низким содержанием серы и механических примесей, чтобы обеспечить нормальную работу топливной аппаратуры.


Непосредственный впрыск пока — для дорогих моторов и дорогих ремонтов. Даже механик с опытом не всегда может распознать проблему с нестабильным давлением в топливном насосе высокого давления (ТНВД), или неправильную работу одной из форсунок, в результате чего автовладелец зря меняет очень дорогие узлы двигателя, а холостой ход в дорогой машине остается трагически плохим.

Еще одно новшество в инжекторных двигателях — система EGR , это английское название «Exhaust Gas Recirculation» , рециркуляция выхлопных газов.
Эта система «разбавляет» топливо-воздушную смесь отработавшими газами, это снижает температуру горения в камере сгорания, тем самым уменьшая активное образование вредных оксидов азота (NOx) . Однако обеспечить полную и стабильную нейтрализацию NOx только за счет EGR невозможно. Поэтому на двигателях с непосредственным впрыском также NO -катализаторы. Чтобы такой катализатор эффективно работал, у него небольшими порциями впрыскивается восстановитель (как правило, мочевина), катализатор раскладывают оксиды азота на азот и воду. Такая автомобильная каталитическая система называется «selective catalytic reduction» (SCR, выборочное каталитическое восстановление).

Система охлаждения и система смазки двигателя

Несмотря на название «водяное охлаждение», для охлаждения уже давно не применяется вода, а незамерзающая жидкость на основе этиленгликоля или диэтиленгликоля или пропиленгликоля. Благодаря английском выражения «против замерзания» (anti freeze) эту жидкость по-простому называют «антифриз». Жидкость прокачивается насосом (насос все равно называют водяным), и циркулирует по кругу, в двигателе — снизу вверх, в радиаторе — сверху вниз.

Система смазки наиболее важна для цилиндров, хотя необходимо для всех подвижных частей двигателя . Масляный насос создает давление масла в маслопровод, через масляные каналы масло попадает на коренные подшипники коленчатого вала, а сейчас некоторые прочитает текст, которому очень удивится.
Через коренные подшипники и специальные каналы внутри коленчатого вала масло попадает на шатунные подшипники того же вала, далее попадает во внутренние масляные каналы шатунов, по шатунах поднимается вверх до поршней, и пальцами шатуна раздается до стенок цилиндров.
Именно так в хороших двигателях масло смазывает стенки цилиндров. А не разбрызгивается как попало внутри двигателя!
Зачем вам знать такие детали? Дело в том, что при капитальном ремонте двигателя автомеханики с вероятностью 99% НЕ прочищают вам все перечисленные маслопроводы коленчатого вала и шатунов, а потому маслопроводы остаются хорошо забитыми грязью. Несмотря на капитальный ремонт, смазка цилиндров будет идти хуже, а кольца цилиндров будут служить меньше, чем на новом двигателе.
Такова реальность.

 

 

ПОХОЖИЕ СТАТЬИ:

Двигатель: описание,виды,устройство,работа,фото,видео. | АВТОМАШИНЫ

Двигатель является главной системой в любом транспортном средстве. Этот компонент автомобиля можно сравнивать с сердцем человека, то есть, человек умрет без сердца – так же и автомобиль без двигателя. Двигательная система отвечает за преобразование топливной энергии в механическую энергию, которая впоследствии выполняет полезную работу. Сегодня в качестве энергии может выступать энергия сгорания топлива, электрическая энергия и т.д. Источник энергии всегда находится в автомобили. Он должен пополняться через определенный промежуток времени, чтобы автомобиль мог в итоге передвигаться. Так, механическая энергия передается на ведущие колеса от двигателя. Эта передача обычно осуществляется при помощи трансмиссии.

Содержание статьи

Принцип работы

Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.

Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение. 

Показатели двигателей

Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.

Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом:
рабочего объема . Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
давления горящих газов в цилиндрах, которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется «стуком поршневых пальцев») или ростом нагрузок в дизелях.

Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.

Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).

Двигатели большей мощности производители получают увеличением:
рабочего объема, что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
оборотов коленчатого вала, число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.

Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.

Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

Основные элементы двигателя

Ниже на рисунке показана схема расположения элементов в цилиндре. В зависимости от модели двигателя, их может быть 4, 6, 8 и даже больше. На рисунке обозначены следующие элементы: A – распределительный вал. B – крышка клапанов. C – выпускной клапан. Открывается строго в нужное время для того, чтобы отработанные газы выводились за пределы камеры сгорания. D – отверстие для выхода отработанных газов. E – головка блока цилиндра. F – пространство, заполняемое охлаждающей жидкостью. В процессе работы двигатель сильно нагревается, поэтому его необходимо остудить. Чаще всего для этого используется антифриз. G – корпус двигателя. H – маслосборник. I – поддон. J – свеча зажигания. Обеспечивает искру, необходимую для того, чтобы зажечь топливную смесь, находящуюся под давлением. K – впускной клапан. Открывается и запускает в камеру сгорания воздушно-топливную смесь. L – отверстие для впуска топливной смеси. M – сам поршень. Движется вверх-вниз в результате детонации топливной смеси, передавая механическую нагрузку на коленчатый вал. O – шатун. Соединительный элемент поршня и коленчатого вала. P – коленвал. Вращается в результате движения поршней. Передает усилия на колеса через трансмиссию автомобиля. Все эти элементы принимают участие в четырехтактном цикле. 

Виды двигателей

Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.

Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.

Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:

  • Паровая машина
  • Бензиновый двигатель
  • Карбюраторная система впрыска
  • Инжектор
  • Дизельные двигатели
  • Газовый двигатель
  • Электрические моторы
  • Роторно-поршневые ДВС

Роторно-поршневые ДВС

Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.

Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.

Газовый двигатель

Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.

Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.

Электрические моторы

Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.

Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.

Инжектор

Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.

С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.

Дизельные двигатели

Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

Характеристики двигателей

При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.

ПОХОЖИЕ СТАТЬИ:

  • Как выбрать самый экономичный кроссовер по расходу топлива?
  • КАК ПРОИЗВОДЯТ АВТОМОБИЛИ В ГЕРМАНИИ — немецкие авто видео.
  • Новый Audi Q2 2016-2017 описание технические характеристики фото видео
  • Volkswagen c coupe gte: обзор,описание,фото,видео,комплектация.
  • Mercedes-Benz Concept седан — видео трейлер
  • Бмв е39: обзор,описание,фото,видео,комплектация,характеристики
  • Опель Зафира: обзор,описание,фото,видео,комплектация.
  • Какую сигнализацию лучше поставить на автомобиль с автозапуском.
  • Volkswagen Amarok 2017 года фото видео обзор описание комплектация.
  • Как проверить историю автомобиля перед покупкой
  • Преимущества фронтального погрузчика LiuGong CLG 856H
  • Обзор летних шин 2020 года, лучшая резина (топ-10)
  • Как сделать новый автомобиль еще комфортнее с «PlatinumG»
  • Самое основное о мотокуртках: виды экипировки и правила выбора
  • Руководство по покупке подержанных автомобилей на 2020 год
АВТОМОБИЛЬНЫЙ ДВИГАТЕЛЬ • Большая российская энциклопедия
  • рубрика
  • родственные статьи
  • image description

    В книжной версии

    Том 1. Москва, 2005, стр. 161

  • image description

    Скопировать библиографическую ссылку:


Авторы: А. Н. Солнцев

image description

Двигатель W-12 представляет собой как бы два двигателя V-6 с общим коленчатым валом.

image description

Рядный 4-цилиндровый двигатель с непосредственным впрыском бензина: 1 – инжектор; 2 – свеча зажигания;3 – поршень.

АВТОМОБИ́ЛЬНЫЙ ДВИ́ГАТЕЛЬ, дви­га­тель, пре­об­ра­зу­ю­щий к.-л. энер­гию в ме­ха­нич. ра­бо­ту, не­об­хо­ди­мую для при­ве­де­ния в дви­же­ние ав­то­мо­би­ля. В ка­чест­ве А. д. мо­гут ис­поль­зо­вать­ся дви­га­те­ли внут­рен­не­го сго­ра­ния (ДВС), дви­га­те­ли внеш­не­го сго­ра­ния (па­ро­вые и дви­га­те­ли Стир­лин­га), дви­га­те­ли, ис­поль­зую­щие энер­гию пред­ва­ри­тель­но рас­кру­чен­но­го ма­хо­ви­ка или энер­гию га­за, на­хо­дя­ще­го­ся под дав­ле­ни­ем, а так­же элек­тро­дви­га­те­ли. В совр. ав­то­мо­би­лях пре­им. ис­поль­зу­ют­ся ДВС. По кон­ст­рук­ции ДВС раз­де­ля­ют на порш­не­вые и ро­тор­ные. Боль­шин­ст­во А. д. – порш­не­вые. Порш­не­вые ДВС раз­ли­ча­ют­ся по чис­лу и рас­по­ло­же­нию ци­лин­д­ров (ряд­ные, с про­ти­во­ле­жа­щи­ми ци­лин­д­ра­ми, V-об­раз­ные и W-об­раз­ные), по ра­бо­че­му объ­ё­му (лит­ра­жу), на­зна­че­нию и т. п. Чис­ло ци­лин­д­ров порш­не­вых ДВС – от 1 до 16. Од­но­ци­лин­д­ро­вые дви­га­те­ли ха­рак­те­ри­зу­ют­ся вы­со­кой не­рав­но­мер­но­стью при ра­бо­те и на ав­то­мо­би­лях ус­та­нав­ли­ва­ют­ся ред­ко. Уве­ли­че­ние чис­ла ци­лин­д­ров по­выша­ет рав­но­мер­ность ра­бо­ты дви­га­те­ля и плав­ность хо­да ав­то­мо­би­ля, но уве­ли­чи­ва­ет по­те­ри на тре­ние, по­это­му дви­га­те­ли с чис­лом ци­лин­д­ров боль­ше 12 при­ме­ня­ют ред­ко. По ха­рак­те­ру ра­бо­че­го про­цес­са порш­не­вые ДВС мо­гут быть че­ты­рёх- и двух­такт­ны­ми, а по спо­со­бу вос­пла­ме­не­ния топлива – с вос­пла­ме­нени­ем от ис­кры (на­зы­вае­мые так­же бен­зи­но­вы­ми) и с вос­пла­ме­не­ни­ем от сжа­тия (ди­зе­ли). Боль­шин­ст­во А. д. че­ты­рёх­такт­ные. Для ра­бо­ты ДВС то­п­ливо долж­но быть сме­ша­но с воз­ду­хом в опре­де­лён­ном со­от­но­ше­нии. В бен­зи­новых ДВС про­цесс сме­се­об­ра­зо­ва­ния мо­жет про­ис­хо­дить вне ци­лин­д­ров дви­га­те­ля (в кар­бю­ра­то­ре) или не­по­сред­ст­вен­но внут­ри ци­лин­д­ров (дви­га­те­ли с не­по­сред­ст­вен­ным впры­ском бен­зи­на). В дви­га­те­лях совр. ав­то­мо­би­лей кар­бюра­тор прак­ти­че­ски вы­тес­нен ин­жек­то­ра­ми. Для вос­пла­ме­не­ния то­п­ли­ва в бен­зи­но­вых дви­га­те­лях ис­поль­зу­ет­ся све­ча за­жи­га­ния; в ди­зе­лях рас­пы­лён­ное то­п­ли­во са­мо­вос­пла­ме­ня­ет­ся при впры­ски­ва­нии в ци­лин­д­ры. Ди­зель­ные А. д. име­ют луч­шую то­п­лив­ную эко­но­мич­ность, но они до­ро­же в про­из­вод­ст­ве, тя­же­лее и бо­лее шум­ные. Наи­бо­лее рас­про­стра­не­ны ди­зе­ли на боль­ше­груз­ных ав­то­мо­би­лях. Уве­ли­че­нию чис­ла лег­ко­вых ав­то­мо­би­лей с ди­зе­ля­ми спо­соб­ст­ву­ет по­яв­ле­ние но­вых сис­тем пи­та­ния ди­зе­лей c элек­трон­ным уп­рав­ле­ни­ем, что да­ло воз­мож­ность умень­шить шум­ность, сни­зить дым­ность ав­то­мо­би­лей и т. д. Для сни­же­ния со­дер­жа­ния вред­ных ве­ществ в от­ра­бо­тав­ших га­зах ДВС ис­поль­зу­ют­ся ка­та­ли­ти­че­ские ней­тра­ли­за­то­ры. Дви­га­те­ли га­зо­бал­лон­ных ав­то­мо­би­лей вы­бра­сы­ва­ют в ат­мо­сфе­ру мень­шее ко­ли­че­ст­во вред­ных ве­ществ. Газ для пи­та­ния та­ких дви­га­те­лей мо­жет на­хо­дить­ся в сжи­жен­ном или сжа­том со­стоя­нии. В ка­че­ст­ве сжи­жен­ных га­зов обыч­но ис­поль­зу­ют смесь про­па­на и бу­та­на. Осн. со­став­ляю­щей сжа­тых га­зов яв­ля­ет­ся ме­тан. Пе­ред по­да­чей в ци­лин­д­ры ДВС дав­ле­ние га­за умень­ша­ет­ся с по­мо­щью ре­дук­то­ров, а сжи­жен­ные га­зы пе­ре­во­дят­ся в га­зо­об­раз­ное со­стоя­ние в спе­ци­аль­ном устройстве – ис­па­ри­те­ле. Пер­спек­тив­ным то­п­ли­вом для ав­то­мо­би­лей яв­ля­ет­ся во­до­род. А. д., ис­поль­зую­щие в ка­че­ст­ве то­п­ли­ва во­до­род (не­ко­то­рые ав­то­мо­би­ли BMW), прак­ти­че­ски не за­гряз­ня­ют ат­мо­сфе­ру.

Осн. по­ка­за­те­ля­ми, ха­рак­те­ри­зую­щи­ми А. д., яв­ля­ют­ся мощ­ность и кру­тя­щий мо­мент, а так­же их за­ви­си­мость от обо­ро­тов ва­ла дви­га­те­ля. Для по­вы­ше­ния мощ­но­сти ДВС без уве­ли­че­ния ра­бо­че­го объ­ё­ма ис­поль­зу­ет­ся над­дув. В А. д. при­ме­ня­ют ме­ха­нич. над­дув и тур­бо­над­дув, при ко­то­ром для ра­бо­ты тур­бо­на­гне­та­те­ля ис­поль­зу­ет­ся энер­гия вы­хлоп­ных га­зов. Мощ­ность А. д. от 2,5 кВт (ма­ло­лит­раж­ный ав­то­мо­биль) до 800 кВт и бо­лее (бо­лид «Фор­му­лы-1»).

Со­вер­шен­ст­во­ва­ние кон­ст­рук­ции порш­не­вых ДВС для А. д. на­прав­ле­но на уве­ли­че­ние мощ­но­сти и умень­ше­ние га­ба­ри­тов и мас­сы при од­но­вре­мен­ном улуч­ше­нии то­п­лив­ной эко­но­мич­но­сти и сни­же­нии ток­сич­но­сти. Это­му спо­соб­ст­ву­ет как со­вер­шен­ст­во­ва­ние тех­но­ло­гий из­го­тов­ле­ния ДВС, так и улуч­ше­ние кон­струк­ций. Ши­ро­ко при­ме­ня­ют­ся дви­га­те­ли с из­ме­няе­мы­ми фа­за­ми га­зо­рас­пре­де­ле­ния и пе­ре­мен­ной дли­ной впу­ск­ных тру­бо­про­во­дов. Су­ще­ст­ву­ют дви­га­те­ли, в ко­то­рых име­ет­ся воз­мож­ность от­клю­чать отд. ци­лин­д­ры с це­лью эко­но­мии то­п­ли­ва, и дви­га­те­ли без дрос­сель­ной за­слон­ки, но с из­ме­няе­мой сте­пе­нью от­кры­тия кла­па­нов. Пер­спек­тив­но ис­поль­зо­ва­ние ДВС с из­ме­няе­мой сте­пе­нью сжа­тия и за­ме­на ме­ха­нич. при­во­да кла­па­нов на элек­три­че­ский.

Умень­ше­ние ми­ро­вых за­па­сов неф­ти и по­сто­ян­ный рост цен на то­п­ли­во сти­му­ли­ру­ют раз­ра­бот­ку аль­тер­на­тив­ных ис­точ­ни­ков энер­гии для ав­то­мо­би­лей. Вы­пус­ка­ют­ся гиб­рид­ные ав­то­мо­би­ли, в ко­то­рых для при­во­да ве­ду­щих ко­лёс ав­то­мо­би­ля, на­ря­ду с ДВС, при­ме­ня­ют элек­тро­дви­га­те­ли. Пер­спек­тив­но так­же ис­поль­зо­ва­ние то­п­лив­ных эле­мен­тов, ко­то­рые эф­фек­тив­но вы­ра­ба­ты­ва­ют элек­три­че­ский ток. В ка­че­ст­ве дви­га­те­лей для та­ких ав­то­мо­би­лей ис­поль­зу­ют­ся ма­ло­га­ба­рит­ные элек­тро­дви­га­те­ли. Ис­поль­зо­ва­ние та­ких кон­ст­рук­ций по­зво­ля­ет сни­зить мас­су ав­то­мо­би­ля, улуч­шить эко­но­мич­ность и ре­шить про­бле­му вы­бро­сов вред­ных ве­ществ в ат­мо­сферу.

Что такое двигатель и как он работает — фото видео.

 

Содержание статьи

СЕГОДНЯ МОЖНО ВСТРЕТИТЬ СЛЕДУЮЩИЕ ВИДЫ ДВИГАТЕЛЕЙ:

  • двигатель внутреннего сгорания – самый распространенный вид на сегодняшний день,
  • электродвигатель – относительно молодая модель,
  • гибридная силовая установка, или комбинированный двигатель – так же относительно новая модель.

Двигатель внутреннего сгорания в свою очередь подразделяется на поршневую, роторно-поршневую и газотурбинную модель. Сегодня инженеры при разработке автомобилей используют поршневые установки. Все остальные виды двигателей можно встретить крайне редко, в основном машины с такими двигателями можно встретить только в музеях. Поршневые двигатели работают на основе жидкого топлива, в качестве которого используется бензин или же дизельное топливо или на основе природного газа. Самым распространенным видом является поршневой двигатель, работающий на основе бензина.

Относительно недавно появились электромобили, которые оснащены электродвигателями. Этот вид двигателя работает на основе электрической энергии, в качестве источника которой берутся топливные элементы или аккумуляторные батарейки. Сегодня такие автомобили, пока, не пользуются большим спросом, так как они нуждаются в частой подзарядке. Зато такой вид транспорта не выбрасывает в атмосферу вредных смесей.

Современные производители активно выпускают автомобили, оснащенные гибридной или комбинированной силовой установкой. В этом случае двигательная система имеет ДВС и электромотор.

На сегодняшний день распространены бензиновые и дизельные двигатели внутреннего сгорания. Они имеют следующие рабочие циклы:

Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:
в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — «тяговиты на низах»).
Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:
большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.

Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

•впуск воздуха или его смеси с топливом;
•сжатие рабочей смеси,
•рабочий ход при сгорании рабочей смеси;
•выпуск отработавших газов.

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

Турбированные двигатели и «атмосферники»: главные отличия

Для начала немного истории и теории. В основу работы любого ДВС положен принцип сгорания топливно-воздушной смеси в закрытой камере. Как известно, чем больше воздуха удается подать в цилиндры, тем больше горючего получается сжечь за один цикл. От количества сгоревшего топлива будет напрямую зависеть количество высвобождающейся энергии, которая толкает поршни. В атмосферных моторах забор воздуха происходит благодаря образованию разрежения во впускном коллекторе. Другими словами, мотор буквально «засасывает» в себя наружный воздух на такте впуска самостоятельно, а объем поместившегося воздуха зависит от физического объема камеры сгорания.

Получается, чем больше рабочий объем двигателя, тем больше воздуха он может уместить в цилиндрах и тем большее количество топлива получится сжечь. В результате мощность атмосферного ДВС и крутящий момент сильно зависят от объема мотора. Рекомендуем также прочитать отдельную статью о том, что такое рабочий объем двигателя. Из этой статьи вы узнаете, какие параметры определяют данную характеристику, чем измеряется объем мотора и на что влияет данный показатель. Принципиальной особенностью двигателей с нагнетателем является принудительная подача воздуха в цилиндры под определенным давлением.

Данное решение позволяет силовому агрегату развивать больше мощности без необходимости физически увеличивать рабочий объем камеры сгорания. Добавим, что системами нагнетания воздуха может быть как турбина (турбокомпрессор), так и механический компрессор. На практике это выглядит следующим образом. Для получения мощного мотора можно пойти двумя путями:
увеличить объем камеры сгорания и/или изготовить двигатель с большим количеством цилиндров; подать в цилиндры воздух под давлением, что исключает необходимость увеличивать камеру сгорания и количество таких камер;

С учетом того, что на каждый литр топлива требуется около 1м3 воздуха для эффективного сжигания смеси в ДВС, автопроизводители по всему миру долгое время шли по пути совершенствования атмосферных двигателей. Атмомоторы представляли собой максимально надежный вид силовых агрегатов. Поэтапно происходило увеличение степени сжатия, при этом двигатели стали более стойкими к детонации. Благодаря появлению синтетических моторных масел минимизировались потери на трение, инженеры научились изменять фазы газораспределения, внедрение электронных систем управления двигателем позволило добиться высокоточного впрыска горючего и т.д. В результате моторы от V6 до V12 с большим рабочим объемом долгое время являлись эталоном производительности.  Также не стоит забывать и о надежности, так как конструкция атмосферных двигателей всегда оставалась проверенным временем решением.

Параллельно с этим главными минусами мощных атмосферных агрегатов справедливо считается большой вес и повышенный расход топлива, а также токсичность. Получается, на определенном этапе развития двигателестроения увеличение рабочего объема оказалось попросту нецелесообразным. Теперь о турбомоторах. Еще одним типом агрегатов на фоне популярных «атмосферников» всегда оставались менее распространенные агрегаты с приставкой «турбо», а также компрессорные двигатели. Такие ДВС появились достаточно давно и изначально шли по другому пути развития, получив системы для принудительного нагнетания воздуха в цилиндры двигателя. Рекомендуем также прочитать статью о том, что лучше, механический компрессор или турбина. Из этой статьи вы узнаете о преимуществах и недостатках указанных систем нагнетания воздуха, а также о том, какой мотор выбрать, с компрессором или турбированный.

Стоит отметить, что значительной популяризации моторов с наддувом и быстрому внедрению подобных агрегатов в широкие массы долгое время препятствовала высокая стоимость автомобилей с нагнетателем. Другими словами, двигатели с наддувом были редким явлением. Объясняется это просто, так как на раннем этапе машины с турбодвигателем, механическим компрессором или одновременной комбинацией сразу двух решений зачастую ставились на дорогостоящие спортивные модели авто. Немаловажным фактором оказалась и надежность агрегатов данного типа, которые требовали повышенного внимания в процессе обслуживания и уступали по показателям моторесурса атмосферным ДВС. Кстати, сегодня это утверждение также справедливо для двигателей с турбиной, которые конструктивно сложнее компрессорных аналогов и еще дальше ушли от атмосферных версий.

Как работает двигатель и из чего он состоит?

Принцип работы двигателя автомобиля – это вопрос, интересующий практически каждого автовладельца. В ходе первого ознакомления со строением двигателя все выглядит очень сложным. Однако в реальности, с помощью тщательного изучения, устройство двигателя становится вполне понятным. В случае необходимости знания о принципе работы двигателя можно использовать в жизни. 1. Блок цилиндров представляет собой своеобразный корпус мотора. Внутри него расположена система каналов, которая используется для охлаждения и смазки силового агрегата. Он используется в качестве основы для дополнительного оборудования, к примеру, картера и головки блока цилиндров.

2. Поршень, являющийся пустотелым стаканом из металла. На его верхней части расположены «канавки» для поршневых колец. 3. Поршневые кольца. Кольца, расположенные внизу, называются маслосъемными, а верхние – компрессионные. Верхние кольца обеспечивают высокий уровень сжатия или компрессию смеси топлива и воздуха. Кольца используются для обеспечения герметичности камеры сгорания, а также в качестве уплотнителей, предотвращающих попадание масла в камеру сгорания.

4. Кривошипно-шатунный механизм. Отвечает за передачу возвратно-поступательной энергии поршневого движения на коленчатый вал двигателя. Многие автолюбители не знают, что на самом деле принцип работы ДВС является достаточно несложным. Сначала топливо попадает из форсунок в камеру сгорания, где оно смешивается с воздухом. Затем свеча зажигания выдает искру, которая вызывает воспламенение топливно-воздушной смеси, из-за чего она взрывается. Газы, которые формируются в результате этого, двигают поршень вниз, в процессе чего он передает соответствующее движение коленчатому валу. Коленвал начинает вращать трансмиссию. После этого набор специальных шестерён осуществляет передачу движения на колеса передней или задней оси (в зависимости от привода, может и на все четыре).

Устройство автомобиля. Двигатель внутреннего сгорания

Что такое КОНТРАКТНЫЙ ДВИГАТЕЛЬ. Как осматривать Б/У двигатель при покупке. Секреты перекупа.

Что такое роторный двигатель? История создания и особенности конструкции.

ПОХОЖИЕ СТАТЬИ:

Двигатели для автомобилей: описание, технические характеристики
Двигатели Каталог представляет собой сборник описаний двигателей и АКПП для наиболее популярных моделей автомобилей, представленных на рынке России. На данный момент каталог насчитывает более 1000 запчастей, имеет удобный рубрикатор и понятную навигацию. Каждая автозапчасть сопровождается кратким описанием и основными техническими характеристиками. Коробки передач В каталоге представлены коробки передач и двигатели для автомобилей всех популярных производителей. Для поиска АКПП выберите производителя среди: ZF (Zahnrad Fabrik) Friedrichshafen AG или воспользуйтесь формой поиска по модели АКПП ниже. Для поиска нужного ДВС выберите марку авто, двигатель которой вас интересует из списка ниже или воспользуйтесь поиском:

Двигатель – самая важная из систем автомобиля. Без двигателя нет движения, а следовательно нет автомобиля. По аналогии со строением человека, двигатель – сердце автомобиля.

В соответствии с предназначением двигатель является источником механической энергии, необходимой для движения автомобиля. Для того, чтобы получить механическую энергию, в двигателе автомобиля преобразуется другой вид энергии. Источник энергии при этом должен находиться непосредственно на автомобиле и периодически пополняться.

На сайте представлены следующие двигатели и АКПП:

2020201920182017
  • Двигатель VQ37VHR
  • Двигатель VK56DE
  • Двигатель Vh55DE
  • Двигатель ВАЗ 21011 1.3
  • Двигатель Vh51DE
  • Двигатель ВАЗ 2101 1.2
  • Двигатель ВАЗ 11194 1.4
  • Двигатель УМЗ-417
  • Двигатель BMW S54B32
  • Двигатель SR16VE
  • Двигатель BMW S52B32
  • Двигатель VQ40DE
  • Двигатель Renault K4M 1.6 л
  • Двигатель ВАЗ 2103 1.5
  • Двигатель RB26DETT
  • Двигатель ВАЗ 2108 1.3
  • Двигатель RB25DE/DET
  • Двигатель ВАЗ 21126 1.6
  • Двигатель RB20DE/DET/E/ET
  • Двигатель 2111/2114
  • Двигатель QR25DE
  • Двигатель QG16DE
  • Двигатель 21213 / 21214
  • Двигатель BMW N63B44
  • Двигатель BMW N62B48
  • Двигатель ВАЗ-21127
  • Двигатель BMW N62B44
  • Двигатель M62B48
  • Двигатель ВАЗ 21081 1.1
  • Двигатель BMW N62B40
  • Двигатель ВАЗ 2106 1,6
  • Двигатель BMW N62B36
  • Двигатель BMW N55B30
  • Двигатель BMW N54B30
  • Двигатель K7J 710
  • Двигатель BMW N53B30
  • Двигатель QG15DE
  • Двигатель BMW N46B20
  • Двигатель BMW N46B18
  • Двигатель BMW N45B20S
  • Двигатель BMW M50B20
  • Двигатель BMW M44B19
  • Двигатель BMW N43B20
  • Двигатель M271 E18 ML/AL
  • Двигатель BMW N45B16
  • Двигатель BMW M54B30
  • Двигатель BMW N42B18
  • Двигатель M271 E16 ML
  • Двигатель BMW M52B28 / M52TUB28
  • Двигатель BMW M60B30
  • Двигатель BMW M20B25
  • Двигатель BMW M52B25 / M52TUB25
  • Двигатель BMW M50B25 / M50B25TU
  • Двигатель BMW M20B20
  • Двигатель M119 E50
  • Двигатель M112 E32
  • Двигатель M112 E37
  • Двигатель M111 E23 / E23 ML
  • Двигатель M112 E28
  • Двигатель M119 E42
  • Двигатель M111 E20 / E20 ML
  • Двигатель M113 E50
  • Двигатель BMW M43B19/M43TU
  • Двигатель BMW M43B18
  • Двигатель BMW M43B16
  • Двигатель M273 E55 / E46
  • Двигатель M272 KE/DE 35
  • Двигатель M272 KE30
  • Двигатель M272 KE25
  • Двигатель М112 E26
  • Двигатель Mercedes-Benz M102
  • Двигатель KA24DE/E
  • Двигатель HR16DE/h5M
  • Двигатель L15A/L15B
  • Двигатель L13A/L13B
  • Двигатель Honda J30A
  • Двигатель Honda h33A
  • Двигатель Honda F20B
  • Двигатель Honda F18B
  • Двигатель Honda B16A B16B
  • Двигатель GA16DE
  • Двигатель Duratec HE 2.0 Ti VCT
  • Двигатель Ford Duratec-HE 1,8 л
  • Двигатель GA15DE
  • Двигатель Duratec Ti-VCT 16V
  • Двигатель Duratec Ti VCT 16V
  • Двигатель Duratec Ti-VCT 16V Sigma
  • Двигатель Duratec 16V Sigma
  • Двигатель Duratec 16V Sigma (Zetec-SE)
  • Двигатель EA827/EA113 1.8
  • Двигатель EA827 1.6
  • Двигатель EA211 1.4 TSI TFSI
  • Двигатель EA211 1.2 TSI TFSI
  • Двигатель VR38DETT
  • Двигатель EA113 1.8T
  • Двигатель Mazda 3 MZR Z6
  • Двигатель EA111 1.4 TSI TFSI
  • Двигатель ЗМЗ-405
  • Двигатель EA111 CFNA/CFNB
  • Двигатель ЗМЗ-406
  • Двигатель ЗМЗ-409
  • Двигатель ВАЗ 21129
  • Двигатель 5A-F/FE/FHE
  • Двигатель 4ZZ-FE
  • Двигатель 3ZZ-FE
  • Двигатель ВАЗ-21179
  • Двигатель ВАЗ 2105
  • Двигатель BMW S85B50
  • Двигатель BMW S65B40
  • Двигатель BMW S63B44 / S63TU
  • Двигатель B20B (Z)
  • Двигатель Opel Z18XER / A18XER
  • Двигатель QG18DE
  • Двигатель BMW M42B18
  • Двигатель BMW S62B50
  • Двигатель Гранта Спорт 120
  • Двигатель MR20DE/M4R
  • Двигатель BMW M52B20 / M52TUB20
  • Двигатель M103 Е26
  • Двигатель M104 E32
  • Двигатель GM F16D3
  • Двигатель BMW N52B30
  • Двигатель ЗМЗ-402
  • Двигатель VQ35DE
  • Двигатель VQ30DE
  • Двигатель VK45DE
  • Двигатель ВАЗ 21114 1,6л
  • Двигатель ВАЗ 21124 1,6л
  • Двигатель ВАЗ 2112 1,5л
  • Двигатель ВАЗ 21116 1,6л
  • Двигатель ВАЗ 21083 1,5л
  • Двигатель УМЗ 421
  • Двигатель SR20DE/DET/VE/VET
  • Двигатель SR18DE
  • Двигатель SkyActiv-G 2.5
  • Двигатель SkyActiv-G 2.0
  • Двигатель SkyActiv-G 1.5
  • Двигатель BMW S50B32
  • Двигатель BMW S50B30
  • Двигатель BMW N53B25
  • Двигатель QR20DE
  • Двигатель BMW N52B25
  • Двигатель BMW N43B16
  • Двигатель BMW N42B20
  • Двигатель BMW N20B20
  • Двигатель BMW N13B16
  • Двигатель BMW M62B46
  • Двигатель BMW M62B44
  • Двигатель BMW M62B35
  • Двигатель BMW M60B40
  • Двигатель BMW M54B25
  • Двигатель BMW M54B22
  • Двигатель BMW M40B18
  • Двигатель BMW M40B16
  • Двигатель A16XHT
  • Двигатель A16XER/Z16XER
  • Двигатель 5VZ-FE
  • Двигатель BMW М30B35
  • Двигатель BMW M30B30
  • Двигатель M112 E24
  • Двигатель M113 E43
  • Двигатель M111 E18
  • Двигатель M104 E30
  • Двигатель M104 E28
  • Двигатель M103 E30
  • Двигатель 3ZR-FE/FAE/FBE
  • Двигатель K24A (Z, Y, W)
  • Двигатель K20A (Z)
  • Двигатель 3RZ-FE
  • Двигатель 3GR-FE/FSE
  • Двигатель 2ZR-FE/FAE/FXE
  • Двигатель F22B / F22C
  • Двигатель 2NZ-FE
  • Двигатель B18C / B18B
  • Двигатель G4KE / 4B12
  • Двигатель G4KD/4B11
  • Двигатель Duratec HE 2.0/MZR LF
  • Двигатель EA113 2.0 TFSI
  • Двигатель EA111 1.2 TSI / TFSI
  • Двигатель 2ZZ-GE
  • Двигатель BMW S38B36 / S38B38
  • Двигатель A16LET
  • Двигатель A14NET/NEL
  • Двигатель 3VZ-FE
  • АКПП ZF 6HP19 (09L), 6HP21, 6HP19A, 6HP21A
  • АКПП ZF 5HP24, 5HP24A, 01L
  • АКПП ZF 4HP18 (4HP18FLA, 4HP18Q)
  • АКПП ZF 5HP19 (5HP19FL, 5HP19FLА) 01V, 01L

Двигатель внутреннего сгорания преобразует химическую энергию сгорающего топлива в механическую работу. Известными типами ДВС являются поршневой, роторно-поршневой и газотурбинный двигатели. На современных автомобилях наибольшее распространение получили поршневые двигатели внутреннего сгорания, использующие в качестве источника энергии жидкое топливо (бензин, дизельное топливо) или природный газ.

Помимо двигателей на сайте также можно найти

Устройство свечей зажигания и их подбор по авто:
Подбор моторного масла по автомобилю:
Обзоры автомобильных аккумуляторов:
Полезные публикации для водителей и не только:
Значения давления воздуха в шинах авто:

Рекомендуем сайт YourMotor.ru — грузовые автомобили, автобусы, спецтехника и двигатели к ним.
Читайте про лучшие ретро автомобили мира на сайте ClassicRetroCar.ru.
На сайте Evently.ru двигатели на мотоциклы — характеристики, фото, описания.

Объем двигателя — как работает и что это такое,на что влияет

Двигатель – сердце автомобиля, поэтому при выборе авто покупатели часто обращают внимание на один немаловажный фактор – его объем. Однако мало кто представляет, что же такое рабочий объем двигателя и на что он влияет.

Начнем с определения – рабочий объем двигателя – это сумма всех объемов цилиндров автомобиля, где объем поршня – это произведение площади поршня на его ход, а ходом поршня называется расстояние от верхней мертвой точки до нижней мертвой точки. Говоря простым языком, объем цилиндра – это объем камеры сгорания, где и происходит воспламенение и сгорание топлива.

Объём двигателя считают в кубических сантиметрах или литрах. Один литр – это 1000 кубических сантиметров. В зависимости от объема автомобили делятся на микролитражные – до 1,1 литра, малолитражные – 1,2-1,7 литра, среднелитражные – 1,8-3,5 литра и крупно литражные – свыше 3,5 литров. В основном такое разделение применяется для автомобилей с бензиновыми двигателями.

Содержание статьи

  • Как работает автомобильный двигатель?
  • Что такое объем двигателя?
  • Как делятся автомобили по классам с учетом объема двигателя
  • На что влияет объем двигателя?
  • Увеличение рабочего объема двигателя
    • Датчик дроссельной заслонки: предназначение,типы,виды,неисправности,фото
    • Датчик холостого хода: принцип действия,устройство,виды,фото,назначение
    • Датчик расхода воздуха: принцип работы,виды,неисправности,фото
    • Обратный клапан топливной системы:функции,виды,устройство и принцип действия

Как работает автомобильный двигатель?

Для начала, чтобы было понятнее, о чем пойдет речь, давайте рассмотрим, как происходит рабочий процесс в автомобильном двигателе, и за счет чего машина может двигаться.

Представьте себе замкнутую камеру, в которой одна стенка является подвижным поршнем. Туда через специальный патрубок поместили смесь топлива (бензина) и воздуха, а затем подожгли ее при помощи специального устройства – свечи зажигания. Смесь вспыхивает и мгновенно сгорает, по сути – взрывается. Раскаленный газ, образовавшийся в результате сгорания, толкает поршень.

С обратной стороны поршень прикреплен к коленчатому валу, через который сила толчка передается на колесную ось, приводящую автомобиль в движение. Чем больше сгорит топлива, тем сильнее будет толчок.

Соответственно, большая камера сгорания обеспечит бОльшую мощность двигателя, чем маленькая. Это, конечно, очень упрощенное объяснение, на практике на мощность влияет множество факторов.

Что такое объем двигателя?

Камера, где сгорает топливно-воздушная смесь, другими словами называется цилиндром двигателя. В современных автомобильных двигателях этих цилиндров (камер цилиндрической формы) обычно несколько – четыре, шесть, восемь или даже двенадцать.

Объем двигателя определяется как суммарный объем всех цилиндров, или же как объем одного цилиндра, умноженный на их количество. Объем одного цилиндра определяется в момент, когда поршень опущен до упора, в самую нижнюю точку. Объем двигателя может быть выражен в кубических сантиметрах или в литрах (литраж автомобиля).

Как делятся автомобили по классам с учетом объема двигателя

В модельном ряду каждого производителя присутствуют продукты, которые отличаются по классам, массе, габаритным размерам и другим характеристикам. Что касается легковых авто, во время тотального доминирования атмосферных бензиновых двигателей существовало условное деление на: субкомпактные и компактные микролитражные и малолитражные автомобили с рабочим объемом до 1.2 литра; авто малого класса с двигателями от 1.2 до 1.8 литра; средний класс с объемом от 1.8 до 3.5 литров. мощные гражданские и спортивные версии автомобилей с моторами от 3.5 литров и более; версии высшего класса, кторые могут иметь различный объем ДВС. Давайте взглянем, на что влияет объем двигателя.

Установка того или иного мотора на конкретную модель напрямую зависит от того, какие характеристики должна демонстрировать машина (разгонная динамика, крутящий момент, максимальная скорость и т.д.). От объема двигателя показатель мощности имеет зависимость по причине того, что чем больше топлива сгорит в камере сгорания за цикл, тем больше энергии высвобождается и передается на поршень. Другими словами, чем больше камеры сгорания, тем больше топливно-воздушной смеси туда можно подать и вместить. Динамика разгона и «максималка» также зависят от мощности двигателя. Чем мощнее мотор, тем большую скорость сможет развить автомобиль. 

Также следует учитывать, что увеличение объема камер автоматически означает больший расход топлива. Нужно добавить, что от объема двигателя сильно зависит и цена автомобиля. Например, для производства мощного двигателя V12 с объемом 5.5 л. требуются намного большие затраты сравнительно с изготовлением трехцилиндрового мотора с объемом 0.8 л. Параллельно с этим следует учитывать, что установка под капот мощного силового агрегата повлечет необходимость серьезной доработки трансмиссии, системы охлаждения, впуска, выпуска, тормозной системы и т.д. Исходя из вышесказанного, небольшие бюджетные городские малолитражки зачастую оснащены ДВС с самым маленьким объемом, так как подобные двигатели просты в изготовлении, обеспечивают приемлемую динамику и отличаются небольшим расходом топлива. При этом цена на такие серийные авто остается приемлемой. 

На что влияет объем двигателя?

  • Во-первых, расход бензина. Чем больше объем цилиндра, тем больше топлива надо, чтобы воспламенить его с наибольшей отдачей, соответственно, расход повышается. Однако этот минус оборачивается не менее ощутимым плюсом. Чем больше объем двигателя, тем больше мощность двигателя, так как большее количество бензина выделяет большее количество энергии
  • Во-вторых, как уже было отмечено, чем больше объём, тем больше мощность, то есть, автомобиль с двигателем большего объёма будет быстрее разгоняться, сможет перевозить более тяжелые грузы и большее количество пассажиров

Зачастую двигатели большего объема оказываются гораздо более экономичными: не приходится слишком сильно давить на педаль газа, чтобы разогнать машину. Расход топлива не увеличивается, в то время, как малолитражные двигатели под нагрузкой сжигают гораздо больше топлива.

Чем больше объем, тем больше сам двигатель, тем больше машина. Скажем так: большие объемы используются на машинах более высокого класса, потому двигатель и все другие системы дороже в обслуживании. Цена на такой автомобиль заведомо выше.

Для того, чтобы понять, какой именно автомобиль вам более подходит, следует усвоить, что микро- и малолитражные автомобили лучше всего подходят для движения в больших городах с пробками на дорогах. Их расход будет в городском потоке минимален по сравнению с другими авто, но, в свою очередь, такие авто не подходят для дальних путешествий, так как на скорости свыше 100 км/ч им явно не хватает мощности. Много груза они перевозить также не смогут.

Автомобили с объемом от 1,8 до 3 литров отлично подходят как для городского движения, так и для дальних поездок, их мощности хватает для разгона и движения на большой скорости, для перевозки грузов, причем расход бензина у таких автомобилей не так уж и велик.

Автомобили оснащенные двигателями от 3 литров — это либо внедорожники, либо микроавтобусы и минивэны, предназначенные для перевозки большего количества пассажиров или груза.

Увеличение рабочего объема двигателя

Физическое увеличение объема камеры сгорания является одним из способов форсирования мотора в целях повышения мощности. Начнем с того, что сильно увеличить объем не получается, так как блок цилиндров двигателя обычно рассчитан на расточку самих цилиндров строго до определенных пределов. Такие пределы предполагают 3 капитальных ремонта, во время которых изношенные цилиндры растачиваются для возвращения им правильной формы перед установкой ремонтных поршней, поршневых колец и других элементов увеличенного размера. Поршни и другие детали двигателя, которые доступны в продаже, также встречаются исключительно в трех ремонтных размерах. По этой причине во время глубокого тюнинга двигателя автомобиля лучше сразу менять мотор, то есть устанавливать другой двигатель с изначально большим рабочим объемом, который потом можно дополнительно расточить во второй или последний ремонтный размер. 

Датчик дроссельной заслонки: предназначение,типы,виды,неисправности,фото
Датчик холостого хода: принцип действия,устройство,виды,фото,назначение
Датчик расхода воздуха: принцип работы,виды,неисправности,фото
Обратный клапан топливной системы:функции,виды,устройство и принцип действия

Какие бывают типы автомобильных двигателей?

Мало того, что приятно понимать, как что-то работает, это значительно облегчает диагностику и устранение проблем при их возникновении. Это особенно верно для автомобилей, поэтому, чем больше вы знаете о том, что происходит под капотом, тем лучше.

В этом руководстве мы предлагаем краткий курс переподготовки о том, как работают двигатели, прежде чем подробно рассмотреть их различные конфигурации и схемы.

Как работают автомобильные двигатели?

Простота поворота ключа для запуска автомобиля означает, что двигатели часто воспринимаются как должное.Лишь немногие водители думают обо всем технологическом волшебстве, происходящем под капотом, когда они едут от А к В, но двигатель — это действительно впечатляющий инженерный подвиг.

Двигатели полагаются на внутреннее сгорание; небольшие контролируемые взрывы, генерирующие энергию. Это — эффект воспламенения топливно-воздушной смеси в различных цилиндрах автомобиля, процесс, который происходит тысячи раз в минуту, помогая автомобилю двигаться.

Процесс питания двигателя называется циклом сгорания.В большинстве случаев цикл состоит из четырех шагов или «ударов» (отсюда и название четырехтактный двигатель). К ним относятся впуск, сжатие, сгорание и выхлоп. Ниже мы рассмотрим, как эти отдельные удары способствуют циклу сгорания в двигателе автомобиля.

  • Впуск: По мере движения поршней вверх и вниз при движении коленвала они достигают клапанов, установленных на распределительном валу. Когда поршень движется вниз, ремень ГРМ вращает распределительный вал, в результате чего клапаны открываются и выпускают топливно-воздушную смесь.Это называется потреблением.

  • Сжатие: Ход сжатия происходит, когда поршень движется вверх, вытесняя топливовоздушную смесь в тесное пространство.

  • Сгорание: Непосредственно перед тем, как поршень снова начнет двигаться вниз, свеча зажигания создает искру, зажигая смесь топлива и воздуха и вызывая небольшой взрыв. Это заставляет поршень быстро опускаться, производя энергию для питания двигателя.

  • Выхлоп: Когда поршень достигает нижней точки, открывается выпускной клапан.Когда поршень движется обратно вверх, он удаляет газы, образовавшиеся в результате взрыва, вниз по выпускному клапану. Вверху выпускной клапан закрыт, и процесс повторяется.

Это цикл сгорания в одном цилиндре четырехтактного двигателя внутреннего сгорания. Конечно, автомобили имеют несколько цилиндров различной вместимости, а также различные конфигурации и компоновки в зависимости от типа автомобиля и его выходной мощности.

Схемы двигателей общего пользования

Производители автомобилей используют разные схемы расположения цилиндров для определенных двигателей, в основном для увеличения мощности или для того, чтобы двигатель помещался в ограниченном пространстве под капотом.Здесь мы рассмотрим наиболее распространенные схемы расположения цилиндров двигателя автомобиля.

прямой

В прямом двигателе цилиндры расположены по линии, параллельной автомобилю, спереди назад. Такое расположение учитывает больше цилиндров, и прямые двигатели обычно встречаются в мощных седанах, таких как BMW и Mercedes.

Встроенный

Линейная компоновка — это когда цилиндры располагаются рядом в вертикальном положении через отсек двигателя, перпендикулярно автомобилю.Это позволяет создать небольшой компактный двигатель с другими компонентами (радиатор, аккумулятор, система охлаждения), установленными снаружи. Встроенные двигатели являются наиболее распространенной формой двигателя и встречаются на большинстве хэтчбеков и небольших семейных автомобилей.

В

«V» двигатель относится к форме, в которой расположены цилиндры, если смотреть спереди. Цилиндры в V-образном двигателе установлены на их стороне под углом 60 °, причем два ряда обращены наружу и соединены коленчатым валом в основании V-образной формы.Поскольку на V-образный двигатель можно втиснуть много цилиндров, их обычно можно встретить в суперкарах и других автомобилях премиум-класса.

Квартира

Плоская схема двигателя — это когда цилиндры установлены горизонтально, а два ряда направлены наружу. Плоские двигатели, хотя и не очень распространенные, высоко ценятся за низкий центр тяжести в отсеке двигателя, что облегчает управление. Одним из крупнейших производителей плоских цилиндровых двигателей является Porsche, который использует шестицилиндровый двигатель в своей легендарной спортивной машине 911.

Конфигурации цилиндров двигателя

Давным-давно, чем больше цилиндров у автомобиля, тем выше его производительность — но это уже не так. Развитие мощных систем впрыска топлива и турбокомпрессоров означает, что автомобили с меньшим количеством цилиндров могут конкурировать с более крупными двигателями. Здесь мы рассмотрим общие конфигурации цилиндров двигателя, и на каких автомобилях они могут быть найдены.

двухцилиндровый
Двухцилиндровые двигатели

очень редки, потому что они предлагают низкую выходную мощность и мощность.Тем не менее, некоторые производители в настоящее время используют турбокомпрессоры для изготовления небольших, экологически чистых двухцилиндровых двигателей. Fiat TwinAir является отличным примером этого, и его можно найти на таких автомобилях, как Fiat 500 TwinAir и Fiat Panda Aria.

Трехцилиндровый

Трехцилиндровые двигатели используются на небольших автомобилях, хотя внедрение турбонагнетателей привело к тому, что они начали появляться на более крупных семейных хэтчбеках, таких как Ford Focus. Трехцилиндровые двигатели производят характерный бурлящий шум и известны своей дрожащей вибрацией, которая является результатом нечетного числа цилиндров, влияющих на баланс двигателя.

Четырехцилиндровый

Четырехцилиндровые двигатели, которые являются наиболее распространенной конфигурацией, встречаются в большинстве автомобилей малого и среднего класса и почти всегда имеют встроенную компоновку. Четыре цилиндра обеспечивают хорошую мощность двигателя и могут быть сделаны очень мощными с помощью турбокомпрессора.

Пятицилиндровый

Пятицилиндровые двигатели очень редки и испытывают такое же ощущение вибрации, как и у трехцилиндрового двигателя. Volvo является одним из производителей, который регулярно использует пятицилиндровые двигатели, потому что эффект вибрации компенсируется комфортом и изысканностью автомобиля.

шестицилиндровый

Шестицилиндровые двигатели используются в высокопроизводительных и спортивных автомобилях и обычно имеют V-образную или прямую компоновку двигателя. Исторически шестицилиндровые двигатели не считались такими мощными, но теперь, благодаря турбокомпрессору, они были установлены на некоторых из самых мощных автомобилей в мире.

восемь + цилиндры

Автомобили, оснащенные восемью или более цилиндрами, обычно попадают в кронштейн суперкара, учитывая их большую вместимость и выходную мощность.Они обычно находятся в V-образной формации, поэтому их называют V8, V10 или V12. До недавнего времени V12 был самым большим из доступных двигателей, но все изменилось с появлением сверхбыстрого Bugatti Veyron, который может похвастаться шестнадцатью цилиндрами.

Независимо от того, имеет ли ваш автомобиль два или двенадцать цилиндров, присадки к топливной системе Redex могут повысить производительность и экономию топлива. Наши присадки к бензину и дизельному топливу разработаны для очистки топливной системы, снижения выбросов и значительного улучшения характеристик вашего двигателя.Для получения дополнительной информации посетите домашнюю страницу .

Поделиться:

,

Типы автомобильных двигателей | Rapid-Racer.com.

Роторный двигатель или двигатель Ванкеля, как известно, не имеют поршней, вместо них используются роторы. Этот двигатель небольшой, компактный и имеет изогнутую, продолговатую внутреннюю форму. Его центральный ротор вращается только в одном направлении, но при вращении он эффективно производит все четыре такта OTTO (впуск, сжатие, мощность и выпуск).

Единственный серийный автомобиль, который до сих пор имеет конструкцию двигателя Ротари / Ванкеля, выпускаемый сегодня, это Masda RX-8 и предыдущие модели RX-7.

Двигатель Ротари / Ванкеля ограничен присущим ему ограничением по дыхательной способности из-за необходимости всасывания топливовоздушной смеси через полый коленчатый вал и картер, что напрямую влияет на его объемную эффективность, также известны низкие уровни крутящего момента. проблема и двигатель имеет конструктивные ограничения. Турбонаддув этого двигателя является одним из самых простых способов обойти эти недостатки и был замечен в RX-7.

Силы вращения массы двигателя Ротари / Ванкеля создают мощный гироскопический эффект маховика.Это сглаживает подачу энергии и снижает вибрацию. Вибрация была настолько серьезной проблемой на обычных поршневых двигателях, что к общей конструкции двигателя пришлось добавить тяжелые маховики, чтобы помочь нейтрализовать воздействие.

Сами цилиндры функционировали как маховик, роторные двигатели получили существенное преимущество в соотношении мощности к весу по сравнению с более обычными двигателями. Еще одним преимуществом было улучшенное охлаждение, поскольку вращающийся блок цилиндров создавал свой собственный быстро движущийся поток воздуха даже в состоянии покоя.

Вращаясь с отдельными цилиндрами, поршнями, клапанами и коленвалом, роторный двигатель подает мощность непосредственно на трансмиссию. Его конструкция позволяет ему обеспечить мощность обычного двигателя, которая в два раза больше его размера и веса, а также имеет в два раза больше деталей.

Роторный / Ванкель сжигает на 20% больше топлива, чем обычный двигатель, и потенциально является более сильным загрязнителем, но его небольшой размер позволяет добавлять компоненты для контроля выбросов более удобно, чем поршневой двигатель.

Основным узлом роторного двигателя является большая камера сгорания в виде защемленного овала. Внутри этой камеры все четыре функции поршня выполняются одновременно в трех карманах, которые образованы между ротором и стенкой камеры. Подобно тому, как добавление цилиндров увеличивает мощность двигателя с поршневым двигателем, добавление камер сгорания увеличивает мощность роторного двигателя. Большие автомобили могут в конечном итоге использовать роторы с тремя или четырьмя роторами.

Mazda имела многочисленные успехи с этим дизайном, особенно с моделями RX-7 и RX-8.При добавлении турбокомпрессора, как обсуждалось ранее, недостаток крутящего момента несколько преодолен, а также значительно увеличена мощность двигателя. Это в сочетании с меньшим весом сделало пакет эффективных и конкурентоспособных.

типов автомобильных двигателей — все, что вы хотели знать
Автомобиль с двигателем

, закрепленный под капотом автомобиля, обычно выглядит как гигантский путаница из проводов, трубок и металла. Это причина, почему ваша машина работает. В конце концов, именно это превращает всю энергию в механическую форму, позволяя вашему автомобилю ездить. Автомобильные двигатели бывают разных, с разными характеристиками, но с той же целью, конечно. Если вы тоже владеете автомобилем или думаете о его покупке, вам необходимо ознакомиться с различными типами автомобильных двигателей .

Поскольку разные автомобили поставляются с разными двигателями, давайте подробнее рассмотрим, как можно идентифицировать эти типы двигателей, как только вы их увидите.

Типы автомобильных двигателей — основы

Вот как вы можете определить тип двигателя автомобиля вашего автомобиля, просто взглянув на расположение цилиндров.

Types of Car Engine

1. VEE

Если смотреть на двигатель с передней стороны, это расположение будет похоже на алфавит «V».Каждый цилиндр будет обращен наружу и будет приводить в движение общий коленчатый вал в основании. Ожидайте этот тип двигателя во всех тех премиальных и высокопроизводительных автомобилях, поскольку это позволяет втиснуть больше цилиндров. Кроме того, пространство, занимаемое цилиндрами, довольно компактно по сравнению с другими двигателями.

2. INLINE

Вы увидите все цилиндры, расположенные в одну линию. Они будут направлены вверх, обычно перпендикулярно автомобилю. Такую конфигурацию двигателей можно встретить в самых разных автомобилях малого и хэтчбека.Расположение цилиндров в этих двигателях просто прямое.

Какие типы автомобильных двигателей

3. ПРЯМОЙ

Глядя на расположение цилиндров в этом двигателе, вы заметите, что позиционирование выполняется параллельно автомобилю. Все эти автомобили премиум-класса, такие как BMW, используют двигатели с таким расположением цилиндров.

>> Лучшие предложения для вас: Subaru Impreza 2011 на продажу, Toyota RAV4 2006 на продажу

4.VR и W

Разработанный группой Volkswagen, он использует точно такой же принцип для всех этих V-образных двигателей. Цилиндр двигателя VR и W имеет очень узкое пространство между ними. И пространство настолько узкое, что эти цилиндры словно сдавлены вместе в одном блоке. Именно в основе W конфигурация соединяет два ряда двигателей VR. Производители редко используют этот двигатель и конфигурацию в любом из современных автомобилей. Автомобили как Бентли Малсэнн используют это все же.

5. БОКСЕР

И затем приходит боксер, которого даже называют Флэт.Эти горизонтально расположенные двигатели используют цилиндры, которые просто укладываются на бок в двух рядах. Но два цилиндра не обращены друг к другу, на самом деле они расположены друг от друга. Что ж, это позволяет гравитации оставаться на низком уровне, что просто добавляет преимущества в управлении. Хотите знать, какие автомобили на самом деле используют этот макет в своих автомобилях? Ну, такие бренды, как Porsche, используют такой тип расположения цилиндров в своих автомобилях.

Типы автомобильных двигателей, используемых в разных автомобилях

>> Найти подходящий для Японии дешевый подержанный автомобиль для себя? Нажмите здесь <<

6.РОТАРИЙ

Известный как двигатель Ванкеля, роторный двигатель не имеет поршней. Роторы используются в этом двигателе вместо поршней. Роторный двигатель выполнен компактно и компактно; кроме того, он имеет изогнутую, продолговатую внутреннюю форму. Центральный ротор этого двигателя вращается только в одном направлении, производя все 4 такта OTTO, включая впуск, сжатие, мощность и выхлоп при работе.

На сегодняшний день существует ограниченное количество автомобилей с конструкцией роторного двигателя. Вы можете найти роторный двигатель в Mazda RX-8 и его предшественнике — Mazda RX — & моделях.Роторный двигатель не пользуется популярностью, поскольку имеет конструктивные ограничения, вызывающие низкий уровень крутящего момента.

Это несколько видов расположения цилиндров в разных автомобилях, которые могут помочь вам определить правильные двигатели, установленные внутри. Да, все они также нуждаются в различном обслуживании, которое вы даже можете обсудить с профессиональным механиком у вас или поблизости.

Кроме того, цилиндры обычно бывают различных конфигураций, которые могут варьироваться от двухцилиндровых, трехцилиндровых, четырехцилиндровых, пятицилиндровых, а также могут расширяться до шести-восьми и даже десяти цилиндровых двигателей.Эти типов автомобильных двигателей являются несколькими распространенными типами двигателей, которые используются для управления транспортным средством в наши дни.

Теперь давайте прочитаем, как на самом деле работают два типа двигателей.

СМОТРЕТЬ БОЛЬШЕ:

Определен внешний двигатель и двигатель внутреннего сгорания

1. Двигатель внешнего сгорания или двигатель E.C.

Этот тип двигателя позволяет сжигать топливо за пределами двигателя. Тепло генерируется сжиганием топлива, которое затем превращает воду или другую жидкость в пар.Как только этот пар высокого давления создается, вызывает вращение турбины. В двигателе этого типа топливо может быть любым, от твердого и жидкого до даже газа. Вы можете увидеть, как эти двигатели работают на судах, управляют локомотивом и даже в местах, где вырабатывается электроэнергия.

Существует ряд преимуществ использования этого двигателя, в том числе использование более дешевого топлива наряду с твердым топливом, более гибким и высоким пусковым моментом.

2. Двигатель внутреннего сгорания или я.C. двигатель

Двигатель, в котором происходит сгорание топлива внутри двигателя, — двигатель внутреннего сгорания. Высокое давление и температура возникают внутри цилиндра двигателя при сжигании топлива. Это высокое давление оказывает на поршень, который отвечает за вращение колес. Когда ваш двигатель автомобиля типа , мы используем только легколетучее топливо, такое как дизельное топливо и бензин, помимо газов. Эти типы автомобильных двигателей могут использоваться в местах, где используется электроэнергия, а также в автомобильной промышленности.

Учитывая его преимущества, этот двигатель имеет в целом высокую эффективность по сравнению с двигателем внешнего сгорания. Кроме того, этот двигатель достаточно компактен и сравнительно занимает меньше места. Даже первоначальная стоимость ниже, и вы сможете легко запустить этот двигатель в эти холодные дни, так как он использует только очень летучее топливо. Существует ряд онлайн-источников, где вы можете найти простые, но эффективные способы повышения мощности двигателя. В конце концов, лучше проинформировать себя о проблеме, которая может возникнуть в будущем.

Итак, теперь вы знаете разные типов автомобильных двигателей, верно? В следующий раз вы не будете иметь ни малейшего понятия, когда кто-то спросит вас о типах автомобильных двигателей, верно, ?

,

Автомобильный двигатель — FreeAutoMechanic

ЗАГОЛОВОК ПРОБЛЕМ:

Чем больше вы знаете о своем автомобиле, тем больше вероятность, что вы сможете избежать проблем с ремонтом. Вы можете обнаружить многие распространенные проблемы с автомобилем, используя ваши чувства: наблюдать за областью вокруг вашего автомобиля, прислушиваться к странным шумам, ощущать разницу в способах управления вашим транспортным средством или даже замечать необычные запахи. Иногда только понимание того, как работают компоненты двигателя, может помочь диагностировать проблему. Смотрите список компонентов двигателя ниже.

Советы по производительности двигателя:

Увеличение смещения — Увеличение смещения означает большую мощность, поскольку вы можете сжигать больше газа при каждом обороте двигателя автомобиля. Вы можете увеличить смещение, увеличив цилиндры или добавив больше цилиндров. 12 цилиндров, кажется, практический предел.

Увеличение степени сжатия — Более высокие коэффициенты сжатия производят больше мощности, вплоть до точки. Однако чем больше вы сжимаете топливовоздушную смесь, тем больше вероятность того, что она самопроизвольно загорится (до того, как свеча зажигания зажжет ее).Высокооктановый бензин предотвращает этот вид раннего сгорания. Вот почему высокопроизводительным автомобилям обычно требуется высокооктановый бензин — их двигатели используют более высокие коэффициенты сжатия для получения большей мощности.

Добавляйте больше в каждый цилиндр — Если вы можете втиснуть больше воздуха (и, следовательно, топлива) в цилиндр заданного размера, вы можете получить больше энергии из цилиндра (так же, как вы, увеличив размер цилиндр). Турбокомпрессоры и суперзарядники повышают давление поступающего воздуха, чтобы эффективно втиснуть больше воздуха в цилиндр.

Охлаждение поступающего воздуха — Сжатие воздуха повышает его температуру. Вы хотите, чтобы в цилиндре был самый холодный воздух, потому что чем горячее воздух, тем меньше он будет расширяться при сгорании. Поэтому во многих автомобилях с турбонаддувом и сверхзарядкой имеется интеркулер. Интеркулер — это специальный радиатор, через который проходит сжатый воздух, чтобы охладить его, прежде чем он попадет в цилиндр.

Пусть воздух поступает легче — Когда поршень движется вниз во время такта впуска, сопротивление воздуха может лишить двигатель автомобиля.Сопротивление воздуха может быть значительно уменьшено путем установки двух впускных клапанов в каждом цилиндре. Некоторые новые автомобили также используют полированные впускные коллекторы, чтобы устранить сопротивление воздуха. Большие воздушные фильтры также могут улучшить воздушный поток.

Позволяет выпускать выхлопные газы легче — Если сопротивление воздуха затрудняет выход выхлопных газов из цилиндра, это лишает двигатель мощности. Сопротивление воздуха можно уменьшить, добавив второй выпускной клапан в каждый цилиндр (у автомобиля с 2 впускными и 2 выхлопными газами есть 4 клапана на цилиндр, что повышает производительность — когда вы слышите объявление о том, что автомобиль имеет 4 цилиндра и 16 клапанов) объявление говорит о том, что двигатель имеет четыре клапана на цилиндр).Если выхлопная труба слишком мала или глушитель имеет большое сопротивление воздуха, это может вызвать противодавление, которое имеет тот же эффект. В высокоэффективных выхлопных системах используются коллекторы, большие выхлопные трубы и свободно текущие глушители для устранения противодавления в выхлопной системе. Когда вы слышите, что у автомобиля есть «Двойной выхлоп», цель состоит в том, чтобы улучшить поток выхлопных газов, используя две выхлопные трубы вместо одной.

Сделайте все легче — Легкие детали помогают двигателю автомобиля работать лучше.Каждый раз, когда поршень меняет направление, он расходует энергию, чтобы остановить движение в одном направлении и запустить его в другом. Чем легче поршень, тем меньше энергии требуется.

Впрыск топлива — Впрыск топлива позволяет очень точно дозировать топливо для каждого цилиндра. Это улучшает производительность и экономию топлива.

Для процедур ремонта двигателя автомобиля, получить полное руководство по ремонту авто. Вы можете получить полный онлайновый доступ к тому же программному обеспечению, которым пользуются дилеры, всего за 19 долларов.95, которые покрывают ремонт всего вашего автомобиля. Вы можете увидеть пошаговые процедуры по ремонту двигателя и многое другое. Проверьте это.

Отправить ответ

avatar
  Подписаться  
Уведомление о