Степени сжатия: Что такое компрессия и степень сжатия

Содержание

Что такое компрессия и степень сжатия

При диагностике автомобиля перед покупкой опытные автовладельцы практически всегда советуют новичкам проверить компрессию. А еще существует степень сжатия – казалось бы, схожий термин, ведь компрессия – это и есть сжатие. На самом деле это совершенно разные вещи. Давайте разберемся, что есть что, а заодно поймем, что и как нужно проверять при покупке машины.

Что такое степень сжатия?

Начнем со степени сжатия. Как мы помним, поршень в цилиндре при работе двигателя движется вверх-вниз, имея две так называемых мертвых точки, верхнюю и нижнюю. Так вот, степень сжатия – это отношение между двумя объемами: полным объемом цилиндра, когда поршень находится в нижней мертвой точке, и объемом камеры сжатия, когда поршень находится в верхней мертвой точке. То есть степень сжатия – это математическое отношение, которое показывает, во сколько раз топливовоздушная смесь (или воздух, если речь о дизеле) сжимается в цилиндре при работе мотора.

Степень сжатия – одна из базовых характеристик любого двигателя, и закладывается она на стадии проектирования. У бензиновых моторов она ниже, чем у дизельных: в среднем от 8:1 до 12:1 у первых и от 14:1 до 23:1 у вторых. Дело в том, что работа дизельного мотора предполагает самостоятельное воспламенение топливовоздушной смеси от сжатия, а в бензиновом моторе смесь в каждом такте поджигается свечой зажигания. Однако в целом по мере развития технологий двигателестроения степень сжатия в моторах росла. Причина проста: повышение степени сжатия позволяет увеличить КПД мотора, получая больше мощности при том же рабочем объеме и расходе топлива. Собственно, с ростом степени сжатия связано и применение более высокооктановых бензинов.

Таким образом, степень сжатия – это конструктивная характеристика двигателя, и она не меняется по мере его износа и старения. Степень сжатия не нужно «проверять» при покупке, а знать ее нужно в основном для того, чтобы знать, какой бензин лучше заливать в бак купленной машины.

Что такое компрессия?

Если степень сжатия – параметр математический и неизменный, то компрессия – характеристика изменяемая. Компрессия – это давление, создаваемое в цилиндре в конце такта сжатия, когда поршень идет от нижней мертвой точки к верхней, сжимая воздух или топливовоздушную смесь. Давление в цилиндре в момент, когда поршень достиг верхней мертвой точки – это и есть компрессия. Можно подумать, что компрессия фактически должна быть равна степени сжатия – ведь она тоже показывает разницу давления в цилиндре при двух положениях поршня – верхнем и нижнем. Однако на самом деле компрессия оказывается значительно выше. Ведь воздух при резком сжатии нагревается, что означает увеличение давления. А еще он нагревается от горячих стенок цилиндра, ведь рабочая температура двигателя гораздо выше температуры окружающей среды. Таким образом, компрессия, конечно, зависит от степени сжатия, но не равна ей. И именно компрессию замеряют при диагностике двигателя, чтобы оценить его техническое состояние.

Как замеряют компрессию?

Замер компрессии проводится с учетом перечисленных выше условий: на полностью прогретом двигателе и при полностью открытой дроссельной заслонке, отвечающей за подачу воздуха в цилиндр. Разумеется, горение топлива для замера компрессии не нужно, в цилиндре сжимается только воздух. Так что подачу топлива отключают, а свечу зажигания (или накаливания, если речь идет о дизеле) выкручивают, а на ее место вкручивают шлаг компрессометра. Компрессометр – это прибор для измерения компрессии. Он фактически представляет собой манометр, подключаемый трубкой к цилиндру и оснащенный обратным клапаном, чтобы не сбрасывать измеренное давление.

Зачем измерять компрессию?

Замер компрессии позволяет оценить исправность и техническое состояние двигателя. Во-первых, после замера можно сравнить соответствие полученного результата заводским параметрам – то есть оценить компрессию в имеющемся двигателе по сравнению с новым. Во-вторых, низкий показатель компрессии означает наличие проблем с мотором, ведь он сигнализирует о том, что воздух «утекает» из камеры сгорания, а при работе мотора из нее будут прорываться раскаленные газы. Причин может быть довольно много: поршневые кольца, повреждения седел клапанов и самих клапанов, негерметичность прокладки ГБЦ и даже трещина в самом поршне. Ну а в-третьих, важна не только сама величина компрессии, но и ее равномерность во всех цилиндрах двигателя. Если компрессия в одном или нескольких цилиндрах ниже, чем в других, это говорит о неравномерном износе и наличии проблем.

Таким образом, замер компрессии – одна из простых, но эффективных методик оценки исправности и общего технического состояния двигателя. Он позволяет быстро отсеять заведомо «мертвые» моторы, имеющие проблемы с цилиндропоршевой группой, клапанами и так далее. Поэтому замер компрессии можно и нужно проводить при диагностике практически любого автомобиля перед покупкой.

Двигатели с изменяемой степенью сжатия: от Saab до Infiniti

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Разбираемся, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней.

Компоненты / Новости

Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23.

Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии.

При малых нагрузках, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально.

Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16.

Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании — опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Конструкция системы Variable Compression у мотора Infiniti VC-T: а - поршень, b - шатун, с - траверса, d - коленвал, е - электродвигатель, f - промежуточный вал, g - тяга. 

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.

Мощнее, экономичнее, безвреднее – Наука – Коммерсантъ

Последние 20 лет в автомобилестроении идет перманентная революция. Она распространяется на все детали — от колес до омывателя стекол. Но главное движение мысли инженеров направлено на двигатель внутреннего сгорания (ДВС).

Речь пойдет о ДВС с переменной степенью сжатия. Сейчас существует один серийный автомобиль с подобной технологией — Infiniti QX50. Но и в России существует разработка, способная потягаться с японской. Российский ДВС с переменной степенью сжатия создали инженеры Научно-исследовательского автомобильного и автомоторного института, или, говоря бюрократическим языком, ГНЦ РФ ФГУП НАМИ. (Кстати, именно эта организация делает автомобили марки Aurus.) ДВС с переменной степенью сжатия НАМИ представил на конференции в Германии зимой 2019 года.

Степенью сжатия называется отношение поршня, находящегося в нижней точке, к поршню, находящемуся в верхней точке. Почти во всех автомобилях этот показатель — фиксированный и определяется таким образом, чтобы не допустить взрыва топливной смеси. Возможность динамически изменять степень сжатия позволяет значительно поднять КПД автомобиля. То есть при малых нагрузках степень сжатия может быть выше, а при больших, когда в камеру сгорания попадает много воздушно-бензиновой смеси и возможна опасная детонация, степень сжатия уменьшается. Вроде все просто.

Одними из первых, кто попытался воплотить технологию в жизнь, стали инженеры фирмы SAAB. В 2000 году на автосалоне в Женеве они представили инновационный двигатель с изменяемой степенью сжатия. Суть разработки заключалась в том, что цилиндры двигателя и головка блока выполнены как моноблок (у обычных двигателей они существуют раздельно). Таким же образом были объединены блок-картер и шатунно-поршневая группа. (Блок-картер — это не что иное, как корпус, который объединяет и скрепляет все детали двигателя.) Так вот, изменение степени сжатия происходило за счет наклона моноблока относительно блок-картера с помощью гидропривода при неизменном ходе поршня. За всеми этими сложными словами скрывается простая задумка: когда нужно уменьшить степень сжатия, моноблок отклоняется от вертикали, что приводит к увеличению объема камеры сгорания и, соответственно, к нужному результату. Для увеличения степени сжатия угол наклона моноблока нужно уменьшить, уменьшив тем самым объем камеры сгорания. Руководит процессом электронный блок управления, который рассчитывает оптимальный угол отклонения в зависимости от множества факторов, начиная от нагрузки и заканчивая типом топлива.

Шведский двигатель объемом 1,6 л выдавал мощность 225 л. с. Прекрасный результат! Но еще и расход топлива уменьшился на 30%. Более того, удалось добиться существенного снижения выброса вредных веществ, что крайне важно для Швеции, где к экологии относятся исключительно внимательно.

Примерно в то же время, когда на Женевском автосалоне был представлен инновационный двигатель, компания SAAB перешла в полную собственность General Motors. Постепенно проекты вроде этого стали сворачиваться, а в 2010 году GM избавилась от шведской марки. Теперь ее вовсе не существует — осталась втуне и перспективная разработка.

Похожую задумку пробовали воплотить и инженеры немецкой компании FEV Motorentechnik. Их двигатель с переменной степенью сжатия был представлен в том же 2000 году. Немцы тоже пытались добиться результата за счет изменения объема камеры сгорания, но только не за счет блока цилиндров, как сделала SAAB, а за счет управления высотой подъема коленвала. Опорные шейки коленвала размещались в эксцентричных муфтах (эксцентриком называется механизм, который преобразует вращательное движение в поступательное), а они приводились в действие электромотором через шестерни. Поворот эксцентриков заставлял подниматься или опускаться коленвал, что и меняло объем камеры сгорания. Разработка была использована в турбированном четырехцилиндровом двигателе Volkswagen объемом 1,8 л. Мотор развивал мощность до 218 л. с., но в серию не пошел (по неведомым причинам).

Возможно, идея ДВС с переменной степенью сжатия так и осталась бы идеей, если бы в 2017 году Infiniti не выпустила свой VC-Turbo.

Японцы пошли отличным от коллег путем и применили траверсный механизм: шатун соединен системой рычагов с приводом электромотора, который, в свою очередь, регулирует через систему рычагов свободу движения поршня, изменяя степень сжатия. Главный успех Infiniti — в том, что пока это единственный производитель, которому удалось довести разработку до серийного производства. VC-Turbo используется в автомобиле Infiniti QX50, японцам удалось вместить в двухлитровый турбированный агрегат 270 лошадиных сил, увеличив экономичность на 27% по сравнению с аналогичными двигателями.

Алексей Теренченко, кандидат технических наук, доцент, директор центра «Энергоустановки» НАМИ, объясняет, что основной целью российских конструкторов было добиться идеального сочетания механизмов для получения максимального диапазона степени сжатия при минимальных затратах энергии на управление. Руководствуясь этой целью, конструкторы пришли к выводу, что добиться такого сочетания проще всего благодаря траверсному механизму. В этом смысле решение схоже с Infiniti, но есть и различия.

«Рядные двигатели, как правило, изначально имеют непропорциональную форму – они высокие и узкие. А все конструкторы пытаются сделать так, чтобы двигатель в моторном отсеке занимал пропорциональные — в отношении высоты, ширины и длины — размеры. Для этого все вспомогательные агрегаты вешаются по бокам. В нашей конструкции траверс примыкает к цилиндрам и находится сбоку. Infiniti же поместила механизм снизу. С точки зрения габаритов решение не самое удачное,— рассказывает господин Теренченко.— Нашим конструкторам удалось добиться диапазона хода поршня от 7 до 14, это очень хороший результат».

Основная проблема, продолжает Алексей Теренченко,— в стоимости двигателя. ДВС с такой технологией под капотом машины неизбежно переводит ее в премиальный класс. Для Infiniti — премиальной марки — нормально. Российский же автопром к такому пока не готов. Условной Lada Vesta не нужен такой двигатель, да и покупатель не готов переплачивать за навороченную разработку. Так что технология лежит на полке и ждет своего часа из-за банальной неготовности рынка ее принять. То есть не технология не дотягивает до серийного производства, а наоборот.

Более того, как говорит господин Теренченко, проблема еще и в том, что у России нет таких жестких норм чистоты автомобильного выхлопа, как в Европе или в США, а такие нормы становятся дополнительным стимулом для внедрения технологии ДВС с переменной степенью сжатия. Патовая ситуация.

Кузьма Лебедев

Расчет степени сжатия — автосервис

Степень сжатия  в двигателе автомобиля

Расчет степени сжатия и объема мотора

Расчет двигателя

Расчет степени сжатия и объема мотора

Степень сжатия в двигателе автомобиля — отношение объёма поршневого пространства цилиндра при положении поршня в нижней мёртвой точке (НМТ) (полный объем цилиндра) к объёму над поршневого пространства цилиндра при положении поршня в верхней мёртвой точке (ВМТ), то есть к объёму камеры сгорания.

 

где:

b = диаметр цилиндра;

s = ход поршня;

Vc = объём камеры сгорания, то есть, объём, занимаемый бензовоздушной смесью в конце такта сжатия, непосредственно перед поджиганием искрой; часто определяется не расчётом, а непосредственно измерением из-за сложной формы камеры сгорания. 1.2=15.8

Детонация в двигателе — изохорный само ускоряющийся процесс перехода горения топливовоздушной смеси в детонационный взрыв без совершения работы с переходом энергии сгорания топлива в температуру и давление газов. Фронт пламени распространяется со скоростью взрыва, то есть превышает скорость распространения звука в данной среде и приводит к сильным ударным нагрузкам на детали цилиндра — поршневой и кривошипно-шатунной групп и вызывает тем самым усиленный износ этих деталей. Высокая температура газов приводит к прогоранию днища поршней и обгоранию клапанов.

Понятие степени сжатия не следует путать с понятием компрессия, которое обозначает (при определённой конструктивно обусловленной степени сжатия) максимальное давление, создаваемое в цилиндре при движении поршня от нижней мёртвой точки (НМТ) до верхней мёртвой точки (ВМТ) (например: степень сжатия — 10:1, компрессия — 14 атм.).

О спортивных автомобилях

Двигатели гоночных или спортивных автомобилей, снабженными тюнингованными и спортивными автозапчастями, работающих на метаноле имеют степень сжатия, превышающую 15:1, в то время как в обычном карбюраторном двигателе внутреннего сгорания степень сжатия для неэтилированного бензина как правило, не превышает 11. 1:1.

В пятидесятые — шестидесятые годы одной из тенденций двигателестроения, особенно в Соединенных Штатах Америки, было повышение степени сжатия, которая к началу семидесятых на американских двигателях нередко достигала 11-13:1. Однако это требовало соответствующего бензина с высоким октановым числом, что в те годы могло быть получено лишь добавлением ядовитого тетраэтилсвинца. Введение в начале семидесятых годов экологических стандартов в большинстве стран привело к остановке роста и даже снижению степени сжатия на серийных двигателях.

В наше время для улучшения двигателя и автомобиля в целом используются тюнингованые автозапчасти и естественно они должны устанавливаться на профессиональных автосервисах.

Степень сжатия двигателя

Категория: Полезная информация.

Степенью сжатия называется одна из основных характеристик двигателя внутреннего сгорания (ДВС). От нее напрямую зависит мощность мотора, топливная экономичность, а также динамика автомобиля.

В статье:

Воздушно-топливная смесь поступает в цилиндр, когда соответствующий поршень находится в самом нижнем положении (нижняя мертвая точка). В это время она занимает максимально возможный объем, который уменьшается по мере движения поршня в верхнем направлении, и становится минимальным после достижения им крайней верхней позиции. В этот момент объем цилиндра ограничен камерой сгорания, и находящаяся в ней смесь воспламеняется. Создавшееся мощное давление оказывает воздействие на поршень, отталкивая его в нижнем направлении и, тем самым, заставляя вращаться коленвал, на котором он установлен.

Степенью сжатия называется показатель, который характеризует, во сколько раз уменьшается объем воздушно-топливной смеси при движении поршня от крайнего нижнего к крайнему верхнему положению. Говоря более простым языком, это отношение максимального объема цилиндра к объему камеры сгорания.

Чем сильнее сжимается рабочая смесь, тем более высокое давление образуется в камере сгорания. Следовательно, поршень получает значительно больше энергии, которая естественным образом переходит на коленвал.

Вывод очевиден: чем выше степень сжатия — тем мощнее мотор. Но данный показатель не может увеличиваться бесконечно: при создании чрезмерно высокого давления может происходить крайне нежелательное явление — преждевременное воспламенение, называемое детонацией. Из-за него давление на поршень начинает создаваться еще до того, как он достигнет верхней позиции. Это становится причиной:

  • мощных и резких ударных нагрузок;
  • постоянного перегрева даже после непродолжительной работы;
  • разрушения поршневых пальцев и колец;
  • ощутимой потери динамики и мощности.

Поэтому степень сжатия должна определяться с учетом других рабочих характеристик и конструктивных особенностей конкретного двигателя.

Возможность увеличения степени сжатия без риска преждевременной детонации предусмотрена во многих двигателях. Это делается через уменьшение объема камеры сгорания (чем он меньше, тем сильнее будет сжиматься находящаяся в ней рабочая смесь). Существует три способа:

  • Расточка цилиндров. При этом увеличивается объем двигателя. Поскольку объем камеры сгорания не меняется, это повышает степень сжатия. Однако расточка цилиндров подразумевает обязательную замену поршней, что обусловлено увеличением диаметра.
  • Фрезерная обработка нижней части ГБЦ, в результате чего она укорачивается. Объем двигателя остается прежним, а у камеры сгорания — уменьшается, соответственно — повышается степень сжатия.
  • Установка более тонкой прокладки ГБЦ по сравнению с имеющейся. Это также приведет к уменьшению объема камеры сгорания при неизменном объеме двигателя.

Подробнее о том, как увеличить мощность дизельного двигателя читайте в нашем материале.

В двух последних случаях следует учитывать вероятность столкновения поршней с клапанами. Поэтому перед модернизацией двигателя следует провести точные расчеты. Одним из вариантов решения проблемы является установка поршней, имеющих увеличенные выемки под клапана (они предназначены, в том числе, для подобных операций).

Процедура приводит к снижению мощности двигателя, но позволяет перевести двигатель на более дешевый низкооктановый бензин. Чтобы уменьшить степень сжатия, следует увеличить объем камеры сгорания. Это делается через повышение высоты прокладки под головкой блока цилиндров. Алгоритм прост: между двумя стандартными прокладками подкладывается третья, сделанная из алюминия.

Технология была широко распространена в советские времена, когда владельцы карбюраторных «Жигулей» и «Москвичей» массово переводили свои машины с 92-го на более дешевый 76-й бензин. На современных автомобилях, оснащенных электронными системами управления двигателем, проводить данную процедуру крайне не рекомендуется: с экономической точки зрения это бессмысленно, а с технической — может привести к серьезным неполадкам.

Иногда проще купить новый элемент двигателя, чем производить ремонт. Найти нужные запчасти вы можете у нас!

Посмотреть запчасти в наличии

Метки: Дизель, сжатие двигателя

степень сжатия — Перевод на английский — примеры русский

На основании Вашего запроса эти примеры могут содержать грубую лексику.

На основании Вашего запроса эти примеры могут содержать разговорную лексику.

Mercury VIA (1928) 575 л.с. (позже именовался Pegasus IU.) Mercury VIIA 560 л.с. (позже именовался Pegasus IM.) Mercury VIII (1935) 825 л.с., степень сжатия 6.25:1, облегчённый двигатель.

Mercury VIA (1928) 575 hp (became the Pegasus IU.) Mercury VIIA 560 hp (became the Pegasus IM.) Mercury VIII (1935) 825 hp, compression ratio 6.25:1, lightened engine.

Степень сжатия была схожа с PAQAR, но время выполнения — в 3 раза меньше.

1.10 Степень сжатия 3/: 1.11 Описание системы сгорания: 1.12 Чертеж камеры сгорания и головки поршня: 1.13 Минимальное поперечное сечение впускных и выпускных отверстий:

Volumetric compression ratio 3/: Combustion system description: Drawing(s) of combustion chamber and piston crown: Minimum cross-sectional area of inlet and outlet ports:

Так же, как и GZIP, некоторые инструменты по PNG-сжатию предполагают опциональный параметр «степень сжатия», которая варьируется от 1 до 9.

Like gzip, some PNG compression tools have an optional «compression ratio» with values ranging from one to nine.

Примечательно, что первоначально степень сжатия в двигателе составляла всего 8:1, что позволяло автомобилю работать на бензине с октановым числом 85.

Noteworthy at that time was the compression ratio of only 8:1, which permitted the car to run on 85 octane petrol/gasoline.

Изобретение повышает жесткость и прочность конструкции рабочих колес, и степень сжатия перекачиваемой среды.

The invention increases the rigidity and robustness of the structure of the impellers and the degree of compression of the pumped medium.

Я попробую улучшить степень сжатия метода МакКея, но… мы в состоянии войны, Элизабет.

Компоновка, размер цилиндров и ход поршней остались без изменений, но степень сжатия увеличили до 12,5:1.

Engine layout, bore, and stroke remained the same as for the petrol version; the compression ratio increased to 12. 5:1.

Двигатель был усилен в нескольких аспектах, а также была увеличена степень сжатия.

Данная технология способствует охлаждению воздушно-топливной смеси в камере сгорания, что позволяет повысить степень сжатия и термодинамическую эффективность.

This technology improves the cooling of the air/fuel charge in the combustion chamber which allows for higher compression ratios and increased thermodynamic efficiency.

Чтобы увеличить степень сжатия, стоит уменьшить количество «шума» в ваших картинках для увеличения размеров однотонных областей.

Minimize the amount of noise in your images to maximize contiguous flat areas of color to maximize compression.

На автомобилях Lexus RX 450h, степень сжатия составляет 12,5:1.

Для этого пришлось понизить степень сжатия (до 9,1 и ниже; в отличие от высокопроизводительных моторов 1970 года с числом 10.25-11.25:1).

Система T-VIS перестала использоваться, и степень сжатия была снижена до 8:1.

Однако высокая степень сжатия двигателя 1970 года требовала качественного топлива, а двигатель 1973 года мог работать с низким октановым числом.

However, the high compression 1970 motor required premium fuel, while the low compression 1973 motor could run on regular.

П = степень сжатия компрессора между входным и выходным устройствами

Если вы ищете лучшую степень сжатия (и не беспокоитесь о низком быстродействии), ext/bz2 может подойти вам больше, нежели ext/lzf.

If you’re looking for even better compression ratios (and don’t mind a small hit in performance), ext/bz2 might suit you better than ext/lzf.

Применение детонационного двигателя внутреннего сгорания с плавающим поршнем позволяет управлять процессом детонации, поддерживать заданную степень сжатия, через электронный блок управления работы двигателя, при помощи датчика давления и электромагнитного обратного клапана.

The use of a detonation internal combustion engine provided with a floating piston makes it possible to a control a detonation process and maintain a specified compression rate via electronic engine control unit by means of a pressure sensor and an electromagnetic return valve.

Eagle III (Rolls-Royce 250 hp Mk III) (1917-1927 гг.) 250 л.с., степень сжатия увеличена до 4,9:1; усилены поршни.

Степень сжатия составляет примерно 2.5:1 для распространенного программного обеспечения.

Степень сжатия

04.13
09

Устройство АКПП

На сайте выложены схемы внутреннего устройства АКПП Toyota

03.12
06

Обновлен прайс-лист.

Свежий прайс можно взять здесь — price_2012_07_03

12.11
15

Появился новый раздел — «Доска объявлений».

Теперь, если у Вас есть автозапчасти, вы сможете разместить объявление о продаже на нашем сайте.

 

01.11
15

Совет № 132

Гидроусилитель будет жить дольше ,если …

12.10
02

Особенности запуска двигателя в зимний период

Добавлена новая статья в разделе «Личный опыт»

Степень сжатия — отношение полного объёма цилиндра двигателя внутреннего сгорания к объёму камеры сгорания. Степень сжатия дизелей 12-20, карбюраторных двигателей 5-10. Повышение степени сжатия (до определённого предела) увеличивает кпд двигателя.

Эффективность

Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обеднённой смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.


Высокая степень сжатия увеличивает мощность. Приведённые данные предполагают, что увеличение степени сжатия не создаёт проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идёт вверх, то при каждом увеличении прирост мощности будет всё меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).


Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путём установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определённых путём математических расчётов из фиксированного объёма), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объёмная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объёмной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надёжность двигателя.


Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надёжность двигателя. Это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объёмной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.


Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объём цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путём уменьшения объёма камеры сгорания или путём увеличения размера выпуклости поршня (это наиболее распространённые методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объём — рабочий объём двигателя не изменялся. Но изменили общий объём цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объёмную эффективность двигателя.

 

Пример

Воспользуемся воображаемым примером для уяснения деталей.


Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объём (нерабочий объём) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объём, создаваемый поршнем при одном такте плюс объём камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объём над поршнем, находящимся в ВМТ должен составлять половину от общего объёма цилиндра или 1.639 см3, (т. е. 1. 639 см3 «выбранного« объёма плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объёма цилиндра). Даже при 3.278 см3 во всём цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объём поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.


Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смеси в цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278 , см3 свежей смеси в конце [Четырёхтактный двигатель|такта впуска]] и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объём камеры сгорания над поршнем в ВМТ со1. 639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объём цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объём смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объёмная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.

 

Обобщение

Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объёмную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объёме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.


Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования, как правило, работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1, мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.

 

Для общего развития

 

===============================

===============================

 

 

 

 

===============================

 

Наши посетители:

неактивные точки — прошлые визиты.

активные точки — сейчас на сайте.

=============================

 

Наши цены

 

 

 

=============================

=============================

Вот что на самом деле означает «степень сжатия» и почему это имеет значение

Новый двигатель Toyota с высокой степенью сжатия «Dynamic Force». Графика: Toyota / Raphael Orlove

Вы слышали термин «степень сжатия» раньше, но задумывались ли вы, что именно он средства? Что ж, пора объяснить, что такое степень сжатия, и почему каждый автопроизводитель сейчас одержим ею, как будто это Святой Грааль.

Степень сжатия, надо признать, сложнее, чем кажется на первый взгляд. Не помогает то, что это один из тех терминов, которые вы слышите на автосалонах и в пресс-релизах без серьезных объяснений.Это одна из тех вещей, которую вы в большинстве своем пытаетесь понять, пытаясь произвести впечатление на артиста-трапеции, которого вы встретили в цирке на прошлых выходных.

Мы знаем, что высокая степень сжатия — это хорошо, а низкая — плохо. Мы знаем, что новый двигатель Mazda Skyactiv-X «Holy Grail» отличается высокой степенью сжатия, наряду с «дизельным убийцей» Infiniti и серией Toyota «Dynamic Force», которые рекламируют большую мощность и большую эффективность.

Мы живем в эпоху, когда инженеры не могут просто увеличить мощность двигателя, сделав его больше. Изменение степени сжатия двигателя становится обычным делом.

G / O Media может получить комиссию

(Кстати, если вы читаете это и фыркаете, потому что уже знаете, что такое степень сжатия, хорошо для вас! Не все остальные).

What Defines Степень сжатия очень проста

Степень сжатия — это именно то, на что она похожа — степень, при которой вы сжимаете максимальный объем цилиндра до минимального объема цилиндра. Это объем цилиндра, когда поршень полностью опущен по сравнению с полностью вверху.Написано и сказано в виде отношения. Например, для двигателя со степенью сжатия 9: 1 вы бы сказали, что это «девять к одному».

Скриншот: ВСЕ О ДВИГАТЕЛЯХ (YouTube)

А теперь представьте себе цилиндр в своей голове. Поршень движется вверх и вниз внутри этого цилиндра. Когда поршень находится в самой нижней точке, это называется нижней мертвой точкой. Вот где объем цилиндра наибольший. Когда поршень находится в самой высокой точке цилиндра, это называется верхней мертвой точкой, и именно здесь объем цилиндра наименьший. Из сравнения этих двух объемов и берется ваше соотношение.

Если вы такой же наглядный ученик, как я, вам понравится этот созданный мной GIF, показывающий, как работает четырехтактный двигатель. Видите, как поршень движется вверх во время такта сжатия? Это весь воздух и топливо сжимаются в цилиндре. Если двигатель имеет высокую степень сжатия, это означает, что данный объем воздуха и топлива в цилиндре сжимается в гораздо меньшее пространство, чем двигатель с более низкой степенью сжатия.

А теперь пример с простой математикой, мой любимый вид.

Представьте, что у вас есть двигатель, объем цилиндра и камеры сгорания которого составляет 10 см3, когда поршень находится в нижней мертвой точке. После того, как впускной клапан закрывается и поршень поднимается вверх во время такта сжатия, он сжимает топливно-воздушную смесь в объеме одного кубического сантиметра. Этот двигатель имеет степень сжатия 10: 1.

Вот и все! Это степень сжатия. Общий рабочий объем плюс сжатый объем (включая объем головки блока цилиндров и все, что находится выше, где поршень «движется») в только сжатый объем .

Почему лучше — это сложно

Но понимание , что такое степень сжатия , менее важно, чем понимание , почему нам это важно, или почему высокое сжатие является таким стремлением.

Лучшее объяснение, которое я получил в этом, было от моего коллеги и инженера Дэвида Трейси, который затем обратился за помощью к другим инженерам и профессорам. Лучший ответ из них дал доктор Энди Рэндольф, технический директор ECR Engines. Он проводит исследования трансмиссии для NASCAR, и его объяснение предельно ясно:

С точки зрения непрофессионала, мощность двигателя генерируется, когда сгорание оказывает на поршень силу и толкает поршень вниз по цилиндру во время такта расширения.

Чем выше поршень находится в канале ствола в момент начала сгорания, тем большее усилие будет приложено.

По мере увеличения степени сжатия поршень перемещается выше в отверстии в верхней мертвой точке, следовательно, появляется дополнительная сила для хода расширения (дополнительная сила для того же количества топлива равняется более высокой эффективности).

Теперь мы На самом деле нужно больше понимать о , почему в дополнение к , как , а это означает, что нам придется рискнуть в области термодинамики.

Суть всего этого в том, что более высокая степень сжатия означает, что двигатель получает больше работы от того же количества топлива. Это хорошо для энергии, а также миль на галлон.

Чтобы объяснить, почему более высокая степень сжатия дает лучшую эффективность, мы не собираемся слишком углубляться в термодинамику, но, черт возьми, давайте просто окунем кончики пальцев ног. Это здорово и полезно для души.

Более высокое сжатие означает больше работы, но больше давления

На изображении выше показана диаграмма «давление-объем» для идеального и типичного бензинового двигателя.Он визуально показывает, что происходит в вашем двигателе, когда он сжигает бензин.

На схеме выше нижняя кривая 1-2 показывает ход сжатия.

Строка 2-3 показывает горение.

Верхняя кривая 3-4 показывает ход расширения.

А линия 4-1 показывает отвод тепла при открытии выпускного клапана.

Чтобы быть более техническим, на диаграмме кривая 1-2 показывает ход сжатия, в котором давление (ось y) увеличивается, а объем (ось x) падает, когда поршень действительно воздействует на газ, сжимая его.Строка 2-3 показывает тепло, выделяющееся при сгорании, быстро увеличивая давление и температуру газа. Кривая 3-4 показывает увеличение объема и падение давления, когда газ действует на поршень во время такта расширения. Линия 4-1 показывает отвод тепла от газа в окружающую среду по мере того, как давление возвращается к окружающему при открытии выпускного клапана. Наконец, плоская линия 1-5 внизу представляет такт выпуска и возврат поршня в верхнюю мертвую точку в конце.

Область внутри этих 1-2-3-4 строк показывает, сколько работы проделано двигателем.Более высокая степень сжатия означает, что две вертикальные линии на графике будут двигаться влево и вверх, оставляя больше области в пределах, чем при более низкой степени сжатия, и, таким образом, работа выполняется. Но, как вы можете видеть на этой диаграмме, вы столкнетесь с более высоким давлением. Иными словами, вы получите больше механической работы от двигателя с высокой степенью сжатия. Вы будете получать большее давление в цилиндре и на поршне из-за подводимого тепла от сгорания.

Более высокое сжатие также означает больший тепловой КПД.

Иллюстрация: MIT

. Также важно отметить, что тепловложение и тепловые потери во время цикла вашего двигателя связаны с КПД как функцией степени сжатия.Все это работает по двум идеям. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована либо в механическую работу, либо в отходящее тепло. Во-вторых, тепловой КПД — это просто результат работы, деленный на подводимое тепло. Итак, вы можете вывести взаимосвязь между термической эффективностью и степенью сжатия, как MIT, построенная на его веб-странице и показанная выше. Уравнение здесь (nu — термический КПД, r — степень сжатия, а гамма — свойство жидкости) :

Когда вы даете двигателю определенного рабочего объема более высокую степень сжатия, вы эффективно сдвигаете PV диаграмму вверх и влево, и увеличивают тепловложение (Qh на диаграмме) больше, чем тепловые потери (Ql). Другими словами, вы переводите больше входящей энергии в работу. Вот Джейсон Фенске из Engineering Explained , разбирающий взаимосвязь между степенью сжатия, теплопередачей и эффективностью:

В любом случае, дело в том, что термодинамика диктует, что термический КПД возрастает с увеличением степени сжатия, как вы можете видеть из этого графика и уравнения. над. А это означает больше лошадиных сил, лучшую экономию топлива, более тяжелые кошельки и большие улыбки. Управляйте любым вялым, хрипящим, всасывающим газ, старым американским V8 с низким уровнем сжатия, и вы поймете, о чем я.

Степень сжатия также делает такие двигатели, как двигатель Mazda Skyactiv-G, такими эффективными. Mazda, первая из серии новых двигателей с высоким и переменным сжатием от Mazda, Nissan / Infiniti и Toyota, на данный момент имеет самую высокую степень сжатия в отрасли — 14: 1, поэтому она может справляться с высоким расходом топлива. показатели экономичности и мощности даже без турбонагнетателя.

Почему более высокое сжатие означает более высокое октановое число

Почему не все просто используют высокие степени сжатия? Что ж, высокая степень сжатия — вот почему многим двигателям требуется топливо премиум-класса или высокооктановый бензин.Октановое число, как указано в статье How Stuff Works , является мерой способности бензина сопротивляться детонации.

По сравнению с газом с высоким октановым числом бензин с низким октановым числом более склонен к самовоспламенению из-за высоких температур и давления наддува. По сути, вам нужен газ, который воспламеняется, когда вы хотите, а не тот, который воспламеняется, когда вы, , этого не хотите. Такое неконтролируемое горение называется детонацией.Стук — это плохо; он снижает крутящий момент и может нанести непоправимый ущерб вашему двигателю.

Высокая степень сжатия увеличивает риск детонации, поэтому в двигателях с очень высокой степенью сжатия используется высокооктановый гоночный газ или (сейчас чаще) E85. При сжатии газы склонны нагреваться, поэтому повышенная плотность тепла может привести к преждевременному сгоранию топлива до того, как свеча зажигания воспламенит его. Повторяю: это плохо.

Mazda пришлось проделать большую работу над поршнем и конструкцией выхлопной системы, чтобы уменьшить детонацию в двигателе 14: 1, работающем на газовом насосе.Поршни в двигателе Skyactiv-X, например, имеют полость посередине, чтобы Mazda могла выстрелить потоком богатого топлива вокруг свечи зажигания в обедненной смеси, и, да, есть причина, по которой это не было Технология не проста в разработке.

Что еще интересно, так это то, что вы не можете просто сделать двигатель с такой высокой степенью сжатия, как вы хотите. Я обратился к Джону Хойенге, владельцу магазина производительности и ралли Nameless Performance, чтобы поговорить о рисках и преимуществах высокой компрессии.

Джон строит раллийный автомобиль Nissan 240SX, на который он меняет четырехцилиндровый SR20VE, который в настоящее время развивает около 250 лошадиных сил на колесах всего из 2,0 литров. Удивительно, но без турбонаддува. Все, что Джон должен поблагодарить, — это очень высокая степень сжатия 14,5: 1. «Сжатие выполняет больше работы, — пояснил он, — поэтому тем больше мощности [двигатель] будет производить без наддува».

При этом, поскольку это гоночный двигатель, он использует гоночный бензин или E85 с очень высоким октановым числом.Джон сказал, что при степени сжатия выше 14,5: 1 возникает риск самовоспламенения, а также может вылететь шток или раскрутить подшипник. Это то, что небрежно называют «взрывом».

Есть предел тому, насколько высоко вы можете подняться

Я спросил, почему мы не видим, что люди не бегают с двигателями, которые имеют значительно более высокую степень сжатия, чем все, что мы видим сегодня. Неприлично завышенные соотношения, вроде 60: 1. Джон рассмеялся. Он объяснил, что металл просто не может выдерживать такие высокие уровни нагрузки, а такая степень сжатия приведет к тому, что вещи будут настолько горячими, что они взорвут любой двигатель.

Конечно, не все из нас строят гоночные автомобили с гоночными двигателями, поэтому об изменении степени сжатия нам не о чем беспокоиться. Но мы случайные владельцы автомобилей и энтузиасты квазидвигателей, поэтому это было объяснением того, что означает степень сжатия и почему это важно. Вам больше не нужно притворяться, теперь вы знаете, что это такое.

А теперь иди, найди того художника по трапеции и расскажи ему, что ты чувствуешь!

Знаете ли вы ?: Степень сжатия | Автомобильные новости

Что такое степень сжатия?

Каждый двигатель имеет определенную степень сжатия.Топливно-воздушная смесь сжимается в цилиндре для создания воспламенения, сила которого зависит от степени сжатия: объема цилиндра, когда поршень находится в нижней части своего хода, по сравнению с объемом цилиндра, когда поршень в верхней части штриха. Кстати, вы должны знать, что под рабочим объемом двигателя понимается полная мощность всех поршней в течение полного цикла.

Воспламенение происходит, когда поршень находится в верхней части своего хода, то есть в верхней части цилиндра (также известной как головка цилиндра), который образует камеру сгорания.Оставшийся объем топливовоздушной смеси внутри камеры сгорания позволяет пропорционально определять степень сжатия.

Степень сжатия обычно составляет от 8: 1 до 10: 1. Более высокая степень сжатия — скажем, от 12: 1 до 14: 1 — означает более высокую эффективность сгорания.

Фото: Себастьян Д’Амур

Преимущества
Более высокие степени сжатия и полнота сгорания означают большую мощность при меньшем количестве топлива и меньшем количестве выхлопных газов.С другой стороны, более сильные воспламенения усиливают нагрев, трение и износ, что затрудняет работу внутренних компонентов двигателя. Автопроизводителям необходимо найти правильный компромисс.

Рассмотрим, например, технологию Mazda SKYACTIV. Инженеры переработали внутренние компоненты, чтобы увеличить ход поршня, чтобы обеспечить более высокую степень сжатия. При этом водителям, которые хотят воспользоваться этим, абсолютно необходимо использовать бензин премиум-класса (бензин с более высоким октановым числом).

Двигатели с наддувом и дизельные двигатели
Двигатели без наддува могут иметь более высокую степень сжатия, чем двигатели с наддувом (с наддувом или с турбонаддувом).Например, в двигателе с турбонаддувом воздух, поступающий в камеру сгорания, уже находится под давлением, поэтому степень сжатия должна быть немного ниже, чтобы избежать чрезмерной нагрузки на компоненты. Двигатели с наддувом обычно имеют степень сжатия от 8: 1 до 8,5: 1.

Однако, что касается дизельных двигателей, отсутствие свечей зажигания требует более высокой степени сжатия — примерно от 14: 1 до 22: 1. Они используют горячий воздух для испарения, а затем воспламенения топлива.

Марки топлива
Чем больше сжатие и нагрев топлива может выдержать топливо перед воспламенением, тем выше октановое число (87, 91, 94 и т. Д.)) и более высокой марки топлива (обычное, премиум и т. д.).

Как я уже сказал; более высокая степень сжатия означает больше тепла внутри двигателя. Топливо с более высоким октановым числом может выдерживать большее повышение температуры и менее подвержено преждевременному воспламенению или преждевременному воспламенению, также известному как детонация двигателя. Это явление изменяет ход поршня и может привести к серьезному повреждению двигателя.

Какая связь между степенью сжатия и экономией топлива?

Как мы узнали на предыдущей странице, статическая компрессия двигателя измеряется, когда впускной воздушный клапан двигателя полностью закрыт.Однако в реальной эксплуатации этого почти никогда не происходит. Двигатель работает так быстро, что может потребоваться повторное открытие впускного клапана до того, как поршень завершит свой полный ход вверх и вниз. Когда это происходит, часть давления внутри цилиндра падает, что снижает эффективность. По сути, здесь больше места для воздуха, поэтому двигатель теряет часть мощности из-за сгорания топлива и воздуха.

Динамическая степень сжатия учитывает движение впускного клапана.Инженеры могут настроить двигатель так, чтобы впускной клапан закрывался раньше, что помогает нарастить давление в цилиндре. Двигатель также можно настроить так, чтобы клапан закрывался позже, но это позволяет выпустить немного воздуха и снизить эффективность использования топлива двигателем.

Вычислить динамическую степень сжатия на самом деле довольно сложно. Для этого вы используете длину хода и длину шатуна, чтобы определить положение поршня, когда клапан полностью закрыт.Поскольку это соотношение обнаруживается, когда поршень находится в середине своего хода, оно всегда ниже, чем степень статического сжатия. Как и при статическом сжатии, более высокая степень сжатия означает более эффективное использование топлива и лучшую экономию топлива.

Сегодняшние высокоэффективные двигатели на многих современных автомобилях во многом обязаны своей экономией топлива своей высокой степени сжатия. Но у двигателя с высокой степенью сжатия есть и недостатки. Чтобы он работал безупречно, вам нужно использовать высокооктановый газ, который дороже, чем обычный неэтилированный газ.Если вы откажетесь от премиального газа, со временем в двигателе может появиться детонация. Детонация в двигателе — это когда сгорание топливовоздушной смеси не происходит в оптимальное время хода поршня. Использование низкооктанового топлива в двигателе с высокой степенью сжатия может повысить вероятность детонации двигателя, поэтому, если вы получаете новый экономичный автомобиль с высокой степенью сжатия, убедитесь, что вы используете тип газа, рекомендованный в руководстве пользователя, чтобы получить большинство из этого.

Ищете дополнительную информацию о степени сжатия двигателя и экономии топлива? Просто перейдите по ссылкам на следующей странице.

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует от сайта создания нового сеанса для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

VC-Turbo — первый в мире двигатель с регулируемой степенью сжатия, готовый к производству

Вставить этот синемаграф на свой сайт

«Технология переменной степени сжатия представляет собой прорыв в разработке трансмиссий. QX50, оснащенный нашей системой VC-Turbo, является первым серийным автомобилем, который когда-либо предлагал водителям двигатель, который трансформируется по требованию, устанавливая новый стандарт возможностей трансмиссии и совершенства.Этот необычайно плавный двигатель предлагает потребителям мощность и производительность, а также эффективность и экономичность ».
Кристиан Менье, вице-президент глобального подразделения INFINITI

Интеллектуальная мощность и улучшенный контроль за счет усовершенствованного двигателя внутреннего сгорания VC-Turbo

Двигатель VC-Turbo от INFINITI — это первый в мире двигатель с переменной степенью сжатия, готовый к производству, и он дебютирует в производстве на новом QX50. Эта уникальная технология переменного сжатия представляет собой прорыв в конструкции двигателей внутреннего сгорания — QX50’s 2.0-литровый VC-Turbo постоянно трансформируется, регулируя степень сжатия, чтобы оптимизировать мощность и топливную экономичность. Он сочетает в себе мощность 2,0-литрового бензинового двигателя с турбонаддувом с крутящим моментом и эффективностью усовершенствованного четырехцилиндрового дизельного двигателя.

VC-Turbo плавно изменяет степень сжатия с помощью усовершенствованной многорычажной системы, непрерывно увеличивая или уменьшая радиус действия поршней для преобразования степени сжатия — обеспечивая мощность и эффективность по запросу.

Высокая степень сжатия дает больший КПД, но в некоторых случаях представляет риск преждевременного возгорания («детонации»).Низкая степень сжатия обеспечивает большую мощность и крутящий момент и предотвращает детонацию. В процессе работы двигатель VC-Turbo QX50 обеспечивает любую степень сжатия от 8: 1 (для высокой производительности) до 14: 1 (для высокой эффективности). Развертывая интеллектуальную мощность для большего контроля, двигатель расширения возможностей является примером подхода INFINITI, ориентированного на водителя.

Сочетание производительности и эффективности представляет собой убедительную альтернативу дизельному двигателю, опровергая представление о том, что только гибридные и дизельные силовые агрегаты способны обеспечивать высокий крутящий момент и эффективность.Двигатель развивает мощность 268 л.с. (200 кВт) при 5600 об / мин и 380 фунт-фут (380 Нм) при 1600 — 4800 об / мин. Удельная выходная мощность VC-Turbo выше, чем у многих конкурирующих бензиновых двигателей с турбонаддувом, и приближается к характеристикам некоторых бензиновых двигателей V6. Турбо-режим с одной прокруткой обеспечивает немедленную реакцию акселератора по запросу.

Оснащенный двигателем VC-Turbo, QX50 конкурентоспособно эффективен, обеспечивая экономию бензина 27 миль на галлон (в смешанном цикле США, передний привод; 26 миль на галлон при полном приводе). В спецификации с передним приводом это обеспечивает повышение топливной экономичности на 35% по сравнению с бензиновым двигателем V6 в предыдущем QX50, в то время как новая полноприводная модель расходует 26 миль на галлон, что на 30% лучше.

Среди других преимуществ — компактная упаковка и технологии снижения веса. Блок двигателя и головка блока цилиндров отлиты из легкого алюминиевого сплава, а трансформируемые многорычажные компоненты изготовлены из сплава высокоуглеродистой стали.По сравнению с 3,5-литровым двигателем VQ V6 INFINITI, 2,0-литровый двигатель VC-Turbo весит на 18 кг меньше и требует меньше места в моторном отсеке.

В двигателе используется первая в мире многорычажная система и электродвигатель с уникальным редуктором Harmonic Drive для изменения степени сжатия. Электродвигатель подключен к Harmonic Drive с помощью рычага управления; по мере вращения Harmonic Drive вал управления в основании двигателя вращается, перемещая многорычажную систему внутри двигателя. По мере изменения угла многорычажных рычагов он регулирует положение верхней мертвой точки поршней и вместе с ними степень сжатия. Эксцентриковый управляющий вал изменяет степень сжатия всех цилиндров одновременно. В результате объем двигателя варьируется от 1997 куб. См (для низкого передаточного числа 8: 1) до 1970 куб. См (для высокого передаточного числа 14: 1).

VC-Turbo может без перерыва переключаться между циклами Аткинсона и обычным сгоранием, обеспечивая большую эффективность и производительность при преобразовании.

В соответствии с циклом Аткинсона воздухозаборники и воздухозаборники перекрываются, что позволяет топливу в камере сгорания расширяться до больших объемов для большей эффективности. Двигатель INFINITI работает по циклу Аткинсона при более высоких степенях сжатия, с более длинными ходами поршня, позволяющими впускным клапанам открываться на короткое время в начале такта сжатия. Цикл Аткинсона обычно используется в гибридных двигателях для максимального повышения эффективности.

Когда степень сжатия падает, двигатель возвращается к обычному циклу сгорания — впуск, сжатие, сгорание, выпуск — в отдельные фазы, чтобы обеспечить большую производительность.

Двигатель VC-Turbo сочетает в себе ряд существующих технологий INFINITI, чтобы реализовать его изменчивый характер. В двигателе используются MPI (многоточечный впрыск) и GDI (прямой впрыск бензина) для обеспечения баланса эффективности и мощности в любых условиях:

  • GDI улучшает эффективность сгорания и производительность, а также позволяет двигателю избегать детонации при более высоких степенях сжатия
  • MPI раньше смешивает топливо и воздух, обеспечивая полное сгорание в камере для большей эффективности при низких нагрузках двигателя

Двигатель переключается между обоими при обычных оборотах двигателя, причем оба набора форсунок могут работать совместно при более высоких нагрузках.

Турбокомпрессор с одной спиралью обеспечивает максимальную производительность и эффективность, обеспечивая немедленную реакцию дроссельной заслонки при любой скорости или степени сжатия. Турбокомпрессор обеспечивает производительность, эквивалентную шестицилиндровому безнаддувному агрегату. Система с одной спиралью, достаточно малая для обеспечения компактных габаритов, также снижает потери тепловой энергии и давление выхлопных газов.

Встроенный выпускной коллектор встроен в алюминиевую головку блока цилиндров для дальнейшего улучшения упаковки и эффективности.Это позволяет инженерам INFINITI размещать каталитический нейтрализатор рядом с турбонаддувом, создавая более короткий путь потока горячих выхлопных газов. Это означает, что процесс контроля выбросов может начаться раньше, так как каталитический нейтрализатор нагревается быстрее.

Тесно контролируя поток выхлопных газов через турбонагнетатель, привод перепускной заслонки с электронным управлением поддерживает давление наддува турбокомпрессора. Это обеспечивает высокую топливную эффективность и производительность в любых условиях при минимальных выбросах.

В необычно плавном двигателе VC-Turbo не используются два балансирных вала, необходимые в обычных четырехцилиндровых двигателях, из-за конструкции многорычажной системы (см. Ниже).

VC-Turbo также более плавный, чем обычные рядные двигатели, и имеет низкий уровень шума и вибрации, ожидаемый от традиционного V6. Частично это является результатом его многорычажной конструкции, в которой поршневые шатуны во время цикла сгорания почти вертикальны (вместо того, чтобы двигаться шире в поперечном направлении, как при традиционном вращении коленчатого вала).Это представляет собой идеальное возвратно-поступательное движение и полностью исключает необходимость в балансирных валах. Несмотря на добавление многорычажной компоновки, двигатель таким же компактным, как обычный 2,0-литровый четырехцилиндровый двигатель.

Результат — необычно низкий уровень вибрации. Во время внутренних испытаний INFINITI сравнила двигатель с четырехцилиндровыми двигателями конкурирующих производителей. VC-Turbo производит пониженный уровень шума двигателя — почти так же совершенен, как V6.

«Зеркальное покрытие отверстия» INFINITI с низким коэффициентом трения способствует снижению трения цилиндра на 44%, что позволяет двигателю вращаться более плавно.Покрытие наносится на стенки цилиндра с помощью плазменной струи, затем затвердевает и оттачивается для создания сверхгладких стенок цилиндра.

В 2,0-литровом двигателе VC-Turbo QX50 используется первая в мире активная система гашения вибрации опоры двигателя, называемая Active Torque Rod (ATR), для еще большего снижения шума двигателя. QX50 — единственный автомобиль в своем классе, предлагающий такую ​​технологию. Встроенный в верхнюю опору двигателя, где генерируется наибольший шум с высоким крутящим моментом и вибрация двигателя, ATR имеет G-датчик, который обнаруживает вибрации.Затем он создает противоположные возвратно-поступательные колебания, позволяя четырехцилиндровому двигателю быть таким же плавным и тихим, как V6, снижая шум двигателя на 9 дБ (по сравнению с текущим QX50). Это помогает сделать VC-Turbo одним из самых тихих и плавных двигателей в сегменте внедорожников премиум-класса.

Показывая роль бренда как новатора в технологии трансмиссии, INFINITI представила первую в мире активную опору двигателя для дизельного двигателя в 1998 году. INFINITI разработала ATR в период с 2009 по 2017 год, уделяя особое внимание уменьшению ее размера и веса.В более ранних прототипах размер приводного двигателя ATR представлял проблему. Тем не менее, разработка поршневого приводного двигателя уменьшенных размеров позволяет ATR поместиться в гораздо меньшее пространство, при этом оставаясь достаточно прочным, чтобы справиться с интенсивным использованием.

Вставить этот синемаграф на свой сайт

Вставить этот синемаграф на свой сайт

Вставить этот синемаграф на свой сайт

Вставить этот синемаграф на свой сайт


Щелкните изображение для увеличения


Щелкните изображение для увеличения


Щелкните изображение для увеличения

Контакты

По вопросам INFINITI Global Communications обращайтесь:
Джон Уолш
Старший менеджер, INFINITI Global Communications
INFINITI Motor Company Ltd. , Гонконг
Телефон: +852 3948 0129
Мобильный: +852 9447 9705
[email protected]

Более подробную информацию о INFINITI и ее передовых технологиях можно найти на сайте INFINITI.com . Вы также можете подписаться на INFINITI на Facebook , Instagram , Twitter , LinkedIn и посмотреть все наши последние видео на YouTube .

Переменная степень сжатия

Переменная степень сжатия

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Переменная степень сжатия может предложить ряд преимуществ, таких как ограничение необходимого пикового давления сгорания в дизелях и противодействие снижению эффективности из-за детонации в двигателях с искровым зажиганием. Механизмы для изменения степени сжатия двигателя включают в себя двухступенчатую систему, в которой можно выбрать низкую или высокую степень сжатия, или систему бесступенчатого сжатия. В большинстве двухступенчатых систем используется шатун переменной длины, в то время как для бесступенчатых систем было предложено множество механизмов.

Введение

Переменная степень сжатия дает ряд преимуществ для дизельных и бензиновых двигателей. Хотя эта концепция изучалась в течение многих лет [3537] [3538] [3539] [3540] [1942] , для многих приложений было трудно оправдать добавленную стоимость и сложность.Разработки, которые обеспечили более простой механизм за счет использования соединительных стержней переменной длины, по-видимому, делают этот вариант жизнеспособным для массового производства.

Механизмы для изменения степени сжатия включают в себя либо двухступенчатую систему, в которой можно выбрать низкую или высокую степень сжатия, либо систему с непрерывным изменением, в которой может быть выбрана любая степень сжатия между низким и высоким значением.

Двухступенчатые системы включают шатуны переменной длины AVL и FEV.Системы с непрерывным изменением параметров могут быть реализованы с помощью различных механизмов, включая:

  • Многорычажный механизм между коленчатым валом и поршнем, Nissan и MCE-5
  • Подвижная головка / цилиндр, SAAB [3541] и Enerva [3542]
  • Эксцентриковые шейки коленчатого вала, Caterpillar [1927] [1921] [1934]
  • Подвижная головка поршня [3543]

Двухступенчатые системы

Система AVL

В двухступенчатой ​​системе переменной степени сжатия AVL используется телескопическая соединительная штанга, рис. 1.Активация осуществляется газом или массовыми силами. Сила инерции F M и сила газа F G используются для удлинения и укорачивания шатуна. Трансляционный шарнир укорачивает шатун, когда результирующая сила вала F R направлена ​​к центру коленчатого вала (F G > F M ), и удлиняет шатун, когда он находится в противоположном направлении (F G M ). Ограничители определяют минимальную и максимальную длину шатуна.Чтобы «удерживать» одну из двух позиций, масло переносится в объемы ниже или выше трансляционного сочленения. Система управления сигнализирует, когда требуется изменение длины шатуна [3518] [3544] .

Рисунок 1 . Телескопический шатун AVL

###

Performance Tech | Степень сжатия 101 Часть: 1

O Оптимизация степени сжатия двигателя для типа топлива и уровней наддува (приложения с принудительной индукцией), которые будут использоваться, может привести к дополнительной мощности, увеличению крутящего момента и улучшенной экономии топлива.Как вы, возможно, уже знаете, некоторые двигатели оптимизированы на заводе для работы на бензине с более высоким октановым числом (ТОЛЬКО PREMIUM). Эти двигатели обычно имеют более высокую степень сжатия, чем аналогичный двигатель, предназначенный для работы на бензине обычного качества. Если вы собираетесь перейти на «встроенный» двигатель в будущем, у вас будет возможность изменить степень сжатия. Чтобы помочь вам принять обоснованное решение, DSPORT будет делать серию из трех частей по коэффициенту сжатия 101. В первой части мы определим степень сжатия и всю математику, необходимую для расчета фактической степени сжатия двигателя (часто отличной от спецификация производителя).В первой части также будет рассказано обо всех доступных методах изменения степени сжатия. Во второй части мы рассмотрим, как октановое число топлива, процентное содержание этанола, уровни наддува и типы вождения будут влиять на выбор идеальной степени сжатия для конкретного применения. Наконец, в третьей части мы исследуем способы достижения идеального числа сжатия, которое приводит к максимальной эффективности сгорания. Итак, давайте начнем с того, что посмотрим, как именно рассчитываются степени сжатия.

Майкл Феррара


Статическая степень сжатия двигателя, обычно именуемая просто степенью сжатия, является функцией «стреловидного» и «нераскачиваемого» объема цилиндров двигателя. Рабочий объем представляет собой динамический объем цилиндра, основанный на положении поршней в самом низком (нижняя мертвая точка или НМТ) и самом высоком (верхняя мертвая точка или ВМТ) положении. Рабочий объем цилиндра такой же, как рабочий объем отдельного цилиндра.

Прокладки головки обычно имеют диаметр отверстия на 0,5–1,0 мм больше, чем диаметр цилиндра, который они будут уплотнять. Если производитель не указывает размер отверстия прокладки, для прямого измерения можно использовать набор штангенциркулей.

Непотерянный объем цилиндра — это объем цилиндра, который не изменяется. Этот объем складывается из объема камеры сгорания в головке блока цилиндров, объема, создаваемого прокладкой головки, объема, добавляемого или вычитаемого головкой поршня (купола, тарелки, предохранительные клапаны, противопожарные щели) и добавляемого или принимаемого объема в направлении от поршня к деке с поршнем в ВМТ.

Расчет рабочего объема (куб. См) двигателя довольно прост, так как он равен объему одного цилиндра:

Если общий рабочий объем двигателя неизвестен, но известны диаметр цилиндра и ход поршня, вместо этого можно использовать это уравнение:

Как упоминалось ранее, непромокаемый объем цилиндра состоит из объема камеры сгорания в головке блока цилиндров, объема, создаваемого прокладкой головки, объема, добавляемого или вычитаемого головкой поршня (купола, тарелки, предохранительные клапаны, пазами для огня) и объем, добавляемый или отводимый за счет положения поршень-дека с поршнем в ВМТ. В отличие от расчета рабочего объема, который можно выполнить, просто зная диаметр цилиндра и ход двигателя, для расчета рабочего объема требуется значительно больше информации. Часть этой информации можно получить только путем прямого измерения.

Использование приспособления для настила моста с двойными стрелочными индикаторами — единственный способ получить точные измерения. Двойные индикаторы показывают, качнулся ли поршень в одну сторону, а не в нейтральное положение.

Объем камеры сгорания может быть измерен непосредственно путем измерения объема камеры сгорания.Это можно сделать с помощью экономичных комплектов, которые начинаются примерно с 20 долларов, или более точных комплектов, которые стоят около 120 долларов. Зная или измеряя размер отверстия прокладки головки (обычно, но не всегда, на 0,5-1 мм больше, чем размер отверстия цилиндра, в котором она предназначена) и ее толщина в сжатом состоянии позволит объему, создаваемому прокладкой головки, увеличиться. рассчитываться. Часто эти числа предоставляются производителем прокладки. Всегда обязательно проверяйте, соответствует ли указанный размер отверстия с прокладкой внутреннему диаметру прокладки или предполагаемому размеру отверстия цилиндра.Что касается объема, создаваемого или уменьшаемого формой днища поршня, это спецификация, предоставляемая производителем поршня. Наконец, измерение между поршнем и декой производится с помощью перемычки и двойного циферблатного индикатора. После измерения этого расстояния добавленный объем (если поршень находится ниже поверхности деки) или вычитаемый (поршень выше поверхности деки) из непрометенного объема можно рассчитать с использованием того же основного уравнения, которое использовалось для расчета прокладки головки. Единственная разница — вероятность того, что это будет отрицательный результат, если поршень находится над поверхностью деки.

Объем камеры сгорания (куб.см): Хотя вы можете найти где-нибудь в Интернете спецификацию камеры сгорания для конкретного двигателя, есть вероятность, что она будет отличаться от фактического объема головки (головок) цилиндров. используется на вашем двигателе.

Объем головки поршня (см3): Если головка поршня плоская без предохранительных клапанов, это значение будет равно нулю. И вот здесь все становится немного сложнее. В целях уравнения мы пытаемся определить, как головка поршня влияет на непрометаемый объем.Если на головке поршня имеются предохранительные клапаны, тарелка или геометрия купола инвертора, это значение следует считать положительным (хотя производитель поршня может записать его как отрицательное). Таким образом, это увеличит ценность непрометенного объема. Если на поршне есть купол, это значение будет отрицательным (хотя производитель поршня может записать это как положительное). Таким образом, будет уменьшен общий непрометенный объем.

Хотя разница в 2,4 куб. См может показаться несущественной, ее достаточно, чтобы снизить степень сжатия RB26DETT с 8.От 7 к 1 (прокладка 1,1 мм) до 8,4 к 1 (прокладка 1,5 мм).

Объем зазора между поршнем и декой (куб.см): Уравнение, используемое для расчета этого объема, почти идентично уравнению, используемому для расчета объема прокладки головки блока цилиндров. В этом уравнении нас интересует глубина отверстия, в котором находится поршень. Если головка поршня находится на одном уровне с декой, это число будет равно нулю. Если поршень находится внизу в отверстии, это число будет положительным. Если поршень находится над декой, это число будет отрицательным.

Объем зазора между поршнем и декой (куб.см):

Пример для отверстия 86 мм с поршнем на 0,010 дюйма под палубой:

86 x 86 x 0,010 x 0,01995 = 1,48 куб.см

(L) В качественный набор для измерения объема камер сгорания будет входить бюретка. В более дешевых наборах будет использоваться градуированный шприц. Оба комплекта будут включать оргстекло. (R) Если производитель не предоставляет значение толщины прокладки головки при сжатии, можно использовать микрометр.Убедитесь, чтобы измерить область, которая имеет все слои, но избежать измерения стопора / сложенный слой.

Когда поршень находится в нижней мертвой точке (НМТ), общий объем цилиндра представляет собой рабочий объем, вклад в объем от поршня, объем прокладки головки, объем головки цилиндра и объем зазора деки. Это развернутый плюс не развернутый объем.

Итак, вы приобрели комплект поршней 9,5: 1 для сборки вашего двигателя. Значит, степень сжатия двигателя будет 9.5 к 1, верно? Может быть, но, вероятно, нет. Скорее всего, это будет где-то между 9.0-к-1 и 10.0-к-1. Причина в том, что заявленная степень сжатия предполагает, что камера сгорания имеет определенный объем, в котором используется определенная прокладка головки, а высота от поршня до деки — это конкретное число. Реальность такова, что камеры сгорания отлиты и могут быть на 3 см больше или меньше, чем предполагалось. Палуба головки блока цилиндров обычно разрезается, когда двигатель обрабатывается, и когда используются клапаны вторичного рынка, объем может быть добавлен или уменьшен по сравнению с клапанами OEM.Если вы хотите узнать фактическую степень сжатия вашего двигателя, вам нужно потратить время на ее измерение. Это может добавить к сборке вашего двигателя дополнительных 200-300 долларов или больше, так как правильный способ требует некоторой сборки макета.

Добавить комментарий

Ваш адрес email не будет опубликован.