Дифференциал подробно — Энциклопедия журнала «За рулем»
Дифференциал — механизм распределения крутящего момента входного вала между двумя выходными полуосями ведущих колес или, на автомобилях повышенной проходимости,для распределения крутящего момента между передней и задней ведущими осями.
Это часть трансмиссии, которая на автомобилях классической и переднеприводной компоновки обычно выполняется в виде единого блока с главной передачей,а на внедорожниках встраивается в раздаточную коробку
Свободный дифференциал всегда делит поступающий на него крутящий момент поровну — не зависимо от того, с равными или с разными скоростями вращаются ведущие колеса (или ведущие оси).
Назначение дифференциала
При движении автомобиля по криволинейным участкам дороги — например, в поворотах — колеса ведущей оси катятся по окружностям разной длины. Внешнее (по отношению к центру поворота автомобиля) колесо проходит больший путь, чем внутреннее. Эта разница тем больше, чем круче поворот. Аналогичная проблема возникает и в движении по прямой, если используются ведущие колеса разной размерности и т.п. Если в этих ситуациях колеса соединить жесткой осью,окажется, что одно колесо вращается быстрей, чем нужно для прохождения заданной траектории,а другое медленней. Значит, оба колеса будут пробуксовывать, испытывать повышенные нагрузки, сильней нагреваться и изнашиваться. Увеличится и расход топлива. Наконец, это нарушает курсовую устойчивость автомобиля и ведет к его заносу или сносу — особенно, на скользких дорогах.
Для компенсации разницы проходимого ведущими колесами пути используется особый механизм — дифференциал. Простейший, свободный дифференциал уравнивает крутящие моменты (или тяговые силы) обоих ведущих колес, и если скорости их вращения (или линейного движения) разные, то и мощности на них пропорциональны этой разнице. Колесо, вращающееся быстрей, тратит на это несколько большую мощность, чем то, которое вращается медленней.
Таким образом дифференциал предназначен для обеспечения вращения ведущих колес с разными угловыми скоростями при постоянно передаче крутящего момента на оба колеса ведущей оси. Эта же логика присутствует и в работе межосевого дифференциала.
Устройство и принцип действия
Дифференциал классической конструкции устроен просто. Например, на заднеприводном автомобиле вращение от ведомого вала коробки передач передается через карданный вал на ведущую коническую шестерню главной передачи, которая находится в постоянном зацеплении с ведомой шестерней главной передачи. Ведомая шестерня является одновременно корпусом дифференциала, в котором перпендикулярно оси ведомой шестерни закреплена ось сателлитов — малых конических шестерен. Последние вращаются вместе с корпусом дифференциала относительно оси ведомой шестерней главной передачи. Сателлиты находятся в постоянном зацеплении с коническими шестернями левой и правой полуосей ведущих колес.
При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей.
Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней,наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется,- ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.
Применение дифференциалов
В автомобилях с одной ведущей осью устанавливается один дифференциал, объединенный с главной передачей. В автомобилях с двумя и более ведущими осями дифференциалы устанавливаются в каждую ведущую ось (например, в трехосном грузовике или автобусе с двумя задними ведущими осями дифференциалы установлены в среднюю и заднюю оси). В автомобилях с подключаемым полным приводом дифференциалы устанавливаются в каждую ведущую ось (у двухосного полноприводного джипа с подключаемым передним ведущим мостом два дифференциала — по одному в каждой ведущей оси), но эксплуатация этих машин с постоянно подключенной передней осью не рекомендуется по причине повышенного износа главных передач и колес из-за неравномерно распределяемой мощности между осями. В свою очередь в автомобилях повышенной проходимости с постоянно подключенными ведущими осями применяют три дифференциала — по одному в каждой ведущей оси и один межосевой, установленный в раздаточной коробке. Межосевой дифференциал распределяет мощность между ведущими осями в зависимости от длины проходимого колесами оси пути. К примеру, передние колеса могут преодолевать возвышение, задние еще двигаться по прямой — передние колеса описывают более длинный путь, чем задние, соответственно, межосевой дифференциал обеспечивает передачу большей части мощности двигателя на переднюю ось, чем на заднюю. На многоосных транспортных средствах с несколькими ведущими осями применяют межтележечный дифференциал.
На гоночных автомобилях на основе серийных моделей (например, на раллийных или для кольцевых гонок) дифференциал перед гонками блокируют, поскольку повороты такие машины проходят на большой скорости и с заносом. В данном случае склонность автомобиля к заносу из-за отсутствия дифференциала считается преимуществом.
Недостаток дифференциала
Главным недостатком дифференциала классической конструкции является проблема пробуксовки колеса, потерявшего контакт с поверхностью дорожного полотна. Когда одно из ведущих колес вращается в вывешенном состоянии его скорость вдвое больше, чем была бы при этих же оборотах ведомой шестерни дифференциала при нормальном движении по прямой. Зато второе колесо вообще не вращается. Причина проста. Момент сопротивления вращению вывешенного колеса ничтожен, соответственно мал и подводимый к нему крутящий момент. Значит, столь же мал крутящий момент и на противоположном колесе — оно стоит. Если же одно из колес буксует — с повышенными оборотами, но с существенным сопротивлением (например, в грязи, песке и т.п.), то такой же крутящий момент поступает и на другое, не буксующее, колесо. В результате автомобиль может двигаться с небольшой скоростью. При этом на буксующее колесо подается более высокая мощность — она тратится на нагрев шины, дороги и т.д.
Эффект пробуксовки снижает проходимость автомобиля со свободным дифференциалом. Для решения этой проблемы автомобили оснащают механизмами блокировки дифференциала — ручной или автоматической — различной конструкции.
Механизмы блокировки дифференциала
- Ручная блокировка дифференциала
Самым простым способом блокировки дифференциала является применение механизма с ручным управлением. Этот вид блокировки применяется на автомобилях повышенной проходимости. Блокировка производится блокировочными муфтами, которые фиксируют сателлиты. Дифференциал отключается. К достоинствам данного типа блокировки можно отнести простоту и надежность конструкции, к недостаткам — необходимость точно оценивать дорожную обстановку и отключать блокировку дифференциала при движении по качественным дорогам во избежание поломок главной передачи и ведущего моста в целом.
- Блокировка дифференциала с электронным управлением
На современных полноприводных легковых автомобилях повышенной проходимости с развитым компьютерным управлением работой агрегатов и механизмов устанавливают антипробуксовочную систему с электронным управлением. Как только бортовой компьютер автомобиля (или электронный блок антипробуксовочной системы) получает от датчика вращения сигнал о том, что одно колесо оси вращается значительно быстрей второго, свободное колесо притормаживается рабочим тормозом — благодаря свободному дифференциалу мощность передается на колесо, которое не утратило контакта с дорожным покрытием. Эта система требует наличия системы раздельного привода тормозов всех четырех колес и точной отладки датчиков. Антипробуксовочные системы позволяют достаточно тонко регулировать распределение мощности в зависимости от состояния дорожного покрытия и избежать потерь мощности двигателя при срабатывании дифференциала. С другой стороны, управляющая система из датчиков и исполнительных приводов тормозов (на соленоидах) обладает инерционностью, поэтому работает с некоторым запозданием, что приходится учитывать водителю.
На гоночных автомобилях иногда применяются фрикционные дифференциалы с тормозными ленточными механизмами, управляемыми электроникой.
- Автоматическая блокировка с применением фрикционной муфты
На спортивные автомобили, выпускаемые малыми сериями или по заказу, иногда устанавливают фрикционные самоблокирующиеся дифференциалы. На серийных машинах эти дифференциалы редкость, поскольку они требуют особого обслуживания и подвержены интенсивному износу. Фрикционные муфты устанавливаются между полуосевыми шестернями и корпусом дифференциала. При прямолинейном движении автомобиля полуоси вращаются с одинаковой угловой скоростью — сила трения во фрикционных муфтах равна нулю, дифференциал распределяет мощность между колесами ведущей оси поровну. Как только одна из полуосей начинает вращаться быстрей, диски фрикционной муфты сближаются, за счет возникающих сил трения муфта притормаживает вращение свободной полуоси. Этот тип дифференциала отличается невысокой эффективностью при большой разнице в угловых скоростях ведущих колес (например, на поворотах с малым радиусом закругления).
* Дифференциал с вязкостной муфтой (вискомуфтой)
Вискомуфта работает подобно фрикционной муфте самоблокирующегося дифференциала, но имеет упрощенную конструкцию. В корпус главной передачи ведущего моста устанавливается вискомуфта, состоящая из двух пакетов перемежающихся перфорированных дисков, вращающихся в вязкой среде на основе силикона. Каждый пакет соединен с левой и правой полуосью. Когда угловая скорость полуосей одинакова, скорость вращения дисков пакета тоже одинакова. Как только один из пакетов, связанный с полуосью, начинает вращаться быстрей другого, вискомуфта начинает притормаживать этот пакет, стремясь выровнять угловые скорости дисков (и, соответственно, полуосей). За счет этого возникает эффект автоматической блокировки свободного колеса.
Этот тип автоматической блокировки имеет ряд недостатков. Во-первых, вискомуфта увеличивает размеры картера ведущего моста. Во-вторых, вискомуфта не отличается высокой эффективностью и не срабатывает при большой разнице угловых скоростей, то есть в условиях тяжелого бездорожья.
Другие типы самоблокирующихся дифференциалов
Помимо описанных механизмов автоматической блокировки дифференциала в автомобилях используются и другие типы блокировочных систем.
В военной технике получили распространение зубчатые или кулачковые самоблокирующиеся дифференциалы.
Существует конструкция гидророторного самоблокирующегося дифференциала, в котором использован принцип фрикционной муфты с гидроприводом. При возникновении разницы в угловых скоростях полуосей, муфта тормозит вращение одной из полуосей под воздействием поршня, сжимающего пакет фрикционных дисков. Поршень перемещается давлением масла, нагнетаемого гидронасосом.
На полноприводные автомобили Honda устанавливают блокировку дифференциала с двумя гидронасосами.
На современных легковых автомобилях повышенной проходимости и гоночных машинах все большее применение находят шестеренчатые самоблокирующиеся дифференциалы (осевые и межосевые), в которых использован эффект заклинивания червячной или косозубой передачи при достижении порогового значения разницы мощностей.
wiki.zr.ru
Виды дифференциалов | Справочная информация
Дифференциал является частью трансмиссии – системы, которая связывает мотор с ведущими колесами автомобиля. Этот механизм участвует в передаче вращательных усилий (крутящего момента) от двигателя к колесам, но главная его функция состоит в том, что он обеспечивает вращение колес при повороте авто с различной угловой скоростью.
В отсутствие дифференциала колеса автомобиля при прохождении поворота вращаются с одной и той же скоростью, что приводит к пробуксовке колеса, которое перемещается по большему внешнему диаметру поворотной дуги. Такой эффект крайне отрицательно сказывается на управляемости авто и приводит к быстрому износу покрышек.
В современном автомобилестроении используется три варианта размещения дифференциальной коробки в блоке трансмиссии:
- в авто с ведущими задними колесами (задним приводом) — в зоне задней оси;
- в машинах с передним приводом — непосредственно в самой коробке перемены передач;
- в полноприводных автомобилях (4WD) дифференциальное устройство может располагаться как в самой раздаточной коробке, так и в зонах обоих осей.
Устройство дифференциала
Базой конструкции дифференциального устройства является планетарный редуктор. В зависимости от того, какие зубчатые шестерни (передачи) используются для вращения колес, дифференциал делится на три разных вида:
- конический;
- цилиндрический;
- червячный.
Наибольшее распространение получила коническая зубчатая передача и, соответственно, конический дифференциал. Он традиционно монтируется между двух осей автомобилей с полным приводом, а не между колесами, как это возможно с иными видами.
Основные элементы конструкции одинаковы у всех типов дифференциалов, поэтому рассмотрим строение узла на примере конического механизма.
Дифференциальный механизм конического типа состоит из следующих элементов:
- планетарный редуктор;
- шестерни с сателлитами;
- корпус устройства.
На профессиональном сленге инженеров автомобилестроения и специалистов сервисных центров корпус дифференциального устройства называется «чашкой». Его основное назначение — принять вращательные усилия двигателя и передать их через сателлиты на шестерни. К поверхности чашки прикреплена ведомая шестерня ведущей передачи, а внутри чашки смонтированы оси, на которых перемещаются сателлиты. Собственно говоря, именно они и выполняют сцепление чашки (корпуса) и шестеренок. В легковых транспортных средствах традиционно применяется всего одна пара сателлитов, в грузовых — две, так как требуется передавать особенно высокий крутящий момент.
Получив энергию от сателлитов, шестерни начинают движение по оси и передают тот же крутящий момент без изменений на ведущую пару колес. В результате транспортное средство приходит в движение.
Шестерни, расположенные на осях, могут иметь равное или разное количество зубцов (шлицев). Если число зубцов равное, то шестерня образует симметричный дифференциал – крутящий момент распределяется по осям в равных соотношениях. Если же количество зубьев не равное, то происходит несимметричная раздача энергии на колеса, что обеспечивает повышенную проходимость в сложных дорожных условиях.
Функциональность дифференциального устройства
Симметричный дифференциал может функционировать в одном из трех доступных режимов.
Основной режим — это езда в направлении «прямо». В данном режиме колеса встречают одинаковую силу дорожного сопротивления и, соответственно, получают одинаковый крутящий момент.
При вхождении в поворот режим работы дифференциала изменяется. Даже незначительный поворот влево или вправо ведет к тому, что внутреннее колесо испытывает большее сопротивление, нежели внешнее. Чтобы сгладить этот дефект, внутренняя шестеренка замедляет свой ход и, тем самым, заставляет сателлиты двигаться в другом направлении, что увеличит амплитуду вращения наружной полуосевой шестерни. Из-за этого изменяется угловая скорость вращения двух ведущих колес, за счет чего осуществляется плавное вхождение в поворот
Третий режим в работе дифференциального устройства включается при езде по льду или иной скользящей поверхности. Одно из ведущих колес начинает испытывать сопротивление, а второе — нет. Дифференциал в таких случаях заставляет двигаться проскальзывающее колесо с максимальной скоростью, а на второе колесо подача крутящего момента приостанавливается. После прохождения препятствия требуется уравнять подачу энергии на колесную пару, для чего может потребоваться блокировка дифференциала.
Как отмечают специалисты в ГК Favorit Motors, сегодня крупные европейские и американские автопроизводители используют собственные разработки в области дифференциалов. Например, предлагаемые модели автомобилей Cadillac (система Controlled), Chevrolet (дифференциал Positraction) и Ford (механизмы Equa-Lock и Traction-Lok) применяют в трансмиссии исключительно свои модели распределяющих механизмов.
Виды современных дифференциалов
Это одно из самых конструктивно простых устройств, которое составлено из планетарного редукторного механизма (в плоском исполнении) и схемы со сдвоенными сателлитами, которые при работе сцепляются между собой. Используется косозубое сцепление, которое под большой нагрузкой выдает осевые мощности и передает их на пары сателлитов. Благодаря дополнительному вращению нужного ряда сателлитов при поворотах или пробуксовке на скользкой поверхности удается достигнуть торможения одного колеса и придать энергию другому.
Дифференциал Quaife подразумевает использование сразу пяти пар сателлитов для максимальной надежности сцепления косых зубьев между собой. Это, с одной стороны, позволяет эффективно использовать механизм в самых сложных дорожных условиях. А, с другой стороны, говорит о том, что со временем будет наблюдаться обширный износ всей конструкции в целом.
Тип дифференциального механизма Quaife был запатентован еще в 1965 году. Сегодня он преимущественно используется в гоночных или спортивных автомобилях, а также некоторых моделях переднеприводных машин.
Это довольно старый вид червячного дифференциального устройства, он был изобретен еще в 1950-х годах. На сегодняшний день автопроизводители используют 3 усовершенствованных разновидности дифференциала Torsen, однако все они имеют примерно одинаковый принцип работы. Шестерни, которые расположены на ведущих полуосях, образуют так называемую червячную пару с сателлитами. При этом, что существенно, на каждой полуоси располагаются свои сателлиты, которые парами сцепляются в некоторых положениях с сателлитами другой полуоси.
При движении вперед по прямой червячные пары находятся в остановленном положении, а при движении в повороте они проворачиваются. Очередной проворот по оси обеспечивает изменение угла колеса при поворотах и разворотах. Дифференциал Torsen считается самым мощным и износостойким, он работает при максимальной нагрузке и соотношениях крутящего момента.
- Механизм с дисковой блокировкой
Этот вид дифференциального устройства состоит из симметричного планетарного редукторного механизма, который закреплен на шестеренках конической формы. Шестерни имеют две маленькие муфты той же формы и два диска. Частично диски могут цепляться за саму чашку дифференциала, а частично — соприкасаться со сцеплением, которое работает при воздействии ведомой шестеренки.
Суть блокировки дифференциала заключается в том, что при возрастании механической силы на шестерни появляются вторичные осевые мощности. Дополнительные силы стремятся разъединить стыки между шестернями. В тот момент, когда им это удается, выравнивается скорость каждого из колес в связи с тем, что угловые скорости приобретают одно и то же значение.
Дифференциал с дисковой блокировкой появился еще в конце 1930-х годов, однако после значительной модернизации используется и сегодня — обычно на внедорожниках и спорткарах.
- Дифференциал кулачкового типа
Кулачковый дифференциал может иметь 2 варианта исполнения. Первый подразумевает расположение кулачковой муфты между двумя ведомыми шестеренками. В кулачковом механизме второго типа зубчатых колес нет в принципе – водилом здесь является сепараторное кольца, а функцию сателлитов выполняют «сухари» (специальные клинья). Ведомыми шестернями в этом случае являются кулачковые диски.
Принцип конструкции кулачкового дифференциала второго типа понятен из нижеприведенной схемы, где 1 – это корпус, 2 – обойма, 3 –сухарь, 4 и 5 – полуосевые звездочки. «Сухари» могут располагаться горизонтально (рисунок а) или радиально (рисунок б)
Суть блокировки дифференциального устройства заключается в том, что как только начинает наблюдаться разница между скоростными углами, кулачковая муфта (или кулачковые диски — во втором варианте исполнения) сразу же блокируют дифференциал.
Начальные разработки такого типа механизмов появились в 1940-х годах. В легковых транспортных средствах такой тип дифференциалов сегодня практически не используется. Основная сфера применения кулачкового типа — в военном автомобилестроении.
- Вискомуфта (вязкостная муфта)
Дифференциал конструктивно имеет на одной из ведущих полуосей емкость, наполненную вязкой жидкостью. В ней находятся 2 дисковых блока, первый из которых соединен с ротором, а второй — с другой полуосевой. Соответственно, чем больше будет разница в наборе скорости между колесами, тем больше будет становиться разница и в скорости движениях блоков дисков. Из-за вращения вязкость жидкости увеличивается.
Это самая простая и в то же время бюджетная конструкция дифференциального устройства. По оценкам специалистов ГК Favorit Motors устройство преимущественно устанавливается на городские паркетники, так как в условиях бездорожья вискомуфта не может обеспечить требуемую управляемость и проходимость.
Два типа принудительной блокировки дифференциала
В современных транспортных средствах используется как ручной, так электронный вариант блокировки дифференциала. У каждого из них есть свои преимущества. Ручная блокировка дифференциального механизма осуществляется непосредственно из салона авто. По команде водителя ступорятся вращающиеся шестерни и колеса начинают двигаться в одном темпе.
Такой тип применим перед преодолением разного рода дорожных препятствий в виде глубокого снега, грязи, ям или горок. После прохождения сложных участков можно проводить разблокировку. Традиционно ручная блокировка дифференциального устройства применяется на вездеходных транспортных средствах и внедорожниках.
Если автомобиль снабжен новой системой TRC, то автоматика сама производит электронную блокировку. В том случае, если одно из ведущих колес начинает буксовать, то оно будет слегка подтормаживаться тормозом авто. Удобство такого типа неоспоримо, однако не всегда блокировка будет включаться в нужный момент.
Вне зависимости от того, какой именно тип дифференциального устройства установлен на вашем автомобиле, специалисты ГК Favorit Motors могут предложить диагностику и обслуживание машины с учетом конструктивных особенностей механизма блокировки. Грамотный подход сочетается с опытностью мастеров, а стоимость профессиональных услуг считается одной из самых привлекательных по Москве.
Самые распространенные симптомы неисправности дифференциала – повышенная шумность, посторонний стук и удары, появление подтеков масла. Мастера автосервиса Favorit Motors отмечают, что важно незамедлительно обратиться в техцентр, чтобы устранить проблемы в работе устройства и избежать его дальнейшего разрушения. Какой бы сложной ни была неисправность, мастера сервисного центра Favorit Motors обладают всем необходимым диагностическим оборудованием и огромным опытом работы, что позволяет быстро и качественно устранить поломку. Сотрудники регулярно проходят переобучение в учебных центрах автопроизводителей, что позволяет им выполнять ремонтно-восстановительные работы любой сложности.
online.favorit-motors.ru
устройство и принцип работы. Главная передача
Главная передача
При движении автомобиля крутящий момент от коленвала двигателя передается коробке передач и затем, через главную передачу и дифференциал, на ведущие колеса. Главная передача позволяет увеличивать или уменьшать крутящий момент передаваемый колесам автомобиля и одновременно уменьшать и соответственно увеличивать скорость вращения колес. Передаточное число в главной передаче подбирается таким образом, что максимальный крутящий момент и частота вращения ведущих колес находятся в наиболее оптимальных значениях для конкретного автомобиля. Кроме того, главная передача очень часто является объектом тюнинга автомобиля.
Устройство главной передачи
По сути, главная передача — это не что иное, как шестеренчатый понижающий редуктор, в котором ведущая шестерня связана с вторичным валом КПП, а ведомая – с колесами автомобиля. По типу зубчатого соединения главные передачи различаются на следующие разновидности:
- цилиндрическая – в большинстве случаев применяется на автомобилях с поперечным расположением двигателя и коробки передач и передним приводом;
- коническая – применяется очень редко, так как имеет большие габариты и высокий уровень шума;
- гипоидная – наиболее востребованная разновидность главной передачи, которая применяется на большинстве автомобилей с классическим задним приводом. Гипоидная передача отличается малыми размерами и низким уровнем шума;
- червячная – практически не применяется на автомобилях по причине трудоемкости изготовления и высокой стоимости.
Также стоит отметить, что автомобили с передним и задним приводом имеют различное расположение главной передачи. В переднеприводных автомобилях с поперечным расположением КПП и силового агрегата, цилиндрическая главная передача располагается непосредственно в картере КПП.
В автомобилях с классическим задним приводом главная передача установлена в корпусе ведущего моста и соединена с коробкой передач посредством карданного вала. В функционал гипоидной передачи заднеприводного автомобиля также входит и разворот вращения на 90 градусов за счет конических шестерен. Несмотря на различные типы и расположение, предназначение главной передачи остается неизменным.
Дифференциал автомобиля
Дифференциал автомобиля чаще всего совмещен с главной передачей и располагается соответственно в картере коробки передач или в корпусе заднего моста. Однако дифференциал может быть установлен и между ведущими осями полноприводного автомобиля. Дифференциал представляет собой планетарный редуктор и делится на следующие разновидности:
- конический – в большинстве случаев устанавливается совместно с главной передачей между колесами одной приводной оси;
- цилиндрический – наиболее часто применяется для развязки ведущих осей полноприводных автомобилей;
- червячный – является универсальным и устанавливается как между колесами, так и между ведущими осями.
Основное предназначение дифференциала заключается в распределении крутящего момента между колесами автомобиля и изменения их частоты вращении относительно друг друга. Так, например поворот автомобиля без дифференциала был бы попросту невозможен, так как при повороте внешнее колесо обязательно должно вращаться с большей частотой, нежели внутреннее.
Дифференциалы существуют симметричные и несимметричные. Симметричный дифференциал передает равный крутящий момент на оба колеса и устанавливается чаще всего совместно с главной передачей. Несимметричный дифференциал позволяет передать крутящий момент в различных пропорциях и устанавливается между приводными осями автомобиля.
Устройство дифференциала
Дифференциал состоит из корпуса, шестерен сателлитов и полуосевых шестерен. Корпус обычно совмещен с ведомой шестерней главной передачи. Шестерни сателлиты играют роль планетарного редуктора и соединяют полуосевые шестерни с корпусом дифференциала. Полуосевые (солнечные) шестерни соединены с ведущими колесами посредством полуосей на шлицевых соединениях.
При всех плюсах у простейшего дифференциала существует и недостаток. Дело в том, что частота вращения может быть распределена на колеса не только в соотношении, например 50/50, 40/60 или 35/65, но и 0/100. То есть, на одно колесо автомобиля может быть передан абсолютно весь крутящий момент, в то время как второе колесо будет абсолютно статично. Такое случается в том случае если автомобиль застрял в грязи или на льду.
Однако современные дифференциалы более совершенны и практически лишены данного недостатка. Многие дифференциалы имеют жесткую автоматическую или ручную блокировку. Кроме того современные легковые полноприводные автомобили снабжаются системой курсовой устойчивости, которая основана на оптимальном распределении крутящего момента между осями и отдельными колесами в зависимости от траектории движения.
РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:
|
autoustroistvo.ru
Как работает дифференциал при движении автомобиля. Дифференциалы автомобилей — типы
Механизм трансмиссии, распределяющий крутящий момент двигателя между ведущими колесами и ведущими мостами автомобиля, называется дифференциалом. Дифференциал служит для обеспечения ведущим мостам разной скорости вращения при движении автомобиля по неровным дорогам и на поворотах.
Разная скорость вращения ведущим колесам, проходящим разный путь на поворотах и неровных дорогах, необходима для их качения без скольжения и буксования. В противном случае повысится сопротивление движению автомобиля, увеличатся расход топлива и износ шин. В зависимости от типа и назначения автомобилей на них применяются различные типы дифференциалов (рисунок 1).
Рисунок 1 — Типы дифференциалов, классифицированных по различным признакам
Дифференциал, распределяющий крутящий момент двигателя между ведущими колесами автомобиля, называется межколесным.
Дифференциал, который распределяет крутящий момент двигателя между ведущими мостами автомобиля, называется межосевым.
На большинстве автомобилей применяют конические дифференциалы, симметричные и малого трения.
Симметричный дифференциал распределяет поровну крутящий момент. Его передаточное число равно единице (uД = 1), т.е. полуосевые шестерни 3 и 4 (рисунок 2, а, б) имеют одинаковые диаметры и равное число зубьев. Симметричные дифференциалы применяются на автомобилях обычно в качестве межколесных и реже — межосевых, когда необходимо распределять крутящий момент поровну между ведущими мостами.
Рисунок 2 — Кинематические схемы шестеренных дифференциалов
а, б — симметричных; в, г — несимметричных; 1 — корпус, 2 — сателлит; 3, 4 — шестерни
Несимметричный дифференциал распределяет не поровну крутящий момент. Его передаточное число не равно единице, но постоянно (uД ≠ 1 = const), т.е. полуосевые шестерни 3 и 4 имеют неодинаковые диаметры и разное число зубьев. Несимметричные дифференциалы применяют, как правило, в качестве межосевых, когда необходимо распределять крутящий момент пропорционально нагрузкам, приходящимся на ведущие мосты.
Межколесный конический симметричный дифференциал (см. рисунок 2, а) состоит из корпуса 1, сателлитов 2, полуосевых шестерен 3 и 4, которые соединены полуосями с ведущими колесами автомобиля. Дифференциал легкового автомобиля имеет два свободно вращающихся сателлита, установленных на оси,
carspec.info
Дифференциал КПП: назначение, устройство, принцип работы
Дифференциал — механизм в устройстве трансмиссии, который необходим для передачи, преобразования и распределения крутящего момента. В случае с автомобилем, дифференциал отвечает за распределение момента между ведущими колесами, а также позволяет колесам вращаться с разной угловой скоростью при определенных условиях.
Читайте в этой статье
Где находится дифференциал в устройстве трансмиссии автомобиля, виды дифференциалов
Как известно, автомобили бывают переднеприводными, заднеприводными, а также полноприводными. Что касается места расположения дифференциала:
- если привод реализован на передние колеса, дифференциал находится в самой коробке передач;
- на заднеприводном авто дифференциал устанавливается в картере заднего моста;
- в автомобилях с полным приводом для привода ведущих колес дифференциал стоит в картере переднего и заднего моста, а для привода ведущих мостов механизм устанавливается в раздаточной коробке (раздатке).
Также дифференциалы бывают межколсесными и межосевыми. Если дифференциал использован для привода ведущих колес, это межколесный дифференциал. Межосевой дифференциал располагается между ведущими мостами применительно к автомобилям с полным приводом.
Что касается устройства и особенностей конструкции, в основу дифференциала положен планетарный редуктор. С учетом типа зубчатой передач, которая применена в редукторе, дифференциал (редуктор) может быть: коническим, цилиндрическим, червячным. Теперь давайте рассмотрим устройство и принцип работы дифференциала более подробно.
Устройство дифференциала и принцип работы
Начнем с первого типа. Конический дифференциал зачастую выполнят функцию межколесного дифференциала. Цилиндрический дифференциал обычно встречается на полном приводе и ставится между осями. Червячный дифференциал универсален, что позволяет ставить механизм как между колесами, так и использовать в качестве межосевого.
При этом наиболее распространенным является конический дифференциал, а базовые элементы его конструкции активно используются и в устройстве других типов дифференциалов. По этой причине рассмотрим устройство и принцип работы конического дифференциала в качестве примера.
- Итак, конический дифференциал, как уже было сказано выше, фактически является планетарным редуктором. В конструкцию включены полуосевые шестерни и сателлиты, которые находятся в корпусе (чашке дифференциала).
На корпус от главной передачи передается крутящий момент, затем через сателлиты происходит его передача на полуосевые шестерни. Также на корпусе крепится ведомая шестерня главной передачи (крепление жесткое). В корпусе установлены оси, на осях вращаются сателлиты.
Сами сателлиты, которые реализуют функцию планетарной шестерни, позволяют соединить корпус и полуосевые шестерни. С учетом того, какую величину крутящего момента нужно передать, в конструкцию дифференциала могут интегрировать 2 или 4 четыре сателлита.
Солнечные (полуосевые шестерни) осуществляют передачу крутящего момента на ведущие колеса автомобиля. Передача происходит через полуоси, соединение полуосевых шестерен и полуосей выполнено через шлицы.
Полуосевые шестерни бывают левыми и правыми, с одинаковым или разным количеством зубьев. Если число зубьев одинаковое, тогда это симметричный дифференциал, разное количество зубьев на левой и правой шестерне используется в устройстве несимметричных дифференциалов.
В первом случае симметричный дифференциал позволяет распределять крутящий момент по осям в равной степени, причем независимо от величины угловых скоростей ведущих колес.
Такой дифференциал используют для установки между колесами (симметричный межколесный дифференциал). Несимметричный дифференциал способен разделять крутящий момент в том или ином соотношении. Данная особенность позволяет использовать его между ведущими осями.
Теперь перейдем к принципам работы дифференциала. Прежде всего, симметричный дифференциал работает в трех основных режимах. Первый режим – движение по прямой, второй — движение в повороте, третий — езда по дорогое с плохим сцеплением (грязь, лед и т.д.).
Когда автомобиль движется прямо, колеса испытывают равнозначное сопротивление. Происходит передача крутящего момента от главной передачи на корпус дифференциала. Вместе с корпусом перемещаются сателлиты, которые, в свою очередь, осуществляют передачу момента на ведущие колеса.
С учетом того, что вращения сателлитов на осях не происходит, движение полуосевых шестерен осуществляется с равной угловой скоростью, частота вращения левой и правой шестерни равна частоте вращения ведомой шестерни главной передачи.
Однако если машина заходит в поворот, колесо, которое находится ближе к центру (внутреннее ведущее) нагружается сильнее и начинает испытывать большее сопротивление сравнительно с наружным колесом (дальним от центра поворота).
В результате роста нагрузки внутренняя полуосевая шестерня несколько замедляет вращение, а это приводит к тому, что сателлиты начинают вращаться вокруг своей оси. Такое вращение сателлитов приводит к увеличению частоты вращения наружной полуосевой шестерни.
- На практике возможность движения ведущих колес с разными угловыми скоростями делает возможным прохода поворота без пробуксовок. Кстати, крутящий момент все равно распределяется на ведущие колеса равнозначно.
Если же автомобиль забуксовал в грязи, в снегу или на льду, одно колесо испытывает большее сопротивление, чем другое. В этом случае дифференциал (благодаря своей конструкции) инициирует ускоренное вращение буксующего колеса, тогда как другое колесо замедляется.
Однако недостаточная сцепка с покрытием не позволяет получить большой крутящий момент на буксующем колесе, а особенность работы симметричного дифференциала не позволит также развить нужный момент на другом колесе. Часто в этом случае машина попросту не может продолжить дальнейшее движение.
Выходом из ситуации становится необходимость увеличения крутящего момента на колесе, которое не буксует. Для этого дифференциал необходимо заблокировать. По этой причине внедорожники имеют дополнительную возможность блокировки дифференциала, тогда как легковые авто и даже некоторые современные бюджетные «паркетники» лишены такой функции.
Читайте также
krutimotor.ru
Межколесный дифференциал: виды, устройство, принцип работы
Межколесный дифференциал относится к трансмиссионному механизму, который распределяет крутящий момент между валами привода. Кроме того, указанный механизм позволяет вращаться колесам с разными угловыми скоростями. Данный момент особо заметен при проходе поворотов. Кроме того, такая конструкция дает возможность безопасно и комфортно перемещаться по сухому твердому покрытию. В некоторых случаях, при выезде на скользкую трассу или бездорожье, рассматриваемое приспособление может сыграть как стопор для автомобиля. Рассмотрим особенности строения и эксплуатации межколесных дифференциалов.
Описание
Дифференциал предназначен для распределения крутящего момента от карданного вала к ведущим колесным мостам спереди или сзади, в зависимости от разновидности привода. В результате межколесный дифференциал дает возможность проворачиваться каждому колесу без пробуксовки. В этом и заключается прямое назначение механизма.
При прямолинейном перемещении транспорта, когда нагрузка на колеса равномерная с идентичными угловыми скоростями, рассматриваемый агрегат функционирует в роли передаточного отсека. В случае изменения условий движения (буксование, разворот, поворот) нагрузочный показатель изменяется. Полуоси стремятся вращаться с разными скоростными параметрами, возникает необходимость распределение крутящего момента между ними в определенном соотношении. На этом этапе межколесный дифференциал начинает выполнять свою основную функцию – гарантирование безопасности маневров транспортного средства.
Особенности
Схема размещения рассматриваемых автомобильных приспособлений зависит от рабочего ведущего моста:
- На картере коробки переключения передач (передний привод).
- На корпусе ведущего заднего моста.
- Машины с полным приводом оснащаются межколесным дифференциалом на остовах обоих мостов или раздаточных коробках (осуществляют передачу рабочего момента между колесами или мостами, соответственно).
Стоит отметить, что дифференциал на машинах появился не так давно. На первых моделях «самодвижущиеся» экипажи имели плохую маневренность. Проворачивание колес с идентичным угловым параметром скорости приводило к пробуксовке одного из элементов либо потере сцепления с дорожным покрытием. Вскоре инженеры разработали усовершенствованную модификацию устройства, позволяющего нивелировать потерю управляемости.
Предпосылки для создания
Межколесные дифференциалы автомобилей изобрел французский конструктор О. Пеккер. В механизме, предназначенном для распределения вращающегося момента, присутствовали шестерни и рабочие валы. Они служили для трансформации момента кручения от двигателя к ведущим колесам. Несмотря на все преимущества, данная конструкция полностью не решала проблемы с пробуксовкой колес на поворотах. Выражалось это в потере сцепления одного из элементов с покрытием. Особенно выражено момент проявлялся на обледенелых участках.
Буксование в подобных условиях приводило к неприятным происшествиям, что послужило дополнительным стимулом для разработки усовершенствованного приспособления, способного предотвратить занос транспортного средства. Техническое решение указанной проблемы разработал Ф. Порше, придумавший кулачковую конструкцию, ограничивающую проскальзывание колес. Первыми автомобилями, на которых применялась имитация межколесного дифференциала, стали «Фольксвагены».
Устройство
Ограничивающий узел работает по принципу планетарного редуктора. В стандартную конструкцию механизма входят следующие элементы:
- полуосевые шестеренки;
- сопутствующие сателлиты;
- рабочий корпус в виде чаши;
- основная передача.
Остов жестким способом соединен с ведомым зубчатым колесом, которое принимает момент кручения от аналога главной передачи. Чаша через сателлиты трансформирует вращение на ведущие колеса. Разность в скоростных режимах угловых параметров обеспечивается также при помощи сопровождающих шестерен. При этом величина рабочего момента остается стабильной. Задний межколесный дифференциал ориентирован на передачу оборотов на ведущие колеса. Транспортные полноприводные средства оснащаются альтернативными механизмами, воздействующими на мосты.
Разновидности
Указанные виды механизмов разделяются по конструкционным признакам, а именно:
- конические версии;
- цилиндрические варианты;
- червячные приспособления.
Кроме того, дифференциалы разделяются по числу зубьев шестеренок полуосей на симметричные и несимметричные версии. По причине оптимальной возможности рассредоточения момента кручения, вторые модификации с цилиндрами монтируются на мосты автомобилей с полным приводом.
Машины с передним или задним ведущим мостом оборудуются симметричными коническими модификациями. Червячная передача универсальна и может агрегировать со всеми типами устройств. Конические агрегаты способны работать в трех конфигурациях: прямолинейным, поворотным и пробуксовочным способом.
Схема работы
При прямолинейном перемещении, электронная имитация блокировки межколесного дифференциала характеризуется равным рассредоточением нагрузки между колесами транспортного средства. При этом наблюдается идентичная угловая скорость, а корпусные сателлиты не вращаются вокруг собственных осей. Они трансформируют момент кручения на полуоси при помощи статичного зубчатого зацепа и ведомой шестеренки основной передачи.
На поворотах автомобиль испытывает переменчивое воздействие усилий сопротивления и нагрузки. Параметры распределяются следующим образом:
- Внутреннее колесо меньшего радиуса получает увеличенное сопротивление, по сравнению с наружным аналогом. Повышенный показатель нагрузки обуславливает снижение скорости вращения.
- Внешнее колесо перемещается по большей траектории. При этом увеличение угловой скорости способствует плавному повороту машины, без буксования.
- С учетом указанных факторов, колеса должны обладать различными угловыми скоростями. Сателлиты внутреннего элемента замедляют вращение полуосей. Те же, в свою очередь, через конический зубчатый элемент, повышают интенсивность работы внешнего аналога. При этом момент кручения от основной передачи остается стабильным.
Пробуксовка и курсовая устойчивость
Автомобильные колеса могут получать разный параметр нагрузки, буксуя и теряя сцепление с дорожным покрытием. При этом на один элемент подается чрезмерное усилие, а второй работает «вхолостую». Из-за такой разницы движение автомобиля становится хаотичным или вообще прекращается. Чтобы устранить эти недостатки, используют систему курсовой устойчивости либо ручную блокировку.
Для того, чтобы момент кручения полуосей выровнялся, следует стопорить действие сателлитов и обеспечить трансформацию оборотов от чаши на нагруженную полуось. Это особенно актуально для межколесных дифференциалов МАЗа и прочих машин повышенной грузоподъемности с полным приводом. Подобная особенность связана с тем, что стоит потерять сцепление в одной из четырех точек, величина крутящего момента устремится к нулю, даже если машина оснащена двумя межколесными и одним межосевым дифференциалом.
Электронный самоблок
Избежать неприятностей, указанных выше, позволяет частичная или полная блокировка. Для этого и применяются самоблокирующиеся аналоги. Они распределяют кручение с учетом разности на полуосях и соответствующих скоростных режимов. Оптимальным способом решения проблемы является оборудование машины электронной блокировкой межколесного дифференциала. Система оснащается датчиками, которые контролируют требуемые показатели во время движения транспортного средства. После обработки полученных данных, процессор выбирает оптимальный режим корректировки нагрузочных и прочих воздействий на колеса и мосты.
Принцип работы данного узла состоит из трех основных стадий:
- В начале проскальзывания ведущего колеса, контрольный блок получает импульсы от индикаторов скорости вращения, после их анализа автоматически принимается решение о способе функционирования. Далее происходит замыкание клапана-переключателя и открывание аналога высокого давления. Помпа узла АБС создает давление в рабочем контуре тормозного цилиндра буксующего элемента. Торможение ведущего проскальзывающего колеса осуществляется за счет повышения давления тормозной жидкости.
- На втором этапе система имитации самоблока удерживает тормозное усилие за счет сохранения давления. Действие насоса и пробуксовка колеса прекращается.
- К третьей стадии работы указанного механизма относится завершение проскальзывания колеса с одновременным сбросом давления. Переключатель открывается, а клапан высокого давления закупоривается.
Межколесный дифференциал КамАЗа
Ниже приведена схема указанного механизма с описанием элементов:
1 — Основной вал.
2 — Уплотнитель.
3 — Картер.
4, 7 — Шайбы опорного типа.
5, 17 — Корпусные чаши.
6 — Сателлит.
8 — Индикатор блокировки.
9 — Заливная пробка.
10 — Пневмокамера.
11 — Вилка.
12 — Кольцо-стопор.
13 — Муфта зубчатая.
14 — Блокировочная муфта.
15 — Сливная крышка.
16 — Шестеренка привода среднего моста.
18- Крестовина.
19 — Зубчатая шестерня заднего моста.
20 — Крепежный болт.
21, 22 — Крышка и подшипник.
Безопасность
Межколесный дифференциал предназначен для обеспечения безопасной и комфортной езды на дорогах различного предназначения. Некоторые недостатки рассматриваемого механизма, указанные выше, проявляются при опасном и агрессивном маневрировании по бездорожью. Следовательно, если на машине предусмотрен привод ручного блокиратора, эксплуатировать ее необходимо исключительно в соответствующих условиях. Скоростные машины использовать без указанного механизма весьма затруднительно и небезопасно, особенно на высоких скоростях по шоссе.
fb.ru
Замена шестерен дифференциала автомобилей ВАЗ, сборка дифа
Дифференциал автомобилей ВАЗ — конический, двухсателлитный. Сателлиты — это конические шестерни (z=10), установленные на оси в коробке (корпусе) шестерен дифференциала. От выпадения ось сателлитов удерживается ведомой шестерней, которая перекрывает отверстия оси в коробке.
Замена шестерен дифференциала автомобилей ВАЗ, разборка и сборка дифференциала.
Полуосевые шестерни (z=16) установлены в цилиндрических гнездах коробки и опираются на нее через опорные шайбы. При работе шестерен дифференциала, когда полуосевые шестерни вращаются относительно коробки, опорные шайбы вращаются вместе с ними.
Подбором опорных шайб по толщине s устанавливается осевой люфт шестерен полуосей в пределах 0-0,1 мм. В некоторых книгах по ремонту автомобилей ВАЗ указано, что момент сопротивления вращению шестерен дифференциала не должен превышать 1,5 кгсм, что соответствует усилию на максимальном диаметре зубчатого венца полуосевой шестерни примерно 45 кгс.
Очевидно, здесь речь уже идет не о люфте, равном нулю, а о каком-то преднатяге. На практике коробку дифференциала с преднатягом шестерен просто не собрать. Все номинальные и предельно допустимые при износе зазоры шестерен дифференциала приведены на рисунке ниже.
Установка ведомой шестерни на коробку дифференциала при помощи установочных винтов.
Увеличение зазоров шестерен дифференциала более предельно допустимых может вызвать шум при движении автомобиля на повороте. Стуки при трогании автомобиля или при переключении передач обычно связаны с износом оси сателлитов и отверстий в коробке дифференциала и сателлитов. Постоянный шум при движении может исходить от дифференциала в случае износа подшипников или шлицевого соединения шестерен с полуосями.
Разборка дифференциала автомобилей ВАЗ.
Для разборки дифференциала необходимо отвернуть 8 болтов (S17, М10х1,25), крепящих ведомую шестерню к фланцу коробки. Болты затянуты значительным моментом (8,5-10,5 кгсм) и если учесть, что для отворачивания болтов потребуется еще больший момент, коробку дифференциала необходимо закрепить в тисках. Закрепление осуществляется по плоскостям окон коробки.
Перед снятием шестерни пометим ее положение относительно коробки. Краской или керном поставим метку на наружном диаметре фланца коробки против какой-либо буквы или цифры, выбитых на конической поверхности ведомой шестерни (поставить метку на шестерне не удастся — у нее слишком твердая поверхность).
Ось сателлитов, как правило, выбивать не требуется, она вынимается свободно. Сателлиты поворачиваются в сторону окон, через которые вынимаются они и полуосевые шестерни с опорными шайбами. Зафиксируйте места установки полуосевых шестерен дифференциала с опорными шайбами. Обратите внимание на торцевые поверхности шайб, чтобы стало понятно — относительно какой детали она вращается. С неизношенной стороны, в случае необходимости, можно установить дополнительную шайбу (прокладку).
Все трущиеся поверхности должны быть блестящие, чистые и гладкие, как отполированные. Если имеются следы незначительного заедания (схватывания), эти повреждения поверхностей рекомендуется устранить шлифовальной шкуркой зернистостью 10-М40. Особенно внимательно осмотрите сателлиты — при наличии любых трещин, сколов они уже не пригодны для дальнейшего использования.
Обычно наиболее заметен износ оси сателлитов. Стуки при трогании и переключении передач отчетливо слышны при минимальном диаметре оси в местах сопряжений 15 мм (размер диаметра оси 15,988-16 мм). Как правило, ось продают в комплекте с шестернями и опорными шайбами, поэтому перечисленные детали и заменяют комплектом.
Выход из строя коробки дифференциала— довольно редкое явление. Это может произойти, например, при заедании (схватывании) сферических поверхностей коробки и сателлита, в результате которого наиболее сильно повреждается сферическая поверхность коробки.
Сборка дифференциала автомобилей ВАЗ.
При сборке дифференциала устанавливаем через окна полуосевые шестерни с опорными шайбами. Через окно вводим сателлит в зацепление с полуосевыми шестернями. В отверстие сателлита вставляем ось, а с другой стороны на ось устанавливаем второй сателлит и, при необходимости проворачивая шестерни, вводим второй сателлит в зацепление с полуосевыми шестернями.
Придерживая сателлиты, вынимаем ось и проворачиваем все шестерни (безотносительного их движения) так, чтобы сателлиты вошли в коробку дифференциала и их отверстия совпали с отверстиями коробки. Вставив ось сателлитов, замеряем осевой люфт полуосевых шестерен. Осевой люфт полуосевых шестерен должен быть в пределах 0-0,1 мм. При увеличенном люфте заменяют опорные шайбы на более толстые.
Если при шайбах максимальной толщины 2,1 мм не удается получить люфт в пределах 0-0,1 мм, рекомендуется заменить шестерни. Люфт может быть увеличенным не только из-за износа зубьев шестерен, но и при износе сферических поверхностей сателлитов и коробки. Кроме этого на практике приходится иметь дело с запасными частями, у которых размеры уже могут быть равны предельно допустимым.
Поэтому осевой люфт обычно устанавливается в два-три раза больше допустимого (0,2-0,3 мм) по той причине, что устранить его или уменьшить более толстыми опорными шайбами или дополнительными шайбами не удается. При уменьшении люфта сборка дифференциала затрудняется или становится невозможной. Собрав дифференциал, тщательно смазываем все трущиеся поверхности трансмиссионным маслом, перемещая шестерни в пределах люфта.
Устанавливаем ведомую шестерню. Посадка шестерни на коробку довольно плотная, при этом притянуть ее к фланцу коробки штатными болтами не удается, они слишком коротки. Точнее и проще происходит посадка шестерни при использовании двух винтов (1 см. рисунок выше). Напомним, что шестерню лучше установить так, как она стояла до разборки.
По материалам книги «Приспособления для ремонта автомобилей».
Росс Твег.
Похожие статьи:
- Блоки предохранителей и реле на Шевроле Нива ВАЗ-2123, номиналы предохранителей, защищаемые цепи, схема соединений монтажного блока предохранителей и реле.
- Схемы электрооборудования Chevrolet Niva ВАЗ-2123, разъемы и соединительные колодки, жгуты проводов, схема системы управления двигателем.
- Пикап Great Wall Pao, экстерьер и интерьер, особенности конструкции, комплектация, характеристики, обзор.
- Land Rover Discovery Sport 2019 года, экстерьер и интерьер, особенности конструкции, комплектация, характеристики, обзор.
- SsangYong Korando четвертого поколения, экстерьер и интерьер, особенности конструкции, комплектация, характеристики, обзор.
- Новый Land Rover Defender 2019, особенности конструкции, трансмиссии и подвески, двигатели, оснащение и оборудование салона.
auto.kombat.com.ua