Самодельные зарядные устройства для аккумуляторов схемы: Схемы зарядных устройств для автомобильных акб: как сделать своими руками

Содержание

Обзор схем зарядных устройств

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства).

К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим

током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

как сделать своими руками, схема

Автор Владимир Остапенко На чтение 18 мин. Просмотров 10.4k. Опубликовано


Во время эксплуатации автомобиля нередко возникает ситуация, когда аккумуляторную батарею (АКБ) приходится снимать и заряжать стационарным зарядным устройством (ЗУ). Его, конечно же, можно купить, а возможно сделать своими руками. В этой статье рассмотрим несколько обычных зарядных устройств для автомобильного аккумулятора, которые несложно повторить даже начинающему радиотехнику.

Требования к зарядке АКБ

Прежде чем сделать зарядное устройство для автомобильного аккумулятора своими руками, рассмотрим .

  1. Зарядный ток не должен превышать рекомендованный производителем батареи. Если зарядный ток не указан (неизвестен), то он не должен превышать 10 % от принятой ёмкости аккумулятора.
  2. В конце процесса зарядки ток желательно уменьшить, чтобы .
  3. Недопустима перезарядка АКБ. Как только напряжение на клеммах заряжаемой батареи достигнет значения 13,8 ± 0,15 В, зарядку стоит прекратить. Это будет существенно для AGM и гелевых батарей.
  4. При пропадании сетевого напряжения не должна происходить разрядка батареи через зарядное устройство. Глубокий разряд для свинцовой АКБ губителен.

Исходя из вышесказанного, определяем требования к зарядному устройству:

  1. Должно обеспечивать регулировку зарядного тока.
  2. Потребуется наличие встроенных измерительных приборов – амперметра и вольтметра, — позволяющих контролировать ток заряда и .
  3. Обязательно наличие цепей, предотвращающих разряд АКБ через зарядное устройство при пропадании сетевого напряжения.

Полезно. Первый и второй пункты могут выполняться оператором вручную, но существуют и автоматические ЗУ, самостоятельно регулирующие ток во время зарядки и отключающие батарею, как только она полностью зарядится. Третий пункт должен выполняться независимо от сложности схемы ЗУ.

Как сделать самодельное зарядное устройство для АКБ

А теперь рассмотрим несколько схем разной сложности, которые отвечают вышеперечисленным требованиям к ЗУ и не особо сложны для повторения.

Простой «зарядник» с гасящими конденсаторами

Это несложное устройство позволяет заряжать аккумуляторы ёмкостью до 100 А·ч произвольным током, который регулируется в интервале 1–10 А с шагом 1 А, что будет достаточно для качественного обслуживания любого автомобильного аккумулятора.

  

Схема простого зарядного устройства с гасящими конденсаторами

В ЗУ встроен понижающий трансформатор Тр1, сетевое напряжение на него подаётся через блок гасящих конденсаторов С1-С4. Каждый из конденсаторов имеет собственный переключатель, включающий его в цепь питания трансформатора. Ёмкости конденсаторов подстроены таким образом, что переключатели S1–S4 имеют вес 1, 2, 4, 8 А соответственно.

Комбинируя положения переключателей, можно выбрать произвольный ток зарядки в диапазоне 1-10 А, с шагом 1 А.

К примеру, если необходимо выставить ток 6 А, то нужно замкнуть переключатели S3 и S2. Ток в 5 А обеспечит включение переключателей S3 и S1.

Пониженное трансформатором напряжение подаётся на диодный мост, выпрямляется и выходит на клеммы Х3 и Х4, к которым подключается заряжаемая батарея. Ток зарядки измеряют амперметром PA1, а вольтметр PV1 выдаёт напряжение на клеммах батареи. Цепей защиты от разряда батареи через зарядное устройство в случае пропадания сетевого напряжения в этой схеме ЗУ нет, поскольку их роль исполняет диодный мост.

О деталях. Конденсаторы С1–С4 подбирают неполярные типа МБГО, МБГП, МБЧГ, КБГ-МН, МБМ или МБГЧ с рабочим напряжением не менее 300 В для МБГЧ и КБГ-МН и не более 600 В для приборов остальных типов.

Категорически недопустимо использование электролитических конденсаторов, даже если они рассчитаны на соответствующее напряжение. «Электролит» — полярный прибор, работающий только в цепях постоянного тока. При подключении в цепь переменного тока он просто взорвётся.

Вместо диодов Д242 можно применять любые другие, выдерживающие ток не менее 10 А и обратное напряжение не ниже 25 В. Подходят, например, диоды Д214 или германиевые Д305. При любых условиях их нужно поставить на радиаторы. Трансформатор Тр1 обычный сетевой с выходным напряжением 24–26 В, способный обеспечить хотя бы полуторный зарядный ток. Приборы PA1 и PV2 — амперметр с пределом измерения 10–15 А и вольтметр на напряжение 20 В соответственно.

Указанное зарядное устройство можно применять и для зарядки батарей с другим напряжением (например, 6-вольтовых), но здесь необходимо учитывать, что «вес» тумблеров S1–S4 будет другой, и придётся определяться по амперметру.

Прибор для зарядки и тренировки аккумулятора

Это самодельное зарядное устройство заряжает аккумулятор пульсирующим током, причём в паузах между импульсами зарядки батарея разряжается током порядка 0,5 А. Это позволяет не только качественно зарядить батарею, но и успешно , осуществляя тренировку АКБ. Зарядный ток в импульсе может достигать 10 А, регулировка тока плавная.

Электрическая схема зарядного устройства для тренировки батарей

Сетевое напряжение понижается трансформатором Т1 до величины 25 В и подаётся на однополупериодный выпрямитель, собранный на диодах D1 и D2, включенных параллельно для увеличения мощности. Регулировка тока происходит при помощи ключа, встроенного на транзисторе VТ1, включенного в минусовую цепь зарядки. Степень открытия транзистора, а значит, и зарядный ток — регулируется с помощью переменного резистора R1. Питание резистор получает от простейшего параметрического стабилизатора R1, D3.

По окончании каждого положительного полупериода диоды запираются, и до начала следующего — батарея разряжается через балластный резистор R4. Ток разрядки фиксированный и, как было сказано выше, составляет 500 мА. Зарядный ток контролируется при помощи амперметра PA1, а напряжение на батарее вольтметром PV1.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Контролируя зарядный ток, необходимо учитывать, что его часть (около 10 %) течёт через балластный резистор R4. Кроме того, прибор показывает усреднённое значение, тогда как зарядка батареи производится только в половину периода. Поэтому, к примеру, при импульсном зарядном токе в 5 А амперметр с учётом потерь на R4 покажет 1,8 А.

Для предупреждения глубокого разряда батареи через балластный резистор при пропадании сетевого напряжения введён узел защиты, собранный на реле К1. Пока зарядное устройство работает, его обмотка находится под напряжением, а контакты К1.1 и К1.2 (включены параллельно для увеличения мощности) подключают батарею к ЗУ.  При пропадании сетевого напряжения реле отпускает, и его контакты отключают заряжаемый аккумулятор.

О деталях. На месте Т1 может работать любой силовой трансформатор, выдающий 22–25 В при токе в 5 А. Диоды D1 D2 — любые десятиамперные, выдерживающие обратное напряжение не ниже 40 В. Они установлены на общий радиатор. VТ1 — транзистор серии КТ827 с любой буквой. Его тоже нужно поставить на радиатор. Если корпус прибора металлический, то в качестве радиатора может выступать и он.

Стабилитрон D3 — любой маломощный с напряжением стабилизации 7,5–12 В. Резисторы R3 и R4 — С5-16МВ и ПЭВ-15 соответственно. В качестве К1 используется реле переменного тока РПУ-0 на напряжение срабатывания 24 В. Каждая группа его контактов выдерживает ток до 6 А.

 Полезно. При необходимости можно применять реле постоянного тока, но тогда его обмотку придётся подключить к схеме через выпрямительный мост.

Зарядное устройство для АКБ с ШИМ-регулировкой тока

Эта схема способна обеспечить зарядный ток до 6 А и выделяется небольшими габаритами, поскольку использует широтно-импульсный метод регулирования (ШИМ), а управляющий током зарядки транзистор работает в ключевом режиме, что существенно снижает рассеиваемую на нём мощность.

Электросхема зарядного устройства с ШИМ

Задающий генератор блока регулировки тока собран на элементах DD1. 1, DD1.2 микросхемы К561ЛА7, элементы DD1.3, DD1.4 — буферные. Частота генератора — 13 кГц, скважность плавно регулируется с помощью переменного резистора R3. С генератора сигнал поступает на регулирующий элемент — мощный полевой транзистор VT1, работающий в ключевом режиме.

В зависимости от положения движка переменного резистора отношение времени открытия транзистора к его закрытому состоянию меняется, а значит, изменяется и средний ток зарядки батареи, который можно контролировать при помощи амперметра PA1.

Питание микросхема получает от простейшего параметрического стабилизатора, собранного на элементах R1, VD4. Сам стабилизатор подключен к выпрямительному мосту, обеспечивающему напряжение зарядки. Из соображений компактности, диодный мост собран на полупроводниках Шоттки с незначительным падением напряжения. Лампа EL1 — индикаторная.

О деталях. Вторичная обмотка трансформатора Т1 должна обеспечивать ток 6–7 А при напряжении 16–20 В. Если использовать трансформатор, у вторичной обмотки которого есть отвод от середины, то выпрямитель можно собрать по схеме, приведённой ниже, сократив число выпрямительных диодов вдвое.

Двухполупериодный выпрямитель на двух диодах

В мостовом выпрямителе используется диодная сборка VD1.1 VD1.2 и два отдельных диода VD3 и VD4. Все элементы установлены на общий радиатор 160х45 мм через слюдяные прокладки. При необходимости диоды Шоттки можно заменить обычными выпрямительными, но габариты устройства при этом увеличатся, поскольку понадобится радиатор большего размера. При замене необходимо учитывать, что диоды должны выдерживать ток 10 А и обратное напряжение не менее 40 В.

Если зарядный ток не будет превышать 5 А, то транзистор VT1 устанавливать на радиатор не нужно. При большем токе понадобится радиатор — медная или алюминиевая пластина размером 50х50х1 мм.

В качестве амперметра используется индикатор записи магнитофона М476/2, включенный параллельно с шунтом. Шунт представляет собой кусок медного обмоточного провода ПЭВ-2 1,5, намотанный на оправку диаметром 8 мм. Количество витков — 16, сопротивление — около 0,1 Ом.

Зарядное устройство с фазоимпульсной регулировкой

Это мощное зарядное устройство славится тем, что собрано из доступных советских деталей, которые наверняка найдутся у любого радиотехника. Прибор обеспечивает плавную регулировку тока в пределах 0 … 10 А и пригоден для зарядки аккумуляторов ёмкостью до 100 А·ч.

Схема зарядного устройства для автомобильных аккумуляторов с фазоимпульсной регулировкой

Это обычный тиристорный регулятор напряжения с фазоимпульсным управлением. Роль элемента управления выполняет аналог однопереходного транзистора, сделанный на двух биполярных приборах VT1 и VT2. Изменяя сопротивление переменного резистора R1, мы меняем время задержки открывания тиристора относительно начала полупериода, а значит, и ток зарядки, который контролируется по показаниям амперметра PA1. Для измерения напряжения на клеммах батареи служит прибор PV1. Питается устройство от мостового выпрямителя VD1–VD4, подключенного к понижающему трансформатору Т1.

О деталях. Вместо заданного на схеме тиристора КУ202В можно использовать КУ202 с буквами Г–Е, а также более мощные Т-160 и Т-250. Диоды VD1–VD4 — обычные выпрямительные с обратным напряжением не менее 40 В и выдерживающие ток 10 А. Подойдут, например, Д242, Д243, Д245, КД203, КД210, КД213 и т. п.

Тиристор и выпрямительные диоды необходимо установить на радиаторы с эффективной площадью рассеяния 100 см2 каждый. Если используется мощный тиристор серии «Т», то на радиатор его ставить не нужно. В качестве Т1 можно использовать любой силовой трансформатор, обеспечивающий ток 10 А при напряжении 18–22 В. Отлично подойдёт, к примеру ТН-61, имеющий три обмотки по 6,3 В при токе 8 А. Этого вполне достаточно для зарядки батареи ёмкостью до 80 А·ч.

Транзистор КТ361А можно заменить на КТ361б – КТ361Е, КТ502В, КТ3107А, КТ501Ж – КТ501К, КТ502Г. На месте VT2 может работать КТ315А-КТ315Д, КТ3102А, КТ312Б. Вместо диода КД 105Д подойдут КД105Г, КД105В, Д226 (с любым индексом). Измерительный прибор PA1 — амперметр с пределом измерения 10–15 А или микроамперметр с соответствующим шунтом. PV1 — вольтметр с пределом измерения 15–20 В.

Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)

Это устройство отличается от предыдущих тем, что тиристорный регулятор зарядного тока расположен в цепи первичной обмотки силового трансформатора. При помощи этого ЗУ можно заряжать батареи током до 6 А. Поскольку коммутируемые токи по напряжению 220 В будут намного меньше, чем по низкому, радиатор регулирующему элементу не нужен. Кроме того, амперметр PA1 не имеет громоздкого шунта, а значит, устройство получается несколько компактнее.

Зарядное устройство с регулировкой по высокому напряжению

В этой схеме используется всё тот же фазоимпульсный метод. Поскольку тиристор не может работать в цепях переменного тока, он включен через диодный мост  VD1–VD4. Управляет тиристором однопереходный транзистор VT1. Задержка его открывания от начала полупериода зависит от положения движка переменного резистора R5. Именно им и регулируется зарядный ток.

В момент открытия тиристор шунтирует диодный мост, и всё сетевое напряжение прикладывается к первичной обмотке T1. При этом со вторичной обмотки снимается напряжение определённой величины (0–20 В, в зависимости от положения движка переменного резистора R5) и, пройдя через выпрямитель VD5–VD8, поступает на клеммы заряжаемого аккумулятора. Узел измерения тока собран на микроамперметре, зашунтированном резистором R1. Резистор R2 служит для калибровки прибора. Лампа HL1 — индикаторная.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Вольтметра это зарядное устройство не имеет, поэтому контролировать напряжение на клеммах заряжаемого аккумулятора придётся внешним вольтметром, к примеру, тестером. Впрочем, ничего не мешает просто встроить вольтметр в прибор.

О деталях. На месте VD1–VD4 могут работать диоды Д231–Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Радиаторы им, как и тиристору, не нужны. Вместо германиевых Д305 в низковольтном выпрямителе можно использовать Д231–Д233 без буквенного индекса или с буквой А. Их придётся установить на радиаторы с площадью поверхности 100 см2.

Конденсатор С1 должен иметь по возможности меньший ТКЕ, иначе при прогреве устройства зарядный ток «поплывёт». Подойдут конденсаторы типа К73-17 или К73-24. Трансформатор Т1 должен обеспечивать на вторичной обмотке напряжение 18–22 В при токе нагрузки 6–7 А. Микроамперметр (PA1) можно взять любой с током полного отклонения 100 мкА.

Важно! Все элементы зарядного устройства, включенные в цепь первичной обмотки, во время работы прибора находятся под опасным для жизни напряжением. Перед любой перепайкой или изменением схемы обязательно отключаем конструкцию от сети, а на шток переменного резистора R5 надеваем ручку из изоляционного материала.

Автоматическое зарядное устройство из драйвера для светодиодных лент

Драйвер для питания светодиодных лент, если он достаточно мощный (не менее 100 Вт), — готовое зарядное устройство для автомобильного аккумулятора. Единственное, что нас не устраивает — это выходное напряжение. Драйвер выдаёт 12 вольт, конечное напряжение зарядки свинцово-кислотного аккумулятора — 13,8 В. Если учесть падение напряжения на зарядных проводах, то нам нужно заставить выдавать блок питания 14,0–14,4 вольта (зависит от толщины проводов). Этим и займёмся.

Для эксперимента возьмём драйвер мощностью 110 Вт — он сможет развить зарядный ток в 7,6 А — более чем достаточно для любого автомобильного аккумулятора. Взглянем на типовую схему драйвера китайского производства:

Типовая схема драйвера для светодиодной ленты китайского производства

Нас интересует подстроечный резистор P1 (справа вверху на блоке «Выпрямитель 12 В»). Подключаем к выходу устройства вольтметр, само устройство подключаем к сети. Небольшой отвёрткой вращаем ползунок подстроечного резистора (на плате он обозначен «VR»), пытаясь поднять напряжение до 14,0–14,4 В. Скорее всего, сделать это не удастся — слишком велика разница. На нашем блоке напряжение удалось вытянуть лишь до 13,26 В.

Диапазона регулировки подстроечного резистора нам не хватило

Тут есть два варианта:

  1. Заменить подстроечный резистор другим, большего номинала.
  2. Заменить постоянный резистор R37, стоящий в делителе, другим, меньшего номинала.

Воспользуемся вторым вариантом. Но тут возникает непредвиденная проблема — нумерация элементов на нашем блоке и на схеме не совпадают. «Пляшем» от подстроечного резистора, разбираясь в дорожках, и выясняем, что на нашей плате этот резистор обозначен «R30».

Нас интересует резистор R30

На схеме он имеет номинал 2,2 кОм, но мы рисковать не будем, поскольку схема явно не родная — выпаиваем его и измеряем сопротивление омметром. Результат — 5 кОм.

Номинал нашего R30 составил 5 кОм

Берём переменный резистор того же номинала, впаиваем на место R30, выводим движок на максимальное сопротивление и включаем блок питания в сеть. Постепенно уменьшая сопротивление, устанавливаем необходимую величину выходного напряжения.

Напряжение на выходе составляет 14,5 В

Здесь оно несколько выше нужного, но позже мы подгоним его более точно штатным подстроечным резистором VR.

Важно! Движок переменного резистора крутим очень осторожно, стараясь не поднимать напряжение выше 15 В, поскольку сглаживающие конденсаторы в фильтре драйвера рассчитаны на максимальное напряжение в 16 В.

Выпаиваем переменный резистор, измеряем его сопротивление.

Нам нужен постоянный резистор сопротивлением 4,5 кОм

Такого номинала не существует, устанавливаем ближайший — 4,6 кОм. Снова включаем устройство, штатным подстроечным резистором VR выставляем выходное напряжение 14,0– 14,4 В. Собираем блок — и у нас в руках готовое зарядное устройство со стабилизированным выходным напряжением.

Особая прелесть такого решения состоит в том, что устройство является автоматическим и никогда не перезарядит батарею, даже если мы забудем вовремя снять её с зарядки. Идеальное решение для AGM и гелевых батарей, которые очень боятся перезаряда.

Зарядное устройство из блока питания ПК

Это устройство тоже является автоматическим — оно, как и предыдущая конструкция, не даст перезарядить аккумуляторную батарею, поскольку работает в режиме стабилизации напряжения и по окончании зарядки ток через аккумулятор падает до 0. Доработке будет подвергаться блок питания персонального компьютера, собранный на ШИМ-микросхеме TL494 или её аналогах, список которых приведён в табличке ниже.

Аналоги микросхемы TL494 

Прибор

Описание

Прибор

Описание

GL494Зарубежный полный аналогM5T494PЗарубежный полный аналог
IR9494NMB3759
MB3759UA494PC
NE5561UC494
UPC494UC494CN
XR494UPC494C
ECG1729MB3759
IR3M02UA494DM
IR9494IR9494
MB3759MB3759
UPC494C1114ЕУ3Отечественный полный аналог
UA494DC1114ЕУ4
ECG17291114ЕУЗ
HA11794К1114ЕУ3
IR3M02КР1114ЕУ4

Итак, разбираем блок, вынимаем из корпуса плату. Из платы выпаиваем все питающие провода, кроме зеленого. Он служит для запуска БП материнской платой. Нам подобное управление не нужно, а потому этот провод мы просто припаиваем к площадкам, к которым раньше припаивались чёрные провода (иначе говоря — замыкаем на минус), чтобы блок питания запускался сразу после подачи на него 220 В.

Зелёный провод управления припаиваем к минусовой шине питания

Теперь к площадкам, к которым подпаивались жёлтые и чёрные провода, припаиваем два толстых провода с «крокодилами» для подключения к аккумулятору. Тот, который подпаивается вместо жёлтых, будет плюсовым, а вместо чёрных — минусовым.

Теперь нужно заставить БП выдавать вместо 12 В нужные для зарядки свинцового аккумулятора 13,8–14 В (14,4 с учётом падения напряжения на проводах под нагрузкой). Делаем это точно так же, как и в предыдущей конструкции, — заменой резистора на прибор другого номинала.

Находим первый вывод микросхемы TL494 или её аналога, ориентируясь по ключу-выемке на корпусе прибора. На фото ниже первый вывод помечен красной, а сам ключ — зелёными стрелками.

Нумерация выводов ведётся от ключа против часовой стрелки

Переворачиваем плату и по дорожке, ведущей от этого вывода, определяем, что к нему подпаяны три резистора. Нас интересует тот, который вторым выводом подключен к шине +12 В. На фото ниже он помечен красным лаком.

Нас интересует этот резистор

Номинал этого резистора нужно изменить (увеличить), но на сколько? Выпаиваем его и замеряем сопротивление. В нашем случае сопротивление составило 38 кОм. Берём переменный резистор примерно вчетверо большего номинала, выставляем движком сопротивление 38 кОм и впаиваем его вместо того, который выпаяли. Плавно увеличивая сопротивление, выставляем выходное напряжение на значение 14,4 В.

Установка выходного напряжения при помощи переменного резистора

Важно! Для каждого блока питания номинал этого резистора будет разный, т. к. схемы и детали в блоках разные, но алгоритм изменения напряжения один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придётся перезагружать, предварительно уменьшив сопротивление переменного резистора.

Выпаиваем переменный резистор, измеряем его сопротивление, подбираем постоянный ближайшего номинала, впаиваем. Проверяем наше зарядное устройство, нагрузив его лампочкой от автомобильной фары и контролируя выходное напряжение под нагрузкой. Оно должно остаться практически тем же — 14 В.

Под нагрузкой выходное напряжение «просело» на несколько десятых — это нормально

Как заряжать аккумулятор от самодельного устройства

Зарядка аккумулятора самодельным устройством ничем не отличается от зарядки промышленным прибором.

  1. Выводим регулятор тока в «0».
  2. Подключаем заряжаемый аккумулятор к клеммам ЗУ.
  3. Подаём питание на ЗУ.
  4. Устанавливаем необходимый ток зарядки.
  5. При напряжении 13,2–13,4 В на клеммах батареи уменьшаем ток вдвое.
  6. При напряжении на клеммах 13,8 В выводим регулятор тока в «0», выключаем питание ЗУ, отключаем аккумулятор.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

В двух последних конструкциях контролировать напряжение на батарее не нужно — как только аккумулятор зарядится, ток зарядки станет равным нулю.

Вот в принципе и всё о самодельных зарядных устройствах. Прочитав этот материал, мы без труда сможем подобрать наиболее подходящую схему зарядного устройства и повторить её.


Зарядные устройства для автомобильного аккумулятора своими руками

Часто владельцам автомобилей приходится сталкиваться с таким явлением как невозможность запуска двигателя по причине разряда аккумулятора. Для решения проблемы потребуется воспользоваться зарядкой для АКБ, которая стоит немалых денег. Чтобы не тратиться на покупку нового зарядного устройства для автомобильного аккумулятора, можно смастерить его своими руками. Важно только отыскать трансформатор с необходимыми характеристиками. Для изготовления самодельного устройства не обязательно быть электриком, а весь процесс в целом займёт не больше нескольких часов.

Особенности функционирования аккумуляторов

Не все водители знают о том, что в автомобилях используются свинцово-кислотные аккумуляторы. Такие АКБ отличаются своей выносливостью, поэтому способны служить до 5 лет.

Для зарядки свинцовых АКБ используется ток, который равняется 10% от общей ёмкости аккумулятора. Это значит, что для зарядки аккумулятора, ёмкость которого составляет 55 А/ч, требуется зарядный ток в 5,5 А. Если подать очень большой ток, то это может привести к закипанию электролита, что, в свою очередь, приведёт к снижению срока службы устройства. Маленький ток зарядки не продлевает срок службы АКБ, однако он не способен негативно отражаться на целостности устройства.

Это интересно! При подаче тока 25 А происходит быстрая подзарядка аккумулятора, поэтому уже через 5-10 минут после подключения ЗУ с таким номиналом можно запускать двигатель. Такой большой ток выдают современные инверторные зарядные устройства, только он негативно сказывается на сроке службы аккумулятора.

При зарядке АКБ происходит протекание зарядного тока обратно рабочему. Напряжение для каждой банки не должно быть выше 2,7 В. В АКБ на 12 В установлено 6 банок, которые между собой не связаны. В зависимости от напряжения аккумулятора, отличается количество банок, а также необходимое напряжение для каждой банки. Если напряжение будет больше, то это приведёт к возникновению процесса разложения электролита и пластин, что способствует выходу из строя АКБ. Чтобы исключить возникновение процесса закипания электролита, напряжение ограничивают на 0,1 В.

Батарея считается разряженной, если при подключении вольтметра или мультиметра, приборы показывают напряжение 11,9-12,1 В. Такой аккумулятор следует немедленно подзарядить. Заряженный аккумулятор имеет напряжение на клеммах 12,5-12,7 В.

Пример напряжения на клеммах заряженного аккумулятора

Процесс заряда представляет собой восстановление израсходованной ёмкости. Зарядка аккумуляторов может выполняться двумя способами:

  1. Постоянный ток. При этом регулируется зарядный ток, значение которого составляет 10% от ёмкости устройства. Время заряда составляет 10 часов. Напряжение заряда при этом изменяется от 13,8 В до 12,8 В за всю длительность зарядки. Недостаток такого способа заключается в том, что необходимо контролировать процесс зарядки, и вовремя отключить зарядное устройство до закипания электролита. Такой способ является щадящим для АКБ и нейтрально влияет на их срок службы. Для воплощения такого способа используются трансформаторные зарядные аппараты.
  2. Постоянное напряжение. При этом на клеммы АКБ подаётся напряжение величиной 14,4 В, а ток изменяется от больших значений к меньшим автоматически. Причём это изменение тока зависит от такого параметра, как время. Чем дольше заряжается АКБ, тем ниже становится величина тока. Перезаряд АКБ получить не сможет, если только не забыть выключить аппарат и оставить его несколько суток. Преимущество такого способа в том, что уже через 5-7 часов аккумулятор зарядится на 90-95%. АКБ можно также оставлять без присмотра, поэтому такой способ пользуется популярностью. Однако мало кому из автовладельцев известно о том, что такой метод зарядки является «экстренным». При его использовании существенно снижается срок службы АКБ. Кроме того, чем чаще осуществлять зарядку таким способом, тем быстрее будет разряжаться устройство.

Теперь даже неопытный водитель может понять, что если нет необходимости торопиться с зарядкой АКБ, то лучше отдать предпочтение первому варианту (по току). При ускоренном восстановлении заряда снижается срок службы устройства, поэтому высока вероятность того, что уже в ближайшее время понадобится покупать новый аккумулятор. Исходя из вышесказанного, в материале будут рассматриваться варианты изготовления зарядных устройств по току и напряжению. Для изготовления можно использовать любые подручные устройства, о которых поговорим далее.

Требования к зарядке АКБ

Перед проведением процедуры изготовления самодельного зарядного для АКБ необходимо обратить внимание на следующие требования:

  1. Обеспечение стабильного напряжения 14,4 В.
  2. Автономность устройства. Это означает, что самодельное устройство не должно требовать присмотра за ним, так как зачастую АКБ заряжается ночью.
  3. Обеспечение отключения зарядного устройства при увеличении зарядного тока или напряжения.
  4. Защита от переполюсовки. Если устройство будет подключено к АКБ неправильно, то должна срабатывать защита. Для реализации в цепь включается предохранитель.

Переполюсовка представляет собой опасный процесс, в результате которого АКБ может взорваться или закипеть. Если аккумулятор исправен и лишь слегка разряжен, то при неправильном подключении зарядного  устройства произойдёт повышение тока заряда выше номинального. Если же АКБ разряжена, то при переполюсовке наблюдается увеличение напряжения выше заданного значения и как итог — электролит закипает.

Варианты самодельных зарядных устройств для АКБ

Перед тем как приступать к разработке зарядного устройства для АКБ, важно понимать, что такой аппарат является самоделкой и может негативно влиять на срок службы аккумулятора. Однако иногда такие аппараты попросту необходимы, так как позволяют существенно сэкономить деньги на приобретении заводских устройств. Рассмотрим, из чего же можно изготовить зарядные аппараты своими руками для аккумуляторов и как это сделать.

Зарядка из лампочки и полупроводникового диода

Этот способ зарядки актуален при таких вариантах, когда нужно завести автомобиль на севшем аккумуляторе в домашних условиях. Для того чтобы это сделать, понадобятся составляющие элементы для сборки аппарата и источник переменного напряжения 220 В (розетка). Схема самодельного зарядного устройства для автомобильного аккумулятора содержит следующие элементы:

  1. Лампа накаливания. Обычная лампочка, которая ещё именуется в народе как «лампа Ильича». Мощность лампы влияет на скорость заряда аккумулятора поэтому чем больше этот показатель, тем быстрее можно будет завести мотор. Оптимальный вариант – это лампа мощностью 100-150 Вт.
  2. Полупроводниковый диод. Элемент электроники, главным предназначением которого является проведение тока только в одну сторону. Необходимость данного элемента в конструкции зарядки заключается в том, чтобы преобразовывать переменное напряжение в постоянное. Причём для таких целей понадобится мощный диод, который сможет выдержать большую нагрузку. Использовать можно диод, как отечественного производства, так и импортный. Чтобы не покупать такой диод, его можно найти в старых приёмниках или блоках питания.
  3. Штекер для подключения в розетку.
  4. Провода с клеммами (крокодилы) для подключения к АКБ.

Это важно! Перед сборкой такой схемы нужно понимать, что всегда имеется риск для жизни, поэтому следует быть предельно внимательными и осторожными.

Схема подключения зарядного устройства из лампочки и диода к АКБ

Включать штекер в розетку следует только после того, как вся схема будет собрана, а контакты заизолированы. Чтобы избежать возникновения тока короткого замыкания, в цепь включается автоматический выключатель на 10 А. При сборке схемы важно учесть полярность. Лампочка и полупроводниковый диод должны быть включены в цепь плюсовой клеммы аккумулятора. При использовании лампочки в 100 Вт, будет поступать зарядный ток величиной 0,17 А на АКБ. Для зарядки аккумулятора на 2 А понадобится заряжать его на протяжении 10 часов. Чем больше мощность лампы накаливания, тем выше значение зарядного тока.

Это важно! Не рекомендуется использовать лампы накаливания мощностью более 200 Вт, так как диод может сгореть от перегрузки. Оптимальный вариант мощности ламп – это 60-150 Вт.

Заряжать таким устройством полностью севший аккумулятор не имеет смысла, а вот подзарядить при отсутствии заводского ЗУ — вполне реально.

Зарядное устройство для АКБ из выпрямителя

Этот вариант также относится к категории простейших самодельных зарядных устройств. В основу такого ЗУ входят два основных элемента – преобразователь напряжения и выпрямитель. Существует три вида выпрямителей, которые заряжают устройство следующими способами:

  • постоянный ток;
  • переменный ток;
  • ассиметричный ток.

Выпрямители первого варианта заряжают аккумулятор исключительно постоянным током, который очищается от пульсаций переменного напряжения. Выпрямители переменного тока подают пульсирующее переменное напряжение на клеммы аккумулятора. Ассиметричные выпрямители имеют положительную составляющую, а в качестве основных элементов конструкции используются однополупериодные выпрямители. Такая схема имеет лучший результат по сравнению с выпрямителями постоянного и переменного тока. Именно его конструкция и будет рассмотрена далее.

Для того чтобы собрать качественное устройство для зарядки АКБ, понадобится выпрямитель и усилитель тока. Выпрямитель состоит из следующих элементов:

  • предохранитель;
  • мощный диод;
  • стабилитрон 1N754A или Д814А;
  • выключатель;
  • переменный резистор.

Электрическая схема ассиметричного выпрямителя

Для того чтобы собрать схему, понадобится использовать предохранитель, рассчитанный на максимальный ток в 1 А. Трансформатор можно взять от старого телевизора, мощность которого не должна превышать 150 Вт, а выходное напряжение составлять 21 В. В качестве резистора нужно взять мощный элемент марки МЛТ-2. Выпрямительный диод должен быть рассчитан на ток не менее 5 А поэтому оптимальный вариант – это модели типа Д305 или Д243. В основу усилителя входит регулятор на двух транзисторах серии КТ825 и 818. При монтаже транзисторы устанавливаются на радиаторы для улучшения охлаждения.

Сборка такой схемы выполняется навесным способом, то есть на очищенной от дорожек старой плате располагаются все элементы и подключаются между собой с помощью проводов. Её преимуществом является возможность регулировки выходного тока для зарядки АКБ. Недостатком схемы является необходимость найти необходимые элементы, а также правильно их расположить.

Простейшим аналогом представленной выше схемы является более упрощённый вариант, представленныё на фото ниже.

Упрощённая схема выпрямителя с трансформатором

Предлагается воспользоваться упрощённой схемой с применением трансформатора и выпрямителя. Кроме того, понадобится лампочка на 12 В и 40 Вт (автомобильная). Собрать схему не составит труда даже новичку, но при этом важно обратить внимание на то, что выпрямительный диод и лампочка должны быть расположены в цепи, которая подаётся на минусовую клемму АКБ. Недостатком такой схемы является получение пульсирующего тока. Чтобы сгладить пульсации, а также снизить сильные биения, рекомендуется воспользоваться схемой, которая представлена ниже.

Схема с диодным мостом и сглаживающим конденсатором уменьшает пульсации и снижает биение

Зарядное устройство из блока питания компьютера: пошаговая инструкция

В последнее время популярностью пользуется такой вариант автомобильной зарядки, который можно изготовить самостоятельно, воспользовавшись компьютерным блоком питания.

Первоначально понадобится рабочий блок питания. Для таких целей подойдёт даже блок, имеющий мощность 200 Вт. Он выдаёт напряжение 12 В. Его будет недостаточно, чтобы зарядить АКБ, поэтому немаловажно повысить это значение до 14,4 В. Пошаговая инструкция изготовления ЗУ для АКБ из блока питания от компьютера выглядит следующим образом:

  1. Первоначально выпаиваются все лишние провода, которые выходят из блока питания. Оставить нужно только зелёный провод. Его конец нужно припаять к минусовым контактам, откуда выходили чёрные провода. Делается эта манипуляция для того, чтобы при включении блока в сеть, сразу запускалось устройство.

    Конец зелёного провода необходимо припаять к минусовым контактам, где находились чёрные провода

  2. Провода, которые будут подключаться к клеммам аккумулятора, необходимо припаять к выходным контактам минуса и плюса блока питания. Плюс припаивается на место выхода жёлтых проводов, а минус на место выхода чёрных.
  3. На следующем этапе необходимо реконструировать режим работы широтно-имульсной модуляции (ШИМ). За это отвечает микроконтроллер TL494 или TA7500. Для реконструкции понадобится нижняя крайняя левая ножка микроконтроллера. Чтобы к ней добраться, необходимо перевернуть плату.

    За режим работы ШИМ отвечает микроконтроллер TL494

  4. С нижним выводом микроконтроллера соединены три резистора. Нас интересует резистор, который соединён с выводом блока 12 В. Он отмечен на фото ниже точкой. Этот элемент следует выпаять, после чего измерить значение сопротивления.

    Резистор, обозначенный фиолетовой точкой, необходимо выпаять

  5. Резистор имеет сопротивление около 40 кОм. Он подлежит замене на резистор с иным значением сопротивления. Чтобы уточнить величину необходимого сопротивления, требуется первоначально к контактам удалённого резистора припаять регулятор (переменный резистор).

    На место удалённого резистора припаивают регулятор

  6. Теперь следует устройство включить в сеть, предварительно подключив к выходным клеммам мультиметр. Изменяется выходное напряжение при помощи регулятора. Нужно получить значение напряжения в 14,4 В.

    Выходное напряжение регулируется переменным резистором

  7. Как только значение напряжения будет достигнуто, следует выпаять переменный резистор, после чего измерить полученное сопротивление. Для вышеописанного примера его значение составляет 120,8 кОм.

    Полученное сопротивление должно составлять 120,8 кОм

  8. Исходя из полученного значения сопротивления, следует подобрать аналогичный резистор, после чего запаять его на место старого. Если найти резистор такой величины сопротивления не удаётся, то можно подобрать его из двух элементов.

    Последовательная пайка резисторов суммирует их сопротивление

  9. После этого проверяется работоспособность устройства. По желанию к блоку питания можно установить вольтметр (можно и амперметр), что позволит контролировать напряжение и ток зарядки.

Общий вид зарядного устройства из блока питания компьютера

Это интересно! Собранное ЗУ имеет функцию защиты от тока короткого замыкания, а также от перегрузки, однако оно не защищает от переполюсовки, поэтому следует припаивать выводящие провода соответствующего цвета (красный и чёрный), чтобы не перепутать.

При подключении ЗУ к клеммам АКБ будет подаваться ток около 5-6 А, что является оптимальным значением для устройств ёмкостью 55-60А/ч. На видео ниже показано, как сделать ЗУ для АКБ из блока питания компьютера с регуляторами напряжения и тока.

Какие ещё имеются варианты ЗУ для АКБ

Рассмотрим ещё несколько вариантов самостоятельных зарядных устройств для аккумуляторов.

Использование зарядки от ноутбука для АКБ

Один из самых простых и быстрых способов оживления севшего аккумулятора. Для реализации схемы оживления АКБ с помощью зарядки от ноутбука понадобятся:

  1. Зарядное устройство от любого ноутбука. Параметры зарядных устройств составляют 19 В и ток около 5 А.
  2. Лампа галогеновая мощностью 90 Вт.
  3. Соединительные провода с зажимами.

Переходим к реализации схемы. Лампочка используется для того, чтобы ограничить ток до оптимального значения. Вместо лампочки можно использовать резистор.

Зарядку для ноутбука также возможно использовать для «оживления» автомобильного аккумулятора

Собрать такую схему не составляет большого труда. Если зарядку от ноутбука не планируется использовать по назначению, то штекер можно отрезать, после чего подключить к проводам зажимы. Предварительно при помощи мультиметра следует определить полярность. Лампочка включается в цепь, которая идёт на плюсовую клемму аккумулятора. Минусовая клемма от АКБ подключается напрямую. Только после подключения устройства к АКБ можно осуществлять подачу напряжения на блок питания.

ЗУ своими руками из микроволновой печи или аналогичных приборов

С помощью трансформаторного блока, который имеется внутри микроволновки, можно сделать ЗУ для АКБ.

Пошаговая инструкция изготовления самодельного зарядного устройства из трансформаторного блока от микроволновки представлена ниже.

  1. С микроволновки нужно снять трансформаторный блок.
  2. Удалить вторичную обмотку, после чего заменить её на изолированный провод сечением свыше 2 мм2 .
  3. Определиться с необходимым количеством витков, которые нужно сделать при помощи изолированного провода. Выяснить необходимое значение можно экспериментальным путём. Для этого необходимо намотать 10 витков, после чего измерить выходное напряжение. К примеру, если его значение будет составлять 2 В, то для достижения 14,5 В понадобится сделать около 70 витков. Выходное напряжение будет зависеть от сечения используемого провода.

    С трансформаторного блока микроволновой печи удаляется обмотка

  4. Для реализации схемы понадобится диодный мост и мощный конденсатор.
  5. По желанию в цепь можно включить амперметр, который будет показывать ток.

Схема подключения трансформаторного блока, диодного моста и конденсатора к автомобильному аккумулятору

Сборку устройства можно осуществлять на любом основании. При этом важно, чтобы все конструкционные элементы были надёжно защищены. При необходимости схему можно дополнить выключателем, а также вольтметром.

Бестрансформаторное зарядное устройство

Если поиски трансформатора завели в тупик, то можно воспользоваться простейшей схемой без понижающих устройств. Ниже представлена такая схема, которая позволяет реализовать ЗУ для аккумулятора без использования трансформаторов напряжения.

Электрическая схема ЗУ без использования трансформатора напряжения

Роль трансформаторов выполняют конденсаторы, которые рассчитаны на напряжение величиной 250В. В схему следует включить минимум 4 конденсатора, расположив их параллельно. Параллельно конденсаторам в цепь включается резистор и светодиод. Роль резистора заключается в гашении остаточного напряжения после отключения устрйоства от сети.

В цепь также включается диодный мост, рассчитанный на работу с токами до 6А. В схему мост включается после конденсаторов, а к его выводам подключаются провода, идущие на АКБ для зарядки.

Как заряжать аккумулятор от самодельного устройства

Отдельно следует разобраться в вопросе о том, как же правильно заряжать аккумулятор самодельным зарядным устройством. Для этого рекомендуется придерживаться следующих рекомендаций:

  1. Соблюдение полярности. Лучше лишний раз проверить полярность самодельного устройства мультиметром, нежели «кусать локти», потому что причиной выхода из строя АКБ стала ошибка с проводами.
  2. Не проверять АКБ при помощи замыкания контактов. Такой способ только «убивает» устройство, а не оживляет его, как указывается во многих источниках.
  3. Включать устройство в сеть 220 В следует только после того, как выводные клеммы будут подключены к аккумулятору. Аналогичным образом осуществляется и отключение устройства.
  4. Соблюдение техники безопасности, так как работа осуществляется не только с электричеством, но и с аккумуляторной кислотой.
  5. Процесс зарядки АКБ необходимо контролировать. Малейшая неисправность может стать причиной серьёзных последствий.

Исходя из вышеуказанных рекомендаций, следует сделать вывод о том, что самодельные устройства хоть и являются приемлемыми, но всё же не способны заменить заводские. Изготавливать самодельную зарядку не безопасно, особенно если вы не уверены в том, что сможете это правильно сделать. В материале представлены самые простые схемы реализации зарядных устройств для автомобильных аккумуляторов, которые всегда будут полезны в хозяйстве.

Оцените статью: Поделитесь с друзьями!

Обсуждения закрыты для данной страницы

Делаем самодельные зарядные устройства для автомобильных аккумуляторов

Самодельные зарядные устройства для аккумуляторов обычно имеют очень простую конструкцию, а дополнительно к тому и повышенную надежность как раз ввиду простоты схемы. Еще один плюс от изготовления зарядки своими руками – относительная дешевизна комплектующих и как результат – невысокая себестоимость прибора.

Почему сборная конструкция лучше покупного

Основная задача подобной техники – поддерживать на требуемом уровне заряд аккумуляторной батареи автомобиля в случае необходимости. Если разрядка АКБ произошла рядом с домом, где есть нужное устройство, то проблем не возникнет. В противном случае, когда нет подходящей техники для питания аккумулятор, и средств тоже недостаточно, можно собрать прибор своими руками.

Необходимость использования вспомогательных средств для подпитки АКБ автомобиля обусловлена в первую очередь низкими температурами в холодное время года, когда наполовину разряженная аккумуляторная батарея представляет собой главную, а иногда и вовсе не разрешимую проблему, если только вовремя не подзарядить АКБ. Тогда самодельные зарядные устройства для питания автомобильных аккумуляторов станут спасением для пользователей, которые не планируют вкладываться в такую технику, по крайней мере, в данный момент.

Принцип действия

До определенного уровня АКБ авто может получать питание от самого транспортного средства, а если точнее, от электрогенератора. После этого узла обычно устанавливается реле, ответственное за установку напряжения не более 14,1В. Чтобы аккумуляторная батарея зарядилась до предела, необходимо более высокое значение данного параметра – 14,4В. Соответственно, для реализации такой задачи как раз и применяются АКБ.

Основные узлы данного устройства – трансформатор и выпрямитель. В результате на выход подается постоянный ток с напряжением определенной величины (14,4В). Но почему наблюдается разбег с напряжением самой батареи – 12В? Это делается с целью обеспечения возможности зарядить АКБ, разряженной до уровня, когда значение данного параметра аккумулятора приравнивалось 12В. Если зарядка будет характеризоваться таким же по значению параметром, то в результате питание АКБ станет сложно выполнимой задачей.

Смотрим видео, самое простое устройство для заряда АКБ:

Но здесь есть нюанс: небольшое превышение уровня напряжения аккумуляторной батареи не является критичным, тогда как существенно завышенная величина этого параметра очень плохо скажется в дальнейшем на работоспособности АКБ. Принцип функционирования, которым отличается любое, даже самое простое зарядное устройство для питания автомобильного аккумулятора, заключается в повышении уровня сопротивления, что приведет к снижению зарядного тока.

Соответственно, чем больше значение напряжения (стремится к 12В), тем меньше ток. Для нормальной работы АКБ желательно устанавливать определенную величину тока заряда (порядка 10% от емкости). В спешке велик соблазн изменить значение этого параметра на большее, однако, это чревато негативными последствиями для самой аккумуляторной батареи.

Что потребуется для изготовления АКБ?

Основные элементы простой конструкции: диод и обогреватель. Если правильно (последовательно) подключить их к АКБ, можно добиться желаемого – аккумуляторная батарея будет заряжена через 10 часов. Но любителям экономить электроэнергию такое решение может не подойти, потому как расход в этом случае составит порядка 10 кВт. Работа полученного устройства характеризуется невысоким КПД.

Основные элементы простой конструкции

Но для создания подходящей модификации придется несколько видоизменить отдельные элементы, в частности, трансформатор, мощность которого должна быть на уровне 200-300 Вт. При наличии старой техники, подойдет данная деталь из обычного лампового телевизора. Для организации системы вентиляции пригодится кулер, лучше всего, если он будет от компьютера.

Когда создается простое зарядное устройство для питания аккумулятора своими руками, в качестве основных элементов выступает еще транзистор и резистор. Чтобы наладить работу конструкции, понадобится компактный снаружи, но довольно вместительный корпус из металла, хороший вариант – короб от стабилизатора.

Схема простого зарядного устройства

В теории такого рода технику сможет собрать даже начинающий радиолюбитель, который ранее не сталкивался со сложными схемами.

Схема простого устройства для заряда аккумулятора

Основная трудность заключается в необходимости видоизменить трансформатор. При таком уровне мощности обмотки характеризуются невысокими показателями напряжения (6-7В), ток будет равен 10А. Обычно же требуется напряжение 12В или 24В, в зависимости от типоисполнения аккумуляторной батареи. Чтобы получить такие значения на выходе устройства, необходимо обеспечить параллельное соединение обмоток.

Поэтапная сборка

Самодельное зарядное устройство для питания аккумулятора автомобиля начинается с подготовки сердечника. Наматывание провода на обмотки выполняется с максимальным уплотнением, важно, чтобы витки плотно прилегали друг к другу, и не оставалось просветов. Нельзя забывать и об изоляции, которая ставится с интервалом в 100 витков. Сечение провода первичной обмотки – 0,5 мм, вторичной – от 1,5 до 3,0 мм. Если учесть, что при частоте 50 Гц 4-5 витков могут обеспечить напряжение 1В, соответственно, для получения 18В требуется порядка 90 витков.

Далее, подбирается диод подходящей мощности, чтобы выдерживать подаваемые на него в будущем нагрузки. Лучший вариант – генераторный диод автомобиля. Чтобы исключить риск перегрева, необходимо обеспечить эффективную циркуляцию воздуха внутри корпуса такого прибора. Если короб не перфорирован, следует позаботиться об этом до начала сборки. Кулер необходимо подключить к выходу зарядного устройства. Основная его задача – охлаждение диода и обмотки трансформатора, что учитывается при выборе участка для установки.

Смотрим видео, подробная инструкция по изготовлению:

Схема простого зарядного устройства для питания автомобильного аккумулятора содержит еще и переменный резистор. Для нормального функционирования зарядки необходимо получить сопротивление на уровне 150 Ом и мощность 5 Вт. Более прочих соответствует этим требованиям модель резистора КУ202Н. Можно подобрать отличный от этого вариант, но его параметры должны быть сходными по значению с указанными. Задача резистора заключается в регулировке напряжения на выходе устройства. Модель транзистора КТ819 также является наилучшим вариантом из ряда аналогов.

Оценка эффективности, себестоимость

Как видно, если необходимо собрать самодельное зарядное устройство для автомобильного аккумулятора, его схема более чем проста для реализации. Единственная трудность – компоновка всех элементов и установка их в корпус с последующим соединением. Но такую работу сложно назвать трудоемкой, а стоимость всех используемых деталей крайне мала.

Некоторые из деталей, а, быть может, и все наверняка найдутся у радиолюбителя дома, например, кулер от старого компьютера, трансформатор от лампового телевизора, старый корпус от стабилизатора. Что касается степени эффективности, то подобные устройства, собранные своими руками, не отличаются очень высоким КПД, однако, в результате все же справляются со своей задачей.

Смотрим видео, полезные советы специалиста:

Таким образом, крупных вложений в создание самодельной зарядки не требуется. Наоборот, все элементы стоят крайне мало, что выгодно оттеняет данное решение в сравнении с устройством, которое можно приобрести в готовом виде. Рассмотренная выше схема не отличается высокой эффективностью, но ее главный плюс – заряженный аккумулятор авто, хоть и спустя 10 часов. Можно усовершенствовать этот вариант или рассмотреть множество других, предлагаемых для реализации.

СХЕМА ЗАРЯДНОГО УСТРОЙСТВА ДЛЯ АККУМУЛЯТОРА

     Недавно была опубликована схема простого проверенного самодельного устройства для зарядки небольших аккумуляторов, в частности литий-ионных аккумуляторов шуруповёрта. В процессе экспериментов, были введены пару дополнений, которые позволили зарядному устройству повысить стабильность зарядного тока и упростить работу с ЗУ. 

     В данной схеме реализован режим заряда аккумулятора постоянным током, который прекращается по истечении определенного времени, необходимым для полного заряда. Устройство следит за степенью заряда аккумулятора и само отключит (уменьшит почти до нуля) зарядный ток по достижении заданного напряжения на нём. Зарядный ток составляет обычно I=0,1·Е, где I — зарядный ток в амперах, а Е — емкость аккумулятора в амперчасах. В этом режиме коефициент ёмкостного эффекта аккумулятора принимают 70% и длительность зарядки устанавливают около 15 часов. Режим зарядки малым током хорош тем, что даже при значительной перезарядке аккумулятор не будет поврежден.


     Полное гашение светодиода в конце зарядного цикла, подстраивается резистором, который включен последовательно со светодиодом к базе мощного транзистора. Для каждого вида светодиодов он может быть различного значения, например 1к для советских АЛ107. Для настройки индикации окончания заряда, подключаем к ЗУ полностью заряженный акуммулятор, затем ставим в цепь милиамперметр и настраиваем так, чтоб ток был до 10мА, после чего выбираем такое сопротивление резистора, чтоб при этом токе светодиод гас.


     Дополнительная стабилизация работы зарядного устройства обеспечивается стабилизатором КРЕН5Б (78L05). Для микросхемы радиатор не требуется, а регулирующий транзистор следует снабдить теплоотводом, достаточным для охлаждения при максимальном зарядном токе.


     На фотографиях показано зарядное устройство для пальчиковых аккумуляторов, собранное по данной схеме в алюминиевой коробке от чего-то подходящего. Корпус цельнофрезерованный, он используется как один большой радиатор для регулирующего транзистора. Данная схема была неоднократно проверена в различных конструктивных исполнениях и показала высокую надёжность работы. Материал предоставил ZU77.

     Форум по зарядным устройствам

   Форум по обсуждению материала СХЕМА ЗАРЯДНОГО УСТРОЙСТВА ДЛЯ АККУМУЛЯТОРА


Схемы зарядных устройств для аккумуляторов и батарей


Зарядное устройство для батареи из двух Ni-MH аккумуляторов АА от USB

Несмотря на то, что сейчас есть очень много портативной аппаратуры, питающейся от встроенных аккумуляторов, остается еще и много аппаратуры, рассчитанной на питание от гальванических элементов типо-размера «ААА» или «АА». Это создает определенные трудности эксплуатации, потому …

1 305 0

Простейшее зарядное устройство для двух Ni-Mh пальчиковых аккумуляторов типа AA

Сейчас уже почти вся портативная электроника питается от встроенных аккумуляторов и заряжается от универсальных зарядных устройств с разъемами типа USB. Но, несмотря на это, большинство портативных радиовещательных приемников по-прежнему питаются от гальванических батарей …

1 225 0

Блок заряда и питания от Li-ion аккумулятора для пульта управления

ИК — пульт дистанционного управления (ИК ПДУ) Lotos модели RM-909E позволяет управлять десятью единицами разных видов бытовой техники, содержит в своей базе сотни групп кодов, которые подходят для нескольких тысяч моделей телевизоров, DVD-проигрывателей и другого мультимедийного оборудования.

0 651 0

Схема устройства питания на основе миниатюрного аккумулятора 3.7В-4.2В от сотового телефона

Еще совсем недавно, да впрочем, и сейчас, есть много аппаратуры, питающейся от гальванических батарей, обычно, это два элемента по 1,5V, то есть 3V. Это и пульты ДУ, и приемники, и игрушки и многое еще чего Конечно, есть альтернатива, — «пальчиковые» аккумуляторы по 1.2V. Но тут две …

4 856 0

Схема зарядного устройства для никель-кадмиевых (Ni-Cd) аккумуляторов

Самодельное зарядное устройство для никель-кадмиевых (Ni-Cd) аккумуляторов, принципиальная схема. Чтобы аккумулятор служил долго нужно обеспечить его оптимальный режим, как зарядки, так и разрядки. Никель-кадмиевым аккумуляторам присущ так называемый «эффект памяти». Заключающийся в том, что …

1 1816 1

Схема зарядного устройства с таймером для АА и ААА аккумуляторов

Зарядные устройства, продающиеся в магазинах обычно очень просты и обеспечивают быстрый режим заряда, при котором аккумулятор стареет значительно быстрее. Более безопасно заряжать аккумулятор номинальным зарядным током (0,2 от паспортной емкости), но это требует много времени, и это время …

1 1954 2

Зарядные устройства для телефона в автомобиле, две схемы

Схема зарядного устройства показана на рисунке 2, это DC-DC преобразователь, дающий стабильное напряжение +5V при токе до 0,5А, и входном напряжении в пределах 7-18V. Посмотрев на схему, может возникнуть вопрос, — зачем такие сложности, когда, казалось бы, можно обойтись одной «кренкой»? Вопрос …

0 1720 0

Как использовать зарядку от телефона +5В для NiCd и NiMH аккумуляторов

Принципиальная схема приставки к сетевому адаптеру мобильного телефона, что позволяет заряжать NiCd и NiMH аккумуляторы. Стоимость «сухих батареек» сейчас уже достаточно высока, и вполне сравнима со стоимостью аккумуляторов. Но аккумуляторы можно заряжать. В большинстве устройств, питающихся от «сухих элементов» напряжением 1,5V …

1 3287 0

Автоматическое зарядное устройство для кислотно-свинцовых батарей

После преждевременного выхода из строя аккумулятора в одном из многих устройств(вероятно, из-за того, что я забыл сделать подзарядку согласно рекомендуемому графику), я начал искать автоматическое зарядное устройство. SLA-батареи обычно называют гелеевыми элементами, так как электролит представляет …

2 3442 0

Зарядное устройство для ноутбука ASUS М5200

Я владелец малогабаритного ноутбука ASUS М5200. По роду деятельности мне приходится много ездить, и ноутбук постоянно со мной. В поездке пользуюсь ноутбуком эпизодически. К сожалению, штатный аккумулятор ноутбука довольно быстро разряжается, причем это происходит в самый неподходящий …

1 2368 0

1 2  3  4  5  … 8 

Радиодетали, электронные блоки и игрушки из китая:

Схемы зарядных устройств

.

     Классическая зарядка литиевых аккумуляторов, на основе популярной, и одной из самой доступной микросхемы.

13.12.2014 Читали: 70549


     Простое самодельное устройство, предназначенное для недопускания глубокого разряда аккумуляторных батарей различного напряжения и ёмкости.

06.12.2014 Читали: 36286


     Электрическая схема несложной зарядки для 12 В свинцово-кислотных аккумуляторов. Имеется автоматический режим — светодиод мигает, когда батарея заряжена.

03.11.2014 Читали: 37491


     Обзор зарядного устройства BL-12SL. Небольшая китайская зарядка, предназначенная для работы с гелевыми свинцовыми аккумуляторами ёмкостью до 15 ампер.

 

03.04.2014 Читали: 20776


     Схема устройства для подзарядки маленьких дисковых часовых батареек формата AG0 – AG13.
 

26.03.2014 Читали: 33040


     Очередное самодельное зарядное устройство для 12-вольтового аккумулятора авто, собранное на отечественных радиодеталях.

04.03.2014 Читали: 62126


     Мощное самодельное пуско-зарядное на тиристорах, для 24-х вольтовых аккумуляторов.

13.02.2014 Читали: 64752



Лабораторный БП 0-30 вольт

Драгметаллы в микросхемах

Металлоискатель с дискримом

Ремонт фонарика с АКБ

Восстановление БП ПК ATX

Кодировка SMD деталей

Цепь зарядного устройства

| Полный проект DIY Electronics

Большинство зарядных устройств прекращают зарядку аккумулятора, когда он достигает максимального зарядного напряжения, установленного схемой. Эта схема зарядного устройства 12 В заряжает аккумулятор при определенном напряжении, то есть напряжении поглощения, и после достижения максимального зарядного напряжения зарядное устройство изменяет выходное напряжение на напряжение холостого хода для поддержания аккумулятора на этом напряжении. Напряжение абсорбции и плавающее напряжение зависят от типа батареи.

Для этого зарядного устройства установлены напряжения для герметичной свинцово-кислотной (SLA) батареи 12 В, 7 Ач, для которой напряжение поглощения составляет от 14,1 В до 14,3 В, а плавающее напряжение — от 13,6 В до 13,8 В. Для безопасной работы и во избежание перезарядки батареи, напряжение поглощения выбрано как 14,1 В, а плавающее напряжение выбрано как 13,6 В. Эти значения должны быть установлены в соответствии с указаниями производителя батареи.

Схема зарядного устройства 12 В

Рис. 1: Схема зарядного устройства 12 В

Принципиальная схема абсорбирующего и поплавкового зарядного устройства 12 В показана на рис.1. Он построен на понижающем трансформаторе X1, регулируемом стабилизаторе напряжения LM317 (IC1), компараторе операционного усилителя LM358 (IC2) и некоторых других компонентах. Используемый в этой схеме первичный трансформатор 230 В переменного тока и вторичный трансформатор 15–0–15 В, 1 А понижают сетевое напряжение, которое выпрямляется диодами D1 и D2 и сглаживается конденсатором C1. Это напряжение подается на вход LM317 для регулирования.

Базовая схема представляет собой регулируемый источник питания с использованием LM317 с контролем на выходе путем изменения сопротивления на регулировочном контакте 1.Для LM317 требуется хороший радиатор. LM358 — это усилитель двойного действия, который используется для контроля перезарядки аккумулятора. Конденсатор C4 должен быть как можно ближе к выводу 1 IC2. Перемычка J1 используется для калибровки (настройки). Устанавливая напряжение зарядки, снимите перемычку и после калибровки снова подключите ее.

Для начальной настройки снимите перемычку J1, выключите S2, включите S1 и настройте потенциометр VR2, чтобы получить 13,6 В в контрольной точке TP2. Отрегулируйте потенциометр VR3 так, чтобы светодиод 2 начал светиться.Отрегулируйте потенциометр VR1 так, чтобы он показал 0,5 В (разница 14,1 В и 13,6 В) в контрольной точке TP1. Настройте VR2 на 14,1 В в контрольной точке TP2.

При этих настройках TP2 должен показывать 14,1 В при низком напряжении в контрольной точке TP3 и 13,6 В при высоком напряжении в контрольной точке TP3. Подключите перемычку J1. Теперь зарядное устройство готово к использованию. Подключите заряжаемый аккумулятор 12 В (BUC), соблюдая полярность, к CON2. Включите S2; один из светодиодов вне LED2 и LED3 загорится (скорее всего, это будет LED2).Если ни один из них не загорается, проверьте соединения; батарея могла быть разряжена. Включите S1 для зарядки. Полностью заряженный аккумулятор будет обозначен свечением светодиода LED3.

Не беспокойтесь, если вы забудете выключить зарядное устройство. Зарядное устройство находится под плавающим напряжением (13,6 В), и его можно держать в этом режиме зарядки вечно.

Строительство и испытания

Односторонняя печатная плата для цепи абсорбирующего и поплавкового зарядного устройства 12 В батареи показана на рис. 2, а компоновка ее компонентов — на рис.3. Соберите схему на печатной плате, за исключением трансформатора X1 и заряжаемой батареи (BUC).

Рис. 2: Печатная плата схемы зарядного устройства 12В Рис. 3: Компоновка компонентов печатной платы

Загрузите печатную плату и компоновку компонентов в формате PDF: нажмите здесь

Поместите печатную плату в небольшую коробку. Закрепите клемму аккумулятора на передней части коробки для подключения BUC. Подключите переключатели S1 и S2, потенциометры VR1 — VR3 и т. Д. На корпусе коробки.

Примечания EFY

  1. Выключите S2 или отсоедините клеммы аккумулятора, чтобы избежать ненужной разрядки аккумулятора, когда он не заряжается, то есть когда S1 выключен.
  2. Подключите аккумулятор, соблюдая полярность.
  3. Корпус IC1 не должен быть заземлен, поэтому используйте изоляцию.

Фаяз Хассан, менеджер металлургического завода в Висакхапатнам, Висакхапатнам, интересуется проектами микроконтроллеров, мехатроникой и робототехникой.

Эта статья была впервые опубликована 26 июня 2016 г. и обновлена ​​13 августа 2019 г.

Как сделать домашнее зарядное устройство 12 В

Что такое зарядное устройство?

Зарядное устройство для аккумулятора — это простое электронное устройство, которое используется для передачи энергии вторичному элементу или батарее, проталкивая через него электрический ток. Они относительно недороги и их легко построить дома. Итак, в этой статье мы рассмотрим пошаговую инструкцию, как сделать зарядное устройство 12 В. Итак, давайте рассмотрим это.

Это множество вариантов зарядных устройств, доступных на современном рынке, таких как импульсные зарядные устройства, устройства непрерывной зарядки и быстрые зарядные устройства и т. Д. Но в целом все зарядные устройства построены по одной и той же схеме. Понижающий трансформатор вместе с конденсатором класса X, подключенным последовательно для понижения высокого входного переменного тока до приемлемого уровня, и мостовой выпрямитель для преобразования переменного сигнала в пульсирующий постоянный ток.Вы также можете использовать сглаживающий конденсатор на выходе выпрямителя, чтобы избавиться от шума.

Мы выражаем сердечную благодарность JLCPCB за спонсирование проектов на этом веб-сайте и канале Youtube. JLCPCB — лучшая компания по сборке и производству прототипов печатных плат в Китае . Расположенный в Ханчжоу, JLCPCB удовлетворяет все ваши потребности в дизайне печатных плат, предлагая лучший сервис, который вы когда-либо испытывали, с точки зрения качества дизайна, поддержки до и после продажи и быстрой доставки.Мы в Circuits-Diy настоятельно рекомендуем заказывать печатные платы у AllPCB. Просто зарегистрируйте новую учетную запись на веб-сайте AllPCB, введите физические параметры вашей платы и загрузите файл Gerber. Это так просто !. Получите мгновенное расценки на печатную плату, посетив их веб-сайт сегодня !.

Компоненты оборудования

Для сборки этого проекта вам потребуются следующие детали

Свинцово-кислотный аккумулятор 12 В

Полезные шаги

Ниже приведены инструкции по изготовлению зарядного устройства на 12 В

.

1) Сделайте мостовой выпрямитель, подключив 4 диода 1N4007 в следующей конфигурации.

2) Припаяйте плюсовой и минусовой выводы мостового выпрямителя ко вторичной обмотке трансформатора без ТН

.

3) Обрежьте лишние выводы мостового выпрямителя.

4) Припаяйте один конец конденсатора X-класса к положительной клемме источника переменного тока, а другой конец — к первичной обмотке трансформатора. Припаяйте отрицательную клемму питания к первичной обмотке трансформатора.

5) Припаяйте зажимы типа «крокодил» к клеммам мостового выпрямителя.

6) Подключите выходные клеммы зарядного устройства к клеммам разъема питания постоянного тока и проверьте цепь.

Зарядка аккумулятора (с включенным предохранителем)

Аккумулятор не заряжается (предохранитель отключен)

Рабочее объяснение

Работа этой схемы довольно проста. Сигнал 220 В переменного тока действует как вход для схемы зарядного устройства. этот сигнал переменного тока проходит через конденсатор 1 мкФ с номиналом X, напрямую подключенный к линии переменного тока под напряжением, чтобы снизить напряжение переменного тока. Выходной сигнал проходит через понижающий трансформатор без СТ.

Выходной сигнал переменного тока затем подается на схему мостового выпрямителя, выполненную с использованием четырех диодов 1N4007.Выход постоянного тока мостового выпрямителя затем используется для зарядки любой свинцово-кислотной батареи 12 В с помощью зажимов для батареи.

Приложения

  • Обычно используется для зарядки свинцово-кислотных аккумуляторов 12 В в качестве резервного источника питания.

См. Также: Контроллер двигателя DIY с H-мостом | Схема Joule Thief | Домашняя автоматизация с использованием NodeMCU ESP266 и Firebase

Постройте интеллектуальное зарядное устройство с использованием однотранзисторной схемы

Что вы узнаете:

  • Исследование схемы, фиксирующей тепловое движение графена и преобразующей его в ток.
  • Исследование комбинирования графена с нитридом бора, при котором электроны в графене должны отклоняться от своего движения в одном направлении, что приводит к протеканию тока.

Оказывается, графен — одно из удивительно универсальных элементарных веществ — вроде кремния — которое проявляется во многих обличьях и потенциально решает множество уникальных проблем? Только время покажет, но сейчас признаки благоприятные.

Во-первых, небольшая справка по графену. Это слой атомов углерода толщиной в один атом, расположенный в двухмерной гексагональной решетке.Таким образом, графен является самым тонким из известных материалов, но при этом невероятно прочным (примерно в 200 раз прочнее стали). Он отлично проводит тепло и электричество и обладает интересными светопоглощающими способностями. Материал был изолирован и охарактеризован в 2004 году Андре Геймом и Константином Новоселовым из Манчестерского университета, которые в 2010 году были удостоены Нобелевской премии по физике за свои исследования этого материала.

Теперь два не связанных между собой исследования показывают, как это может быть полезно при сборе энергии.Во-первых, группа физиков из Университета Арканзаса успешно разработала схему, способную улавливать тепловое движение графена и преобразовывать его в электрический ток. Идея сбора энергии из графена является спорным, поскольку он противопоставляет утверждение легендарный физик Ричард Фейнман о том, что тепловое движение атомов его известных, как броуновское движение — не может сделать работу.

Однако, по словам Пола Тибадо, профессора физики и ведущего исследователя, тепловое движение графена на самом деле вызывает переменный ток (ac) в цепи при комнатной температуре, что казалось невозможным.Его группа построила свою схему с двумя диодами для преобразования переменного тока в постоянный, что позволило току течь в обе стороны и обеспечить отдельные пути через схему, чтобы получить пульсирующий постоянный ток, который выполняет работу на нагрузочном резисторе (рис.1) .

1. Этот набросок модели схемы с диаграммой энергетического барьера является упрощенным представлением глубинной физики, лежащей в основе принципа сбора на основе графена. (Источник: Университет Арканзаса)

Численное моделирование показывает, что система достигает теплового равновесия, а средние показатели нагрева и работы, обеспечиваемые стохастической термодинамикой, имеют тенденцию быстро стремиться к нулю. Однако мощность рассеивается нагрузочным резистором, и его среднее время в точности равно мощности, подаваемой термостатом. Точная формула мощности аналогична формуле мощности шума Найквиста, за исключением того, что скорость изменения сопротивления диода значительно увеличивает выходную мощность, а движение графена сдвигает спектр мощности в сторону более низких частот.

По своему расположению графеновая пленка была установлена ​​на подставке так, чтобы наконечник сканирующего туннельного микроскопа (СТМ) мог приближаться к ней, при этом переход иглы СТМ с образцом был включен в схему, показанную (рис.2) . Образец изолирован от земли и подключен к двум диодам; переход зонд-образец действует как конденсатор переменной емкости. Туннельный ток, ток диода 1 (D1C) и ток диода 2 (D2C) контролируются одновременно.

2. Показаны наборы данных сканирующего туннельного микроскопа (СТМ), полученные, когда игла туннелирует электроны. (а) Принципиальная схема, показывающая наконечник СТМ, образец, напряжение смещения, амперметры и расположение диодов. (б) Эскиз листа графена в волнистом состоянии и иллюстрации изменений формы графена.(c) Колебания высоты графена. (г) Туннельный ток СТМ в зависимости от времени для автономного и жесткого графена. (e) Стандартное отклонение туннельного тока от заданного тока для автономного и жесткого графена. (Источник: Университет Арканзаса)

Эта диодная схема используется для сбора энергии, но здесь она используется для изоляции индуцированного графеном тока от батареи, питающей электрически изолированный STM. На расстоянии зонд-образец 2 нм или меньше туннельные электроны преобладают над током; для больших расстояний преобладает ток смещения.

Очевидно, что эта работа связана с интенсивной и глубокой физикой и объясняется в их статье «Флуктуационно-индуцированный ток от автономного графена», опубликованном в APS Physical Review E . Он находится за платным доступом, но также размещен здесь (здесь также есть короткая упрощенная видео-анимация).

Откровенно говоря, здесь требуется некоторый скачок веры, несмотря на полный анализ в опубликованной статье, тем более, что профессор Тибадо также продвигает свои исследования с оптимистическими заявлениями, такими как «Схема сбора энергии на основе графена может быть встроена в чип, чтобы обеспечить чистое, безграничное низковольтное питание для небольших устройств или датчиков.Но вы никогда не знаете — и никогда не должны говорить никогда, когда речь идет о достижениях физики и технологий.

MIT’s Graphene Discovery

В рамках несвязанной разработки команда из лаборатории исследования материалов Массачусетского технологического института (MIT) придумала способ сбора высокочастотной энергии в диапазоне от микроволн до терагерцового диапазона. Анализ рассматривает физику и предполагаемые ограничения квантово-механического поведения графена, а также способы их преодоления.Они обнаружили, что, комбинируя графен с другим материалом — в данном случае нитридом бора — электроны в графене должны отклонять свое движение в одном направлении, таким образом, обеспечивая протекание тока.

Хотя предыдущие экспериментальные технологии могли преобразовывать терагерцовые волны в постоянный ток, они могли делать это только при ультрахолодных температурах, что, очевидно, ограничивает их практическое применение. Вместо этого ведущий исследователь Хироки Исобе начал исследование, чтобы выяснить, можно ли на квантовомеханическом уровне заставить собственные электроны материала течь в одном направлении, чтобы направить приходящие волны электромагнитной энергии в постоянный ток.Используемый материал должен быть свободен от примесей, чтобы электроны в нем текли, не рассеиваясь на неровностях материала, а графен был привлекательным материалом.

Но это было только отправной точкой. Чтобы направить электроны графена в одном направлении, необходимо «нарушить» симметрию, присущую материалу. Таким образом, электроны будут ощущать одинаковую силу во всех направлениях, а это означает, что любая поступающая энергия будет рассеиваться случайным образом. Другие экспериментировали с графеном, помещая его поверх слоя нитрида бора, так что силы между электронами графена были выбиты из равновесия: электроны, расположенные ближе к бору, ощущали одну силу, а электроны, находящиеся ближе к азоту, испытывали другое притяжение.

Это «перекосное рассеяние» может привести к протеканию полезного тока. Исследовательская группа представила терагерцевый выпрямитель, состоящий из небольшого квадрата графена, расположенного поверх слоя нитрида бора. Он будет помещен в антенну, которая собирает и концентрирует окружающее терагерцовое излучение, усиливая его сигнал настолько, чтобы преобразовать его в постоянный ток (рис. 3) .

3. Схема выпрямителя на 2D материале. В этой установке выпрямленный постоянный ток обнаруживается поперек падающего электрического поля, что способствует снижению шума.Антенна прикреплена к обеим сторонам для сбора большей мощности излучения и повышения чувствительности. (Источник: Массачусетский технологический институт)

Команда подала патент на свою новую конструкцию «высокочастотного выпрямления», которая описана в их статье Science Advances «Высокочастотное выпрямление с помощью хиральных блоховских электронов». с дополнительными материалами. Чтобы понять, что это исключительно глубокий теоретический анализ (и я имею в виду углубленный, так как количество моделей, уравнений, частных производных и интегралов поразительно), нужно немного прочитать и то, и другое.На самом деле никакого устройства не было создано. Но не беспокойтесь — исследователи работают с физиками-экспериментаторами из Массачусетского технологического института, чтобы разработать физическое устройство, основанное на их понимании и анализе.

Как разработать трехступенчатую схему зарядки аккумулятора | Custom

Трехступенчатые зарядные устройства обычно называют интеллектуальными зарядными устройствами. Это высококачественные зарядные устройства, которые популярны для зарядки свинцово-кислотных аккумуляторов. Однако в идеале все типы аккумуляторов следует заряжать с помощью трехступенчатых зарядных устройств.Для более дорогих свинцово-кислотных аккумуляторов этот трехэтапный процесс зарядки сохраняет их работоспособность.

Прежде чем перейти к схемам трехступенчатого зарядного устройства, мы должны больше узнать о многоступенчатых зарядных устройствах и причинах их использования.

Что такое многоступенчатые зарядные устройства?

Многоступенчатые зарядные устройства для аккумуляторов определяют требования к аккумулятору и автоматически переключаются в режим CC-CV, гарантируя оптимальную эффективность и более длительный срок службы аккумулятора.В этих технологиях зарядки аккумуляторов обычно используются микропроцессоры для регулируемой зарядки от 2 до 5 ступеней.

Двухступенчатое зарядное устройство имеет (очевидно) две ступени: накопительную и плавающую. Вы можете наблюдать эти этапы на общей схеме контроллера зарядного устройства для мобильных аккумуляторов. Здесь основная стадия обычно упоминается как стадия повышения, на которой батарея заряжается высокими токами в течение короткого промежутка времени. Стадия плавающего режима, также называемая непрерывной зарядкой, происходит, когда батарея заряжается со скоростью саморазряда.

Некоторые зарядные устройства имеют стадию восстановления для восстановления разряженных батарей. Как упоминалось ранее, эти зарядные устройства повышают эффективность и продлевают срок службы аккумуляторов. Возможно, вы видели людей, заряжающих свинцово-кислотные (или другие дорогие) аккумуляторы от постоянного источника питания. Это похоже на медленную смерть ваших батарей!

Трехэтапный процесс зарядки

Как видно из названия, в этом зарядном устройстве есть три стадии: накопление, абсорбция и поплавок.Обсудим каждый этап.

Bulk Stage

Около 80% батареи заряжается на большой стадии. Здесь обеспечивается постоянный ток 25% от номинального значения Ач. Например, в случае батареи 100 Ач подается постоянный ток 25 А, и со временем напряжение увеличивается.

Вы можете увеличить ток, подаваемый на аккумулятор, более чем на 25% от его емкости, что сократит время зарядки, но также может сократить срок службы аккумулятора, поэтому не рекомендуется применять более высокий ток, чем указано.Не забудьте ознакомиться с рекомендациями производителей по зарядке, некоторые батареи также указывают 10% емкости.

Стадия абсорбции

На стадии абсорбции заряжаются оставшиеся 20% батареи. Здесь зарядное устройство подает постоянный ток, такой же, как и напряжение поглощения зарядного устройства, которое зависит от вариантов зарядки, и это потребление тока уменьшается до тех пор, пока аккумулятор не будет полностью заряжен.

Однако иногда ток не падает должным образом.В этом случае в аккумуляторе может быть стойкое сульфатирование. Постоянная сульфатация возникает, когда аккумулятор находился в состоянии низкого заряда в течение недель или более, и восстановление аккумулятора в этом случае невозможно.

Float Stage

На плавающей стадии зарядное устройство пытается поддерживать полностью заряженный аккумулятор в том же состоянии в течение неопределенного времени. Здесь снижается напряжение и подается ток менее 1% от емкости батареи. Вы можете оставить зарядку аккумулятора в этом состоянии навсегда, и это не повредит аккумулятору.

Трехступенчатые схемы зарядки аккумулятора

Давайте поговорим об обычном аккумуляторе 12 В, 7 Ач. Его напряжение поглощения составляет от 14,1 В до 14,3 В, а напряжение холостого хода от 13,6 до 13,8 В. Зная это, нам нужна схема, в которой мы можем регулировать напряжение с течением времени, чтобы было легче контролировать его с помощью потенциометра, или мы можем использовать микроконтроллер задачи.

ИС регулятора напряжения LM317 — это первое, что приходит на ум для таких приложений.Вы можете выбрать LM338 или LM350 в соответствии с вашими текущими требованиями к емкости. Нам нужны резисторы на выводе регулировки микросхемы для управления выходным напряжением. Для этого мы используем потенциометры 5 кОм и 2 кОм, так как у нас есть фиксированный резистор стока на 270 Ом.

Автоматическая схема портативного зарядного устройства 12 В с использованием LM317

Вы когда-нибудь пытались разработать зарядное устройство, которое заряжает аккумулятор автоматически, когда напряжение аккумулятора ниже указанного? В этой статье объясняется, как разработать автоматическое зарядное устройство.

Зарядное устройство, расположенное ниже, автоматически прекращает процесс зарядки, когда аккумулятор полностью заряжен. Это предотвращает глубокую зарядку аккумулятора. Если напряжение аккумулятора ниже 12 В, то схема автоматически заряжает аккумулятор.

Схема автоматического зарядного устройства 12 В

Схема автоматического зарядного устройства

Схема автоматического зарядного устройства состоит в основном из двух частей — блока питания и блока сравнения нагрузок.

Основное напряжение питания 230 В, 50 Гц подключено к первичной обмотке центрального ответвительного трансформатора для понижения напряжения до 15–0–15 В.

Выход трансформатора подключен к диодам D1, D2. Здесь диоды D1, D2 используются для преобразования низкого переменного напряжения в пульсирующее постоянное напряжение. Этот процесс также называется исправлением. Пульсирующее напряжение постоянного тока подается на конденсатор емкостью 470 мкФ для устранения пульсаций переменного тока.

Таким образом на выходе конденсатора нерегулируется постоянное напряжение.Это нерегулируемое постоянное напряжение теперь подается на регулятор переменного напряжения LM317 для обеспечения регулируемого постоянного напряжения.

Выходное напряжение этого регулятора напряжения может изменяться от 1,2 В до 37 В, а максимальный выходной ток этой ИС составляет 1,5 А. Выходное напряжение этого регулятора напряжения изменяется путем изменения потенциометра 10 кОм, который подключен к регулировочному выводу LM317.

[Также прочтите: Как сделать регулируемый таймер]

Выход регулятора напряжения Lm317 поступает на аккумуляторную батарею через диод D5 и резистор R5.Здесь диод D5 используется для предотвращения разрядки аккумулятора при отключении основного питания.

При полной зарядке аккумулятора стабилитрон D6, подключенный в обратном направлении, проводит ток. Теперь база транзистора BD139 NPN получает ток через стабилитрон, так что полный ток заземлен.

В этой схеме зеленый светодиод используется для индикации заряда аккумулятора. Резистор R3 используется для защиты зеленого светодиода от высокого напряжения.

Выходное видео:
Принцип электрической цепи

Если напряжение аккумулятора ниже 12 В, то ток от микросхемы LM317 протекает через резистор R5 и диод D5 к аккумулятору.В это время стабилитрон D6 не будет проводить, потому что аккумулятор забирает весь ток для зарядки.

Когда напряжение батареи повышается до 13,5 В, ток в батарею прекращается, и стабилитрон получает достаточное напряжение пробоя и пропускает ток через него.

Теперь база транзистора получает достаточный ток для включения, так что выходной ток от регулятора напряжения LM317 заземляется через транзистор Q1. В результате красный светодиод показывает полный заряд.

Настройки зарядного устройства

Выходное напряжение зарядного устройства должно быть в 1,5 раза меньше, чем напряжение аккумулятора, а ток зарядного устройства должен составлять 10% от тока аккумулятора. Зарядное устройство должно иметь защиту от перенапряжения, короткого замыкания и обратной полярности.

ПРИМЕЧАНИЕ : Также получите представление о том, как построить схему индикатора уровня заряда аккумулятора?

2. автоматическое зарядное устройство

Принципиальная схема

В этом проекте упоминается схема автоматического зарядного устройства для герметичных свинцово-кислотных аккумуляторов.Это схема импульсного типа зарядного устройства, которая помогает продлить срок службы батарей. Работа этой схемы объясняется ниже.

LM317 действует как регулятор напряжения и устройство контроля тока. Стабилитрон 15 В используется для установки LM317 на подачу напряжения 16,2 В на выходе при отсутствии нагрузки. Когда 2N4401 включается выходом 555, вывод ADJ LM317 заземлен, и его выходное напряжение составляет 1,3 В.

LM358 действует как компаратор и повторитель напряжения. LM336 используется для подачи опорного напряжения 2.5 В на неинвертирующую клемму (контакт 3) LM358. Сеть делителя напряжения используется для подачи части напряжения батареи на инвертирующий вывод (вывод 2) LM358.

Когда заряд аккумулятора достигает 14,5 В, входной сигнал инвертирующего терминала LM358 немного больше 2,5 В на контакте 3, установленном LM336. Это повысит выход 555.

В результате загорится красный светодиод и транзистор включится. Это заземлит контакт ADJ LM317, и его выход упадет до 1,3 В.

Когда заряд аккумулятора падает ниже 13.8 В, выход LM358 высокий, а выход 555 низкий. В результате напряжение течет от LM317 к батарее, и зеленый светодиод светится, указывая на зарядку.

[Связанное сообщение Зарядное устройство для свинцово-кислотных аккумуляторов с использованием LM317]

3. зарядное устройство с использованием SCR

В этом проекте реализована схема автоматического зарядного устройства с использованием SCR. Его можно использовать для зарядки аккумуляторов 12 В. Батареи с разными потенциалами, например, 6 В и 9 В, также можно заряжать, выбрав соответствующие компоненты.Схема работы следующая.

Источник переменного тока преобразуется в 15 В постоянного тока с помощью трансформатора и мостового выпрямителя, и загорается зеленый светодиод. Выход постоянного тока представляет собой пульсирующий постоянный ток, поскольку после выпрямителя нет фильтра.

Это важно, поскольку тиристор перестает проводить ток, только когда напряжение питания равно 0 или когда он отключен от источника питания, и это возможно только при пульсирующем постоянном токе.

Первоначально SCR1 начинает проводить, поскольку он получает напряжение затвора через R2 и D5.Когда SCR1 является проводящим, через аккумулятор проходит 15 В постоянного тока, и аккумулятор начинает заряжаться. Когда аккумулятор почти полностью заряжен, он препятствует прохождению тока, и ток начинает течь через R5.

Он фильтруется с помощью C1, и когда потенциал достигает 6,8 В, стабилитрон ZD1 начинает проводить и подает напряжение затвора на SCR2, достаточное для его включения.

В результате ток протекает через SCR2 через R2, и SCR1 отключается, так как напряжение затвора и напряжение питания отключены.Красный светодиод загорается, указывая на полную зарядку аккумулятора.

Знаю, как спроектировать схему автоматического отключения и автоматической зарядки аккумулятора с помощью SCR.

Зарядное устройство для свинцово-кислотных аккумуляторов

DIY: 8 шагов

Я включил две версии печатной платы. У вас есть традиционная принципиальная схема и графическое изображение медной монтажной платы.

C1 — конденсатор 220 нФ
C2 — конденсатор 100 нФ

Два конденсатора помогают сглаживать и фильтровать входное и выходное напряжения.

R2 — резистор на 820 Ом.

От W1 до W6 — перемычки разной длины. Они есть в большинстве магазинов электроники.

Знаки X, которые вы видите на дорожках, — это разрывы медных полос. Вы можете сломать их, используя инструмент для разрыва дорожек на картоне — поставщика, который я использую для них, можно найти в Electronic Projects Online

R1 — это потенциометр 5K или 10K.

Три резистора R3 составляют сопротивление, необходимое для подачи правильного тока.Обратите внимание, что они настроены параллельно. Здесь используются резисторы мощностью 0,25 Вт, что в сумме составляет 0,75 Вт. Ток проходит напрямую через эти резисторы, поэтому его необходимо правильно определить. Вскоре мы поговорим об уравнениях для расчета правильных значений.

Наконец, вы можете увидеть L200C. Он имеет пронумерованные контакты, которые вы можете сопоставить с таблицей данных. Вам нужно будет сделать небольшое количество плавного изгиба, чтобы выровнять штифты, как у меня — к сожалению, штифты слишком близко друг к другу, чтобы идеально вписаться в полосовую доску.

Контакт 1 принимает положительный вывод от источника питания. Контакт 3 заземлен (отрицательный). Вывод 5 — это выход. Контакты 2 и 4 используются для определения правильного напряжения и тока.

Уравнения!

R3 = 0,45 / А

Итак, в моем случае я хотел ограничить ток до 700 мА
R3 = 0,45 / 0,7 = 0,64 Ом

В моем случае я использовал 3 разных резистора, чтобы приблизиться к этому значению — 1, 2,5 и 5 Ом. Способ вычисления параллельных резисторов:

1 / ((1 / R1) + (1 / R2) + (1 / R3))

, в моем случае это

1 / ((1/1) + ( 1/2.5) + (1/5))
= 1 / (1 + 0,4 + 0,2) = 1 / 1,6 = 0,625 Ом

Что достаточно близко! Чтобы рассчитать ток, который вы получаете из установленного значения в Ом, вы можете вернуться назад — это полезно, чтобы узнать, как ваши приближения с резисторами приводят вас.

Ток = 0,45 / 0,625 Ом = 0,72 А

Мощность, проходящая через R3, составляет 0,45 * 0,45 / R3 в Ом

В моем случае это 0,45 * 0,45 / 0,625 = 0,324 Вт, учитывая, что 3 резистора позволяют в общей сложности 0,75 Вт, мы в пределах допустимого.

Определить значение R1 несложно.

R1 = (Vout / 2,77 — 1) * R2

Мы знаем, что R2 составляет 820 Ом, и мы знаем, каким мы хотим, чтобы выходной VOut был таким (в моем случае)

R1 = ((6,5 В / 2,77) — 1) * 820 = 1104 Ом

Самый простой способ — подключить мультиметр к Vout, а затем отрегулировать потенциометр.

ВАЖНЫЕ ЗАМЕЧАНИЯ
1) ваше входное напряжение должно быть примерно на 2 вольта выше требуемого выходного напряжения.
2) Чип горит от превышения напряжения / тока как тепло.Чтобы снизить температуру, постарайтесь не иметь VIN намного больше, чем VOut — с учетом пункта 1.

Чтобы рассчитать мощность, рассеиваемую микросхемой, вам необходимо выбрать (Vin-Vout) * ток. Моя версия — 12 В-6,5 В * 0,7 = 3,85 Вт. Я также прикрепил к своей микросхеме радиатор, и коробка ДЕЙСТВИТЕЛЬНО нагревается, хотя кажется, что она вполне способна с этим справиться. Все могло бы стать очень сложным, если бы Vin было 24 В, а Vout было 6 В, и у вас был полный ток 2 А …. довольно жарко на 36 Вт .. ВЕНТИЛЯТОР, ПОЖАЛУЙСТА, lol

Простые микросхемы зарядного устройства для любой химии

Общие сведения

Для многих устройств с батарейным питанием обычно требуются самые разные источники заряда, химический состав батарей, напряжения и токи.Например, промышленные, высокопроизводительные, многофункциональные потребительские, медицинские и автомобильные зарядные устройства требуют более высоких напряжений и токов, поскольку появляются новые аккумуляторные блоки большой емкости для всех типов аккумуляторных химикатов. Кроме того, солнечные панели с широким диапазоном уровней мощности используются для питания множества инновационных систем, содержащих перезаряжаемые герметичные свинцово-кислотные (SLA) и литиевые батареи. Примеры включают габаритные огни пешеходного перехода, портативные акустические системы, уплотнители мусора и даже огни морских буев.Более того, некоторые свинцово-кислотные (LA) батареи, используемые в солнечных батареях, представляют собой батареи глубокого цикла, способные выдерживать длительные, повторяющиеся циклы зарядки в дополнение к глубоким разрядам. Хороший пример этого — глубоководные морские буи, обязательным условием которых является 10-летний срок эксплуатации. Другой пример — внесетевые (то есть отключенные от электроэнергетической компании) системы возобновляемых источников энергии, такие как солнечная или ветровая энергия, где время безотказной работы системы имеет первостепенное значение из-за трудностей с близким доступом.

Даже в несолнечных приложениях последние рыночные тенденции означают возобновление интереса к аккумуляторным элементам SLA большой емкости. Автомобильные или пусковые элементы SLA недороги с точки зрения соотношения цена / мощность и могут обеспечивать высокие импульсные токи в течение коротких промежутков времени, что делает их отличным выбором для автомобильных и других пусковых устройств транспортных средств. Встроенные автомобильные приложения имеют входное напряжение> 30 В, а в некоторых даже выше. Рассмотрим систему определения местоположения GPS, используемую в качестве средства защиты от кражи; линейное зарядное устройство с типичным входом 12 В с понижением до двух последовательно соединенных литий-ионных аккумуляторов (7.4 В) и нуждающиеся в защите от гораздо более высоких напряжений, могут быть полезны для этого приложения. Аккумуляторы глубокого разряда LA — еще одна технология, популярная в промышленных приложениях. У них более толстые пластины, чем у автомобильных аккумуляторов, и они рассчитаны на разряд до 20% от общей емкости. Обычно они используются там, где мощность требуется в течение длительного времени, например, в вилочных погрузчиках и тележках для гольфа. Тем не менее, как и их литий-ионные аналоги, аккумуляторы LA чувствительны к перезарядке, поэтому очень важно бережное обращение во время цикла зарядки.

Решения

на основе интегральных схем (ИС) тока покрывают лишь небольшую часть множества возможных комбинаций входного напряжения, напряжения заряда и тока заряда. Громоздкая комбинация микросхем и дискретных компонентов обычно использовалась для покрытия большинства оставшихся, более сложных комбинаций и топологий. Так было только в 2011 году, когда компания Analog Devices обратилась к этому рыночному пространству приложений и упростила его с помощью своего популярного решения для зарядки с двумя микросхемами, состоящего из микросхемы контроллера зарядки аккумулятора LTC4000 и совместимого преобразователя постоянного тока с внешней компенсацией.

Коммутационные и линейные зарядные устройства

ИС зарядного устройства с традиционной линейной топологией часто ценились за их компактность, простоту и низкую стоимость. Однако к недостаткам этих линейных зарядных устройств относятся ограниченный диапазон входного напряжения и напряжения аккумулятора, более высокое относительное потребление тока, чрезмерное рассеивание мощности, ограниченные алгоритмы прекращения заряда и более низкая относительная эффективность (эффективность ~ [VOUT / VIN] × 100%). С другой стороны, импульсные зарядные устройства для аккумуляторов также являются популярным выбором из-за их гибкой топологии, мультихимической зарядки, высокой эффективности зарядки (которая минимизирует нагрев для обеспечения быстрой зарядки) и широких диапазонов рабочего напряжения.Тем не менее, некоторые из недостатков переключаемых зарядных устройств включают относительно высокую стоимость, более сложную конструкцию на основе индукторов, потенциальное шумообразование и решения, занимающие большую площадь. Современный Лос-Анджелес, беспроводное энергоснабжение, сбор энергии, солнечная зарядка, удаленный датчик и встроенные автомобильные приложения обычно питаются от высоковольтных линейных зарядных устройств по причинам, указанным выше. Однако существует возможность для более современного зарядного устройства с переключаемым режимом, которое устраняет связанные с этим недостатки.

Несложное зарядное устройство Buck Battery

Некоторые из более сложных проблем, с которыми сталкивается разработчик на начальном этапе разработки зарядного решения, — это широкий диапазон источников входного сигнала в сочетании с широким диапазоном возможных аккумуляторов, большая емкость аккумуляторов, требующих зарядки, и высокое входное напряжение.

Источники входного сигнала столь же широки, сколь и разнообразны, но некоторые из наиболее сложных из них, которые имеют дело с системами зарядки аккумуляторов: мощные настенные адаптеры с диапазоном напряжений от 5 до 19 В и выше, выпрямленные системы на 24 В переменного тока, высокое сопротивление солнечные батареи, аккумуляторы для автомобилей и тяжелых грузовиков / Humvee.Следовательно, комбинация химического состава батарей, возможная в этих системах — на основе лития (Li-Ion, Li-Polymer, фосфат лития-железа (LiFePO4)) и на основе LA — еще больше увеличивает перестановки, что делает конструкцию еще более устрашающе.

Из-за сложности конструкции ИС существующие ИС для зарядки аккумуляторов в основном ограничены понижающей (или понижающей) или более сложной топологиями SEPIC. Добавьте сюда возможность зарядки от солнечных батарей, и вы откроете множество других сложностей. Наконец, некоторые существующие решения заряжают батареи с несколькими химическими соединениями, а некоторые — со встроенной заделкой.Однако до сих пор ни одно зарядное устройство для ИС не обеспечивало всех необходимых характеристик производительности для решения этих проблем.

Новые многофункциональные компактные зарядные устройства

Понижающее устройство для зарядки ИС, которое решает проблемы, описанные выше, должно обладать большинством следующих атрибутов:

  • Широкий диапазон входного напряжения
  • Широкий диапазон выходного напряжения для работы с несколькими батареями
  • Гибкость — возможность заряжать несколько батарей химического состава
  • Простая и автономная работа с бортовыми алгоритмами прекращения заряда (микропроцессор не требуется)
  • Большой ток заряда для быстрой зарядки, большие элементы большой емкости
  • Возможность солнечной зарядки
  • Усовершенствованная упаковка для улучшения тепловых характеристик и экономии места

Когда несколько лет назад компания ADI разработала популярную микросхему контроллера зарядки аккумулятора LTC4000 (которая работает вместе с преобразователем постоянного тока с внешней компенсацией, образуя мощное и гибкое решение для зарядки двухчиповых аккумуляторов), это значительно упростило существующее решение, которое было довольно запутанным и громоздким.Чтобы включить управление PowerPath TM , функции повышения / понижения и ограничение входного тока, решения состояли из импульсного регулятора постоянного тока с повышающим постоянным током или контроллера зарядного устройства с понижающим переключением в паре с внешним контроллером повышения. , а также микропроцессор, а также несколько микросхем и дискретных компонентов. К основным недостаткам относятся ограниченный диапазон рабочего напряжения, отсутствие возможности подключения солнечной панели, невозможность заряжать аккумулятор любого химического состава и отсутствие прекращения заряда на борту. Перенесемся в настоящее, и теперь доступны более простые и гораздо более компактные монолитные решения для решения этих проблем.Понижающие зарядные устройства LTC4162 и LTC4015 от Analog Devices предоставляют однокристальные решения для понижающей зарядки с различными уровнями тока заряда и полным набором функций.

Зарядное устройство LTC4162

LTC4162 — это высокоинтегрированное синхронное монолитное понижающее зарядное устройство с мультихимическим режимом высокого напряжения и диспетчером PowerPath со встроенными функциями телеметрии и дополнительным отслеживанием точки максимальной мощности (MPPT). Он эффективно передает мощность от различных источников ввода, таких как настенные адаптеры, объединительные платы и солнечные панели, для зарядки литий-ионных / полимерных, LiFePO4 или батарейных блоков LA, при этом обеспечивая питание системной нагрузки до 35 В.Устройство обеспечивает расширенный системный мониторинг и управление PowerPath, а также мониторинг состояния батареи. Хотя для доступа к наиболее продвинутым функциям LTC4162 требуется главный микроконтроллер, использование порта I 2 C не является обязательным. Основные характеристики зарядки продукта можно отрегулировать, используя конфигурацию штыревой перемычки и программирующие резисторы. Устройство обеспечивает точность регулирования тока заряда ± 5% до 3,2 А, регулировку напряжения заряда ± 0,75% и работает в диапазоне входного напряжения от 4,5 В до 35 В.Приложения включают портативные медицинские инструменты, устройства USB-питания (USB-C), военное оборудование, промышленные карманные компьютеры и защищенные ноутбуки / планшетные компьютеры.

Рисунок 1. Типовая схема применения LTC4162-L.

LTC4162 (см. Рисунок 1) содержит точный 16-разрядный аналого-цифровой преобразователь (АЦП), который непрерывно отслеживает многочисленные параметры системы по команде, включая входное напряжение, входной ток, напряжение батареи, ток батареи, выходное напряжение, температуру батареи. , температура кристалла и последовательное сопротивление батареи (BSR).Все параметры системы можно контролировать через двухпроводной интерфейс I 2 C, а программируемые и маскируемые предупреждения гарантируют, что только интересующая информация вызовет прерывание. Алгоритм отслеживания активной точки максимальной мощности устройства глобально просматривает входной контур управления пониженным напряжением и выбирает рабочую точку для максимального извлечения энергии из солнечных панелей и других резистивных источников. Кроме того, его встроенная топология PowerPath отделяет выходное напряжение от батареи, тем самым позволяя портативному изделию запускаться мгновенно, когда источник зарядки применяется в условиях очень низкого напряжения батареи.Встроенные профили зарядки LTC4162 оптимизированы для аккумуляторов различного химического состава, включая литий-ионные / полимерные, LiFePO4 и LA. Как напряжение заряда, так и ток заряда можно автоматически регулировать в зависимости от температуры аккумулятора в соответствии с рекомендациями JEITA или настраивать. Для LA непрерывная температурная кривая автоматически регулирует напряжение батареи в зависимости от температуры окружающей среды. Для любого химического состава может быть задействована дополнительная система регулирования температуры стыка фильеры, предотвращающая чрезмерный нагрев в условиях ограниченного пространства или в условиях высоких температур.См. Рисунок 2 для получения информации об эффективности зарядки литий-ионных аккумуляторов.

Наконец, LTC4162 размещен в 28-выводном корпусе QFN размером 4 мм × 5 мм с открытой металлической площадкой для обеспечения превосходных тепловых характеристик. Приборы класса E и I имеют гарантию на работу от –40 ° C до + 125 ° C.

Рисунок 2. Зависимость эффективности зарядки литий-ионных аккумуляторов от входного напряжения по количеству ячеек.

Что делать, если требуется более высокий ток?

LTC4015 также представляет собой высокоинтегрированное, мультихимическое синхронное понижающее зарядное устройство высокого напряжения со встроенными функциями телеметрии.Тем не менее, он имеет архитектуру контроллера с внешними силовыми полевыми транзисторами для повышения допустимого тока заряда (до 20 А или более в зависимости от выбранных внешних компонентов). Устройство эффективно подает питание от входного источника (сетевой адаптер, солнечная панель и т. Д.) На литий-ионный / полимерный аккумулятор, LiFePO4 или батарею LA. Он обеспечивает расширенные функции системного мониторинга и управления, включая подсчет кулонов батареи и мониторинг состояния. Хотя для доступа к наиболее продвинутым функциям LTC4015 требуется главный микроконтроллер, использование его порта I 2 C не является обязательным.Основные характеристики зарядки продукта можно отрегулировать, используя конфигурацию штыревой перемычки и программирующие резисторы.

Рисунок 3. Схема зарядного устройства понижающей батареи 12 В IN на 2-элементный литий-ионный аккумулятор на 8 А.

LTC4015 обеспечивает точность регулирования тока заряда ± 2% до 20 А, регулировку напряжения заряда ± 1,25% и работу в диапазоне входного напряжения от 4,5 В до 35 В. Приложения включают портативные медицинские инструменты, военное оборудование, приложения для резервного питания от батарей, промышленные портативные устройства, промышленное освещение, защищенные ноутбуки / планшетные компьютеры, а также системы связи и телеметрии с дистанционным питанием.

LTC4015 также содержит точный 14-битный аналого-цифровой преобразователь (АЦП), а также высокоточный счетчик кулонов. АЦП непрерывно контролирует многочисленные параметры системы, включая входное напряжение, входной ток, напряжение батареи, ток батареи, и по команде сообщает о температуре батареи и последовательном сопротивлении батареи (BSR). Контролируя эти параметры, LTC4015 может сообщать о состоянии аккумулятора, а также о состоянии его заряда. Все параметры системы можно контролировать через двухпроводной интерфейс I 2 C, а программируемые и маскируемые предупреждения гарантируют, что только интересующая информация вызовет прерывание.Встроенные профили зарядки LTC4015 оптимизированы для различных типов аккумуляторов, включая литий-ионные / полимерные, LiFePO4 и LA. Конфигурационные штыри позволяют пользователю выбирать между несколькими предопределенными алгоритмами заряда для каждого химического состава батареи, а также несколькими алгоритмами, параметры которых можно регулировать с помощью I 2 C. Как напряжение заряда, так и ток заряда могут быть автоматически отрегулированы в зависимости от температуры батареи в соответствии с требованиями. с рекомендациями JEITA или даже с индивидуальными настройками.См. Рисунок 4 для получения информации об эффективности заряда свинцово-кислотной батареи. LTC4015 размещен в корпусе QFN размером 5 мм × 7 мм с открытой металлической площадкой для обеспечения превосходных тепловых характеристик.

Рис. 4. Эффективность зарядки свинцово-кислотной батареи с LTC4015.

Экономия места, гибкость и более высокие уровни мощности

При равных уровнях мощности (например, 3 А), поскольку это монолитное устройство со встроенными силовыми полевыми МОП-транзисторами, LTC4162 может сэкономить до 50% площади печатной платы по сравнению с LTC4015.Поскольку их наборы функций аналогичны, LTC4015 следует использовать при выходных токах от> 3,2 А до 20 А или более. Ни одно из конкурирующих в отрасли решений для зарядных устройств IC не предлагает такой же высокий уровень интеграции и не может генерировать такие же уровни мощности. Те, которые приближаются к зарядному току (от 2 до 3 А), ограничены только одним химическим составом батареи (литий-ионный) или ограничены по напряжению заряда батареи (максимум 13 В), и поэтому не предлагают уровни мощности или гибкость. из LTC4162 или LTC4015.Кроме того, если учесть количество внешних компонентов, необходимых для ближайшего конкурирующего решения для монолитного зарядного устройства, LTC4162 предлагает до 40% экономии площади печатной платы, что делает его еще более привлекательным выбором для разработки.

Солнечная зарядка

Есть много способов работать с солнечной панелью на максимальной мощности (MPP). Один из самых простых способов — подключить аккумулятор к солнечной панели через диод. Этот метод основан на согласовании максимального выходного напряжения панели с относительно узким диапазоном напряжений батареи.Когда доступные уровни мощности очень низкие (примерно менее нескольких десятков милливатт), это может быть лучшим подходом. Однако уровни мощности не всегда низкие. Поэтому в LTC4162 и LTC4015 используется метод MPPT, который определяет максимальное напряжение питания (MPV) солнечной панели при изменении количества падающего света. Это напряжение может резко измениться с 12 В до 18 В, поскольку ток панели изменяется в течение 2 или более десятилетий динамического диапазона. Алгоритм схемы MPPT находит и отслеживает значение напряжения панели, которое обеспечивает максимальный ток заряда для аккумулятора.Функция MPPT не только непрерывно отслеживает точку максимальной мощности, но также может выбрать правильный максимум на кривой мощности для увеличения мощности, получаемой от панели в условиях частичной тени, когда на кривой мощности возникают несколько пиков. В периоды низкой освещенности режим низкого энергопотребления позволяет зарядному устройству подавать небольшой ток заряда, даже если света недостаточно для работы функции MPPT.

Заключение

Новейшие мощные и полнофункциональные микросхемы для зарядки аккумуляторов и PowerPath Manager от компании

, LTC4162 и LTC4015, упрощают очень сложную систему высоковольтной и сильноточной зарядки.Эти устройства эффективно управляют распределением мощности между входными источниками, такими как настенные адаптеры, объединительные платы, солнечные панели и т. Д., А также зарядкой батарей различного химического состава, включая литий-ионные / полимерные, LiFePO4 и SLA.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *