Катализатор в – Катализатор — это… Что такое Катализатор?

Катализ и катализаторы — Энциклопедия wiki.MPlast.by

Катализ – это процесс изменения скорости химической реакции при помощи катализатороввеществ, принимающих участие в химической реакции, но в состав конечных продуктов не входящих и в результате реакции не расходующихся.

Одни катализаторы ускоряют реакцию (положительный катализ), другие – замедляют (отрицательный катализ). Отрицательный катализ называют ингибированием, а катализаторы, понижающие скорость химической реакции – ингибиторами.

Различают гомогенный и гетерогенный катализ.

Гомогенный катализ.

При гомогенном (однородном) катализе реагирующие вещества и катализатор находятся в одинаковом агрегатном состоянии и между ними отсутствует поверхность раздела. Пример гомогенного катализа – реакция окисления SO2 и SO3 в присутствии катализатора NO (реагирующие вещества и катализатор являются газами).

Гетерогенный катализ.

В случае гетерогенного (неоднородного) катализа реагирующие вещества и катализатор находятся в различных агрегатных состояниях и между ними существует поверхность (граница) раздела. Обычно катализатор – твердое вещество, а реагирующие вещества – жидкости или газы. Пример гетерогенного катализа – окисление NN3 до NO в присутствии Pt (катализатор – твердое вещество).

Механизм действия катализаторов

Действие положительных катализаторов сводится к понижению энергии активации реакции Еа(исх), действие ингибиторов – противоположное.

Так, для реакции 2HI = H2+I2 Еа(исх)=184 кДж/моль. Когда же эта реакция протекает в присутствии катализатора Au или Pt, то

Еа(исх)=104 кДж/моль, соответственно.

Механизм действия катализатора при гомогенном катализе объясняется образованием промежуточных соединений между катализатором и одним из реагирующих веществ. Далее промежуточное соединение реагирует со вторым исходным веществом, в результате чего образуется продукт реакции и катализатор в первоначальном виде. Так как скорость обоих промежуточных процессов значительно больше скорости прямого процесса, то реакция с участием катализатора протекает значительно быстрее, чем без него.

Например, реакция:

SO2 +1/2 O2 = SO3 протекает очень медленно, а если использовать катализатор NO

то реакции NO +1/2О2 = NO2 и NO2 +SO2 = SO3 +NO протекают быстро.

Механизм действия катализатора при гетерогенном катализе иной. В этом случае реакция протекает вследствие адсорбции молекул реагирующих веществ поверхностью катализатора (поверхность катализатора неоднородна: на ней имеются так называемые активные центры, на которых и адсорбируются частицы реагирующих веществ.). Увеличение скорости химической реакции достигается, в основном, за счет понижения энергии активации адсорбированных молекул, а также, отчасти, за счет увеличения концентрации реагирующих веществ в местах, где произошла адсорбция.

Каталитические яды и промоторы.

Некоторые вещества снижают или полностью уничтожают активность катализатора, такие вещества называют каталитическими ядами. Например, небольшие примеси серы (0,1%) полностью прекращает каталитическое действие металлического катализатора (губчатого железа), использующегося при синтезе аммиака. Вещества, повышающие активность катализатора, называют промоторами. Например, каталитическая активность губчатого железа значительно возрастает при добавлении примерно 2% метаалюмината калия KAlO2.

Применение катализаторов

Действие катализатора избирательно и специфично. Это означает, что, применяя различные катализаторы, из одних и тех же веществ можно получить различные продукты. Это особенно характерно для реакций органических веществ. Например, в присутствии катализатора AlO3 происходит дегидратация этилового спирта, в присутствии Cu – дегидрирование:

Биологические катализаторы, принимающие участие в сложных химических превращениях, протекающих в организме, называются ферментами.

Катализаторы широко используются в производстве серной кислоты, аммиака, каучука, пластмасс и др. веществ.


 

Автор: Метельский А.В
Источник: Метельский А.В., Химия в Экзаменационных вопросах и ответах, Минск, изд. «Беларуская энцыклапедыя», 1999 год
Дата в источнике: 1999 год

mplast.by

Катализаторы для дизельных двигателей | Системы снижения токсичности автомобиля

Дизельные двигатели всегда работают с избытком воздуха и в силу конструкции имеют небольшие выбросы СО и углеводородов. В результате в дизельном двигателе не хватает СО для восстановления оксидов азота в традиционных катализаторах. По этой причине в дизельных двигателях нельзя устанавливать катализаторы тройного действия. Для дизельных двигателей нужно было разработать совершенно новые концепции очистки ОГ. Уменьшения концентрации вредных веществ лишь за счет внутримоторных технологий уже недостаточно. Ниже описаны некоторые новые, внешние системы очистки ОГ для дизельных двигателей.

Дизельный катализатор

Рис. Дизельный катализатор

Традиционный дизельный катализатор представляет собой обычный окислительный катализатор для нейтрализации оксида углерода и углеводородов. В качестве благородных металлов для окисления используются платина и частично палладий. Из-за высокого содержания кислорода в ОГ процессы окисления в катализаторе протекают очень эффективно. СН и СО окисляются уже при температурах выше 160°С.

Поскольку частицы захватывают также углеводороды и оксид углерода, то прилипающие к частицам вредные компоненты нейтрализуются. С использованием окислительных катализаторов нельзя существенно снизить собственно выбросы частиц. Пройдя через катализатор, частицы становятся примерно на 30% легче, поскольку в нем нейтрализуются содержащиеся в частицах и прилипшие к ним углеводороды и оксид углерода. Зерна сажи остаются. Для соблюдения предельных значений Евро-2 и Евро-3 это уже был пройденный путь. Для выполнения же требований Евро-4 и других стандартов этого уже недостаточно.

SCR-катализатор (Катализатор с селективным каталитическим восстановлением)

С появлением нормы Евро-4 значительно снизились предельные концентрации вредных компонентов и для грузовых автомобилей. По сравнению с Евро-3 для оксидов азота это означает уменьшение на 30%, а по выбросам частиц — даже на 80%. С 2005 года в Европе была серийно запущена технология SCR-Для стандарта Евро-5 дополнительно требуются датчики NOx и аммиака (Nh4). Новые системы в сочетании с сажевыми фильтрами обеспечивают большой потенциал и для использования в легковых автомобилях. Следует обратить внимание, что накопительные SCR-катализаторы не только имеют точку начала температурного скачка (около 200°С), но и не позволяют достичь достаточной степени нейтрализации выше определенной температуры (около 450°С).

Сочетание сажевого фильтра, рециркуляции ОГ и систем катализаторов, работающих по принципу селективного каталитического восстановления (SCR), готово к пуску в серийное производство, а у некоторых автопроизводителей этот вопрос уже решен.

Эти катализаторы называют также SINOx-катализаторами. Покрытие катализатора состоит из V205/TiO2 (оксида ванадия или диоксида титана) или V205/W02/TiO2 (оксида ванадия, диоксида вольфрама или диоксида титана). Для восстановления оксидов азота нужно впрыскивать восстановитель в ОГ перед катализатором. Он превращает оксиды азота в N2 и Н2O. Степень нейтрализации составляет около 90% NOx. В качестве восстановителя используется газообразный или растворенный в воде аммиак (Nh4) или мочевина ([СО (Nh3)2]). Разложение раствора мочевины происходит в гидролизном катализаторе (полное нейтрализация Nh4 и СO2). В качестве гидролизных катализаторов можно использовать как отдельные оксиды металлов — AL2O3 и CO2 (анатас) так и имеющиеся в катализаторе оксиды благородных металлов. Химические реакции превращения оксидов азота начинаются примерно при 200°С и протекают по следующим уравнениям:

4 NO + 4 Nh4 + O2 —> 4 N2 + 6 h3O
6 NO2 + 8 Nh4 -> 7 N2 + 12 h3O.

Рис. Комбинированная система очистки ОГ [источник: Bosch]

Технология SCR базируется на добавке, впрыскиваемой в поток ОГ. В качестве добавки используется 32,5% водный раствор мочевины (±0,5%), находящийся в отдельном баке. Водный раствор мочевины называют AdBlue, он специфицирован стандартом DIN 70070. Расход AdBlue составляет около 4-6% расхода топлива. Раствор мочевины впрыскивается в поток ОГ, где она под воздействием температуры и содержащейся в ОГ воды выделяет аммиак. Аммиак превращает образующиеся при сгорании оксиды азота в SCR-катализаторе в молекулярный азот и воду.

Точная дозировка добавки, зависящая от нагрузки и оборотов — один из центральных факторов регулировки системы. Отношение мочевины к дизельному топливу составляет около 6:100. Дозировка в основном зависит от температуры катализатора и общих выбросов NOx. Однако учитываются и обменные реакции NOx, поглощение Nh4 в катализаторе, температура наддувочного воздуха и влажность воздуха. Впрыск добавки происходит согласно характеристике. Очистка ОГ на базе технологии SCR позволяет снизить выбросы оксидов азота на 80% и кроме того, уменьшает выбросы частиц примерно на 40%.

Благодаря технологии SCR грузовые автомобили легко выполняют жесткие требования по содержанию NOx стандарта Евро-4 и даже Евро-5.

Для оптимальной реакции в катализаторе важна точная дозировка и регулирование впрыска мочевины. Для этого необходимы датчики, измеряющие температуру, концентрацию, электропроводность и уровень заполнения раствора мочевины, и передающие данные в реальном времени в систему контроля SCR. Измерение температуры важно потому, что при -11 °С раствор замерзает, а замерзшая мочевина расширяется примерно на 10%. При слишком сильном падении температуры бак и трубопроводы необходимо обогревать. Отдельные компоненты системы должны быть рассчитаны на давление замерзшей мочевины. Выше порядка 40°С стабильность AdBlue низка, и может потребоваться дополнительное охлаждение добавки.

Важную роль играет новый датчик мочевины. Если датчик фиксирует сильно отличающуюся, например, явно слишком малую концентрацию мочевины в баке, то впрыск прекращается. Концентрация определяется по принципу электропроводимости раствора.

Таким образом, можно распознать как слишком низкий уровень заполнения, так и (по косвенным признакам) наличие посторонних веществ в баке. Эта информация может отображаться на панели приборов или обрабатываться системой OBD. Возможен также механизм контроля, автоматически снижающий мощность двигателя на 30-50%, если в баке оказывается слишком мало мочевины. Возможно два варианта датчиков. Так называемый DT-датчик находится в выпускном трубопроводе между бачком с мочевиной и насосом и измеряет концентрацию, электропроводимость и температуру протекающего раствора мочевины. DLT-датчик — многофункциональный датчик, находящийся непосредственно в бачке и контролирующий уровень заполнения.

При недостаточной температуре или времени реакции в системе SCR могут образовываться нежелательные побочные продукты (например, сульфат аммония или гидросульфат аммония). Эти побочные продукты могут деактивировать катализатор. Если после SCR-катализатора установить окислительный катализатор, то возникает опасность повторного образования NOx. Проблематичной является дозирование мочевины или аммиака при непостоянных условиях эксплуатации двигателя. Здесь кроется самая большая проблема для запуска серийного производства. Системы очень чувствительно реагируют на ошибочные дозы. Если ввести слишком мало мочевины, то ограничится степень нейтрализации, если ввести ее слишком много, то некоторая часть восстановителя будет выброшена неизрасходованной. Это приводит к появлению неприятного запаха и новым выбросам вредных веществ. Подача восстановителя происходит в зависимости от характеристики.

Концерн Mercedes-Benz для своих новых дизельных катализаторов использует добавку под названием BluTec, похожую на AdBlue. Еще одной альтернативой, которую можно использовать в качестве добавки, является «Denoxium». Это смесь водного раствора мочевины и аммонийной добавки. Ее свойства очень похожи на свойства AdBlue, но температуру замерзания можно понизить до -35 °С. В качестве добавки можно также использовать мочевину в твердой форме. Проблемой в этом случае является образование токсичных паров, если автомобиль загорится. Для применения в легковом автомобиле опробуется впрыск мочевины с воздухом. В таблице приведено сравнение возможных восстановителей на основе мочевины.

Таблица. Сравнение восстановителей для SCR-катализаторов

Основной проблемой всех новых систем катализаторов является их чувствительность к сере. Особенно у накопительных катализаторов пространства для оксидов азота могут быть заняты и серой, из-за чего резко падает способность катализатора к аккумулированию NO4. Уже при небольшом пробеге имеет место отравление серой и нейтрализации оксидов азота оказывается недостаточно. Эта проблема касается бензиновых и дизельных двигателей. На рисунке изображена основная зависимость степени нейтрализации от содержания серы в топливе.

Рис. Характеристика степени нейтрализации в зависимости от содержания серы в топливе

Прочие системы катализаторов для дизельных двигателей

Катализатор CH-SCR (Катализатор с СН-селективным каталитическим восстановлением)

Функцию аммиака, как восстановителя, могут выполнять и другие, безазотные восстановители — например, углеводороды, которые всегда содержатся в выхлопе в известной концентрации. При необходимости можно впрыскивать дополнительный восстановитель (топливо) либо сразу после сжигания в камеру сгорания или непосредственно перед катализатором в систему выпуска. Удаление оксидов азота происходит путем восстановления имеющихся углеводородов. Чтобы система работала оптимально, необходимо определенное соотношение СН и NOx. Степень нейтрализации может составлять до 60% NOx. При температуре ниже 100°С поглотительная способность системы очень мала, а свыше 350°С могут окислиться используемые цеолиты (щелочные силикаты алюминия). До сих пор известно два основных способа: низкотемпературные катализаторы на базе платины и высокотемпературные катализаторы на базе цеолитов.

Рис. Преобразование СН

На рисунке показана зависимая от температуры картина нейтрализации молекул СН.

Селективная рециркуляция оксидов азота (SNR)

Еще один перспективный вариант — селективная рециркуляция оксидов азота. В NO-адсорбере со щелочным или щелочноземельным покрытием улавливаются и отфильтровываются оксиды азота NCK Во время накопления оксиды азота каталитически окисляются. Затем в камеру сгорания возвращается NO, где преобразуется. Оксиды азота NOx улавливаются уже при температуре ОГ 150°С, а отдаются лишь при 350°С.

Плазменная технология и микроволновая индукция

При плазмоиндуцированной очистке в отработавших газах создаются радикалы. Радикалы запускают реакции разложения или превращения вредных компонентов. Отработавшие газы проходят через реактор, в котором высокоэнергетические электроны создают радикалы. Плазма — это газ, ионизирующийся при подаче электрического напряжения. Из-за большого количества свободных электронов она обладает высокой химической активностью. Эта активность используется для проведения реакций, для которых потребовалось бы большое количество энергии при значительно более низких температурах. Помимо восстановления оксидов азота также происходит уменьшение выбросов частиц. Преимуществом этих систем является независимость от температуры ОГ и мгновенное действие при включении плазмогенератора. Таким образом, система может начать работать сразу после холодного пуска. Проблемы этих систем заключаются в их очень высоком энергопотреблении, приводящем к увеличению расхода топлива и снижению степени нейтрализации оксидов азота до неудовлетворительного уровня. Эти разработки пока находятся на начальной стадии.

Для снижения вредных выбросов также апробируются технологии с микроволновой индукцией. По микроволновому нагреву уже есть перспективные наработки и небольшие прототипы, но еще требуется прояснить множество моментов:

  • обеспечение надежного экранирования микроволновой энергии;
  • обеспечение электромагнитной совместимости (ЭМС) системы в целом;
  • обеспечение достаточно большой микроволновой энергии без дополнительной нагрузки на бортовую сеть;
  • обеспечение достаточно компактной конструкции для встраивания в автомобиль.

Приемлемые решения и в этой системе появятся лишь через несколько лет.

ustroistvo-avtomobilya.ru

Состав автомобильных катализаторов — Katalizator1

Каталитические нейтрализаторы – неотъемлемая часть выхлопной системы транспортного средства, необходимая для очистки выхлопов от токсичных компонентов. Фильтрация газов происходит за счет напыления из драгоценных металлов. Благодаря дорогостоящему составу автомобильные катализаторы представляют ценность даже после истечения срока эксплуатации. Поступая во вторичную переработку, они используются в различных отраслях промышленности – от нефтехимии до изготовления ювелирных украшений.

Состав автомобильного катализатора

Внутри стального корпуса устройства расположен металлический или керамический носитель из множества ячеек, покрытых напылением из редкоземельных металлов. Палладий, платина, родий характеризуются высокой стоимостью, поскольку получение этих элементов в природе – трудоемкий процесс, отнимающий у добывающих предприятий массу ресурсов. Драгоценное покрытие обеспечивает фильтрацию выхлопов, окисляя вредные компоненты и преображая:

  • Углеводород – в водяной пар.
  • Азотные оксиды – в азот.
  • Угарный газ – в углекислый.

В результате в воздух выбрасываются вещества, не представляющие угрозы для окружающей среды и здоровья человека.

Обратите внимание, что по мере использование ценное напыление стирается – в среднем, катализаторы подлежат замене после прохождения 100 – 120 тысяч километров. Срок службы изделий зависит от изначального количества драгоценных металлов в составе. Самыми «насыщенными» и качественными считаются запчасти импортного производства, которые изготавливаются в соответствии со строгими экологическими требованиями. В России стандарты экологичности продукции пока не так высоки, поэтому отечественные производители нередко заменяют драгметаллы на более дешевые элементы.

Можно ли извлечь металлы из катализатора в домашних условиях

Самостоятельная добыча драгметаллов из автокатализатора – сложная процедура, требующая практических навыков и знаний. Существует несколько технологий извлечения ценных элементов:

  1. Выщелачивание с помощью окислителей.
  2. Использование «царской водки».
  3. Разогрев металла с последующим фторированием.
  4. Гальванический метод.

Применение этих способов целесообразно лишь в том случае, если вы работаете с крупной партией катализаторов. В противном случае, стоимость продажи металлов не окупят расходы на их получение.  Гораздо проще и удобнее сдать отработанные детали в пункт приема металлоконструкций, где всю работу за вас сделают профессиональные сотрудники – вам останется только дождаться оценки драгметаллов и получить вознаграждение.

Понравилась информация? Поделись с друзьями

katalizator1.ru

Что такое катализатор в автомобиле? — виды и принцип действия | Моторное масло — ГСМ

Решение экологических вопросов в последнее время становится все более актуальным. Это связано не столько с усугублением возникающих проблем охраны окружающей среды, сколько с требованиями, которые диктуют специальные организации ЕС.

 

Одним из аспектов деятельности экологических организаций является контроль над токсичностью отработавших газов автомобилей. Эта проблема актуальна не только в Европе, но и в странах СНГ.

Методом минимизации токсичности выхлопных газов является применение на автомобилях устройств, именуемых катализаторами. Они призваны получить выхлопы с определенным содержанием СО, СН, NO, не превышающим установленных ЕС норм.

В настоящее время катализаторы можно подразделить на три вида: керамический катализатор, химический катализатор, магнитно-стрикционный катализатор.

Рассмотрим каждый из них с выделением некоторых характеристик.

 

Керамический катализатор в машине

Керамический катализатор дожигания (ККД) представляет собой керамическую сотовую конструкцию. Соты необходимы для того, чтобы увеличить площадь контакта выхлопных газов с поверхностью, на которую нанесен тонкий слой платиноиридиевого сплава. В состав данного напыления входят такие дорогие металлы как платина, палладий и радий. Недогоревшие остатки (CO, CH, NO), касаясь поверхности каталитического слоя, окисляются кислородом, присутствующим в выхлопных газах. В результате реакции выделяется тепло, разогревающее катализатор, и активизируется реакция окисления. В конечном итоге выхлопные газы имеют необходимую концентрацию СО2. Именно углекислый газ на выходе является следствием наличия катализатора в выхлопной системе.

Большинство иномарок сейчас комплектуются керамическими катализаторами дожигания сразу при сборке. Для завезенных ранее на территорию России бывших в употреблении автомобилей, а также для произведенных на территории СНГ можно приобрести импортные или отечественные ККД. Из поставляемых в страны СНГ катализаторов наиболее распространены устройства фирмы «Bosal».

Однако наличие прибора данного типа при эксплуатации машины в России доставляет автовладельцу много проблем. Это можно объяснить несколькими факторами.

Во-первых, к нам в страну далеко не всегда прибывают только новые иномарки с минимальным пробегом. Срок же службы катализатора при правильной эксплуатации (имеется в виду использование качественных нефтепродуктов) сопоставим с 100-120 тыс. км пробега автомобиля, после чего рекомендуется замена ККД, что вполне естественно. Катализатор имеет фильтрующие свойства, а фильтры, как известно, нужно менять. Дальнейшее использование устройства вполне допустимо, что и делается у нас, однако нужно четко представлять, что в таком случае в выхлопной системе присутствует элемент далеко не со стопроцентной пропускной способностью. К этому сроку на стенках сот уже осела сажа и продукты недогоревшего масла, которые существенно препятствуют выходу выхлопных газов.

Во-вторых, заправляетесь вы на наших российских заправках. Не секрет, что до сих пор качество бензина на некоторых АЗС не вполне удовлетворительное, а ведь одним из основополагающих условий нормальной работы катализатора является качественный бензин. Для керамических сот с напылением некачественное топливо смертельно. Ведь в результате его попадания в устройство, соты оплавляются, залипают, и проходимость выхлопных газов практически прекращается. По сути, происходит то же самое, что и при забивании сот сажей и продуктами недогоревшего масла, только гораздо быстрее. Таким образом, некачественный бензин — основная опасность для катализатора.

Очень обидно бывает за владельцев автомобилей, которые даже не наездили 70-80 тыс. км, а катализаторы в их машинах уже испорчены. Естественно, у человека не возникает никакого желания покупать новые дорогостоящие детали, не имея никакой уверенности в том, что, поставив их и покатавшись непродолжительное время, он не столкнется с необходимостью повторной замены.

К третьей проблеме использования керамического катализатора дожигания по праву нужно отнести отечественные дороги. Как ни крути, а керамические соты — достаточно хрупкий материал, который при сильном ударе может треснуть и расколоться. В результате удара соты отходят от стенок прибора, начинают дребезжать и перемещаться внутри корпуса, из-за чего окончательно рассыпаются, разлетаясь по всей выхлопной системе.

Если в катализаторе накопился бензин, то машина долго не заводится. И когда, наконец, двигатель удалось запустить, внутри происходит мини-взрыв, который приводит к разрушению керамического катализатора дожигания. По этой причине нельзя, чтобы автомобиль «подъедал» масло.

 

 

Что касается неисправностей ККД, то их существует две разновидности. Первая состоит в том, что от времени катализатор «забивается» и у него уменьшается пропускная способность выхлопных газов. Признаком этого является ощущение того, что машина не «тянет», происходит ухудшение динамики разгона и снижение мощности автомобиля, иногда плавает стрелка оборотов на холостом ходу. Вторая — более критичная. Она проявляется в том, что катализатор уже разрушился, и вас беспокоит звук, дребезжание рассыпавшихся керамических сот или гудение «пустой бочки».

Недостатками катализаторов дожигания являются снижение оборотов и мощности двигателя, увеличение расхода топлива на 15 %. Чтобы избежать этого, некоторые автовладельцы «пробивают» блок ККД насквозь, а показания токсичности опять превышают норму.

 

Химический автомобильный катализатор

Второй тип катализаторов — химические, попросту говоря, присадки. Их сейчас существует бесчисленное количество разных марок, и призваны они улучшить некоторые эксплуатационные свойства топлив, масел, увеличить износостойкость узлов и агрегатов автомобилей. Разработанные присадки для улучшения процесса сгорания топлива (анамегаторы топлива) изменяют его химический состав, повышают полноту сгорания, снижают явление детонации и токсичность выхлопов.

Детонационное сгорание проходит две стадии. На первой происходит предпламенное (холоднопламенное) окисление, во время которого в рабочей смеси образуется значительная часть перекисей в процессе впуска в камеру сгорания топлива от соприкосновения с нагретыми деталями. На второй — горячий взрыв (видимое горение). После воспламенения рабочей смеси образование перекисей происходит более интенсивно; они концентрируются в ее несгоревшей части, суммируясь с образовавшимися на первом этапе, и по достижении критической концентрации распадаются со взрывом и выделением большого количества тепла.

Для нормального горения бензина концентрация перекисных соединений не должна превышать определенных показателей. Анамегатор, как и ТЭС, препятствует образованию гидропероксидов. Тетраэтилсвинец работает как антидетонатор только на первой стадии детонационного горения.

Введение этиловой жидкости приводит к повышению токсичности выхлопа, снижению мощности двигателя (повышению расхода топлива), увеличивает нагароотложения и, следовательно, количество абразива в цилиндро-поршневой группе.

Анамегатор ориентирует молекулы углеводорода таким образом, что они гораздо легче входят в реакцию окисления. В результате горение происходит с большей энергоотдачей, повышается мощность двигателя (снижается расход топлива), создаются препятствия нагарообразованию, из камеры сгорания удаляются продукты распада тетраэтилсвинца.

Антидетонационное действие анамегатора и тетраэтилсвинца суммируются. Повышение мощности происходит за счет более полного сгорания углеводородов топлива. Это снижает количество несгоревших продуктов в выхлопных газах, которые являются источником токсичности.

Мощность и расход топлива — две связанные между собой величины. Если вы на своем автомобиле до применения анамегаторов ездили со скоростью, скажем, 70 км/ч, а после применения, почувствовав прибавку мощности, стали ездить быстрее, то экономии вы можете не обнаружить. Сэкономленное топливо, образно говоря, «ушло» на повышение скорости движения, то есть на выполнение дополнительной работы. Но если скорость и другие факторы останутся неизменными, то экономия будет очевидной.

Действие анамегаторов в топливе изменяется в зависимости от их концентрации. Если в бензине необходимо предотвращать образование гидропероксидов для обеспечения детонационной стойкости, то в дизельном топливе их наличие повышает способность к самовоспламенению. Неодинаковая концентрация по-разному ориентирует молекулы углеводородов, придавая им различные свойства. Поэтому очень важно соблюдать рекомендованные пропорции.

Во фракционном составе дизельного топлива углеводороды более тяжелые, чем у бензина. Энергоотдача такого топлива выше. Поскольку анамегаторы высвобождают энергию из изначально заложенного большего количества сконцентрированной энергии, то и отдача их будет выше.

К недостаткам химического катализатора можно отнести, в первую очередь, постоянную необходимость его замены. К тому же при неправильной концентрации анамегатора с топливом может возникать коррозия металла топливного бака и других агрегатов. По той же причине может возрасти расход топлива до 10 %. Наиболее усовершенствованные анамегаторы — Т-4, Т-6.

 

Магнито-стрикционный (МСК) катализатор

Третий тип катализаторов — магнито-стрикционные (МСК), которые в настоящее время являются самыми современными и лежат в основе автотехнологии будущего. Самому этому методу уже около 40 лет. Экспериментальные разработки велись еще в 70-х годах, но не нашли широкого применения из-за несовершенства стабилизации процесса. Суть метода заключается в магнитно-стрикционной обработке молекулы углерода, присутствующей в любом ГСМ. При этом химический состав топлива не изменяется, а меняются только его физические свойства. «Правильно» сориентированная молекула способна свободной парой присоединить большее количество кислорода, что, естественно, отражается на полноте и теплоемкости горения. Сам катализатор представляет собой устройство предварительной обработки топлива. Он устанавливается в топливную систему автомобиля в зависимости от вида топлива. На бензиновые, карбюраторные и инжекторные двигатели МСК устанавливают перед карбюратором (инжектором), просто отсоединив топливный шланг и вставив устройство между ними. На дизельные автомобили, у которых объем цилиндров превышает 1 800 см3, прибор рекомендуется устанавливать перед каждой форсункой плюс еще один перед насосом высокого давления (НВД).

За счет наиболее полного сгорания смеси в двигателе его мощность увеличивается, следствием чего является снижение расхода топлива. Экологические показатели при этом улучшаются в 3-4 раза. Также уменьшаются нагароотложения на рабочих поверхностях двигателя, что приводит к существенному продлению срока его эксплуатации, более бесшумной и бездетонационной работе (что ощущается сразу после установки), повышению пробега между заменой масла.

Установка данных катализаторов занимает от 5 до 20 минут. Предварительно проводится диагностика топливной системы. У карбюраторных двигателей корректируется зажигание, у инжекторных — лямбда-зоны, а у дизельных — винт холостых оборотов.

Магнито-стрикционные автомобильные катализаторы производятся во многих странах: Венгрии, Польше, Китае, Великобритании, России и др.

motornoe.com

Автомобильный катализатор и его роль в выхлопной системе

Катализатор имеет удивительно простое устройство, но воздействие его очень велико. Из этой статьи вы узнаете, какие загрязняющие вещества образуются в результате работы двигателя, и как каталитический преобразователь справляется с каждым из них, сокращая выбросы вредных выхлопных газов.

Автомобильные катализаторы

На дороги ежедневно выезжают миллионы автомобилей, и каждый из них — источник загрязнения воздуха. Особенно это чувствуется в крупных городах, где выхлопные газы автомобилей могут создавать большие проблемы.

Каталитический преобразователь или катализатор

Для решения этих проблем каждая страна издает свои законы, которые ограничивают допустимый уровень загрязнения, который может создавать каждая машина. За прошедшее время автопроизводители внесли много улучшений в конструкцию автомобильного двигателя и топливных систем, чтобы соответствовать этим требованиям. Одно из значительных изменений произошло в 1975 году — именно в этом году появилось новое устройство, называемое каталитическим преобразователем (конвертером) или просто катализатором. Работа каталитического преобразователя заключается в преобразовании вредных выхлопных газов в менее вредные прежде, чем они покинут выхлопную систему автомобиля.

Выбросы загрязняющих веществ

В целях сокращения выбросов, современные автомобильные двигатели тщательно контролируют количество сжигаемого ими топлива. Их задача — сохранить соотношение «воздух-топливо» как можно ближе к идеальной точке, называемой стехиометрической. Теоретически, при этом соотношении все топливо сгорит с использованием всего имеющегося в воздухе кислорода. Для бензина стоихиометрический коэффициент — около 14,7:1, что значит, что при сожжении одной единицы бензина будет сожжено 17,4 единицы воздуха. фактически во время езды сгорание топливной смеси немного отличается от идеального соотношения. Иногда смесь может быть бедной (при коэффициенте «воздух-топливо» выше, чем 14,7), или, наоборот, насыщенной (при более низком коэффициенте).

Основные загрязняющие вещества, вырабатываемые двигателем, это:

  • газообразный азот (N2) — воздух состоит на 78 процентов из газообразного азота, и большая часть его проходит сквозь автомобильный двигатель
  • диоксид углерода (СО2) — один из продуктов сгорания. Углерод из топлива соединяется с кислородом воздуха.
  • водяной пар (H2O) — еще один продукт сгорания. Водород из топлива соединяется с кислородом воздуха.

Это выбросы в основе своей не опасны, хотя, как считается, выброс углекислого газа (СО2) способствует глобальному потеплению. Но так как процесс горения никогда не совершенен, небольшое количество гораздо более вредных выхлопных газов выделяется при работе двигателя автомобиля. Именно на снижение их уровня ориентированы каталитические преобразователи:

  • окись углерода (СО) — ядовитый газ без цвета и запаха
  • углеводороды, также известные как летучие органические соединения — один из главных компонентов смога, образуется за счет неполного сгорания топлива
  • оксиды азота (NO и NO2, которые часто объединяют под обозначением NOx) — также являются компонентом смога, а также кислотных дождей, оказывают влияние на слизистую человека.

В следующем разделе мы рассмотрим, какие именно процессы происходят внутри каталитического преобразователя.

Как катализаторы сокращают вредные выбросы в выхлопных газах

Если вспомнить химию, то катализатор — это вещество, которое ускоряет или вызывает химическую реакцию, само не входя в продукты реакции. Катализаторы участвуют в реакции, но не являются не реактивом, ни продуктом реакции. Так, для человеческого организма естественным катализатором многих важных биохимических реакций являются ферменты.

В каталитических преобразователях существуют два различных типа катализаторов: восстанавливающий катализатор и окислительный катализатор. Оба типа состоят из керамической структуры, покрытой металлическим катализатором (обычно это платина, родий и/или палладий). Идея заключается в том, чтобы создать структуру, которая подставляет под поток выхлопных газов максимальную площадь катализатора и свести к минимуму задействованное при этом количество самого катализатора, так как используемые материалы весьма дороги. В некоторых преобразователях даже стали использовать золото с примесью более традиционных катализаторов. Золото дешевле по сравнению с остальными катализаторами, и может повысить степень окисления на 40 процентов, что необходимо для снижения количества вредных газов.

Большинство современных выхлопных систем в автомобилях оснащены тремя каталитическими преобразователями, по одному для каждого из веществ, выброс которых необходимо уменьшить.

Восстанавливающий катализатор — первый этап каталитического преобразователя. Он использует платину и родий чтобы уменьшить выбросы NOx. Когда молекула NO или NO2 встречается с молекулами катализатора, от нее отделяется атом азота, высвобождая кислород — O2. Атом азота же связывается с другим атомом азота, образуя N2.

Окислительный катализатор — второй этап каталитического преобразователя. Он снижает количество несгоревшего топлива и окиси углерода в результате их сжигания (окисления) с помощью таких катализаторов, как платина и палладий. Этот катализатор также помогает СО вступить в реакцию с несгоревшим кислородом, образуя углекислый газ СО2.

Существуют два основных вида конструкций, используемых в каталитическом преобразователе — это конструкция по типу «соты» и «керамические бусины». Большинство автомобилей используют сотовые структуры.

Следующий раздел посвещен третьей стадии процесса преобразования, и тому, как добиться от своего каталитического преобразователя лучшего результата.

Контроль загрязнения и повышение эффективности выхлопной системы

Третьим этапом преобразования является система управления, которая контролирует поток выхлопных газов и использует эту информацию для управления системой впрыска топлива. Один датчик кислорода установлен выше автомобильного катализатора, то есть ближе к двигателю, чем сам преобразователь. Этот датчик говорит компьютеру двигателя, сколько кислорода содержится в выхлопе. Компьютер двигателя уменьшает или увеличивает количество кислорода в выхлопных газах за счет регулировки количества воздуха, поступающего к топливу. Эта схема позволяет контролировать двигатель компьютера, чтобы убедиться, что двигатель работает на соотношении, близком к стехиометрической точке, а также чтобы убедиться, что в выхлопных газах достаточно кислорода для работы окислительного катализатора для окисления несгоревших углеводородов и СО.

Каталитический преобразователь проделывает большую работу по уменьшению загрязнения окружающей среды, но его производительность может быть существенно улучшена. Одним из недостатков является то, что каталитический преобразователь работает только при достаточно большой температуре. Когда вы только заводите машину, каталитический преобразователь почти не работает.

Простое решение этой проблемы состоит в том, чтобы передвинуть каталитический преобразователь ближе к двигателю. Тогда выхлопные газы, поступающие в каталитический преобразователь, будут более горячими,и он нагреется быстрее, но это одновременно сокращает срок службы конвертера из-за воздействия чрезмерно высоких температур. Большинство автопроизводителей размещает каталитический преобразователь под передним пассажирским сиденьем, достаточно далеко от двигателя, именно для того, чтобы высокие температуры не вредили ему.

Подогрев каталитического преобразователя — хороший способ снижения выбросов. Самый простой способ подогреть катализатор — использование электрических нагревателей. К сожалению, 12-вольтовая электрическая система, установленная на большинстве машин, не может нагреть каталитический преобразователь достаточно быстро. Большинство людей не будет ждать несколько минут, пока нагреется каталитический преобразователь. Гибридные машины имеют большие, высоковольтные батареи, которые могут достаточно быстро нагреть автомобильный катализатор.

Каталитические преобразователи дизельных двигателей плохо справляются с сокращением выбросов NOx. Одна из причин в том, что дизельные двигатели сами по себе функционируют в более низком температурном режиме, чем обычные, а преобразователи работают лучше при нагреве. Некоторые ведущие эксперты в области «зеленого» автомобилестроения придумали новую выхлопную систему, которая помогает исправить этот недостаток. Они впрыскивают водный раствор мочевины в выхлопную трубу до того, как газы достигнут преобразователя. При этом возникает химическая реакция, которая уменьшает количество NOx. Карбамид, также известный как мочевина — органическое соединение углерода, азота, кислорода и водорода. Его можно обнаружить в моче млекопитающих и земноводных, что и объясняет такое название. Мочевина реагирует с NOx с получением азота и водяного пара, снижая количество оксидов азота в выхлопных газах более чем на 90 процентов.

Источник: Авто Релиз.ру.

autorelease.ru

Что такое КАТАЛИЗАТОР и для чего он нужен?

Катализаторы, вещества, изменяющие скорость химических реакций посредством многократного промежуточного химического взаимодействия с участниками реакций и не входящие в состав конечных продуктов (см. Катализ) В автомобилях катализаторы применяются в глушителях для дополнительного очищения выхлопных газов. Катализатор представляет собой керамическую сотовую конструкцию. Соты нужны для того, чтобы увеличить площадь контакта выхлопных газов с поверхностью, на которую нанесен тонкий слой платино-иридиевого сплава. В состав данного напыления входят такие дорогие металлы как платина, палладий, родий. Недогоревшие остатки (CO,CH,NO) касаясь поверхности каталитического слоя, окисляются до конца кислородом, присутствующим так же в выхлопных газах. В результате реакции выделяется тепло, разогревающее катализатор и, тем самым, активизируется реакция окисления. В конечном итоге на выходе из катализатора (исправного) выхлопные газы имеют допустимую концентрацию СО2. Именно СО2 на выходе является причиной наличия катализатора в выхлопной системе. Данная концентрация соответствует нормам ЕС! Наличие катализатора при эксплуатации автомобиля в России приносит его владельцу больше проблем и головной боли. Глушитель с катализатором это фильтр и его надо время от времени менять. Старые машины попадающие в Россию из-за рубежа, часто имеют катализатор, выработавший срок, катализатор необходимо менять Бензин российского разлива может содержать тетраэтилсвинец, «убивающий» катализатор. Некачественный бензин одна из основная опасность для катализатора. Керамические соты достаточно хрупкий материал и при сильном ударе может треснуть и расколоться. Какие наши дороги представляете. Дороги это еще один могильщик катализатора Подробнее http://muffle.ru/katalizatory/chto-takoe-katalizator-i-dlya-chego-on-nuzhen.html Катализаторы повсеместно распространены в живой природе и широко используются в промышленности. Более 70% всех химических превращений веществ, а среди новых производств более 90% осуществляется с помощью Катализаторы Различные Катализаторы, выпускаемые промышленностью, классифицируются по типу катализируемых реакций (кислотно-основные, окислительно-восстановительные) ; по группам каталитических процессов или особенностям их аппаратурно-технологического оформления Далее смотрите в Большой Советской Энциклопедии http://bse.sci-lib.com/article059864.html

лучше? ну лучше считаются с ним… по нормам евро4 нужны хорошие нейтрализаторы.. тьфу.. катализаторы: ) а с ними машины как правило считаются «осаженными»…без него мощности то поболе:) ) ну эт на наших:)

Катализатор — вещество, увеличивающее скорость реакции. Обычно используют в химии

вот: http://catalizator.ru/

По курсу химии катализатор-это вещества, которые вступая в реакцию с определенными веществами ускоряют химические процессыЮ, но при этом сами не рассходуются. Из этого вытекает его применение для авто.

по теории, лучше с катализатором, а на практике-без! в нем»сжигается»все, что в двигателе не сгорело и выхлопная труба должна выбрасывать в атосферу, чистый пар

Катализатор в автомобиле — чисто экологический прибамбас к глушителю в виде пористой специальной керамики в которой происходит *дожиг* компонентов бензина чем снижается выброс всяких СО и NO в воздух. Он немного снижает мощность движка. Это все отличия.

Катализатор, это барьер для вредных выбросов в атмосферу, то есть тот же лямбда-зонд, бывают двух видов, кремниевые и литиевые, соты покрыты благородным металлом, золотом или платиной (денег стоит уйма, ок. 30-40труб), имеет два датчика, а у современных авто три, стоят до катализатора и после, не советую, как у нас говорят, -надеть на трубу (убрать). борткомп, этого не любит и пишет ошибку и авто начинает тупить, без катализатора соврем. авто не бывает! Он очень боится пуска с галстука и при нажатой педали газа, короче боится перелива. Пока всё!

http://aelectrik.ru/teoriya-sistem/avtomobilnyy-katalizator-yeto/

Вот статья потеме. [ссылка заблокирована по решению администрации проекта]

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *