Где применяются газовые турбины – Газовая турбина где применяется — Все о Лада Гранта

Содержание

Газовая турбина где применяется — Все о Лада Гранта


Газовой турбиной принято называть непрерывно действующий двигатель. Далее пойдёт речь о том, как устроена газовая турбина, в чем заключается принцип работы агрегата. Особенностью такого двигателя является то, что внутри него энергия продуцируется сжатым или нагретым газом, результатом преобразования которого является механическая работа на валу.

История создания газовой турбины

Интересно, что механизмы турбин начали разрабатываться инженерами уже очень давно. Первая примитивная паровая турбина была создана ещё в I веке до н. э.! Конечно же, своего существенног
о расцвета данный механизм достиг только сейчас. Активно разрабатываться турбины начали в конце XIX века одновременно с развитием и совершенствованием термодинамики, машиностроения и металлургии.

Менялись принципы механизмов, материалы, сплавы, всё совершенствовалось и вот, на сегодняшний день человечеству известна наиболее совершенная из всех ранее существующих форм газовой турбины, которая разграничивается на различные типы. Есть авиационная газовая турбина, а есть промышленная.

Технические характеристики газовой турбины

Газовой турбиной принято называть своеобразный тепловой двигатель, его рабочим частям предопределено только одно задание – вращаться вследствие воздействия струи газа.

Устроена она таким образом, что главная часть турбины представлена колесом, на которое прикреплены наборы лопаток. Газ, воздействуя на лопатки газовой турбины, заставляет их двигаться и вращать колесо. Колесо в свою очередь жёстко скреплено с валом. Этот тандем имеет специальное название – ротор турбины. Вследствие этого движения, происходящего внутри двигателя газовой турбины, достигается получение механической энергии, которая передаётся на электрогенератор, на гребной винт корабля, на воздушный винт самолёта и другие рабочие механизмы аналогичного принципа действия.

Активные и реактивные турбины

Воздействие газовой струи на лопатки турбины может быть двояким. Поэтому турбины разделяются на классы: класс активных и реактивных турбин. Отличаются реактивная и активная газовая турбина принципом устройства.

Активная турбина

Активная турбина характеризуется тем, что здесь отмечается большая скорость поступления газа на рабочие лопатки. При помощи изогнутой лопатки, струя газа отклоняется от своей траектории движения. В результате отклонения развивается большая центробежная сила. С помощью этой силы лопатки приводятся в движение. Во время всего описанного пути газа происходит потеря части его энергии. Такая энергия и направлена на движение рабочего колеса и вала.

Реактивная турбина

В реактивной турбине всё несколько иначе. Здесь поступление газа к рабочим лопаткам осуществляется на незначительной скорости и под воздействием большого уровня давления. Форма лопаток так же отлична, благодаря чему скорость газа значительно увеличивается. Таким образом, струя газа создаёт своего рода реактивную силу.

Из описываемого выше механизма следует, что устройство газовой турбины достаточно непростое. Дабы такой агрегат работал бесперебойно и приносил своему владельцу прибыль и выгоду, следует доверить его обслуживание профессионалам. Сервисные профильные компании обеспечивают сервисное обслуживание установок, использующих газовые турбины, поставки комплектующих, всевозможных частей и деталей. DMEnergy — одна из таких компаний (подробнее), которые обеспечивают своему клиенту спокойствие и уверенность в том, что он не останется один на один с проблемами, возникающими в ходе эксплуатации газовой турбины.

Применение — газовая турбина

Применение газовых турбин ( экспандеров) в газотурбинных циклах позволяет обеспечить многие процессы, протекающие при повышенных давлении и температуре, частично или полностью энергией, расходуемой на компримирование. Отходящие газы реакции используются для привода компрессора-экспандера ( рис. 9), причем чем выше температура этих газов на входе, тем больше количество вырабатываемой энергии. [2]

Применение газовых турбин может быть экономически выгодным, например, при производстве этилена, ацетилена, метанола, азотной кислоты, окиси этилена, а также в процессах каталитического крекинга и гидроформинга. [3]

Применение газовых турбин в качестве привода носит экспериментальный характер. [4]

Применение газовой турбины в качестве автомобильного двигателя является новым этапом в технике автомобилестроения. При этом упрощается конструкция автомобиля и уменьшается вес двигательной установки. Газовая турбина на автомобиле не нуждается в муфте сцепления и в коробке передач в том виде, как это необходимо для поршневого двигателя. [5]

Применение газовых турбин малой и средней мощности очень широко. Особенно оно велико в армейском деле, для агрегатов электропитания, для компрессоров, холодильников, для пожарных и технологических, а также ракетных установок, для подвижных различных установок, включая танки. Широко применение их и в гражданском деле. Грузовой транспорт, тракторы и автомобили, несомненно, в ближайшем будущем будут снабжены газовыми турбинами. [6]

Благодаря применению газовых турбин как основного элемента авиационных реактивных двигателей были решены вопросы достижения больших скоростей полета; близких к звуковым и сверхзвуковым скоростям, значительной грузоподъемности и большой высоты полета самолетов различного назначения. [7]

При применении газовых турбин в качестве привода насоса значительно уменьшаются вес и габариты всего агрегата. Однако для газовых турбин малой мощности ( 50 — 300 л. с.) необходим редуктор вследствие того, что число оборотов турбин достигает 20 000 — 40 000 в минуту. [9]

При применении газовой турбины ГТ-35 температура газа перед ГТ составляет 770 С, а газовой турбины ГТ-45 — 900 С. Параметры пара перед паровыми турбинами в обоих случаях одни и те же и составляют 12 7 МПа, 540 ( 560) С с промежуточным перегревом до той же температуры. Давление газов в топочной камере составляет 0 6 — 1 2 МПа. В экономайзерах газы охлаждаются до 120 — 140 С. [11]


Дальнейшие возможности применения газовой турбины в нефтяной промышленности состоят в использовании ее в качестве первичного двигателя либо для выработки электрической энергии, либо для привода компрессоров и насосов. [12]

Исследование вопроса применения газовых турбин при подземной газификации углей, проводившееся Московским ордена Ленина энергетическим институтом, показывает, что подземный газ, обладающий низкой калорийностью, вырабатываемый в месторождениях, удаленных от места его непосредственного промышленного потребления, целесообразно сжигать на месте добычи в газотурбинных установках, вырабатывающих электроэнергию и дающих сжатый воздух для технологических нужд подземной газификации. [13]

На железнодорожном транспорте применение газовых турбин обеспечивает большую экономию топлива и значительное упрощение водоснабжения. Газотурболокомотивы вполне могут конкурировать с тепловозами, оборудованными поршневыми двигателями внутреннего сгорания. [14]

Несомненный интерес представляет применение газовой турбины в локомотивах. [15]

Газотурбинные установки (ГТУ) востребованы в промышленности, транспортной сфере, широко используются в энергетической отрасли. Это не очень сложное по конструкции оборудование, которые имеет высокий КПД и экономично в использовании.

Газовые турбины во многом схожи с двигателями, работающими на дизеле или бензине: как и в ДВС, тепловая энергия, получаемая при сгорании топлива, переходит в механическую. При этом в установках открытого типа используются продукты сгорания, в закрытых системах — газ или обычный воздух. Одинаково востребованы и те, и другие. Кроме открытых и закрытых, различают турбокомпрессорные турбины и установки со свободно-поршневыми газогенераторами.

Проще всего рассмотреть конструкцию и принцип работы газовой турбины на установке турбокомпрессорного типа, которая работает при постоянном давлении.

Конструкция газовой турбины

Газовая турбина состоит из компрессора, воздухопровода, камеры сгорания, форсунки, проточной части, неподвижных и рабочих лопаток, патрубка для отработанных газов, редуктора, гребного винта и пускового двигателя.

За запуск турбины отвечает пусковой двигатель. Он приводит в движение компрессор, который раскручивается до нужной частоты вращения. Затем:

  • компрессор захватывает воздух из атмосферы и сжимает его;
  • воздух отправляется в камеру сгорания через воздухопровод;
  • через форсунку в ту же камеру входит топливо;
  • газ и воздух смешиваются и сгорают при постоянном давлении, в результате образуются продукты сгорания;
  • продукты сгорания охлаждают с помощью воздуха, после чего они поступают в проточную часть;
  • в неподвижных лопатках смесь газов расширяется и ускоряется, затем направляется на рабочие лопатки и приводит их в движение;
  • отработанная смесь выходит из турбины, по патрубку;
  • турбина передает кинетическую энергию компрессору и гребному винту посредством редуктора.

Таким образом, газ в смеси с воздухом, сгорая, образует рабочую среду, которая, расширяясь, ускоряется и раскручивает лопатки, а за ними — и гребной винт. В последующем кинетическая энергия превращается в электричество или используется для передвижения морского судна.

Сэкономить на топливе можно, используя принцип регенерации тепла. В этом случае воздух, поступающий в турбину, согревается за счет отработанных газов. В результате установка расходует меньше топлива и происходит больше кинетической энергии. Регенератор, где подогревается воздух, одновременно служит для охлаждения отработанных газов.

Особенности ГТУ закрытого типа

Газовая турбина открытого типа забирает воздух из атмосферы и выводит отработанный газ наружу. Это не очень эффективно и опасно, если установка стоит в закрытом помещении, где работают люди. В этом случае используют ГТУ закрытого типа. Такие турбины не выпускают отработанные рабочее тело в атмосферу, а направляют его в компрессор. Оно не перемешивается с продуктами сгорания. Как результат, рабочая среда, циркулирующая в турбине, остается чистой, что увеличивает ресурс установки и сокращает количество поломок.

Однако закрытые турбины имеют слишком большие габариты. Газы, которые не выходят наружу, должны быть достаточно эффективно охлаждены. Это возможно только в больших теплообменниках. Поэтому установки используют на крупных судах, где достаточно места.

Закрытые ГТУ могут иметь и ядерный реактор. В качестве теплоносителя в них используют углекислый газ, гелий или азот. Газ нагревают в реакторе и направляют в турбину.

ГТУ и их отличия от паровых турбин и ДВС

Газовые турбины отличаются от ДВС более простой конструкцией и легкостью ремонта. Важно и то, что в них не предусмотрен кривошипно-шатунный механизм, который делает ДВС громоздким и тяжелым. Турбина легче и меньше двигателя аналогичной мощности приблизительно в два раза. Кроме того, она может работать на топливе низкого сорта.

От паровых газовые турбины отличаются небольшими габаритами и простым запуском. Обслуживать их легче, чем установки, работающие на пару.

Имеют турбины и недостатки: они не настолько экономичны по сравнению с ДВС, сильнее шумят, быстрее приходят в негодность. Впрочем, это не мешает использовать ГТУ в транспорте, промышленности и даже быту. Турбины устанавливают на морских и речных судах, используют в электростанциях, насосном оборудовании и многих других сферах. Они удобны и мобильны, поэтому применяются достаточно часто.

23 августа 2017

Поделитесь ссылкой со своими друзьями:

o-ladagranta.ru

особенности конструкции и принцип работы

Газотурбинные установки (ГТУ) востребованы в промышленности, транспортной сфере, широко используются в энергетической отрасли. Это не очень сложное по конструкции оборудование, которые имеет высокий КПД и экономично в использовании.

Газовые турбины во многом схожи с двигателями, работающими на дизеле или бензине: как и в ДВС, тепловая энергия, получаемая при сгорании топлива, переходит в механическую. При этом в установках открытого типа используются продукты сгорания, в закрытых системах — газ или обычный воздух. Одинаково востребованы и те, и другие. Кроме открытых и закрытых, различают турбокомпрессорные турбины и установки со свободно-поршневыми газогенераторами.

Проще всего рассмотреть конструкцию и принцип работы газовой турбины на установке турбокомпрессорного типа, которая работает при постоянном давлении.

Конструкция газовой турбины

Газовая турбина состоит из компрессора, воздухопровода, камеры сгорания, форсунки, проточной части, неподвижных и рабочих лопаток, патрубка для отработанных газов, редуктора, гребного винта и пускового двигателя.

За запуск турбины отвечает пусковой двигатель. Он приводит в движение компрессор, который раскручивается до нужной частоты вращения. Затем:

  • компрессор захватывает воздух из атмосферы и сжимает его;
  • воздух отправляется в камеру сгорания через воздухопровод;
  • через форсунку в ту же камеру входит топливо;
  • газ и воздух смешиваются и сгорают при постоянном давлении, в результате образуются продукты сгорания;
  • продукты сгорания охлаждают с помощью воздуха, после чего они поступают в проточную часть;
  • в неподвижных лопатках смесь газов расширяется и ускоряется, затем направляется на рабочие лопатки и приводит их в движение;
  • отработанная смесь выходит из турбины, по патрубку;
  • турбина передает кинетическую энергию компрессору и гребному винту посредством редуктора.

Таким образом, газ в смеси с воздухом, сгорая, образует рабочую среду, которая, расширяясь, ускоряется и раскручивает лопатки, а за ними — и гребной винт. В последующем кинетическая энергия превращается в электричество или используется для передвижения морского судна.

Сэкономить на топливе можно, используя принцип регенерации тепла. В этом случае воздух, поступающий в турбину, согревается за счет отработанных газов. В результате установка расходует меньше топлива и происходит больше кинетической энергии. Регенератор, где подогревается воздух, одновременно служит для охлаждения отработанных газов.

Особенности ГТУ закрытого типа

Газовая турбина открытого типа забирает воздух из атмосферы и выводит отработанный газ наружу. Это не очень эффективно и опасно, если установка стоит в закрытом помещении, где работают люди. В этом случае используют ГТУ закрытого типа. Такие турбины не выпускают отработанные рабочее тело в атмосферу, а направляют его в компрессор. Оно не перемешивается с продуктами сгорания. Как результат, рабочая среда, циркулирующая в турбине, остается чистой, что увеличивает ресурс установки и сокращает количество поломок.

Однако закрытые турбины имеют слишком большие габариты. Газы, которые не выходят наружу, должны быть достаточно эффективно охлаждены. Это возможно только в больших теплообменниках. Поэтому установки используют на крупных судах, где достаточно места.

Закрытые ГТУ могут иметь и ядерный реактор. В качестве теплоносителя в них используют углекислый газ, гелий или азот. Газ нагревают в реакторе и направляют в турбину.

ГТУ и их отличия от паровых турбин и ДВС

Газовые турбины отличаются от ДВС более простой конструкцией и легкостью ремонта. Важно и то, что в них не предусмотрен кривошипно-шатунный механизм, который делает ДВС громоздким и тяжелым. Турбина легче и меньше двигателя аналогичной мощности приблизительно в два раза. Кроме того, она может работать на топливе низкого сорта.

От паровых газовые турбины отличаются небольшими габаритами и простым запуском. Обслуживать их легче, чем установки, работающие на пару.

Имеют турбины и недостатки: они не настолько экономичны по сравнению с ДВС, сильнее шумят, быстрее приходят в негодность. Впрочем, это не мешает использовать ГТУ в транспорте, промышленности и даже быту. Турбины устанавливают на морских и речных судах, используют в электростанциях, насосном оборудовании и многих других сферах. Они удобны и мобильны, поэтому применяются достаточно часто.

 

23 августа 2017

Поделитесь ссылкой со своими друзьями:

www.ekprometey.ru

назначение, принцип действия, конструкции, технические характеристики, особенности эксплуатации. — Студопедия.Нет

Турбиной называется двигатель, в лопаточном аппарате которого потенциальная энергия сжимаемой жидкости превращается в кинетическую энергию, а последняя в рабочих колесах – в механическую работу, передаваемую непрерывно вращающемуся валу.

Паровые турбины по своей конструкции представляют тепловой двигатель, который постоянно находится в работе. В период эксплуатации перегретый или насыщенный пар воды, который поступает в проточную часть, и благодаря своему расширению принуждает вращаться ротор. Вращение происходит в результате воздействия на лопаточный аппарат потока пара.

Турбина паровая входит в состав паротурбинной конструкции, которая предназначена для вырабатывания энергии. Также существуют установки, способные кроме электроэнергии вырабатывать тепловую энергию – пар, прошедший через лопатки пар, поступает на нагреватели сетевой воды. Подобный вид турбин именуется промышленно-теплофикационным или теплофикационным типом турбин. В первом случае, в турбине отбор пара предусмотрен для промышленных целей. В комплекте с генератором паровая турбина представляет турбоагрегат.

Типы паровых турбин

Турбины делятся, в зависимости от того, в каком направлении движется пар, на радиальные и аксиальные турбины. Паровой поток в радиальных турбинах направлен перпендикулярно оси. Паровые турбины могут быть одно-, двух- и трехкорпусные. Паровая турбина снабжена разнообразными техническими устройствами, которые предупреждают попадание внутрь корпуса окружающего воздуха. Это разнообразные уплотнители, на которые подается водяной пар в небольшом количестве.


На переднем участке вала размещается регулятор безопасности, предназначенный для отключения паровой подачи при увеличении частоты вращения турбины.

Характеристика основных параметров номинальных значений

· Номинальная мощность турбины — наибольшая мощность, которую турбина должна длительно развивать на зажимах электрогенератора, при нормальных величинах основных параметров или при изменении их в пределах, оговоренных отраслевыми и государственными стандартами. Турбина с регулируемым отбором пара может развивать мощность выше номинальной, если это соответствует условиям прочности её деталей.

· Экономическая мощность турбины — мощность, при которой турбина работает с наибольшей экономичностью. В зависимости от параметров свежего пара и назначения турбины номинальная мощность может быть равна экономической или более её на 10-25 %.

· Номинальная температура регенеративного подогрева питательной воды — температура питательной воды за последним по ходу воды подогревателем.

· Номинальная температура охлаждающей воды — температура охлаждающей воды при входе в конденсатор.

 

Газовая турбина (фр. turbine от лат. turbo вихрь, вращение) — это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Состоит из ротора (рабочие лопатки, закреплённые на дисках) и статора (направляющие лопатки, закреплённые в корпусе).



Газ, имеющий высокую температуру и давление, поступает через сопловой аппарат турбины в область низкого давления за сопловой частью, попутно расширяется и ускоряется. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Полезные свойства газовой турбины: газовая турбина, например, приводит во вращение находящийся с ней на одном валу генератор, что и является полезной работой газовой турбины.

Газовые турбины используются в составе газотурбинных двигателей (применяются для транспорта) и газотурбинных установок (применяются на ТЭЦ в составе стационарных ГТУ, ПГУ). Газовые турбины описываются термодинамическим циклом Брайтона, в котором сначала происходит адиабатическое сжатие воздуха, затем сжигание при постоянном давлении, а после этого осуществляется адиабатическое расширение обратно до стартового давления.

Типы газовых турбин

— Авиационные и реактивные двигатели

— Вспомогательная силовая установка

— Промышленные газовые турбины для производства электричества

— Турбовальные двигатели

— Радиальные газовые турбины

— Микротурбины

       Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал / компрессор / турбина / альтернативный ротор в сборе (см. изображение выше), не учитывая топливную систему.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина — с частотой около 100000 об/мин.

 

studopedia.net

Принцип работы газовых турбин

Газовой турбиной принято называть непрерывно действующий двигатель. Далее пойдёт речь о том, как устроена газовая турбина, в чем заключается принцип работы агрегата. Особенностью такого двигателя является то, что внутри него энергия продуцируется сжатым или нагретым газом, результатом преобразования которого является механическая работа на валу.

История создания газовой турбины

Интересно, что механизмы турбин начали разрабатываться инженерами уже очень давно. Первая примитивная паровая турбина была создана ещё в I веке до н. э.! Конечно же, своего существенног
о расцвета данный механизм достиг только сейчас. Активно разрабатываться турбины начали в конце XIX века одновременно с развитием и совершенствованием термодинамики, машиностроения и металлургии.

Менялись принципы механизмов, материалы, сплавы, всё совершенствовалось и вот, на сегодняшний день человечеству известна наиболее совершенная из всех ранее существующих форм газовой турбины, которая разграничивается на различные типы. Есть авиационная газовая турбина, а есть промышленная.

Технические характеристики газовой турбины

Газовой турбиной принято называть своеобразный тепловой двигатель, его рабочим частям предопределено только одно задание – вращаться вследствие воздействия струи газа.

Устроена она таким образом, что главная часть турбины представлена колесом, на которое прикреплены наборы лопаток. Газ, воздействуя на лопатки газовой турбины, заставляет их двигаться и вращать колесо. Колесо в свою очередь жёстко скреплено с валом. Этот тандем имеет специальное название – ротор турбины. Вследствие этого движения, происходящего внутри двигателя газовой турбины, достигается получение механической энергии, которая передаётся на электрогенератор, на гребной винт корабля, на воздушный винт самолёта и другие рабочие механизмы аналогичного принципа действия.

 

Активные и реактивные турбины

Воздействие газовой струи на лопатки турбины может быть двояким. Поэтому турбины разделяются на классы: класс активных и реактивных турбин. Отличаются реактивная и активная газовая турбина принципом устройства.

Активная турбина

Активная турбина характеризуется тем, что здесь отмечается большая скорость поступления газа на рабочие лопатки. При помощи изогнутой лопатки, струя газа отклоняется от своей траектории движения. В результате отклонения развивается большая центробежная сила. С помощью этой силы лопатки приводятся в движение. Во время всего описанного пути газа происходит потеря части его энергии. Такая энергия и направлена на движение рабочего колеса и вала.

Реактивная турбина

В реактивной турбине всё несколько иначе. Здесь поступление газа к рабочим лопаткам осуществляется на незначительной скорости и под воздействием большого уровня давления. Форма лопаток так же отлична, благодаря чему скорость газа значительно увеличивается. Таким образом, струя газа создаёт своего рода реактивную силу.

Из описываемого выше механизма следует, что устройство газовой турбины достаточно непростое. Дабы такой агрегат работал бесперебойно и приносил своему владельцу прибыль и выгоду, следует доверить его обслуживание профессионалам. Сервисные профильные компании обеспечивают сервисное обслуживание установок, использующих газовые турбины, поставки комплектующих, всевозможных частей и деталей. DMEnergy — одна из таких компаний (подробнее), которые обеспечивают своему клиенту спокойствие и уверенность в том, что он не останется один на один с проблемами, возникающими в ходе эксплуатации газовой турбины.

   Бесплатная публикация статей на Promdevelop.ru

 

promdevelop.ru

Как устроена газовая турбина?

Газовая турбина – это двигатель, в котором в процессе непрерывной работы основной орган устройства (ротор) превращает внутреннюю энергию газа (в других случаях пара или воды) в работу механического плана. При этом струя рабочего вещества воздействует на закрепленные по окружности ротора лопатки, приводя их в движение. По направлению газового потока турбины делятся на осевые (газ перемещается параллельно оси турбины) или радиальные (перпендикулярное движение относительно той же оси). Существуют как одно- , так и многоступенчатые механизмы.

Газовая турбина может действовать на лопатки двумя способами. Во-первых, это активный процесс, когда газ подается в рабочую зону на высоких скоростях. При этом газовый поток стремится перемещаться прямолинейно, а стоящая на его пути изогнутая лопаточная деталь отклоняет его, поворачиваясь сама. Во-вторых, это процесс реактивного типа, когда скорость подачи газа невелика, однако при этом используются высокие давления. Двигателей реактивного типа в чистом виде почти не встречается, т. к. в их турбинах присутствует центробежная сила, которая действует на лопатки вместе с силой реакции.

Где сегодня применяется газовая турбина? Принцип работы устройства позволяет использовать его для приводов генераторов электротока, компрессоров и др. Широкое распространение турбины такого вида получили на транспорте (судовые газотурбинные установки). По сравнению с паровыми аналогами они имеют сравнительно небольшой вес и габариты, для них не нужно обустройство котельной, конденсационной установки.

Газовая турбина достаточно быстро готова к работе после запуска, развивает полную мощность приблизительно за 10 минут, проста в обслуживании, требует небольшого количества воды для охлаждения. В отличие от двигателей внутреннего сгорания, она не имеет инерционных воздействий от кривошипно-шатунного механизма. Газотурбинная установка в полтора раза короче, чем дизельные двигатели и более чем в два раза легче. У устройств есть возможность работать на топливе низкого качества. Вышеуказанные качества позволяют считать двигатели такого плана представляющими особый интерес для судов на воздушной подушке и на подводных крыльях.

Газовая турбина как основной компонент двигателя имеет и ряд существенных недостатков. В их числе отмечают высокую шумность, меньшую, чем у дизелей, экономичность, небольшой срок работы при высоких температурах (если используемая газовая среда имеет температуру около 1100 оС, то сроки использования турбины могут составлять в среднем до 750 часов).

КПД газовой турбины зависит от того, в какой системе она используется. Например, устройства, применяемые в энергетике с начальной температурой газов выше 1300 градусов Цельсия, со степенью сжатия воздуха в компрессоре не более 23 и не менее 17 имеют при автономных операциях коэффициент около 38,5%. Такие турбины не очень широко распространены и применяются в основном для перекрытия нагрузочных пиков в электросистемах. Сегодня около 15 газовых турбин с мощностью до 30 МВт работают на ряде теплоэлектростанций России. На многоступенчатых установках достигается гораздо более высокий показатель полезного действия (около 0,93) за счет высокой эффективности конструктивных элементов.

fb.ru

Газовая турбина — Википедия. Что такое Газовая турбина

Промышленная газовая турбина в разобранном виде

Га́зовая турби́на (фр. turbine от лат. turbo — вихрь, вращение) — это лопаточная машина, в ступенях которой энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу[1][2]. Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, именуемый сопловым аппаратом (направляющие лопатки, закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

История

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густав Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины[3].

Первые опыты с газовой турбиной (в качестве перспективного двигателя для торпед) осуществил также Чарлз Парсонс, однако вскоре пришёл к выводу, что имеющиеся сплавы из-за низкой жаропрочности не позволяют создать надёжный механизм, который приводился бы в движение струёй раскалённых газов либо парогазовой смесью, после чего сосредоточился на создании паровых турбин[4].

Принцип работы

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Упорные подшипники и радиальные подшипники являются критическими элементами разработки. Традиционно — это были гидродинамические или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

Типы газовых турбин

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД — до 60 % — при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения — ГВС и отопления, а также с использованием абсорбционных холодильных машин в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации.

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей ёмкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток.

Микротурбины

Отчасти успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей

Преимущества газотурбинных двигателей

  • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем.
  • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
  • В сочетании с паровым котлом и паровой турбиной более высокий КПД по сравнению с поршневым двигателем. Отсюда — использование их в электростанциях.
  • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
  • Меньшее количество движущихся частей, чем у поршневого двигателя.
  • Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями
  • Низкая стоимость и потребление смазочного масла.
  • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.
  • Высокая маневренность и диапазон регулирования.

Недостатки газотурбинных двигателей

  • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные;
  • При любом режиме работы имеют меньший КПД, чем поршневые двигатели. (КПД на номинальной нагрузке до 39%, при этом официальные данные по поршневым двигателям — 41-42%). Требуют дополнительной паровой турбины для повышения КПД.
  • Низкий механический и электрический КПД (потребление газа более чем в 1.5 раза больше на 1 кВтЧ электроэнергии по сравнению с поршневым двигателем)
  • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
  • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
  • Высокие эксплуатационные нагрузки. Следствием которых является использование дорогих жаропрочных сплавов.
  • Более медленный пуск, чем у поршневых двигателей внутреннего сгорания.
  • Существенное влияние пусков-остановок на ресурс.

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере.

Примечания

Литература

  • Дейч М. Е. Техническая газодинамика. — М.: Энергия, 1974.
  • Дейч М. Е. Газодинамика решёток турбомашин. — М.: Энергоатомиздат, 1996.
  • Butz, J. S. Powerplants — Piston & Turbine. // Flying Magazine. — November 1963. — Vol. 73 — No. 5 — P. 33-36, 102-104.

См. также

Ссылки

wiki.sc

Устройство современной стационарной высокотемпературной газотурбинной установки ГТУ. Схема газотурбинной установки. Камеры сгорания ГТУ

На рис.4 показано устройство ГТУ V94.3 фирмы Siemens. Атмосферный воздух от комплексного воздухоочистительного устройства (КВОУ) поступает в шахту 4, а из нее — к проточной части 16 воздушного компрессора. В компрессоре происходит сжатие воздуха. Степень сжатия в типичных компрессорах составляет = 13—17, и таким образом давление в тракте ГТУ не превышает 1,3—1,7 МПа (13—17 ат). Это еще одно серьезное отличие ГТУ от паровой турбины, в которой давление пара больше, чем давление газов в ГТУ в 10—15 раз. Малое давление рабочей среды обусловливает малую толщину стенок корпусов и легкость их прогрева. Именно это делает ГТУ очень маневренной, т.е. способной к быстрым пускам и остановкам. Если для пуска паровой турбины в зависимости от ее начального температурного состояния требуется от 1 ч до нескольких часов, то ГТУ может быть введена в работу за 10—15 мин.

При сжатии в компрессоре воздух нагревается. Таким образом, за компрессором температура воздуха составляет 300—350 °С. Воздух между стенками пламенной трубы (см. рис.4) и корпуса камеры сгорания движется к горелочному устройству, к которому подается и топливный газ. Поскольку топливо должно поступать в камеру сгорания, где давление 1,3—1,7 МПа, то давление газа должно быть большим. Для возможности регулирования его расхода в камеру сгорания требуется давление газа примерно вдвое больше, чем давление в камере. Если в подводящем газопроводе имеется такое давление, то газ подается в камеру сгорания прямо с газораспределительного пункта (ГРП). Если давление газа недостаточное, то между ГРП и камерой устанавливают дожимной газовый компрессор.

Расход топливного газа составляет всего примерно 1—1,5 % от расхода воздуха, поступающего от компрессора, поэтому создание высокоэкономичного дожимного газового компрессора представляет определенные технические трудности.
Внутри пламенной трубы 10 образуются продукты сгорания высокой температуры. После подмешивания вторичного воздуха на выходе из камеры сгорания она несколько снижается, но достигает тем не менее, в типичных современных ГТУ 1350—1400°С.

Из камеры сгорания горячие газы поступают в проточную часть 7 газовой турбины. В ней газы расширяются до практически атмосферного давления, так как пространство за газовой турбиной сообщается либо с дымовой трубой, либо с теплообменником, гидравлическое сопротивление которого невелико.

При расширении газов в газовой турбине на ее валу создается мощность. Эта мощность частично расходуется на привод воздушного компрессора, а ее избыток — на привод ротора 1 электрогенератора. Одна из характерных особенностей ГТУ состоит в том, что компрессор требует примерно половины мощности, развиваемой газовой турбиной. Например, в создаваемой в России ГТУ мощностью 180 МВт (это и есть полезная мощность) мощность компрессора составляет 196 МВт. Это одно из принципиальных отличий ГТУ от ПТУ: в последней мощность, идущая на сжатие питательной воды даже до давления в 23,5 МПа (240 ат) составляет всего несколько процентов от мощности паровой турбины. Связано это с тем, что вода — малосжимаемая жидкость, а воздух для сжатия требует много энергии.

Таким образом, температура газов за ГТУ достаточно высока, и значительное количество теплоты, полученной при сжигании топлива, в буквальном смысле уходит в дымовую трубу. Поэтому при автономной работе ГТУ ее КПД невелик:для типичных ГТУ он составляет 35-36 %, т.е. существенно меньше, чем КПД ПТУ. Дело, однако, кардинальным образом изменяется при установке на «хвосте» ГТУ теплообменника (сетевого подогревателя или котла-утилизатора для комбинированного цикла), о чем пойдет речь в следующей лекции.

За газовой турбиной устанавливают диффузор — плавно расширяющийся канал, при течении в котором скоростной напор газов частично преобразуется в давление. Это позволяет иметь за газовой турбиной давление меньшее, чем атмосферное, что увеличивает работоспособность 1 кг газов в турбине и, следовательно, повышает ее мощность.



Устройство воздушного компрессора


Как уже указывалось, воздушный компрессор — это турбомашина, к валу которой подводится мощность от газовой турбины; эта мощность передается воздуху, протекающему через проточную часть компрессора, вследствие чего давление воздуха повышается вплоть до давления в камере сгорания.


На рис.5 показан ротор ГТУ, уложенный в опорные подшипники; на переднем плане хорошо виден ротор компрессора и статорные элементы.

Из шахты 4 (см. рис.4) воздух поступает в каналы, образованные поворотными лопатками 2 (рис.5) невращающегося входного направляющего аппарата (ВНА). Главная задача ВНА — сообщить потоку, движущемуся в осевом (или радиально-осевом) направлении вращательное движение. Каналы ВНА принципиально не отличаются от сопловых каналов паровой турбины: они являются конфузорными (суживающимися), и поток в них ускоряется, одновременно приобретая окружную составляющую скорости.


В современных ГТУ входной направляющий аппарат делают поворотным (рис.6). Необходимость в поворотном ВНА вызвана стремлением не допустить снижения экономичности при снижении нагрузки ГТУ. Дело заключается в том, что валы компрессора и электрогенератора имеют одинаковую частоту вращения, равную частоте сети. Поэтому, если не использовать ВНА, то и количество воздуха, подаваемого компрессором в камеру сгорания, постоянно и не зависит от нагрузки турбины. А изменить мощность ГТУ можно только изменением расхода топлива в камеру сгорания. Поэтому при уменьшении расхода топлива и неизменности количества воздуха, подаваемого компрессором, снижается температура рабочих газов и перед газовой турбиной, и за ней. Это приводит к очень значительному снижению экономичности ГТУ.

Поворот лопаток при снижении нагрузки вокруг оси 1 на 25-30° (рис.6) позволяет сузить проходные сечения каналов ВНА и уменьшить расход воздуха в камеру сгорания, поддерживая постоянным соотношение между расходом воздуха и топлива. Установка входного направляющего аппарата позволяет поддерживать температуру газов перед газовой турбиной и за ней постоянной в диапазоне мощности примерно 100-80%.


На рис.7 показан привод лопаток ВНА. К осям каждой лопатки крепится поворотный рычаг 2 (см. поз. 4 на рис.6), который через рычаг 4 связан с поворотным кольцом 1 (см. поз. 5 на рис.6). При необходимости изменения расхода воздуха кольцо 1 поворачивается с помощью тяг и электродвигателя с редуктором; при этом поворачиваются одновременно все рычаги 2 и соответственно лопатки ВНА 5.

Закрученный с помощью ВНА воздух поступает в 1-ю ступень воздушного компрессора, которая состоит из двух решеток: вращающейся (см. поз. 13 на рис.6 и поз. 3 на рис. рис.5) и неподвижной (см. поз. 1 на рис.6; в этом отличие от ступени турбины, в которой первая решетка — невращающаяся). Обе решетки в отличие от решеток турбины имеют расширяющиеся (диффузорные) каналы (рис.8), т.е. площадь для прохода воздуха на входе F1 меньше, чем F2 на выходе.


При движении воздуха в таком канале, его скорость уменьшается (w2 р1). К сожалению, сделать диффузорную решетку экономичной, т.е. чтобы скорость потока w1 в максимальной степени преобразовалась бы в давление, а не в теплоту, можно только при небольшой степени сжатия р2/р1 (обычно 1,2 — 1,3), что приводит к большому числу ступеней компрессора (14 — 16 при степени сжатия компрессора = 13 — 16).


На рис.9 показано течение воздуха в компрессорной ступени. Из входного (неподвижного) поворотного соплового аппарата воздух выходит со скоростью c1 (см. верхний треугольник скоростей), имеющий необходимую окружную закрутку ( c1. При движении в канале скорость воздуха уменьшается до значения w2, и он выходит под углом 2, определяемым наклоном профилей. Однако вследствие вращения и подвода к воздуху энергии от рабочих лопаток его скорость с2 в абсолютном движении будет больше, чем c1. Лопатки неподвижной решетки устанавливают так, чтобы вход воздуха в канал был безударным. Так как каналы этой решетки расширяющиеся, то скорость в ней уменьшается, а давление возрастает от р1 до р2. Во второй ступени и последующих ступенях процесс сжатия будет протекать аналогичным образом. При этом высота их решеток будет уменьшаться в соответствии с увеличившейся плотностью воздуха из-за сжатия.

Иногда направляющие лопатки нескольких первых ступеней компрессора выполняют поворотными (см. рис.6) точно так же, как и лопатки ВНА. Это позволяет расширить диапазон мощности ГТУ, при котором температура газов перед газовой турбиной и за ней остается неизменной. Соответственно повышается и экономичность. Применение нескольких поворотных направляющих аппаратов позволяет работать экономично в диапазоне 100 — 50 % мощности.


Последняя ступень компрессора устроена так же, как и предшествующие с той лишь разницей, что задачей последнего направляющего аппарата 1 (рис.10) является не только повышение давления, но и обеспечение осевого выхода потока воздуха. Воздух поступает в кольцевой выходной диффузор 23, где давление повышается до максимального значения. С этим давлением воздух поступает в зону горения 9.

Из корпуса воздушного компрессора выполняются отборы воздуха для охлаждения элементов газовой турбины. Для этого в его корпусе выполняют кольцевые камеры (см. поз. 8 на рис.5), сообщаемые с пространством за соответствующей ступенью. Воздух из камер отводится с помощью трубопроводов (см. поз. 14 на рис.4).

Кроме того, компрессор имеет так называемые антипомпажные клапаны и обводные трубопроводы (см. поз. 6 на рис.4), перепускающие воздух из промежуточных ступеней компрессора в выходной диффузор газовой турбины при ее пуске и остановке. Это исключает неустойчивую работу компрессора при малых расходах воздуха (это явление называется помпажом), выражающуюся в интенсивной вибрации всей машины.

Создание высокоэкономичных воздушных компрессоров представляет собой чрезвычайно сложную задачу, которую, в отличие от турбин, невозможно решить только расчетом и проектированием. Поскольку мощность компрессора равна примерно мощности ГТУ, то ухудшение экономичности компрессора на 1 % приводит к снижению экономичности всей ГТУ на 2—2,5 %. Поэтому создание хорошего компрессора является одной из ключевых проблем создания ГТУ. Обычно компрессоры создаются путем моделирования (масштабирования), используя модельный компрессор, созданный путем длительной экспериментальной доводки.



Камеры сгорания ГТУ


Камеры сгорания ГТУ отличаются большим разнообразием. Выше (на рис.4) показана ГТУ с двумя выносными камерами. На рис.11 показана ГТУ типа 13Е мощностью 140 МВт фирмы ABB с одной выносной камерой сгорания, устройство которой аналогично устройству камеры, показанной на рис.4. Воздух из компрессора из кольцевого диффузора поступает в пространство между корпусом камеры и пламенной трубой и затем используется для горения газа и для охлаждения пламенной трубы.


Главный недостаток выносных камер сгорания — большие габариты, которые хорошо видны из рис.12. Справа от камеры размещается газовая турбина, слева — компрессор. Сверху в корпусе видны три отверстия для размещения антипомпажных клапанов и далее — привод ВНА. В современных ГТУ используют в основном встроенные камеры сгорания: кольцевые и трубчато-кольцевые.


На рис.13 показана встроенная кольцевая камера сгорания. Кольцевое пространство для горения образовано внутренней17 и наружной 11 пламенными трубами. Изнутри трубы облицованы специальными вставками 13 и 16, имеющими термобарьерное покрытие со стороны, обращенной к пламени; с противоположной стороны вставки имеют оребрение, улучшающее их охлаждение воздухом, поступающим через кольцевые зазоры между вставками внутрь пламенной трубы. Таким образом, достигается температура пламенной трубы 750—800°С в зоне горения. Фронтовое микрофакельное горелочное устройство камеры состоит из нескольких сотен горелок 10, к которым подается газ из четырех коллекторов 5—8. Отключая коллекторы поочередно можно изменять мощность ГТУ.


Устройство горелки показано на рис.14. Из коллектора газ поступает по сверлению в штоке 3 к внутренней полости лопаток6 завихрителя. Последний представляет собой полые радиальные прямые лопатки, заставляющие воздух, поступающий из камеры сгорания, закручиваться и вращаться вокруг оси штока. В этот вращающийся воздушный вихрь поступает природный газ из внутренней полости лопаток завихрителя 6 через мелкие отверстия 7. При этом образуется однородная топливно-воздушная смесь, выходящая в виде закрученной струи из зоны 5. Кольцевой вращающийся вихрь обеспечивает устойчивое горение газа.

На рис.10 показана трубчато-кольцевая камера сгорания ГТЭ-180. В кольцевое пространство 24 между выходной частью воздушного компрессора и входной частью газовой турбины с помощью перфорированных конусов 3 помещают 12 пламенных труб 10. Пламенная труба содержит многочисленные отверстия диаметром 1 мм, расположенные по кольцевым рядам на расстоянии 6 мм между ними; расстояние между рядами отверстий 23 мм. Через эти отверстия снаружи поступает «холодный» воздух, обеспечивая конвективно-пленочное охлаждение и температуру пламенной трубы не выше 850°С. На внутреннюю поверхность пламенной трубы наносится термобарьерное покрытие толщиной 0,4 мм.


На фронтовой плите 8 пламенной трубы устанавливают горелочное устройство, состоящее из центральной пилотной горелки 6, поджигающей топливо при пуске с помощью свечи 5, и пяти основных модулей, один из которых показан на рис.15. Модуль позволяет сжигать газ и дизельное топливо. Газ через штуцер 1 после фильтра 6 поступает в кольцевой коллектор топливного газа5, а из нее — в полости, содержащие мелкие отверстия (диаметр 0,7 мм, шаг 8 мм). Через эти отверстия газ поступает внутрь кольцевого пространства. В стенках модуля выполнено шесть тангенциальных пазов 9, через которые поступает основное количество воздуха, подаваемого для горения от воздушного компрессора. В тангенциальных пазах воздух закручивается и, таким образом, внутри полости 8 образуется вращающийся вихрь, движущийся к выходу из горелочного устройства. На периферию вихря через отверстия 3 поступает газ, смешивается с воздухом, и образовавшаяся гомогенная смесь выходит из горелки, где воспламеняется и сгорает. Продукты сгорания поступают к сопловому аппарату 1-й ступени газовой турбины.



Газовая турбина


Газовая турбина является наиболее сложным элементом ГТУ, что обусловлено в первую очередь очень высокой температурой рабочих газов, протекающих через ее проточную часть: температура газов перед турбиной 1350°С в настоящее время считается «стандартной», и ведущие фирмы, в первую очередь General Electric, работают над освоением начальной температуры 1500°С. Напомним, что «стандартная» начальная температура для паровых турбин составляет 540°С, а в перспективе — температура 600—620°С.


Стремление повысить начальную температуру связано, прежде всего, с выигрышем в экономичности, который она дает. Это хорошо видно из рис.16, обобщающего достигнутый уровень газотурбостроения: повышение начальной температуры с 1100 до 1450°С дает увеличение абсолютного КПД с 32 до 40%, т.е. приводит к экономии топлива в 25%. Конечно, часть этой экономии связана не только с повышением температуры, но и с совершенствованием других элементов ГТУ, а определяющим фактором все-таки является начальная температура.

Для обеспечения длительной работы газовой турбины используют сочетание двух средств. Первое средство — применение для наиболее нагруженных деталей жаропрочных материалов, способных сопротивляться действию высоких механических нагрузок и температур (в первую очередь для сопловых и рабочих лопаток). Если для лопаток паровых турбин и некоторых других элементов применяются стали (т.е. сплавы на основе железа) с содержанием хрома 12—13%, то для лопаток газовых турбин используют сплавы на никелевой основе (нимоники), которые способны при реально действующих механических нагрузках и необходимом сроке службы выдержать температуру 800—850°С. Поэтому вместе с первым используют второе средство — охлаждение наиболее горячих деталей.



Система охлаждения газовой турбины


Для охлаждения большинства современных ГТУ используется воздух, отбираемый из различных ступеней воздушного компрессора. Уже работают ГТУ, в которых для охлаждения используется водяной пар, который является лучшим охлаждающим агентом, чем воздух. Охлаждающий воздух после нагрева в охлаждаемой детали сбрасывается в проточную часть газовой турбины. Такая система охлаждения называется открытой. Существуют замкнутые системы охлаждения, в которых нагретый в детали охлаждающий агент направляется в холодильник и затем снова возвращается для охлаждения детали. Такая система не только весьма сложна, но и требует утилизации тепла, отбираемого в холодильнике.

Система охлаждения газовой турбины — самая сложная система в ГТУ, определяющая ее срок службы. Она обеспечивает не только поддержание допустимого уровня рабочих и сопловых лопаток, но и корпусных элементов, дисков, несущих рабочие лопатки, запирание уплотнений подшипников, где циркулирует масло и т.д. Эта система чрезвычайно сильно разветвлена и организуется так, чтобы каждый охлаждаемый элемент получал охлаждающий воздух тех параметров и в том количестве, который необходим для поддержания его оптимальной температуры. Излишнее охлаждение деталей так же вредно, как и недостаточное, так как оно приводит к повышенным затратам охлаждающего воздуха, на сжатие которого в компрессоре затрачивается мощность турбины. Кроме того, повышенные расходы воздуха на охлаждение приводят к снижению температуры газов за турбиной, что очень существенно влияет на работу оборудования, установленного за ГТУ (например, паротурбинной установки, работающей в составе ПТУ). Наконец, система охлаждения должна обеспечивать не только необходимый уровень температур деталей, но и равномерность их прогрева, исключающую появление опасных температурных напряжений, циклическое действие которых приводит к появлению трещин.


На рис.17 показан пример схемы охлаждения типичной газовой турбины. В прямоугольных рамках приведены значения температур газов. Перед сопловым аппаратом 1-й ступени 1 она достигает 1350°С. За ним, т.е. перед рабочей решеткой 1-й ступени она составляет 1130°С. Даже пе¬ред рабочей лопаткой последней ступени она находится на уровне 600°С. Газы этой температуры омывают сопловые и рабочие лопатки, и если бы они не охлаждались, то их температура равнялась бы температуре газов и срок их службы ограничивался бы несколькими часами.

Для охлаждения элементов газовой турбины используется воздух, отбираемый от компрессора в той его ступени, где его давление несколько больше, чем давление рабочих газов в той зоне газовой турбины, в которую подается воздух. Например (рис.17), на охлаждение сопловых лопаток 1-й ступени охлаждающий воздух в количестве 4,5% от расхода воздуха на входе в компрессор отбирается из выходного диффузора компрессора, а для охлаждения сопловых лопаток последней ступени и примыкающего участка корпуса — из 5-й ступени компрессора. Иногда для охлаждения самых горячих элементов газовой турбины воздух, отбираемый из выходного диффузора компрессора, направляют сначала в воздухоохладитель, где его охлаждают (обычно водой) до 180—200°С и затем направляют на охлаждение. В этом случае воздуха для охлаждения требуется меньше, но при этом появляются затраты на воздухоохладитель, усложняется ГТУ, теряется часть теплоты, отводимой охлаждающей водой.


Газовая турбина обычно имеет 3—4 ступени, т.е. 6—8 венцов решеток, и чаще всего охлаждаются лопатки всех венцов, кроме рабочих лопаток последней ступени. Воздух для охлаждения сопловых лопаток подводится внутрь через их торцы и сбрасываются через многочисленные (600—700 отверстий диаметром 0,5—0,6 мм) отверстия, расположенные в соответствующих зонах профиля (рис.18). К рабочим лопаткам охлаждающий воздух подводится через отверстия, выполненные в торцах хвостовиков.


Для того чтобы понять, как устроены охлаждаемые лопатки, необходимо хотя бы в общих чертах рассмотреть технологию их изготовления. Ввиду исключительной трудности механической обработки никелевых сплавов для получения лопаток в основном используется точное литье по выплавляемым моделям. Для его реализации сначала по специальной технологии формовки и термообработки из материалов на основе керамики изготавливают литейные стержни (рис.19 и 20).

Литейный стержень — это точная копия полости внутри будущей лопатки, в которую будет поступать и протекать в необходимом направлении охлаждающий воздух. Литейный стержень помещают в пресс-форму, внутренняя полость в которой полностью соответствует лопатке (см. рис.18), которую необходимо получить. Получающееся свободное пространство между стержнем и стенкой пресс-формы запол¬няют нагретой легкоплавкой массой (например, пластмассой), которая застывает. Стержень вместе с обволакивающей ее застывающей массой, повторяющей внешнюю форму лопатки, представляет собой выплавляемую модель. Ее помещают в литейную форму, к которой подают расплав нимоника. Последний выплавляет пластмассу, занимает ее место и в результате появляется литая лопатка с внутренней полостью, заполненной стержнем. Стрежень удаляют вытравливанием специальными химическими растворами. Полученные сопловые лопатки практически не требуют дополнительной механической обработки (кроме изготовления многочисленных отверстий для выхода охлаждающего воздуха). Рабочие литые лопатки требуют обработки хвостовика с помощью специального абразивного инструмента.

Описанная вкратце технология заимствована из авиационной техники, где достигнутые температуры гораздо выше, чем в стационарных паровых турбинах. Трудность освоения этих технологий связана с гораздо большими размерами лопаток для стационарных ГТУ, которые растут пропорционально расходу газов, т.е. мощности ГТУ.

Весьма перспективным представляется использование так называемых монокристаллических лопаток, которые изготавливаются из одного кристалла. Связано это с тем, что наличие границ зерен при длительном пребывании при высокой температуре приводит к ухудшению свойств металла.



Ротор газовой турбины


Ротор газовой турбины представляет собой уникальную сборную конструкцию (рис.21,а). Перед сборкой отдельные диски5 компрессора и диска 7 газовой турбины облопачиваются и балансируются, изготавливаются концевые части 1 и 8, проставочная часть 11 и центральный стяжной болт 6. Каждый из дисков имеет два кольцевых воротника, на котором выполнены хирты (по имени изобретателя — Hirth), — строго радиальные зубья треугольного профиля. Смежные детали имеют точно такие же воротники с точно такими же хиртами. При хорошем качестве изготовления хиртового соединения обеспечивается абсолютная центровка смежных дисков (это обеспечивает радиальность хиртов) и повторяемость сборки после разборки ротора.


Ротор собирается на специальном стенде, представляющем собой лифт с кольцевой площадкой для монтажного персонала, внутри которой осуществляется сборка. Сначала собирается на резьбе концевая часть ротора 1 и стяжной стержень 6. Стержень ставится вертикально внутри кольцевой площадки и сверху на него с помощью крана (рис.22) опускается диск 1-й ступени компрессора. Центровка диска и концевой части осуществляется хиртами. Перемещаясь на специальном лифте вверх, монтажный персонал диск за диском [сначала компрессора, затем проставочная часть, а затем турбины и правой концевой части 8 (см. рис.21,а)] собирает весь ротор. На правый конец навинчивается гайка 9, а на оставшуюся часть резьбовой части стяжного стержня устанавливается гидравлическое устройство, сдавливающее диски и вытягивающее стяжной стержень. После вытяжки стержня гайка 9 навинчивается до упора, и гидравлическое устройство снимается. Растянутый стержень надежно стягивает диски между собой и превращает ротор в единую жесткую конструкцию. Собранный ротор извлекают из сборочного стенда, и он готов к установке в ГТУ.






www.gigavat.com

Отправить ответ

avatar
  Подписаться  
Уведомление о