Что такое наддув: Наддув — это… Что такое Наддув?

Содержание

Наддув — это… Что такое Наддув?

Наддув — увеличение количества свежего заряда горючей смеси, подаваемой в двигатель внутреннего сгорания, за счёт повышения давления при впуске. Наддув обычно применяют с целью повышения мощности (на 20-45 %) без увеличения массы и габаритов двигателя, а также для компенсации падения мощности в условиях высокогорья. Наддув с «качественным регулированием» может применяться для снижения токсичности и дымности отработавших газов. Агрегатный наддув осуществляется с помощью компрессора, турбокомпрессора или комбинировано. Наибольшее распространение получил наддув с помощью турбокомпрессора, для привода которого используется энергия отработавших газов.

Агрегатный наддув применяют почти на всех видах транспортных дизелей (судовых, тепловозных, тракторных). Наддув на карбюраторных двигателях ограничивается возникновением детонации. К основным недостаткам агрегатного наддува относят:

  • повышение механической и тепловой напряжённости двигателя вследствие увеличения давления и температуры газов;
  • снижение экономичности;
  • усложнение конструкции.

К безагрегатному наддуву относят:

  • динамический (ранее называемый инерционным, резонансным, акустическим), при котором эффект достигается за счёт колебательных явлений в трубопроводах;
  • скоростной, применяемый на поршневых авиационных двигателях на высотах больше расчётной и при скоростях более 500 км/ч;
  • рефрижерационный, достигаемый испарением в поступающем воздухе топлива или какой-либо другой горючей жидкости с низкой температурой кипения и большой теплотой парообразования.

Всё большее распространение на транспортных двигателях внутреннего сгорания получает динамический наддув, который при несущественных изменениях в конструкции трубопроводов приводит к повышению коэффициента наполнения до в широком диапазоне изменения частоты вращения двигателя. Увеличение при наддуве позволяет форсировать дизель по энергетическим показателям в случае одновременного увеличения цикловой подачи топлива или улучшить экономические показатели при сохранении мощностных (при той же цикловой подаче топлива). Динамический наддув повышает долговечность деталей цилиндро-поршневой группы благодаря более низким тепловым режимам при работе на бедных смесях.

См. также

Ссылки

Наддув двигателя (двс)

Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Мощность двигателя напрямую связана с рабочим объемом цилиндров и количеством подаваемой в них топливо-воздушной смеси. Т.е., чем больше в цилиндрах сгорает топлива, тем более высокую мощность развивает силовой агрегат. Однако самое простое решение – повысить мощность двигателя путем увеличения его рабочего объема приводит к увеличению габаритов и массы конструкции.

Количество подаваемой рабочей смеси можно поднять за счет увеличения оборотов коленчатого вала (другими словами, реализовать в цилиндрах за единицу времени большее число рабочих циклов), но при этом возникнут серьезные проблемы, связанные с ростом сил инерции и резким увеличением механических нагрузок на детали силового агрегата, что приведет к снижению ресурса мотора. Наиболее действенным способом в этой ситуации является наддув.

Представим себе такт впуска двигателя внутреннего сгорания: мотор в это время работает как насос, к тому же весьма неэффективный – на пути воздуха находится воздушный фильтр, изгибы впускных каналов, в бензиновых моторах – еще и дроссельная заслонка. Все это, безусловно, снижает наполнение цилиндра. Ну а что требуется, чтобы его повысить? Поднять давление перед впускным клапаном – тогда воздуха в цилиндре “поместится” больше. При наддуве улучшается наполнение цилиндров свежим зарядом, что позволяет сжигать в цилиндрах большее количество топлива и получать за счет этого более высокую агрегатную мощность двигателя.

В ДВС применяют три типа наддува:

  • резонансный –при котором используется кинетическая энергия объема воздуха во впускных коллекторах (нагнетатель в этом случае не нужен)
  • механический – в этом варианте компрессор приводится во вращение ремнем от двигателя
  • газотурбинный (или турбонаддув) – турбина приводится в движение потоком отработавших газов.

У каждого способа свои преимущества и недостатки, определяющие область применения.

Содержание статьи

Резонансный наддув

Настраиваемый впускной коллекторНастраиваемый впускной коллектор

Как уже отмечалось в начале статьи, для лучшего наполнения цилиндра следует поднять давление перед впускным клапаном. Между тем повышенное давление необходимо вовсе не постоянно – достаточно, чтобы оно поднялось в момент закрытия клапана и «догрузило» цилиндр дополнительной порцией воздуха. Для кратковременного повышения давления вполне подойдет волна сжатия, «гуляющая» по впускному трубопроводу при работе мотора. Достаточно лишь рассчитать длину самого трубопровода, чтобы волна, несколько раз отразившись от его концов, пришла к клапану в нужный момент.

Теория проста, а вот воплощение ее требует немалой изобретательности: клапан при разных оборотах коленчатого вала открыт неодинаковое время, а потому для использования эффекта резонансного наддува требуются впускные трубопроводы переменной длины. При коротком впускном коллекторе мотор лучше работает на высоких оборотах , при низких оборотах более эффективен длинный впускной тракт. Переменные длины впускных трубопроводов можно создать двумя способами: или путем подключения резонансной камеры, или через переключение на нужный впускной канал или его подключение. Последний вариант называют еще динамическим наддувом. Как резонансный, так и динамический наддув могут ускорить течение впускного столба воздуха.

Эффекты наддува, создаваемые за счет колебаний напора воздушного потока, находится в диапазоне от 5 до 20 миллибар. Для сравнения: с помощью турбонаддува или механического наддува можно получить значения в диапазоне между 750 и 1200 миллибар. Для полноты картины отметим, что существует еще инерционный наддув, при котором основным фактором создания избыточного давления перед клапаном является скоростной напор потока во впускном трубопроводе. Дает незначительную прибавку мощности при высоких (больше 140 км/ч) скоростях движения. Используется в основном на мотоциклах.

Механический наддув

Механические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора.
Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.

Механические нагнетателиМеханические нагнетатели

Существует два вида механических нагнетателей: объемные и центробежные.

Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.

Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым.

Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors.

Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.

Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку.

Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам.
Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.

Механический наддувМеханический наддув

Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса.

Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.

Интеркулер
Интеркулер

Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува.

При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Газотурбинный наддув

ТурбокомпрессорТурбокомпрессор

Более широко на современных автомобильных двигателях применяются турбокомпрессоры. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от “турбо”. Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций. У турбокомпрессора крыльчатка-нагнетатель сидит на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Частота вращения может превышать 200.000 об./мин. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов.

К достоинствам турбонаддува относят: повышение КПД и экономичности мотора (механический привод отбирает мощность у двигателя, этот же использует энергию отработавших газов, следовательно, КПД увеличивает). Не следует путать удельную и общую экономичность мотора. Естественно, для работы двигателя, мощность которого возросла за счет применения турбонаддува, требуется больше топлива, чем для аналогичного безнаддувного мотора меньшей мощности. Ведь наполнение цилиндров воздухом улучшают, как мы помним, для того, чтобы сжечь в них большее количество топлива. Но массовая доля топлива, приходящаяся на единицу мощности в час у двигателя, оснащенного ТК, всегда ниже, чем у схожего по конструкции силового агрегата, лишенного наддува.

Турбонаддув дает возможность достичь заданных характеристик силового агрегата при меньших габаритах и массе, чем в случае применения “атмосферного” двигателя. Кроме того, у турбодвигателя лучше экологические показатели. Наддув камеры сгорания приводит к снижению температуры и, следовательно, уменьшению образования оксидов азота. В бензиновых двигателях наддувом добиваются более полного сгорания топлива, особенно на переходных режимах работы. В дизелях дополнительная подача воздуха позволяет отодвинуть границу возникновения дымности, т. е. бороться с выбросами частиц сажи.

Дизели существенно лучше приспособлены к наддуву вообще, и к турбонаддуву в частности. В отличие от бензиновых моторов, в которых давление наддува ограничивается опасностью возникновения детонации, им такое явление неведомо. Дизель можно наддувать вплоть до достижения предельных механических нагрузок в его механизмах. К тому же отсутствие дросселирования воздуха на впуске и высокая степень сжатия обеспечивают большее давление отработавших газов и их меньшую температуру в сравнении с бензиновыми моторами. В общем, как раз то, что нужно для применения турбокомпрессора. Турбокомпрессоры более просты в изготовлении, что окупает ряд присущих им недостатков.

VNT турбокомпрессорVNT турбокомпрессор

При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. «турбояму» (по-английски “turbo-lag”) — замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться — вдавливаете педаль газа в пол, а двигатель некоторое время «думает» и лишь потом подхватывает. Объяснение простое — требуется время, пока мотор наберет обороты, увеличится давление выхлопных газов, раскрутится турбина, с ней крыльчатка нагнетателя – и наконец, “пойдет” воздух. Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора. Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони.

Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Основная сложность при этом- высокая температура отработавших газов. Металлокерамический ротор турбины примерно на 20% легче изготовленного из жаростойких сплавов, да к тому же обладает меньшим моментом инерции. До последнего времени срок службы всего агрегата ограничивала долговечность подшипников. По сути, это были вкладыши, подобные вкладышам коленчатого вала, которые смазывались маслом под давлением. Износ таких подшипников скольжения был, конечно, велик, однако шариковые не выдерживали огромной частоты вращения и высоких температур. Выход нашли когда удалось разработать подшипники с керамическими шариками. Однако достойно удивления не применение керамики – подшипники заполнены постоянным запасом пластичной смазки, то есть канал от штатной масляной системы двигателя уже не нужен!

Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом — уменьшение давления при высоких оборотах двигателя и повышение его при низких. Полностью решить все проблемы можно использованием турбины с изменяемой геометрией (Variable Nozzle Turbine), например, с подвижными (поворотными) лопатками , параметры которой можно менять в широких пределах.

Принцип действия VNT турбокомпрессора заключается в оптимизации потока выхлопных газов, направляемых на крыльчатку турбины. На низких оборотах двигателя и малом количестве выхлопных газов VNT турбокомпрессор направляет весь поток выхлопных газов на колесо турбины, тем самым увеличивая ее мощность и давление наддува. При высоких оборотах и высоком уровне газового потока турбокомпрессор VNT располагает подвижные лопатки в открытом положении, увеличивая площадь сечения и отводя часть выхлопных газов от крыльчатки, защищая себя от превышения оборотов и поддерживая давление наддува на необходимом двигателю уровне, исключая перенаддув.

Комбинированные системы

Двухступенчатый наддувДвухступенчатый наддув

Помимо одиночных систем наддува сейчас часто встречается и двухступенчатый наддув. Первая ступень — приводной компрессор — обеспечивает эффективный наддув на малых оборотах ДВС, а вторая — турбонагнетатель — утилизирует энергию выхлопных газов. После достижения силовым агрегатом достаточных для нормальной работы турбины оборотов, компрессор автоматически выключается, а при их падении вновь вступает в действие.

Ряд производителей устанавливают на свои моторы сразу два турбокомпрессора. Такие системы называют «битурбо» или «твинтурбо». Принципиальной разницы в них нет, за одним лишь исключением. «Битурбо» подразумевает использование разных по диаметру, а следовательно и производительности, турбин. Причем алгоритм их включения может быть как параллельным, так и последовательным (секвентальным). На низких оборотах быстро раскручивается и вступает в работу турбонаддув маленького диаметра, на средних к нему подключается «старший брат».

Таким образом, выравнивается разгонная характеристика автомобиля. Система дорогостоящая, поэтому ее можно встретить на престижных автомобилях, например Maserati или Aston Martin. Основная задача «твинтурбо» заключается не в сглаживании «турбоямы», а в достижении максимальной производительности. При этом используются две одинаковые турбины. Устанавливаются «твин-» и «битурбо» как на V-образные блоки, так и на рядные моторы. Варианты подключения турбин также идентичны системе «битурбо». В чем же смысл? Дело в том, что производительность турбины напрямую зависит от двух ее параметров: диаметра и скорости вращения. Оба показателя весьма капризны. Увеличение диаметра приводит к повышению инерционности и, как следствие, к пресловутой «турбояме». Скорость же турбины ограничивается допустимыми нагрузками на материалы. Поэтому две скромные и менее инерционные турбины могут оказаться эффективнее одной большой.

Рекомендации

Во-первых, вовремя меняйте масло и масляный фильтр. Во-вторых, используйте только масло, предназначенное для двигателей, оборудованных турбонаддувом, которое изначально рассчитано на более высокие температуры, чем обычное. Но в дороге всякое может случиться, и если вам пришлось залить неизвестное масло, то не гоните, двигайтесь потихоньку. Двигатель это масло переживет, а вот турбонаддув — не обязательно. Приехав домой, сразу же смените масло и масляный фильтр.

И, наконец, третье, самое главное условие нормальной работы турбонаддува. В жизни турбины есть два самых ответственных момента: запуск двигателя и его остановка. При запуске холодного двигателя масло в нем имеет высокую вязкость, оно с трудом прокачивается по зазорам; еще не установились тепловые зазоры; нагрев разных деталей компрессора, а следовательно, и тепловое расширение, идут с разной скоростью. Поэтому не спешите, дайте двигателю прогреться.

Если вам надо остановиться, никогда не глушите двигатель сразу. В зависимости от режима езды дайте ему поработать на холостом ходу 2-5 минут (зимой можно дольше). За это время вал турбины снизит обороты до минимальных, а детали, непосредственно соприкасающиеся с выхлопными газами, плавно остынут. В этой ситуации значительно облегчает жизнь турбо-таймер. Он проследит за тем, чтобы разгоряченный двигатель автомобиля поработал несколько минут на холостом ходу, остужая элементы турбонаддува, даже если владелец уже покинул и закрыл своё авто. Впрочем, подобную функцию имеют и многие охранные сигнализации.

Наддув — Википедия. Что такое Наддув

Наддув — принудительное повышение давления воздуха выше текущего уровня атмосферного в системе впуска двигателя внутреннего сгорания, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, согласно правилу стехиометрической горючей смеси для конкретного типа мотора, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) при сравнимой частоте вращения. В широком смысле, повышение удельной/литровой мощности при текущем уровне атмосферного давления и есть основная цель наддува. Буквальным следствием этой технической особенности стало одно из ранних применений наддува для компенсации высотного падения мощности в авиационных маршевых ДВС.

Также, наддув есть любого рода создание повышенного давления в принципе. Существуют понятия наддува кабин высотных и космических летательных аппаратов для создания подходящих для людей условий, наддува баков гидросистем для предотвращения вспенивания рабочей жидкости и т. д.

Возможен агрегатный наддув и безагрегатный наддув.

Агрегатный наддув

Лопастная турбина и лопастной центробежный компрессор в составе турбонагнетателя Роторный компрессор Roots, применявшийся на приводных нагнетателях Принципиальная схема работы нагнетателя с электрическим приводом

Под агрегатным подразумевается наддув, создание которого обеспечивается неким агрегатом. Фактически, таковых агрегатов в технике всего три — турбонагнетатель, приводной нагнетатель, нагнетатель с электрическим приводом. Первый работает от энергии выхлопных газов и состоит из газовой турбины и компрессора. Второй работает от непосредственного привода с коленвала двигателя и состоит из механической передачи и компрессора. Третий работает от электропривода и состоит из высокооборотного электромотора и компрессора. Вообще, компрессор входит в состав любого агрегата наддува, вследствие чего, такие термины как турбокомпрессор, приводной компрессор и компрессор с электрическим приводом являются синонимами вышеупомянутым трём и правомерны к использованию. Конструкция компрессора может быть универсальна для любого агрегата, хотя обычно в турбонагнетателе и нагнетателе с электрическим приводом используются лопастные центробежные компрессоры, а в приводном нагнетателе — роторные компрессоры. Сам термин «агрегатный наддув» практически никогда не используется, и таковым в речевом обиходе применительно к считается просто любой наддув, если иное не оговорено особо.

Особенность и преимущества агрегатного наддува (турбонаддува, в первую очередь) в том, что таковой позволяет получать сверхвысокие давления на впуске в ДВС — вплоть до 5 Бар — что даёт в итоге примерно кратное давлению наддува повышение удельной мощности на отдельных режимах работы. Всережимного увеличения мощности посредством одного типа агрегата наддува достичь сложно в силу разных причин (либо для этого требуется сильное механическое усложнение конструкции нагнетателя) поэтому часто на ДВС применяются комбинированные системы, состоящие, например, из турбонагнетателя и приводного нагнетателя, или турбонагнетателя и нагнетателя с электрическим приводом.

Также в авиации для компенсации высотного падения мощности маршевых поршневых двигателей на многомоторных самолётах были исторические попытки применения группового агрегатного наддува, обеспечивающего дополнительное снабжение маршевых двигателей воздухом на больших высотах. Основой этой системы был отдельный мотор-компрессор, состоявший из одного двигателя, аналогичного маршевому, и объёмного компрессора, дополненный системой воздуховодов к каждому маршевому двигателю. Пример — тяжёлый бомбардировщик Пе-8.

Агрегатный наддув применяется как на четырёхтактных ДВС, так и на двухтактных ДВС, поршневых и роторно-поршневых, работающих практически по любому термодинамическому циклу (циклу Отто, циклу Дизеля, прочих). Однако к газотурбинным двигателям термин «агрегатного наддува» в русскоязычном инженерно-техническом лексиконе обычно не применяется, несмотря на обязательное наличие компрессора в составе таких двигателей. Важным следствием применения агрегатного наддува является снижение удельного расхода топлива (в граммах на л. с. за час).

Безагрегатный наддув

К безагрегатному наддуву относят:

  • динамический (ранее называемый инерционным, резонансным, акустическим), при котором эффект достигается за счёт колебательных явлений во впускном и/или выпускном трубопроводах;
  • скоростной, применяемый на поршневых авиационных двигателях на высотах больше расчётной и при скоростях более 500 км/ч;
  • рефрижерационный, достигаемый испарением в поступающем воздухе топлива или какой-либо другой горючей жидкости с низкой температурой кипения и большой теплотой парообразования.

Всё большее распространение на транспортных двигателях внутреннего сгорания получает динамический наддув, который при несущественных изменениях в конструкции трубопроводов приводит к повышению коэффициента наполнения до h v = 0 , 92 − 0 , 96 {\displaystyle hv=0,92-0,96} в широком диапазоне изменения частоты вращения двигателя. Увеличение h v {\displaystyle hv} при наддуве позволяет форсировать дизель по энергетическим показателям в случае одновременного увеличения цикловой подачи топлива или улучшить экономические показатели при сохранении мощностных (при той же цикловой подаче топлива). Динамический наддув повышает долговечность деталей цилиндро-поршневой группы благодаря более низким тепловым режимам при работе на бедных смесях.

См. также

Ссылки

Наддув — Википедия. Что такое Наддув

Наддув — принудительное повышение давления воздуха выше текущего уровня атмосферного в системе впуска двигателя внутреннего сгорания, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, согласно правилу стехиометрической горючей смеси для конкретного типа мотора, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) при сравнимой частоте вращения. В широком смысле, повышение удельной/литровой мощности при текущем уровне атмосферного давления и есть основная цель наддува. Буквальным следствием этой технической особенности стало одно из ранних применений наддува для компенсации высотного падения мощности в авиационных маршевых ДВС.

Также, наддув есть любого рода создание повышенного давления в принципе. Существуют понятия наддува кабин высотных и космических летательных аппаратов для создания подходящих для людей условий, наддува баков гидросистем для предотвращения вспенивания рабочей жидкости и т. д.

Возможен агрегатный наддув и безагрегатный наддув.

Агрегатный наддув

Лопастная турбина и лопастной центробежный компрессор в составе турбонагнетателя Роторный компрессор Roots, применявшийся на приводных нагнетателях Принципиальная схема работы нагнетателя с электрическим приводом

Под агрегатным подразумевается наддув, создание которого обеспечивается неким агрегатом. Фактически, таковых агрегатов в технике всего три — турбонагнетатель, приводной нагнетатель, нагнетатель с электрическим приводом. Первый работает от энергии выхлопных газов и состоит из газовой турбины и компрессора. Второй работает от непосредственного привода с коленвала двигателя и состоит из механической передачи и компрессора. Третий работает от электропривода и состоит из высокооборотного электромотора и компрессора. Вообще, компрессор входит в состав любого агрегата наддува, вследствие чего, такие термины как турбокомпрессор, приводной компрессор и компрессор с электрическим приводом являются синонимами вышеупомянутым трём и правомерны к использованию. Конструкция компрессора может быть универсальна для любого агрегата, хотя обычно в турбонагнетателе и нагнетателе с электрическим приводом используются лопастные центробежные компрессоры, а в приводном нагнетателе — роторные компрессоры. Сам термин «агрегатный наддув» практически никогда не используется, и таковым в речевом обиходе применительно к считается просто любой наддув, если иное не оговорено особо.

Особенность и преимущества агрегатного наддува (турбонаддува, в первую очередь) в том, что таковой позволяет получать сверхвысокие давления на впуске в ДВС — вплоть до 5 Бар — что даёт в итоге примерно кратное давлению наддува повышение удельной мощности на отдельных режимах работы. Всережимного увеличения мощности посредством одного типа агрегата наддува достичь сложно в силу разных причин (либо для этого требуется сильное механическое усложнение конструкции нагнетателя) поэтому часто на ДВС применяются комбинированные системы, состоящие, например, из турбонагнетателя и приводного нагнетателя, или турбонагнетателя и нагнетателя с электрическим приводом.

Также в авиации для компенсации высотного падения мощности маршевых поршневых двигателей на многомоторных самолётах были исторические попытки применения группового агрегатного наддува, обеспечивающего дополнительное снабжение маршевых двигателей воздухом на больших высотах. Основой этой системы был отдельный мотор-компрессор, состоявший из одного двигателя, аналогичного маршевому, и объёмного компрессора, дополненный системой воздуховодов к каждому маршевому двигателю. Пример — тяжёлый бомбардировщик Пе-8.

Агрегатный наддув применяется как на четырёхтактных ДВС, так и на двухтактных ДВС, поршневых и роторно-поршневых, работающих практически по любому термодинамическому циклу (циклу Отто, циклу Дизеля, прочих). Однако к газотурбинным двигателям термин «агрегатного наддува» в русскоязычном инженерно-техническом лексиконе обычно не применяется, несмотря на обязательное наличие компрессора в составе таких двигателей. Важным следствием применения агрегатного наддува является снижение удельного расхода топлива (в граммах на л. с. за час).

Безагрегатный наддув

К безагрегатному наддуву относят:

  • динамический (ранее называемый инерционным, резонансным, акустическим), при котором эффект достигается за счёт колебательных явлений во впускном и/или выпускном трубопроводах;
  • скоростной, применяемый на поршневых авиационных двигателях на высотах больше расчётной и при скоростях более 500 км/ч;
  • рефрижерационный, достигаемый испарением в поступающем воздухе топлива или какой-либо другой горючей жидкости с низкой температурой кипения и большой теплотой парообразования.

Всё большее распространение на транспортных двигателях внутреннего сгорания получает динамический наддув, который при несущественных изменениях в конструкции трубопроводов приводит к повышению коэффициента наполнения до h v = 0 , 92 − 0 , 96 {\displaystyle hv=0,92-0,96} в широком диапазоне изменения частоты вращения двигателя. Увеличение h v {\displaystyle hv} при наддуве позволяет форсировать дизель по энергетическим показателям в случае одновременного увеличения цикловой подачи топлива или улучшить экономические показатели при сохранении мощностных (при той же цикловой подаче топлива). Динамический наддув повышает долговечность деталей цилиндро-поршневой группы благодаря более низким тепловым режимам при работе на бедных смесях.

См. также

Ссылки

Значение слова НАДДУВ. Что такое НАДДУВ?

Наддув — увеличение количества свежего заряда горючей смеси, подаваемой в двигатель внутреннего сгорания, за счёт повышения давления при впуске.

Также наддув — любого рода создание повышенного давления. Существуют понятия наддува кабин высотных и космических летательных аппаратов для создания подходящих для людей условий, наддува баков гидросистем для предотвращения вспенивания рабочей жидкости и т. д.

Наддув ДВС обычно применяют с целью повышения мощности (на 20-45 %) без увеличения массы и габаритов двигателя, а также для компенсации падения мощности в условиях высокогорья. Наддув с «качественным регулированием» может применяться для снижения токсичности и дымности отработавших газов. Агрегатный наддув осуществляется с помощью компрессора, турбокомпрессора или комбинированно. Наибольшее распространение получил наддув с помощью турбокомпрессора, для привода которого используется энергия отработавших газов.

Агрегатный наддув применяют почти на всех видах транспортных дизелей (судовых, тепловозных, тракторных). Наддув на карбюраторных двигателях ограничивается возникновением детонации. К основным недостаткам агрегатного наддува относят:

повышение механической и тепловой напряжённости двигателя вследствие увеличения давления и температуры газов;

усложнение конструкции.

К безагрегатному наддуву относят:

динамический (ранее называемый инерционным, резонансным, акустическим), при котором эффект достигается за счёт колебательных явлений в трубопроводах;

скоростной, применяемый на поршневых авиационных двигателях на высотах больше расчётной и при скоростях более 500 км/ч;

рефрижерационный, достигаемый испарением в поступающем воздухе топлива или какой-либо другой горючей жидкости с низкой температурой кипения и большой теплотой парообразования.

Всё большее распространение на транспортных двигателях внутреннего сгорания получает динамический наддув, который при несущественных изменениях в конструкции трубопроводов приводит к повышению коэффициента наполнения до

h

v

=

0

,

92

0

,

96

{\displaystyle hv=0,92-0,96}

в широком диапазоне изменения частоты вращения двигателя. Увеличение

h

v

{\displaystyle hv}

при наддуве позволяет форсировать дизель по энергетическим показателям в случае одновременного увеличения цикловой подачи топлива или улучшить экономические показатели при сохранении мощностных (при той же цикловой подаче топлива). Динамический наддув повышает долговечность деталей цилиндро-поршневой группы благодаря более низким тепловым режимам при работе на бедных смесях.

Системы наддува двигателя

С момента появления двигателя внутреннего сгорания перед конструкторами появилась задача повышения его мощности. А это возможно только одним путем – увеличением количества сгораемого топлива.

Способы повышения мощности двигателя

Для решения этой проблемы использовалось два метода, один из которых – повышение объема камер сгорания. Но в условиях постоянно ужесточающийся экологических требований к силовым агрегатам автомобилей этот метод повышения мощности сейчас практически не используется, хотя раннее он был приоритетным.

Второй метод повышения мощности сводится к принудительному увеличению количества горючей смеси. В результате этого даже на малообъемных силовых установках удается существенно повысить эксплуатационные показатели.

Если с увеличением количества подаваемого в цилиндры топлива проблем не возникает (система его подачи легко регулируется под требуемые условия), то с воздухом не все так просто. Силовая установка самостоятельно его закачивает за счет разрежения в цилиндрах и повлиять на объем закачки невозможно. А поскольку для максимально эффективного сгорания в цилиндрах должна создаваться топливовоздушная смесь с определенным соотношением, то увеличение только одного количества топлива никакого прироста мощности не дает, а наоборот – повышается расход, а мощность падает.


Выходом из ситуации является принудительная накачка воздуха в цилиндры, так называемый наддув двигателя. Отметим, что первые устройства, нагнетающие воздух в камеры сгорания, появились практически с момента появления самого двигателя внутреннего сгорания, но долгое время их на автотранспорте не использовали. Зато наддувы достаточно широко использовались в авиации и на кораблях.

Виды по способу создания давления

Наддув двигателя – задумка теоретически простая. Суть ее сводится к тому, что принудительная закачка позволяет существенно увеличить количество воздуха в цилиндрах по сравнению с объемом, который засасывает сам мотор, соответственно, и топлива подать можно больше. В результате удается повысить мощность силовой установки без изменения объема камер сгорания

Но это в теории все просто, на практике же возникает множество трудностей. Основная проблема сводится к определению, какая конструкция наддува является самой эффективной и надежной.

В целом разработано три типа нагнетателей, различающихся по способу нагнетания воздуха:

  1. Roots
  2. Lysholm (механический нагнетатель)
  3. Центробежный (турбина)

Каждый из них имеет свои конструктивные особенности, достоинства и недостатки.

Roots

Нагнетатель типа Roots изначально был представлен в виде обычного шестеренчатого насоса (что-то схожее с масляным насосом), но со временем конструкция этого наддува сильно изменилась. В современном нагнетателе Roots шестеренки заменены на два ротора, вращающихся разнонаправлено, и установленных в корпусе. Вместо зубьев на роторах сделаны лопастные кулачки, которыми происходит зацепление роторов между собой.

Главной особенностью наддува Roots является способ нагнетания. Давление воздуха создается не в корпусе, а на выходе из него. По сути, лопасти роторов просто захватывают воздух и выталкивают его в выходной канал, ведущий к впускному коллектору.

Устройство и работа нагнетателя Roots

Но у такого нагнетателя есть несколько существенных недостатков – создаваемое им давление ограничено, при этом еще присутствует пульсация воздуха. Но если второй недостаток конструкторы смогли преодолеть (путем придания роторам и выходным каналам особой формы), то проблема ограничения создаваемого давления более серьезна – либо приходится увеличивать скорость вращения роторов, что негативно сказывается на ресурсе нагнетателя, либо создавать несколько ступеней нагнетания, из-за чего устройство становится очень сложным по конструкции.

Lysholm

Наддув двигателя типа Lysholm конструктивно схож с Roots, но у него вместо роторов используются спиралевидные шнеки (как в мясорубке). В такой конструкции создание давления происходит уже в самом нагнетателе, а не на выходе. Суть проста – воздух захватывается шнеками, сжимается в процессе транспортировки шнеками от входного канала на выходной и затем выталкивается. За счет спиралевидной формы процесс подачи воздуха идет непрерывно, поэтому никакой пульсации нет. Такой нагнетатель обеспечивает создание большего давления, чем конструкция Roots, работает бесшумно и на всех режимах мотора.

Нагнетатель типа Lysholm, другое название — винтовой.

Основным недостатком этого наддува является высокая стоимость изготовления.

Центробежный тип

Центробежные нагнетатели – самый сейчас распространенный тип устройства. Он конструктивно проще, чем первые два типа, поскольку рабочий элемент у него один – компрессионное колесо (обычная крыльчатка). Установленная в корпусе эта крыльчатка захватывает воздух входного канала и выталкивает его в выходной.

Центробежный нагнетатель с газотурбинным приводом

Особенность работы этого нагнетателя сводится к тому, что для создания требуемого давления необходимо, чтобы турбинное колесо вращалось с очень большой скоростью. А это в свою очередь сказывается на ресурсе.

Типы привода, их достоинства и недостатки

Вторая проблема – привод нагнетателя, а он может быть:

  1. Механическим
  2. Газотурбинным
  3. Электрическим

В механическом приводе в действие нагнетатель приводится от коленчатого вала посредством ременной, реже – цепной, передачи. Такой тип привода хорош тем, что наддув начинает работать сразу после запуска силовой установки.

Но у него есть существенный недостаток – этот тип привода «забирает» часть мощности мотора. В результате получается замкнутый круг – нагнетатель повышает мощность, но сразу же ее и отбирает. Использоваться механический привод может со всеми типами наддувов.

Газотурбинный привод сейчас пока является самым оптимальным. В нем нагнетатель приводится в действие за счет энергии сгоревших газов. Этот тип привода используется только с центробежным наддувом. Нагнетатель с таким типом привода получил название турбонаддува.

Чтобы использовать энергию отработанных газов конструкторы, по сути, просто взяли два центробежных нагнетателя и соединили их крыльчатки одной осью. Далее один нагнетатель подсоединили к выпускному коллектору. Выхлопные газы, на выходе из цилиндров двигаются с высокой скоростью, попадают в нагнетатель и раскручивают крыльчатку (она получила название турбинное колесо). А поскольку она соединена с крыльчаткой (компрессорным колесом) второго нагнетателя, то он начинает выполнять требуемую задачу – нагнетать воздух.

Турбонаддув хорош тем, что не оказывает влияние на мощность двигателя. Но у него есть недостаток, причем существенный – на малых оборотах двигателя он из-за небольшого количества выхлопных газов не способен эффективно нагнетать воздух, он эффективен только на высоких оборотах. К тому же в турбонаддуве присутствует такой эффект как «турбояма».

Суть этого эффекта сводится к тому, что турбонаддув не обеспечивает мгновенную реакцию на действия водителя. При резком изменении режима работы двигателя, к примеру, при разгоне, на первом этапе энергии выхлопных газов недостаточно, чтобы наддув закачал требуемое количество воздуха, нужно время, чтобы в цилиндрах прошли процессы и повысилось количество отработанных газов. В результате при резком нажатии на педаль, машина «тупит» и не разгоняется, но как только наддув наберет обороты, авто начинает активно ускоряться – «выстреливает».

Есть и еще один не очень приятный эффект – «турболаг». У него суть примерно та же, что и у «турбоямы», но природа у него несколько другая. Сводится она к тому, что наддув обладает запоздалой реакцией на действия водителя. Обусловлена она тем, что нагнетателю требуется время захватить, закачать воздух и подать его в цилиндры.

Показательные графики эффектов «турбояма» и «турболаг» в зависимости от мощности

«Турбояма» появляется только в нагнетателях, работающих от энергии выхлопных газов, в устройствах же с механических приводом ее нет, поскольку производительность наддува пропорциональна оборотам двигателя. А вот «турболаг» присутствует во всех типах нагнетателей.

В современных автомобилях начинают внедрять электрические приводы наддува, но они только зарождаются. Пока их используют, как дополнительный механизм, для исключения «турбоямы» в работе турбонаддува. Не исключено что вскоре и появится разработка которая заменит привычные нам нагнетатели.

Электронагнетатель от фирмы Valeo

Для их эффективной работы необходимо более высокое напряжение, поэтому используется вторая сеть со своим аккумулятором на 48 вольт. Концерн Audi вообще планирует перевести все оборудование на повышенное напряжение – 48 вольт, так как увеличивается количество электронных систем и соответственно нагрузка на сеть автомобиля. Возможно в будущем все автопроизводители перейдут на повышенное напряжение бортовой сети.

Иные проблемы

Помимо способа нагнетания и типа привода существует еще немало вопросов, которые успешно решились или решаются конструкторами.

К ним относится:

  • нагрев воздуха при сжатии;
  • «турбояма»;
  • эффективная работа нагнетателя на всех режимах.

Во время нагнетания воздух сильно нагревается, что приводит к снижению его плотности, а это в свою очередь сказывается на детонационном пороге топливовоздушной смеси. Устранить эту проблему удалось путем установки интеркулера – радиатора охлаждения воздуха. Причем осуществлять охлаждение этот узел может разными способами – потоком встречного воздуха или за счет жидкостной системы охлаждения.

Варианты исполнения систем наддува

Но установка интеркулера породила другую проблему – увеличение «турболага». Из-за радиатора общая длина воздуховода от нагнетателя к впускному коллектору существенно увеличилась, а это повлияло на время нагнетания.

Проблема с «турбоямой» автопроизводителями решается по-разному. Одни снижают массу составных элементов, другие используют технологию изменяемой геометрии турбопривода. При первом варианте решения проблемы, снижение массы крыльчаток приводит к тому, что для раскручивания наддува требуется меньше энергии. Это позволяет нагнетателю раньше вступить в работу и обеспечить давление воздуха даже при незначительных оборотах двигателя.

Что касается геометрии, то за счет использования специальных крыльчаток с приводом от актуатора, установленных в корпусе турбинного колеса удается осуществлять перенаправление потока отработанных газов в зависимости от режима работы мотора.

Повышение эффективности работы нагнетателя на всех режимах работы некоторые производители решают путем установки двух, а то и трех нагнетателей. И здесь уже каждая автокомпания поступает по-разному. Одни устанавливают два турбонаддува, но разных размеров. «Малый» нагнетатель отрабатывает на небольших оборотах мотора, снижая эффект «турбоямы», а при увеличении оборотов в работу включается «большой» наддув. Другие же автопроизводители применяют комбинированную схему, в которой за малые обороты «отвечает» нагнетатель с механическим приводом, что вовсе устраняет «турбояму», а на высоких оборотах задействуется уже турбонаддув.

Напоследок отметим, что выше указаны только одни из основных проблем, связанных с принудительной подачей воздуха в цилиндры, в действительности их больше. К ним можно отнести передув и помпаж.

Увеличение мощности нагнетателем, по сути, ограничено только одним фактором — прочнотью составных элементов силовой установки. То есть, мощностные характеристики можно увеличивать только до определенного уровня, превышение которого приведет к разрушению узлов мотора. Это превышение и называется передувом. Чтобы он не произошел, система принудительного нагнетания воздуха оснащается клапанами и каналами, которые предотвращают раскручивание крыльчатки выше установленных оборотов, получается, что производительность наддува имеет граничную отметку. Дополнительно при достижении определенных условий ЭБУ системы питания корректирует количество подаваемого в цилиндры топлива.

Помпаж можно охарактеризовать как «обратное движение воздуха». Возникает эффект при резком переходе с высоких оборотов на низкие. В итоге, нагненататель уже накачал воздух в большом количестве, но из-за снижения оборотов он становиться невостребованным, поэтому он начинает возвращаться к наддуву, что может стать причиной его поломки.

Клапан blow-off

Проблема помпажа решена использованием обходных каналов (байпас), по которым сжатый не расходованный воздух перекачивается на входной канал перед нагнетателем, тем самым он смягчает, но не устраняет, нагрузки при помпаже. Второй системой которая полностью решает проблему помпажа, является установка перепускного клапана или blow-off, который при необходимости сбрасывает воздух в атмосферу.

Установка нагнетателей воздуха на силовые установки пока является самым оптимальным способом повышения мощности.

НАДДУВ — это… Что такое НАДДУВ?

  • Наддув — Наддув  увеличение количества свежего заряда горючей смеси, подаваемой в двигатель внутреннего сгорания, за счёт повышения давления при впуске. Наддув обычно применяют с целью повышения мощности (на 20 45 %) без увеличения массы и… …   Википедия

  • НАДДУВ — 1) увеличение количества свежего заряда горючей смеси в цилиндре поршневого двигателя за счет повышения давления при впуске; один из способов повышения мощности двигателя.2) Искусственное повышение давления газа в замкнутом пространстве (напр., в …   Большой Энциклопедический словарь

  • НАДДУВ — дополнительная против нормальной подача в цилиндр двигателя воздуха (или горючей смеси), сжатого до 1,1 1,3 атм посредством насоса, приводимого в движение от вала двигателя или от постороннего источника энергии. Применяется с целью повышения… …   Морской словарь

  • наддув — – способ подачи горючки в камеру сгорания. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

  • наддув — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN supercharging …   Справочник технического переводчика

  • НАДДУВ — (1) способ повышения мощности поршневых двигателей внутреннего сгорания путём увеличения массы воздуха, поступающего вместе с топливом в цилиндры вследствие повышения давления компрессором при впуске; (2) искусственное увеличение давления газа в… …   Большая политехническая энциклопедия

  • наддув — 3.13 наддув: Обеспечение защиты от проникновения внешней среды в оболочку путем поддержания в ней давления защитного газа выше давления во внешней среде. Источник: ГОСТ Р 51330.3 99: Электрооборудование взрывозащи …   Словарь-справочник терминов нормативно-технической документации

  • наддув — а; м. Спец. Усиление подачи горючей смеси в двигатель внутреннего сгорания за счёт повышения давления воздуха при впуске. Двигатель с наддувом. * * * наддув 1) увеличение количества свежего заряда горючей смеси, подаваемой в цилиндр поршневого… …   Энциклопедический словарь

  • наддув — oro įpūtimas statusas T sritis Energetika apibrėžtis Į vidaus degimo variklį tiekiamo degiojo mišinio kiekio didinimas, didinant šio mišinio slėgį. atitikmenys: angl. air blast vok. Lufteinblasen, n rus. вдувание воздуха, n; наддув, m pranc.… …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • Наддув —         увеличение количества свежего заряда горючей смеси, подаваемой в Двигатель внутреннего сгорания, за счёт повышения давления при впуске. Н. обычно применяется с целью повышения мощности (на 20 45%) без увеличения массы и габаритов… …   Большая советская энциклопедия

  • Наддув — м. Питание цилиндров поршневых двигателей машины воздухом, давление которого выше атмосферного. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

  • Что такое Boost Converter? Основы, работа, эксплуатация и проектирование повышающих преобразователей постоянного тока

    Мы все сталкиваемся с неприятными ситуациями, когда нам нужно немного более высокое напряжение, чем могут обеспечить наши источники питания. Нам нужно 12 вольт, но у нас всего 9 вольт. Или, может быть, у нас есть напряжение 3,3 В, когда нашему чипу нужно 5 В. Это тоже, в большинстве случаев, нынешняя ничья вполне приличная.

    В конце концов, мы задаем себе вопрос, возможно ли преобразовать одно напряжение постоянного тока в другое ?

    К счастью для нас, ответ — да.Можно преобразовать одно напряжение постоянного тока в другое, однако методы немного хитроумны.

    И нет, это не связано с преобразованием постоянного тока в переменный и обратно. Поскольку это включает в себя слишком много шагов. Все, что имеет слишком много шагов, неэффективно; это тоже хороший урок жизни.

    Войдите в мир переключающих режимов DC-DC преобразователей !

    Их называют режимом переключения, потому что обычно есть полупроводниковый переключатель, который включается и выключается очень быстро.

    Что такое повышающий преобразователь?

    What is Boost Converter?

    Повышающий преобразователь является одним из простейших типов преобразователя режимов переключения . Как следует из названия, он принимает входное напряжение и увеличивает или увеличивает его. Все, из чего он состоит, это индуктор, полупроводниковый переключатель (в наши дни это MOSFET, так как в наши дни вы можете получить действительно хорошие), диод и конденсатор. Также необходим источник периодической прямоугольной волны.Это может быть что-то такое же простое, как таймер 555 или даже выделенная микросхема SMPS, например, знаменитая микросхема MC34063A.

    Simple Boost Converter Circuit

    Как видите, для требуется лишь несколько деталей, чтобы сделать повышающий преобразователь . Он менее громоздок, чем трансформатор переменного тока или индуктор.

    Они настолько просты, потому что они были первоначально разработаны в 1960-х годах для питания электронных систем на самолетах. Требовалось, чтобы эти преобразователи были максимально компактными и эффективными.

    Самым большим преимуществом повышающих преобразователей является их высокая эффективность — некоторые из них могут даже подняться до 99%! Другими словами, 99% входной энергии преобразуется в полезную выходную энергию, только 1% теряется.

    Как работает повышающий преобразователь?

    Пришло время сделать действительно глубокий вдох, мы собираемся погрузиться в глубины силовой электроники. Я скажу с самого начала, что это очень полезная область.

    Чтобы понять, как работает повышающий преобразователь, необходимо знать, как работают катушки индуктивности, полевые транзисторы, диоды и конденсаторы.

    С этим знанием мы можем шаг за шагом пройти через разрядов повышающего преобразователя .

    ШАГ — 1

    Здесь ничего не происходит. Выходной конденсатор заряжается до входного напряжения минус одно падение диода.

    Boost Converter Working step 1

    ШАГ — 2

    Теперь пришло время включить выключатель. Наш источник сигнала идет высоко, включив MOSFET. Весь ток отводится на полевой МОП-транзистор через индуктор.Обратите внимание, что выходной конденсатор остается заряженным, поскольку он не может разрядиться через теперь смещенный диод.

    Конечно, источник питания не замыкается сразу, так как индуктор вызывает относительно медленное нарастание тока. Кроме того, вокруг индуктора создается магнитное поле. Обратите внимание на полярность напряжения, приложенного к индуктору.

    ШАГ — 3

    МОП-транзистор выключен, и ток на катушке индуктивности резко остановлен.

    Сама природа индуктора заключается в поддержании плавного протекания тока; он не любит внезапных изменений тока. Так что не нравится внезапное отключение тока. Он реагирует на это, генерируя большое напряжение с противоположной полярностью напряжения, первоначально подаваемого на него, используя энергию, запасенную в магнитном поле, для поддержания этого тока.

    Если мы забудем об остальных элементах схемы и заметим только символы полярности, мы заметим, что индуктор теперь действует как источник напряжения, последовательно соединенный с напряжением питания.Это означает, что анод диода теперь находится под более высоким напряжением, чем катод (помните, что колпачок уже был заряжен для подачи напряжения в начале) и имеет прямое смещение.

    Выходной конденсатор теперь заряжается до более высокого напряжения, чем раньше, что означает, что мы успешно повысили низкое напряжение постоянного тока до более высокого!

    Рекомендую вам еще раз очень медленно пройти шаги и понять их интуитивно.

    Эти шаги происходят много тысяч раз (в зависимости от частоты генератора) для поддержания выходного напряжения под нагрузкой.

    Boost Converter — тонкие точки

    К настоящему времени у многих из вас уже есть вопросы об этом упрощенном объяснении. Многое осталось, но стоило того, чтобы работал с повышающим преобразователем абсолютно ясно. Итак, теперь, когда у нас есть это понимание, мы можем перейти к более мелким деталям.

    1. Генератор . Вы не можете держать выходной выключатель MOSFET вечным, никакой индуктор не идеален — у них есть токи насыщения.Если мы оставляем переключатель MOSFET включенным не более нескольких сотен микросекунд максимум, питание будет короткозамкнутым, и изоляция индуктора сгорает, а MOSFET выходит из строя, и происходят другие неприятные вещи. Мы используем наши знания об индукторах, чтобы рассчитать время, необходимое для достижения ощутимого тока (например, один Ампер), а затем соответственно настроить время включения генератора. Это приводит к тому, что осциллограмма тока индуктора выглядит как край пилы, отсюда и название пилообразная.

    2.Сам МОП-транзистор. Если вы внимательно посмотрите, на шаге 3 MOSFET видит напряжение, которое является напряжением питания плюс напряжение индуктора, что означает, что MOSFET должен быть рассчитан на высокое напряжение, что опять же подразумевает довольно высокое сопротивление. Конструкция повышающего преобразователя всегда является компромиссом между напряжением пробоя MOSFET и сопротивлением. Как я понял из холодного, тяжелого опыта, переключение MOSFET повышающего преобразователя всегда является слабым местом. Максимальное выходное напряжение повышающего преобразователя ограничено не конструкцией, а напряжением пробоя MOSFET.

    3. Индуктор. Очевидно, что любой старый индуктор не сработает. Индукторы, используемые в повышающих преобразователях, должны выдерживать высокие токи и иметь высокопроницаемый сердечник, так что индуктивность для данного размера будет высокой.

    Повышение частоты преобразователя

    Существует еще один способ думать о работе повышающего преобразователя.

    Мы знаем, что энергия, запасенная в индукторе, дается:

    ½ x L x I 2

    Где L — индуктивность катушки, а I — максимальный пиковый ток.

    Таким образом, мы накапливаем некоторую энергию в индуктивности от входа и передаем ту же энергию на выход, хотя и при более высоком напряжении (очевидно, что мощность сохраняется). Это происходит много тысяч раз в секунду (в зависимости от частоты генератора), и поэтому энергия складывается в каждом цикле, так что вы получаете хороший измеримый и полезный выход энергии, например, 10 Джоулей в секунду, то есть 10 Вт.

    Как показывает уравнение, запас энергии в индуктивности пропорционален индуктивности, а также квадрату пикового тока.

    Чтобы увеличить выходную мощность, мы могли бы подумать об увеличении размера индуктора. Конечно, это поможет, но не так сильно, как мы думаем! Если мы увеличим индуктивность, максимальный пиковый ток, который может быть достигнут за данное время, уменьшится, или увеличится время, необходимое для достижения этого тока (запомните основное уравнение V / L = dI / dt), поэтому общая выходная энергия не увеличится на значительную сумму!

    Однако, поскольку энергия пропорциональна квадрату максимального тока, увеличение тока приведет к большему увеличению выходной энергии!

    Итак, мы понимаем, что при выборе индуктора представляет собой точный баланс между индуктивностью и пиковым током.

    С этим знанием мы можем понять формальный метод проектирования повышающего преобразователя.

    Boost Converter Design

    ШАГ — 1

    Для начала нам необходимо полное понимание того, что требует наш груз. Настоятельно рекомендуется (исходя из опыта), что если вы пытаетесь построить повышающий преобразователь в начале, очень важно знать выходное напряжение и ток независимо, результатом которого является наша выходная мощность.

    ШАГ — 2

    Когда у нас есть выходная мощность, мы можем разделить ее на входное напряжение (что также должно быть определено), чтобы получить средний требуемый входной ток.

    Мы увеличиваем входной ток на 40%, чтобы учесть пульсацию. Это новое значение является пиковым входным током.

    Также минимальный входной ток в 0,8 раза больше среднего входного тока, поэтому умножьте средний входной ток на 0,8.

    Теперь, когда у нас есть пиковый и минимальный ток, мы можем рассчитать общее изменение тока путем вычитания пикового и минимального тока.

    ШАГ — 3

    Теперь вычислим рабочий цикл преобразователя, то есть соотношение времени включения и выключения генератора.

    Рабочий цикл определяется по формуле из учебника:

    D.C. = (Vout — Vin) / (Vout)

    Это должно дать нам разумное десятичное значение, выше 0, но ниже 0,999.

    ШАГ — 4

    Теперь пришло время определиться с частотой генератора. Это было включено в качестве отдельного шага, потому что источником сигнала может быть любой из таймера 555 (где частота и рабочий цикл полностью под вашим контролем) или ШИМ-контроллер с фиксированной частотой.

    Как только частота определена, мы можем узнать общий период времени, взяв инверсию.

    Теперь период времени умножается на значение коэффициента заполнения, чтобы получить время включения.

    ШАГ — 5

    Поскольку мы определили время включения, входное напряжение и изменение тока, мы можем включить эти значения в формулу индуктивности, которая была немного перестроена:

    L = (V * dt) / dI

    Где V — входное напряжение, dt — время включения, а dI — изменение тока.

    Не беспокойтесь, если значение индуктора не является общедоступным, используйте ближайшее доступное стандартное значение. С небольшой настройкой система должна работать нормально.

    Подбор запчастей

    1. Коммутационный транзистор

    Я не упомянул тип, поскольку он полностью основан на приложении. Конечно, MOSFET используется во всех приложениях в наши дни, так как они очень эффективны, но могут быть ситуации, когда нормального биполярного транзистора может быть достаточно из-за простоты.

    Я повторю то, что сказал ранее — выберу транзистор с напряжением пробоя, которое выше максимального выходного напряжения преобразователя .

    Также может быть хорошим выбором взглянуть на таблицу данных MOSFET и определить входную емкость / емкость затвора. Чем ниже это значение, тем проще требования к вождению. Все, что ниже 3500pF, приемлемо и умеренно легко в управлении.

    Мой личный выбор был бы IRF3205, который имеет сопротивление включения 8 мОм и напряжение пробоя 55 В, с управляемой входной емкостью 3247 пФ, помимо того, что он является легко доступной деталью.

    Также не упоминалось в схеме был выделенный драйвер затвора MOSFET. Опять же, я * настоятельно * рекомендую использовать один. Это сэкономит вам много потерь и времени. Моя рекомендация — TC4427. Он имеет два драйвера в одном корпусе DIP8, которые можно легко подключить параллельно для увеличения тока привода.

    2. Выходной диод

    Хотя это может показаться тривиальным, при токах, с которыми мы имеем дело (или иногда с напряжением), выбор диода играет большую роль в эффективности.

    К сожалению, обычный 1N4007 не сработает, так как он слишком медленный. Ни один не будет нахальный 1N5408. Я пробовал оба варианта, над которыми работал, оба выполнялись с треском, потому что они были такими медленными. Не стоит даже пытаться.

    Я использую UF4007 с тем же номинальным напряжением, что и 1N4007 (реверс 1000В).

    Если вы строите низковольтный преобразователь (скажем, от 3,3 В до 5 В), то предпочтительным диодом будет Шоттки, например, 1N5822.

    Заключение

    Чтение этой статьи, я считаю, равносильно чтению лекции по системам питания, которая, надеюсь, сделает вас более осведомленным.Как всегда, лучший способ научиться — это что-то построить. Теперь у вас есть знания, необходимые для создания и использования буст-конвертера!

    C ++ — Повышение ….. о чем весь этот шум?

    Переполнение стека
    1. Товары
    2. Клиенты
    3. Случаи использования
    1. Переполнение стека Публичные вопросы и ответы
    2. Команды Частные вопросы и ответы для вашей команды
    3. предприятие Частные вопросы и ответы для вашего предприятия
    4. работы Программирование и связанные с ним технические возможности карьерного роста
    5. Талант Нанимать технический талант
    6. реклама Связаться с разработчиками по всему миру
    ,
    FaQ, что такое Boost? Где ты это взял? Почему BestBoost.Club serivce

    Как быстро повысить своего героя / достичь / поднять рейтинг в WoW?

    Все очень просто. Вам необходимо ознакомиться с услугами, которые мы предлагаем, выбрать категорию и тип повышения и наслаждаться прокачкой. Мы собрали на этом сайте лучших игроков и самых могущественных кланов WoW для оперативной поддержки в достижении игровых топов. Мгновенное обновление аккаунта в выбранных областях и полный буст, редкие, ценные монтирования, артефакты и сложные достижения, которым вы можете доверять, — это только команда профессионалов.Вы не должны сомневаться в быстром и честном исполнении. Мы проходим самые сложные рейды, убиваем любого босса, не используем нечестных уловок. Кроме того, клиент получит приятный бонус, предметы, звания и достижения в процессе прокачки, мы предоставляем его бесплатно.


    Почему на форуме / доске объявлений / предложении друга моего друга WoW Boost дешевле?

    Предлагать — не выполнять! Серьезные достижения требуют настойчивости и глубокого знания техник.Командная работа во много раз эффективнее, чем одиночная игра. Вы готовы ждать прокачки несколько дней или недель? Хотите сомневаться в результате, беспокоиться о деньгах? Мы не просто играем, а работаем над калиброванными схемами, чтобы гарантировать правильное выполнение в установленные сроки.

    Не забывайте о безопасности платежей. Наш сервис является законным, официальные кошельки, общие платежные системы обеспечивают максимальную защиту интересов покупателя в случае возникновения спора. Мы открыто предоставляем свои данные для всех, потому что работаем честно.


    Почему вы должны нам доверять?

    Вы уверены, что можете доверять незнакомцам в сомнительных ситуациях? Мы даем официальные гарантии на наш сервис. Расчет осуществляется под защитой ведущих платежных систем. Кроме того, мы создали большую платформу для предоставления услуг и сосредоточились на честном, взаимовыгодном сотрудничестве. Наша команда дорожит своей репутацией и сделает все, чтобы каждый клиент остался доволен.


    Как происходит повышение WoW?

    Конкретные действия зависят от выбранного типа услуги.Будет ли это убийство рейдового босса, рейтинговый бой или PvP-бой — клиент указывает тип помощи и, при желании, может участвовать сам. Мы также можем полностью взять на себя задачу, в этом случае — мы предоставляем учетную запись. Передача аккаунта также понадобится для прокачки. Кроме того, наша платформа обеспечивает полную безопасность и конфиденциальность. Покупка неличного монтирования, лута и внутриигровой валюты происходит быстро и без перевода аккаунтов.

    Boost.org · GitHub

    перейти к содержанию boostorg Зарегистрироваться
    • Почему GitHub? Особенности →
      • Обзор кода
      • Управление проектами
      • Интеграции
      • Действия
      • Пакеты
      • Безопасность
      • Управление командой
      • Хостинг
      • Отзывы клиентов →
      • Безопасность →
    • команда
    • предприятие
    • Проводить исследования
      • Исследуйте GitHub →
      учиться и внести свой вклад
      • Темы
      • Коллекции
      • Тенденции
      • Learning Lab
      • Руководства с открытым исходным кодом
      Общайтесь с другими
      • События
      • Общественный форум
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *