Компрессор двс – Двигатель с компрессором: устройство, преимущества и недостатки

Содержание

Двигатель с компрессором: устройство, преимущества и недостатки

После появления первых ДВС главной задачей конструкторов и инженеров с самого начала стало повышение производительности силовой установки. Другими словами, основной целью является увеличение мощности двигателя. Как известно, самым простым способом становится решение физически увеличить рабочий объем двигателя и количество цилиндров. Двигатель «засасывает» из атмосферы больше воздуха, в результате можно сжигать больше горючего.

При этом такие силовые агрегаты с увеличенным рабочим объемом большие по размерам и весу, их дорого производить, не всегда удается разместить такой мотор в подкапотном пространстве компактного легкового спортивного авто и т.д. Еще одним способом увеличения мощности двигателя является постройка такого агрегата, который будет «выдавать» необходимую мощность и крутящий момент без увеличения объема камеры сгорания.

Решить задачу позволяет принудительное нагнетание воздуха в цилиндры под давлением. Для нагнетания воздуха на многих ДВС используется турбонаддув, еще одним решением является компрессор (нагнетатель механический). В этой статье мы рассмотрим, как устроен и работает автомобильный компрессор на двигатель, а также какие плюсы и минусы имеет компрессорный двигатель.

Читайте в этой статье

Компрессор на атмосферный двигатель

Начнем с того, что установка компрессора (нагнетателя) во впускной системе двигателя позволяет добиться подачи нужного количества воздуха для сжигания большего количества топлива. Если просто, компрессор-устройство, которое способно создать на выходе давление, которое будет больше атмосферного.

С этой задачей справляются как обычные механические нагнетатели, так и турбокомпрессор. При этом главным отличием турбонагнетателя от компрессора является то, что турбокомпрессор раскручивается за счет выхлопных газов, в то время как механический компрессор приводится от коленвала двигателя.

Как за счет компрессора происходит увеличение мощности двигателя

Атмосферный двигатель внутреннего сгорания осуществляет забор воздуха снаружи в тот момент, когда поршень в цилиндре движется вниз и создается разрежение, в результате чего воздух засасывается в камеру сгорания. Количество поступающего воздуха физически ограничено рабочим объемом, который имеет цилиндр и камера сгорания. После этого воздух смешивается с топливом в определенных пропорциях, после чего заряд (топливно-воздушная смесь) сгорает в цилиндрах.

Казалось бы, чтобы увеличить мощность мотора, нужно подать больше топлива, однако на самом деле это не так. Если просто, избыток топлива приведет к тому, что без соответствующего количества воздуха горючее не будет эффективно сгорать. Получается, чтобы сжечь больше топлива, нужно одновременно подать большее количество воздуха.

Если учесть, что объем двигателя не меняется, тогда воздух нужно подавать принудительно под давлением. Это и есть главная задача компрессора. Компрессоры создают давление во впуске, нагнетая воздух в цилиндры. В этом случае остается только впрыснуть больше топлива, после чего такая смесь эффективно горит и отдает энергию поршню. На практике, нагнетатель способен поднять мощность мотора на 35-45%, отмечается около 30% процентов прироста крутящего момента по сравнению с точно таким же атмосферным аналогом.

Механический нагнетатель: устройство компрессора на двигатель автомобиля и принцип работы

Как уже было сказано выше, механические компрессоры приводятся в действие от коленчатого вала. Чаще всего для этого используется приводной ремень. Что касается компрессора, в его основе лежит ротор, который создает давление воздуха.

При этом компрессор должен вращаться быстрее коленвала ДВС. Для этого ведущая шестерня  изготавливается большей по размеру, чем шестерни компрессора. Компрессор вращается с частотой около 50 тыс. об/мин., поднимая давление PSI с 6 до 9 до дюймов на квадратный дюйм. С учетом того, что атмосферное давление составляет около 14.7 фунтов на квадратный дюйм, компрессор увеличивает подачу воздуха фактически в половину.

Добавим, что воздух, нагнетаемый под давлением, сильно сжимается и нагревается, теряя свою плотность. Простыми словами, чем меньше плотность, тем меньшее количество воздуха получится подать в цилиндры. Чтобы увеличить количество воздуха, его дополнительно следует охладить перед подачей во впуск.

За охлаждение отвечает интеркулер, который бывает воздушным и жидкостным. Интеркулеры представляют собой радиатор, куда попадает горячий сжатый воздух после выхода из компрессора для охлаждения.

Виды механических компрессоров

Механические компрессоры, которые устанавливаются на двигатель внутреннего сгорания:

  • роторный компрессор,
  • двухвинтовой нагнетатель;
  • центробежный компрессор;

Основные отличия заключаются в том,  как реализована подача воздуха. Компрессор роторный и двухвинтовой имеют в своем устройстве разные типы кулачковых валов. Центробежный нагнетатель оборудован крыльчаткой, которая затягивает воздух вовнутрь. Также отметим, что в зависимости от размеров и типа нагнетателя напрямую зависит его эффективность.

  • Например, роторные компрессоры обычно имеют большие размеры и ставятся сверху на двигатель. В основе лежит большой ротор. При этом данное решение отличается меньшей эффективностью, чем аналоги, так как вес автомобиля сильно увеличивается и создается прерывистый поток воздуха со «всплесками», а не постоянный и стабильный.
  • Двухвинтовой компрессор работает по принципу проталкивания воздуха через пару меньших по размеру роторов, похожих на червячную передачу. В результате работы воздух попадает в полости между лопастями роторов. Затем воздух сжимается внутри корпуса роторов.

Эффективность такого решения выше, однако стоимость нагнетателя боле высокая, конструкция сложнее и менее ремонтопригодна. Также двухвинтовой компрессор шумный, необходимо глушить характерный свист выходящего под давлением воздуха при помощи дополнительных решений.

  • Если рассматривать центробежный компрессор, это решение отличается от аналогов наличием крыльчатки, которая похожа на ротор. Крыльчатка сильно раскручивается, подавая воздух в корпус компрессора. При этом за крыльчаткой воздух движется с высокой скоростью, но еще находится под низким давлением.

Чтобы поднять давление, воздух проходит через диффузор. Указанный диффузор представляет собой лопатки, расположенные вокруг крыльчатки. В результате поток воздуха  после прохождения через диффузор начинает двигаться с малой скоростью, но уже под высоким давлением. Такой компрессор самый эффективный, легкий и небольшой по размерам. Их можно установить перед мотором, а не на двигателе сверху.

Преимущества и недостатки компрессора на двигатель

Итак, начнем с очевидных плюсов. Прежде всего, это увеличение мощности двигателя. Также следует выделить относительную простоту и дешевизну монтажа с минимальными переделками впускной системы по сравнению с установкой турбонаддува. Еще следует выделить отсутствие турбоямы благодаря прямой связи механического нагнетателя с коленвалом.

При этом компрессоры в зависимости от типа могут демонстрировать разную эффективность. Одни дают ощутимый прирост мощности на «низах» (коленвал вращается с небольшой частотой), тогда как другие  увеличивают мощность на средних и высоких оборотах. Как правило, роторный компрессор и двухвинтовой рассчитан на низкие обороты,  центробежные компрессоры хорошо работают на высоких.

  • Теперь перейдем к недостаткам компрессоров. Главным минусом принято считать отбор мощности у двигателя, так как компрессор приводится от коленвала. На практике компрессор забирает до 20% мощности мотора. Получается, общая прибавка до 50% в реальности является  фактическим увеличением мощности на 25-30%.

Рекомендуем также прочитать статью о том, как устроен турбонаддув. Из этой статьи вы узнаете об устройстве турбины и принципах работы данного решения, а также какую мощность обеспечивает турбина на двигателе.

Также установка компрессора означает, что двигатель начинает испытывать более высокие нагрузки. Такой мотор должен быть изготовлен с использованием рассчитанных на такие увеличенные нагрузки частей, что позволяет реализовать необходимый запас прочности.

В результате изготовление такого ДВС получается более затратным, автомобиль с компрессором стоит изначально дороже атмосферных версий. Еще нужно учитывать, что компрессор также нуждается в обслуживании, что увеличивает общие расходы на содержание ТС.

Подведем итоги

Как видно, механические нагнетатели являются одним из доступных и экономически обоснованных способов увеличения мощности атмосферного мотора. Как правило, данное решение остается востребованным в различных видах автоспорта, при создании уникальных проектов, во время постройки эксклюзивных спортивных авто и т.д.

Производители компрессоров часто предлагают готовые «киты» под ключ, что позволяет быстро установить компрессор на конкретную модель автомобиля с минимальными доработками. Для любителей тюнинга и форсирования двигателя такое решение во многих случаях более оправдано по сравнению с установкой турбонаддува на атмосферный мотор.

Напоследок отметим, что также можно встретить моторы, на которых одновременно установлена турбина и компрессор. Хотя практическая реализация достаточно сложна в техническом плане, такой подход позволяет добиться максимальной отдачи от устройств с учетом разных режимов работы ДВС и избавить двигатель от присущих данным технологиям недостатков, взятых по отдельности.

Например, успешно реализованная связка компрессор + турбина вполне способна заставить двигатель работать таким образом, когда компрессор обеспечивает нужную тягу «на низах», убирая турболаг (турбояму), затем после раскручивания двигателя подключается турбина. Практической реализацией такой схемы является двигатель Volkswagen 1.4 TSI.

Читайте также

krutimotor.ru

Устройство автомобиля. Как работает компрессор?

Как работает компрессор

 

С момента изобретения двигателя внутреннего сгорания автомобильные инженеры, любители скорости и проектировщики гоночных автомобилей все время находились в поисках путей увеличения мощности моторов. Один из способов увеличения мощности – построение двигателя большого внутреннего объема. Но большие двигатели, которые больше весят и обходятся существенно дороже в производстве и обслуживании, не всегда однозначно лучше.

Другой путь добавления мощности – это создание двигателя нормального размера, но более эффективного. Вы можете достичь этого, нагнетая больше воздуха в камеру сгорания. Большее количество воздуха дает возможность подать в цилиндр дополнительное количество топлива, что обозначает, что будет произведен более сильный взрыв и будет достигнута большая мощность. Добавление компрессора к впускной системе является отличным способом достижения усиленной подачи воздуха. В этой статье мы объясним, что такое компрессоры (их также еще называют нагнетателями), как они работают и чем отличаются от турбокомпрессоров (турбонаддува).

Компрессором является любое устройство, которое создает давление на выходе выше атмосферного. И компрессоры, и турбокомпрессоры способны это делать. На самом деле, турбокомпрессор является сокращенным названием от «турбонагнетателя» — его официального названия.

Различие между данными агрегатами заключается в способе получения энергии. Турбокомпрессоры приводятся в действие за счет плотного потока выхлопных газов, вращающих турбину. Компрессоры работают за счет энергии, передаваемой механическим путем через ременный или цепной привод от коленчатого вала двигателя.

В следующем разделе мы подробно рассмотрим, как компрессор выполняет свою работу.

 
Основы компрессора

Обычный четырехтактный двигатель внутреннего сгорания использует один из тактов для впуска воздуха. Этот такт можно разделить на три шага:


  • Поршень перемещается вниз

  • Это создает разрежение

  • Воздух под атмосферным давлением засасывается в камеру сгорания


Как только воздух поступит в двигатель, он должен быть объединен с топливом для формирования заряда – пакета потенциальной энергии, которую можно превратить в полезную кинетическую энергию в результате химической реакции, известной как горение. Свеча зажигания инициирует эту реакцию путем воспламенения заряда. Как только топливо подвергается реакции окисления, сразу же высвобождается большое количество энергии. Сила этого взрыва, сконцентрированная над днищем поршня, толкает поршень вниз и создает возвратно-поступательное движение, которое в конечном итоге передается на колеса.

Подача большего количества топливно-воздушной смеси в заряд будет порождать более сильные взрывы. Но вы не можете просто так подать больше топлива в двигатель, так как требуется строго определенное количество кислорода для сжигания определенного количества топлива. Химически-верная смесь – 14 частей воздуха к одной части топлива – имеет очень большое значение для эффективной работы двигателя. Итог – чтобы сжечь больше топлива, придется подать больше воздуха.

Это работа компрессора. Компрессоры увеличивают давление на входе в двигатель путем сжатия воздуха выше атмосферного давления без образования вакуума. Это заставляет большему количеству воздуха попадать в двигатель, обеспечивая повышение давления. С дополнительным количеством воздуха больше топлива может быть добавлено, что вызывает увеличение мощности двигателя. Компрессор добавляет в среднем 46 процентов мощности и 31 процент крутящего момента. В условиях высокогорья, где мощность двигателя снижается за счет того, что воздух имеет меньшую плотность и давление, компрессор обеспечивает более высокое давление воздуха в двигателе, что позволяет ему работать в оптимальном режиме.

Рис.1 ProCharger D1SC – центробежный компрессор

 

В отличие от турбокомпрессоров, которые используют отработанные газы для вращения турбины, механические компрессоры приводятся в действие непосредственно от коленчатого вала двигателя. Большинство из них приводятся в движение с помощью приводного ремня, который обернут вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня, в свою очередь, вращает шестерню компрессора. Ротор компрессора может быть по-разному спроектирован, но, не смотря на это, в любом случае его работа сводится к захвату воздуха, сжатию воздуха в меньшем пространстве и сбросу его во впускной коллектор. Для того чтобы создавать давление воздуха, компрессор должен вращаться быстрее, чем сам двигатель. Создание ведущей шестерни большей, чем шестерни компрессора, заставляет компрессор вращаться быстрее. Компрессоры способны вращаться со скоростью, превышающей 50,000-60,000 оборотов в минуту. Компрессор, вращающийся со скоростью 50,000 оборотов в минуту, способен повысить давление с шести до девяти дюймов на квадратный дюйм (PSI). Это дополнительная прибавка с шести до девяти фунтов на квадратный дюйм. Атмосферное давление на уровне моря составляет 14,7 фунтов на квадратный дюйм, так что типичный эффект от применения компрессора – это увеличение подачи воздуха в двигатель примерно на 50 процентов.

Постольку поскольку воздух сжимается, он становится более горячим, а это значит, что он теряет свою плотность и не может столь сильно расширяться во время взрыва. Это обозначает, что он не может высвободить столько же энергии, сколько высвобождается при воспламенении свечой зажигания более холодной топливно-воздушной смеси. Для того чтобы компрессор работал на пике своей эффективности, сжатый воздух на выходе из компрессора должен быть охлажден перед подачей во впускной коллектор. Интеркулер несет ответственность за данный процесс охлаждения. Интеркуллеры бывают двух констуркций: «воздух-воздух» и «воздух-жидкость». Оба работают по принципу радиатора, с более холодным воздухом или жидкостью, циркулирующей по системе трубок или каналов. Горячий воздух, выходя из компрессора, попадает в трубки интеркулера и охлаждается там. Снижение температуры воздуха увеличивает его плотность, что делает плотнее заряд, поступающий в камеру сгорания.

Далее мы рассмотрим различные типы компрессоров.

 

 
Роторный компрессор Roots

Существует три вида компрессоров: роторный, двухвинтовой и центробежный. Главное отличие между ними заключается в способе подачи воздуха во впускной коллектор двигателя. Роторный и двухвинтовой компрессоры используют различные типы кулачковых валов, а центробежный компрессор – крыльчатку, которая увлекает воздух внутрь. Хотя все эти конструкции обеспечивают прибавку мощности, они значительно отличаются по своей эффективности. Каждый из этих типов компрессоров может быть доступен в различных размерах, в зависимости от того, какого результата хотите вы достичь – просто повысить мощность автомобиля или подготовить его к участию в гонках.

Конструкция роторного компрессора является самой древней. Братья Филандер и Фрэнсис Рутс в 1860 году запатентовали конструкцию своего компрессора в качестве машины, способной обеспечивать вентиляцию в шахтах. В 1900 году Готтлиб Вильгельм Даймлер включил роторный компрессор в конструкцию автомобильного двигателя.

 

Рис.2  Роторный компрессор

 

Так как кулачковые валы вращаются, воздух, находящийся в пространстве между кулачками, оказывается между стороной наполнения и напорной стороной. Большое количество воздуха перемещается во впускной коллектор и создает условия для образования положительного давления. По этой причине рассматриваемая конструкция является не чем иным, как объемным нагнетателем, а не компрессором, при этом термин «нагнетатель» по-прежнему часто используется для описания всех компрессоров.

Роторные компрессоры, как правило, имеют довольно большие размеры и располагаются в верхней части двигателя. Они популярны в автомобилях дрэгстеров и роддеров, поскольку зачастую выступают за габариты капотов. Тем не менее, они являются наименее эффективными компрессорами по двум причинам:


  • Они существенно увеличивают вес транспортного средства.

  • Они создают дискретный прерывистый воздушный поток, а не сглаженный и непрерывный.


 
Двухвинтовой компрессор

Двухвинтовой компрессор работает, проталкивая воздух через два ротора, напоминающих набор червячных передач. Как и в роторном компрессоре, воздух внутри двухвинтового компрессора оказывается в полостях между лопастями роторов. Но двухвинтовой компрессор сжимает воздух внутри корпуса роторов. Это происходит за счет того, что роторы имеют коническую форму, при этом воздушные карманы уменьшаются в размерах по мере продвижения воздуха из стороны наполнения в напорную сторону. Воздушные полости сжимаются, и воздух выдавливается в меньшее пространство.

 

Рис.3 Двухвинтовой компрессор

 

Это делает двухвинтовой компрессор более эффективным, но они стоят дороже, потому что винтовые роторы требуют дополнительной точности в ходе процесса производства. Некоторые типы двухвинтовых компрессоров располагаются над двигателем, подобно роторному компрессору типа Roots. Они также порождают много шума. Сжатый воздух на выходе из компрессора издает сильный свист, который следует приглушить с помощью специальных методов поглощения шума.

 
Центробежный компрессор

Центробежный компрессор – это крыльчатка, напоминающая собой ротор, которая вращается с очень высокой скоростью и нагнетает воздух в небольшой корпус компрессора. Скорость вращения крыльчатки может достигать 50,000-60,000 оборотов в минуту. Воздух, попадающий в центральную часть крыльчатки, под действием центробежной силы увлекается к ее краю. Воздух покидает крыльчатку с высокой скоростью, но под низким давлением. Диффузор – множество стационарно расположенных вокруг крыльчатки лопаток, которое преобразует высокоскоростной поток воздуха с низким давлением в поток воздуха с малой скоростью, но высоким давлением. Скорость молекул воздуха, встретивших на своем пути лопатки диффузора, уменьшается, что влечет за собой увеличение давления воздуха.

 

Рис.4  Центробежный компрессор

 

Центробежные компрессоры являются наиболее эффективными и самым распространенными устройствами из всех систем принудительного повышения давления. Они компактные, легкие и устанавливаются на передней части двигателя, а не сверху. Они также издают характерный свист по мере роста количества оборотов двигателя, способный заставить случайных прохожих на улице поворачивать головы в сторону вашего автомобиля.

Monte Carlo и Mini-Cooper S – два автомобиля, которые доступны в версиях с компрессором. Любой из рассмотренных выше типов компрессоров может быть добавлен к транспортному средству как дополнительная опция. Несколько компаний предлагают комплекты, состоящие из всех необходимых частей для собственноручного дооснащения автомобилей компрессорами. Такие доработки также являются неотъемлемой частью культуры «машин для фана» (смешных машинок) и автомобилей из мира спорта «Fuel Racing». Некоторые производители даже включают компрессоры в оснащение своих серийных моделей автомобилей.

Далее мы узнаем обо всех преимуществах компрессора, установленного в ваш автомобиль.

 
Преимущества компрессора

Самое главное преимущество компрессора – это увеличение мощности двигателя, измеряемой в лошадиных силах. Добавьте компрессор к любому обычному автомобилю или грузовику, и он станет вести себя как автомобиль с двигателем большего внутреннего объема или просто как с более мощным двигателем. Но как узнать, какой из нагнетателей выбрать – механический компрессор или турбокомпрессор? Этот вопрос горячо обсуждался авто инженерами и энтузиастами, но, в целом, механические компрессоры имеют несколько преимуществ над турбокомпрессорами. Механические компрессоры лишены такого недостатка как лага (отставания) двигателя – термина, используемого для описания времени, прошедшего с момента нажатия водителем педали газа до момента ответа двигателя на это внешнее воздействие. Турбокомпрессоры, к сожалению, подвержены явлению отставания, постольку поскольку требуется некоторое время, прежде чем выхлопные газы достигнут скорости, достаточной для полноценного раскручивания крыльчатки турбины. Механические компрессоры не имеют такого лага, так как они приводятся в действие непосредственно от коленчатого вала двигателя. Одни компрессоры наиболее эффективны при работе в диапазоне низких скоростей вращения коленчатого вала, в то время как другие раскрывают весь свой потенциал лишь на высоких оборотах. Например, роторный и двухвинтовой компрессоры обеспечивают большую мощность на низких оборотах. Центробежные компрессоры, которые становятся все более эффективными по мере роста скорости вращения крыльчатки, обеспечивают большую мощность в диапазоне высоких оборотов.

Установка турбокомпрессора требует обширной переделки выпускной системы двигателя, в том время как механические компрессоры могут быть легко привинчены к передней части двигателя или сверху. Это делает их дешевле в установке и проще в эксплуатации и обслуживании.

Наконец, при использовании компрессора не требуется никакой специальной процедуры остановки двигателя. Это обусловлено тем, что они не смазываются моторным маслом и могут быть остановлены привычным образом. Турбокомпрессоры должны отработать на холостом ходу 30 секунд и более для того, чтобы дать возможность моторному маслу остыть. С учетом сказанного, для компрессоров имеет важное значение предварительный прогрев, так как они работают наиболее эффективно при нормальной рабочей температуре двигателя.

Компрессоры являются характерной составляющей частью двигателей внутреннего сгорания самолетов. Это имеет смысл, если учесть, что самолеты проводят большую часть своего времени на больших высотах, где значительно меньше кислорода доступно для сгорания. Внедрение компрессоров позволило самолетам летать на большей высоте без снижения производительности двигателя.

Компрессоры, установленные на авиационные двигатели, работают на основе тех же самых принципов, которые заложены в конструкцию автомобильных компрессоров. Компрессоры получают энергию непосредственно от вала двигателя и способствуют подаче в камеру сгорания смеси, находящейся под давлением.

Далее рассмотрим некоторые недостатки компрессоров.

 
Недостатки компрессоров

Самый большой недостаток компрессоров является также и их определяющей характеристикой: постольку поскольку компрессор приводится в движение коленчатым валом двигателя, он отнимает несколько лошадиных сил у двигателя. Компрессор может потреблять до 20 процентов общей выходной мощностью двигателя. Но так как компрессор способен прибавить до 46 процентов мощности, большинство автолюбителей склоняется к тому, что игра стоит свеч. Компрессор дает дополнительную нагрузку на двигатель, который должен быть достаточно прочным, чтобы выдерживать дополнительный импульс и более сильные взрывы в камере сгорания. Большинство производителей учитывают это и создают усиленные узлы для двигателей, предназначенных для работы в паре с компрессором. Это в свою очередь удорожает автомобиль. Компрессоры также дороже в обслуживании, а большинство производителей предлагают использовать высокооктановое горючее премиум класса.

Несмотря на свои недостатки, нагнетатели по-прежнему являются наиболее экономически эффективным способом увеличения количества лошадиных сил. Компрессор может дать от 50 до 100 процентов увеличения мощности, что делает его находкой для гоночных автомобилей, автомобилей, перевозящих тяжелые грузы, а также для водителей, желающих получить от вождения своего автомобиля новую порцию острых ощущений.

 

 

Источник: http://auto.howstuffworks.com/supercharger1.htm

www.exist.ru

Что такое компрессор? Роль компрессора в работе двигателя автотомобиля

Компрессором называют любое приспособление, которое предназначено для сжатия и подачи воздуха, а также других газов под давлением. Где используется это устройство?

Автомобильные инженеры, создатели гоночных авто и просто любители скорости все время работают над увеличением мощности двигателей. Одним из способов ее увеличения есть строительство мотора большого внутреннего объема, но большие двигатели много весят и кроме того затраты на их производство и содержание очень высоки.

Фото. ProCharger D1SC – центробежный компрессор

Второй способ увеличения интенсивности двигателя — это создание агрегата стандартного размера, но более эффективного в использовании. Более эффективной отдачи можно добиться при нагнетании большего объема воздуха в камеру сгорания, которое позволяет подать в цилиндр больше топлива, а значит достичь большей мощности за счет высокого давления и соответственно сильного выброса газа. Именно компрессор, который также называют нагнетателем, позволяет усилить подачу воздуха и увеличить мощность двигателя.

Кроме компрессора существует еще турбокомпрессор. Отличия между этими двумя устройствами состоят в способе извлечения энергии. Обычный компрессор приводится в действие энергией, которая передается от коленчатого вала мотора через ременный или цепной привод механическим путем. Что касается турбокомпрессора, то она работает благодаря сжатому потоку выхлопных газов, вращающих турбину.

Как работает компрессор

Для того чтобы понять как работает данный механизм, рассмотрим схему работы обычного четырехтактного двигателя внутреннего сгорания. С движением вниз поршня создается разрежение воздуха, который под действием атмосферного давления поступает в камеру сгорания. После поступления воздуха в двигатель он объединяется с топливной смесью и создает заряд, который можно трансформировать в полезную кинетическую энергию в результате горения. Горение создает свеча зажигания. Как только происходит реакция окисления топлива, выбрасывается большой объем энергии. Сила этого взрыва приводит в движение поршень, а сила этого движения поступает на колеса, заставляя их вращаться.

Более плотный поток топливно-воздушной смеси в заряд будет создавать более сильные взрывы. Но стоит понимать, что для сжигания конкретного количества топлива требуется определенное количество кислорода. Правильным считается соотношение: 14 частей воздуха к 1 части атмосферного воздуха. Эта пропорция имеет очень большое значение для эффективной работы силового агрегата автомобиля и выражает собой правило: «для того чтобы сжечь больше топлива нужно подать больше воздуха».

В этом и состоит работа компрессора. Он сжимает воздух на входе в двигатель, позволяя наполнять двигатель большому его количеству и создавать повышение давления. Вместе с этим в двигатель может поступать большее количество топлива, вызывая увеличение мощности. В среднем компрессор прибавляет 46% мощности и 31% крутящего момента.

Механический нагнетатель запускается с помощью приводного ремня, обернутого вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня привод в движение шестерню нагнетателя. Ротор компрессора впускает воздух, сжимает его и вбрасывает во впускной коллектор. Скорость вращения компрессора составляет 50 — 60 тысяч оборотов в минуту. В результате нагнетатель увеличивает подачу воздуха в двигатель машины примерно на 50%.

Так как горячий воздух сжимается, он теряет свою плотность и не может сильно расшириться во время взрыва. В этом случае он не может отдать столько же энергии, сколько производится при возгорании свечой зажигания более прохладной топливно-воздушной смеси. Можно сделать вывод, что для того чтобы нагнетатель работал с максимальной отдачей сжатый воздух на выходе из устройства должен быть охлажден. Процессом охлаждения воздуха занимается интеркулер. Горячий воздух охлаждается в трубках интеркулера с помощью холодного воздуха или холодной жидкости, в зависимости от вида механизма. Снижение температуры воздуха, увеличивая его плотность, делает сильнее заряд, который поступает в камеру сгорания.

Виды компрессоров

Компрессоры бывают трех видов: двухвинтовые, роторные и центробежные. Основное отличие между ними состоит в способе подачи воздуха во впускной коллектор автомобильного двигателя.

Двухвинтовой компрессор

Двухвинтовый нагнетатель состоит из двух роторов, внутри которых циркулирует воздух. Эта конструкция создает много шума в виде свиста сжатого воздуха, который приглушают специальными методами шумоизоляции двигателя.

Фото. Двухвинтовой компрессор

Роторный компрессор

Роторный нагнетатель расположен, как правило, в верхней части автомобильного двигателя и состоит из вращающихся кулачковых валов, которые перемещают атмосферный воздух во впускной коллектор. Он имеет большой вес и значительно утяжеляет вес транспортного средства. Кроме того, воздушный поток в данном виде компрессора имеет прерывистую структуру, что делает его наименее эффективным по сравнению с другими видами компрессоров.

Фото. Роторный компрессор

Центробежный компрессор

Центробежный нагнетатель — наиболее эффективен для принудительного повышения давления внутри двигателя машины. Он представляет собой крыльчатку, вращающуюся с огромной силой и нагнетающую воздух в небольшой корпус компрессора. Центробежная сила выталкивает воздух к краю крыльчатки, заставляя его с огромной скоростью покидать ее полость. Маленькие лопатки, расположенные вокруг крыльчатки преобразуют высокоскоростной поток воздуха с низким давлением в низкоскоростной поток с высоким давлением.

Фото. Центробежный компрессор

Достоинства компрессора

Основным достоинством компрессора является, естественно, увеличение мощности двигателя транспортного средства. Эксперты считают механические нагнетатели несколько лучше турбированных, потому что двигатели, оборудованные ими, не имеют задержки реакции в ответ на нажатие водителем педали газа, потому что механические компрессоры приводятся в движение непосредственно от коленчатого вала двигателя. Турбокомпрессоры в свою очередь подвержены отставанию, так как выхлопные газы набирают скорость нужную для раскручивания турбин лишь после истечения некоторого времени.

Недостатки двигателей

Так как компрессор запускается с помощью коленчатого вала мотора, это немного уменьшает мощность силового агрегата. Компрессор увеличивает нагрузку двигателя, поэтому последний должен быть крепким настолько, чтобы выдерживать сильные взрывы в камере сгорания. Современные автопроизводители учитывают это условие и создают более сильные узлы для моторов, предназначенных для работы в паре с компрессором, что повышает стоимость автомобиля, а также стоимость его технического обслуживания.

В целом нагнетатели — это наиболее эффективный способ добавить двигателю транспортного средства лошадиных сил или мощности другими словами. Компрессор может добавить от 50 до 100% мощности, поэтому его часто устанавливают на свои авто гонщики и приверженцы высокоскоростной езды.

qvarto.ru

Нагнетатель (автомобилестроение) — Википедия

Нагнетатель — механический агрегат, опционально применяемый на поршневых и роторно-поршневых двигателях внутреннего сгорания (далее — ДВС), работающий за счёт того или иного вида энергии, получаемой в процессе работы самого ДВС, и осуществляющий наддув, то есть принудительное нагнетание воздуха в ДВС с целью его всережимной форсировки или (в отдельных случаях) продувки.

Нагнетатель как элемент агрегатного наддува[править | править код]

Применение нагнетателя и его функции[править | править код]

Работа нагнетателя на двухтактном и четырёхтактном моторах

Нагнетатель может применяться на поршневых и роторно-поршневых ДВС, работающих по любому термодинамическому циклу и с любым числом тактов. Для большинства типов подобных ДВС нагнетатель является опциональным элементом конструкции, не влияющим на принципиальную возможность работы самого ДВС. Основная задача нагнетателя здесь — наддув с целью повышения мощности. Под наддувом подразумевается в первую очередь принудительное нагнетание воздуха в ДВС с давлением выше текущего уровня атмосферного, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, в свою очередь, согласно правилу стехиометрической горючей смеси для конкретного типа двигателя, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) на любой сравнимой с безнаддувным двигателем частоте вращения коленвала/ротора. В рамках этой задачи наддув с помощью нагнетателя есть лишь один из возможных методов форсировки и/или повышения КПД, и наличие или отсутствие нагнетателя определяется лишь целями и бюджетом разработчиков конкретного мотора. Исключением из этого правила является только некоторые типы двухтактных поршневых ДВС, где нагнетатель в первую очередь выполняет задачу по принудительной продувке цилиндров на стыке двух рабочих тактов и присутствует во впускной системе такого ДВС практически всегда.

Отсутствие нагнетателя в составе ГТД[править | править код]

В газотурбинных ДВС нагнетатель формально отсутствует. Компрессор, входящий в состав любого газотурбинного ДВС, является абсолютно неотъемлемым элементом конструкции, обеспечивающим принципиальную возможность работы подобного ДВС, и такой компрессор в русскоязычном инженерно-техническом лексиконе нагнетателем не называется, хотя и выполняет функцию принудительного нагнетания воздуха.

Типы нагнетателей по их энергетическому приводу[править | править код]

Нагнетатель работает за счёт того или иного вида энергии, получаемой с самого ДВС либо напрямую, либо опосредованно. Возможно использование энергии выхлопных газов, механической энергии вращения валов ДВС, электрической энергии. В зависимости от своего энергетического привода конструкция нагнетателя имеет свои технические особенности и своё собственное название. Нагнетатели, работающие от энергии выхлопных газов, называются турбонагнетателями, от механического привода — приводными нагнетателями. Также есть нагнетатели, работающие от электрической энергии, но для их описания устоявшийся русскоязычный термин пока отсутствует и их можно называть как электронагнетателями, так и нагнетателями с электроприводом.

Смысл терминов «нагнетатель» и «компрессор»[править | править код]

Важным элементом нагнетателя является воздушный компрессор, который присутствует в конструкции абсолютно любого нагнетателя, независимо от его энергетического привода. При этом контексте агрегатного наддува оба термина — и нагнетатель и компрессор — используются наравне, в том числе в составе сложносоставных слов, типа турбонагнетатель/турбокомпрессор, что у непосвящённых в тему может вызвать вопросы к смысловым оттенкам терминов. Следует понимать, что с точки зрения семантики термин «нагнетатель» подразумевает функцию всего агрегата в целом, а «компрессор» — наименование энергетической машины и главного исполнительного узла абсолютно любого нагнетателя. В русскоязычном речевом обиходе равноправное использование обоих терминов применительно к наддуву фактически допустимо, а оба слова, как в простом, так и в сложносоставном виде в данном случае могут считаться синонимами.

В теории лопастных машин термины «нагнетатель» и «компрессор» не тождественны. Обычно лопастные машины, повышающие давление потока не более, чем на 10%, относят к вентиляторам; на 20…25% — к нагнетателям; большие давления соответствуют компрессорам. В обиходе нагнетатель в сборе часто называют «турбиной», хотя в приводном нагнетателе турбина вообще отсутствует, а в газотурбинном является лишь приводом нагнетателя/компрессора.

Турбонагнетатель в сборе. Турбина — слева, компрессор — справа
Простой турбонагнетатель фиксированной геометрии в разрезе

Таковым является нагнетатель, конструкция которого включает в себя миниатюрную турбину, а принцип работы основан на использовании энергии потока выхлопных газов самого мотора, на который осуществляется наддув. Выхлопные газы, воздействуя на турбину, располагающуюся в выпускной системе сразу за выпускным коллектором, раскручивают её, а она передаёт энергию вращения на компрессор. Принципиальная конструкция каждого из двух исполнительных узлов турбонагнетателя в общем и целом идентична для любой разработки, доведённой до стадии работающего агрегата, и предполагает одну одноконтурную турбину и один центробежный компрессор. При этом фактическая конструкция турбины, компрессора, вала и корпуса может быть весьма различной: так, помимо канонических простых совмещённых турбонагнетателей фиксированой геометрии на подшипниках скольжения, возможно применение турбин изменяемой геометрии, применение двойных спиральных каналов подвода газов к турбине (так называемый Twin-Scroll), применение двойных каналов выхода воздуха с компрессора, разнесение турбины и компрессора на существенное расстояние друг от друга, применение керамических роторов, установка вала на подшипниках качения. Важными (хотя и не особо декларируемыми) критериями мощности и эффективности турбонагнетателя являются наружные диаметры его турбинного и насосного колёс (что можно примерно оценить визуально по размеру корпуса), частота вращения ротора и величина турболага, присущего всем без исключения турбинам.

Турбонагнетатель всегда работает в режиме высоких температур выхлопных газов, а подшипники вала турбонагнетателя являются самой термонапряжённой деталью мотора, которая контактирует с моторным маслом, что накладывает особые требования как к технологии производства деталей, составляющих турбонагнетатель, так и к качеству масла и его ресурсу. И то и другое долгое время было одним из сдерживающих технологических факторов для какого-либо массового внедрения турбонагнетателей на бензиновых моторах .

Любой бензиновый мотор с турбонагнетателем изначально проектируется под наддув. Применение турбонагнетателя на бензиновом моторе, изначально спроектированном как , без переделок в принципе возможно, но приведёт к быстрому (если не моментальному) разрушению такого мотора при работе. Необходимость постоянного контроля детонации требует наличия некоей управляющей электроники, что обычно подразумевает систему питания мотора на основе электронного (или как минимум электронно-механического) впрыска. Массовые карбюраторные моторы с турбонагнетателями были крайне редки ввиду чрезмерной механической сложности своих систем питания. Широкое применение турбонагнетатели получили на дизельных моторах коммерческого транспорта — на моторах грузовиков, тракторов, локомотивов, судов. Здесь разрешающими факторами стали повышенная детонационная стойкость дизельных моторов и их более высокий КПД, предполагающий меньший уровень теплового излучения, относительная нетребовательность к эффективности работы мотора коммерческого транспорта в переходных режимах, достаточное пространство моторного отсека.

Особенностью работы турбонагнетателя в сравнении с другими агрегатами наддува является то, что в случае его применения эффект от наддува всегда превышает энергетические затраты на наддув. То есть, для любого мотора, оснащённого турбонагнетателем, всегда возможно получить такой режим наддува, который форсирует мотор настолько, что разрушит его. Мощность любого мотора с турбонагнетателем в 100 % случаев ограничивается прочностью самого мотора, его моторесурсом, а не эффективностью турбонагнетателя. Необходимость ограничения эффекта наддува есть причина того, что турбонагнетатель никогда не применяется на моторах сам по себе, а только комплексно в составе системы турбонаддува, в которой он является основным её элементом, но не единственным.

Объёмный приводной нагнетатель Roots
Объёмный приводной нагнететель PowerPlus на основе шиберного пластинчатого насоса

Таковым является нагнетатель, конструкция которого состоит из компрессора и некоего механического привода, посредством которого, в свою очередь, и обеспечивается работа нагнетателя за счёт использования мощности, получаемой с мотора, на который осуществляется наддув. Единого общего вида у приводного нагнетателя нет. Исходя из принципов работы своего компрессора, приводные нагнетатели могут быть объёмные, то есть осуществляющие наддув импульсно порциями некоего фиксированного объёма, и динамические, то есть осуществляющие наддув непрерывным потоком. В группу объёмных нагнетателей попадают такие конструкции как: кулачковые (американские Roots, Eaton), винтовые (американский Lisholm, немецкий Mercedes 2000-х годов), спиральные (немецкий G-Lader, применявшийся на Volkswagen 1990-х), шиберные (британский нагнетатель PowerPlus для довоенных MG и Rolls-Royce Merlin). Динамические приводные нагнетатели известны только центробежного типа, известных собственных названий они обычно не имеют, а их конструкция более-менее универсальна и в общем и целом схожа с конструкцией некоего канонического центробежного компрессора. В обоих случаях, независимо от типа компрессора, конструкция его механического привода не имеет принципиального значения для работы нагнетателя в целом, с теми лишь особенностями, что привод компрессора имеет повышающее передаточное отношение (порядка 0,15-0,08), а иные конструкции привода позволяют включать/отключать нагнетатель (в том числе по аналоговому принципу) по команде водителя или блока управления. Сами приводы возможны промежуточными валами, шестернями, зубчатыми ремнями, цепями, набором трапецеидальных ремней, а также прямые приводы с торцов коленчатого или распределительного валов. В случаях отключаемого привода используются муфты различной конструкции.

Особенностью работы приводного нагнетателя в сравнении с другими агрегатами наддува является то, что на его привод мотор вынужден расходовать существенную часть своей так называемой индикаторной мощности. Это приводит к тому, что все моторы с приводными нагнетателями имеют высокий удельный расход топлива, который может в разы превышать удельный расход топлива безнаддувного мотора сравнимой нетто-мощности. На высоких оборотах мотора затраты мощности на привод нагнетателя растут нелинейно относительно роста отдачи от его применения, что ещё более увеличивает значения удельного расхода топлива, а сама разница между индикаторной мощностью и нетто-мощностью на максимальных режимах может достигать значения в 50% от нетто.

Ввиду относительно низкого уровня термонапряжённости при работе, приводные нагнетатели относительно нетребовательны к технологии металлов и качеству смазки, и работоспособный надёжный агрегат наддува на основе приводного нагнетателя был доступен к производству практически одновременно с появлением массовых автомобилей. Однако ввиду требований к точности производства деталей приводные нагнетатели были в любом случае дороги, и их применение в первой половине XX-го века ограничивалось эксклюзивными, псевдоспортивными или гоночными автомобилями. Второй областью применения приводных нагнетателей были поршневые авиамоторы, в которых наддув был призван компенсировать понижение атмосферного давления на высоте и связанное с этим разрежение воздуха. После 2МВ авиация перешла на турбореактивные двигатели, а конструкторы автомобильных моторов пошли по пути безнаддувной форсировки, в результате чего приводные нагнетатели оказались почти забыты, и их уделом остался лишь американский тюнинг или некоторые американские и редкие европейские модели дорожных машин. В начале 2000-х приводные нагнетатели стали появляться на относительно недешёвых дорожных машинах в составе комбинированных агрегатов наддува в паре с турбонагнетателем. Подобные системы наддува применяются до сегодняшнего момента, хотя в последние годы существует тенденция вытеснения комбинированного наддува эффективным всережимным турбонаддувом на основе турбин типа Twin-Scroll или турбин изменяемой геометрии, а также комбинированным наддувом из турбонагнетателя и электронагнетателя.

Специфика применения на автомобильных моторах[править | править код]

Объёмный нагнетатель Roots в работе

На бензиновых моторах серийных легковых автомобилей в случаях разработки мотора под наддув на основе приводного нагнетателя таковой нагнетатель всегда будет только объёмного типа. Обоснованием этого является то важное качество любых объёмных компрессоров, что их производительность всегда имеет линейную зависимость от частоты вращения ротора. Именно поэтому моторы с объёмными нагнетателями удобны для водителя: они работают в переходных режимах не хуже безнаддувных (у них отсутствует какая-либо задержка в раскрутке мотора при нажатии на педаль газа) и увеличивают крутящий момент во всём диапазоне оборотов, что на моторе с объёмным нагнетателем особенно ощутимо на «низах». Также у объёмных нагнетателей есть то конструктивное преимущество, что их применение не требует каких-либо дополнительных управляющих элементов и системах (клапанах сброса давления, электронных блоков управления, дополнительных датчиков), что в периоды отсутствия электронных систем впрыска позволяло легко устанавливать объёмные приводные нагнетатели на карбюраторные моторы или моторы с механическим впрыском. В современных системах комбинированного наддува в случае применения объёмных приводных нагнетателей, таковые отвечают за наддув на низких оборотах мотора и выводятся из работы управляющими системами по достижению достаточного давления наддува параллельно работающего турбонагнетателя.

Центробежный приводной нагнетатель ATI ProCharger

Центробежные нагнетатели также могут применяться на бензиновых моторах легковых автомобилей. Но ввиду того, что в любых центробежных компрессорах зависимость объёма перекачиваемого вохдуха от числа оборотов не является линейной, приводные нагнетатели на их основе делаются либо кратковременно подключаемыми (наподобие машин американского тюнинга), либо устанавливаются на моторы, для которых эффективность работы в переходных режимах и эффективность работы на «низах» не сильно важна (например, машины для гонок на дистанцию в четверть мили). При этом установка подключаемого приводного центробежного нагнетателя на изначально безнаддувный мотор может и не требовать доработок под наддув, если время работы мотора в режиме наддува ограничено. А установка постоянно работающего приводного центробежного нагнетателя помимо доработок под наддув может потребовать наличия клапанов сброса давления (что не нужно в случае объёмных нагнетателей). В любом случае обычные серийные дорожные автомобили приводными центробежными нагнетателями не оснащаются.

И объёмные и центробежные приводные нагнетатели могут применяться не только на бензиновых моторах легковых автомобилей, но и на бензиновых и дизельных моторах тяжёлой техники. Выбор приводного нагнетателя, а не более подходящего турбонагнетателя, здесь, вероятно, объясняется спецификой эксплуатации. Примером первого случая является американский танковый бензиновый мотор Teledyne Continental AVSI-1790; примером второго — советский/российский танковый дизельный мотор В-46.

В современном массовом автомобильном моторостроении использование приводных нагнетателей сходит на нет. Главной причиной этого являются механические потери на привод, выражающиеся в повышенном расходе топлива и повышенных выбросах углекислого газа. Адекватной заменой объёмных приводных нагнетателей сегодня являются турбонагнетатели с турбинами типа Twin-Scroll и с турбинами изменяемой геометрии, а также применение нагнетателей с электроприводом в системах комбинированного наддува, что во всех случаях так или иначе помогает решать проблему турболага в переходных режимах и проблему низкой эффективности обычного турбонаддува на низких оборотах мотора.

Специфика применения на двухтактных моторах[править | править код]

Центробежная воздуходувка (2) на двухтактном моторе со встречным движением поршней
Объёмная воздуходувка на двухтактном моторе с клапанно-щелевой продувкой

На отдельных типах бензиновых и дизельных двухтактных моторов (с клапанной-щелевой продувкой, со встречным движением поршней), работа которых предполагает относительно невысокие обороты, в качестве неотъемлемого элемента всей конструкции для целей продувки цилиндров на стыке двух рабочих тактов применяются приводные нагнетатели низкого давления. В советском инженерно-техническом лексиконе подобные приводные нагнетатели назывались терминами «воздуходувка» или «продувочный насос». Обеспечиваемое ими давление наддува обычно порядка 0,1-0,2 Бара. На высокооборотных моторах с щелевой продувкой (например, мотоциклетных) подобные воздуходувки/насосы не применяются, и там продувка цилиндров обеспечивается иными способами.

Известны разработки воздуходувок/насосов как на основе объёмных компрессоров, так и на основе центробежных. Пример первого варианта — советские автомобильные дизельные моторы ЯАЗ-204 и ЯАЗ-206. Пример второго варианта — советский/украинский танковый многотопливный мотор 5ТДФ. При этом свойство центробежных компрессоров увеличивать давление наддува с ростом оборотов может использоваться и для целей форсировки мотора в режиме высоких оборотов. Наличие воздуходувки/насоса не отменяет возможности дополнения подобного двухтактного мотора турбонагнетателем, задачей которого является форсировка мотора в чистом виде. Примером таких моторов с турбонаддувом и без будут конструктивно идентичные локомотивные дизели 10Д100 и 2Д100 тепловозов ТЭ10 и ТЭ3.

Схема комбинированного наддува, состоящего из турбины, мотор-генератора, компрессора и аккумуляторной батареи. Работа наддува в режиме турбонагнетателя постоянна, в режиме турбонагнетателя и электронагнетателя — повторно-кратковременна.

Принцип работы электронагнетателя (нагнетателя с электрическим приводом) основан на использовании для привода компрессора электроэнергии из бортовой электрической сети автомобиля. Принципиальная конструкция в общем и целом едина — высокооборотный электромотор и связанный с ним общим валом центробежный компрессор.

Подобные нагнетатели получают распространение на бензиновых моторах легковых автомобилей в последние годы, ввиду широкого внедрения бортовых электросетей с относительно высоким напряжением (~50V) и включением в состав силового агрегата мощных генераторов, аккумуляторов большой ёмкости и конденсаторов. При этом электронагнетатели являются лишь частью общего агрегата наддува и комбинируются с турбонагнетателем (одним или двумя) для совместной работы в рамках функции наддува. Включение электронагнетателя здесь обычно ограничивается переходными режимами работы самого мотора, и в первую очередь такими, на которых эффективность турбонагнетателя низка, например, раскруткой мотора с оборотов холостого хода. В качестве постоянного источника наддува электронагнетатели не применяются, ввиду существенных потерь на перевод механической энергии ДВС в электрическую для питания электромотора и опять в механическую для работы компрессора.

ru.wikipedia.org

Двигатель с компрессором: устройство, преимущества и недостатки

После появления первых ДВС главной задачей конструкторов и инженеров с самого начала стало повышение производительности силовой установки. Другими словами, основной целью является увеличение мощности двигателя. Как известно, самым простым способом становится решение физически увеличить рабочий объем двигателя и количество цилиндров. Двигатель «засасывает» из атмосферы больше воздуха, в результате можно сжигать больше горючего.

При этом такие силовые агрегаты с увеличенным рабочим объемом большие по размерам и весу, их дорого производить, не всегда удается разместить такой мотор в подкапотном пространстве компактного легкового спортивного авто и т.д. Еще одним способом увеличения мощности двигателя является постройка такого агрегата, который будет «выдавать» необходимую мощность и крутящий момент без увеличения объема камеры сгорания.

Решить задачу позволяет принудительное нагнетание воздуха в цилиндры под давлением. Для нагнетания воздуха на многих ДВС используется турбонаддув, еще одним решением является компрессор (нагнетатель механический). В этой статье мы рассмотрим, как устроен и работает автомобильный компрессор на двигатель, а также какие плюсы и минусы имеет компрессорный двигатель.

Компрессор на атмосферный двигатель

Начнем с того, что установка компрессора (нагнетателя) во впускной системе двигателя позволяет добиться подачи нужного количества воздуха для сжигания большего количества топлива. Если просто, компрессор-устройство, которое способно создать на выходе давление, которое будет больше атмосферного.

С этой задачей справляются как обычные механические нагнетатели, так и турбокомпрессор. При этом главным отличием турбонагнетателя от компрессора является то, что турбокомпрессор раскручивается за счет выхлопных газов, в то время как механический компрессор приводится от коленвала двигателя.

Как за счет компрессора происходит увеличение мощности двигателя

Атмосферный двигатель внутреннего сгорания осуществляет забор воздуха снаружи в тот момент, когда поршень в цилиндре движется вниз и создается разрежение, в результате чего воздух засасывается в камеру сгорания. Количество поступающего воздуха физически ограничено рабочим объемом, который имеет цилиндр и камера сгорания. После этого воздух смешивается с топливом в определенных пропорциях, после чего заряд (топливно-воздушная смесь) сгорает в цилиндрах.

Казалось бы, чтобы увеличить мощность мотора, нужно подать больше топлива, однако на самом деле это не так. Если просто, избыток топлива приведет к тому, что без соответствующего количества воздуха горючее не будет эффективно сгорать. Получается, чтобы сжечь больше топлива, нужно одновременно подать большее количество воздуха.

Если учесть, что объем двигателя не меняется, тогда воздух нужно подавать принудительно под давлением. Это и есть главная задача компрессора. Компрессоры создают давление во впуске, нагнетая воздух в цилиндры. В этом случае остается только впрыснуть больше топлива, после чего такая смесь эффективно горит и отдает энергию поршню. На практике, нагнетатель способен поднять мощность мотора на 35-45%, отмечается около 30% процентов прироста крутящего момента по сравнению с точно таким же атмосферным аналогом.

Механический нагнетатель: устройство компрессора на двигатель автомобиля и принцип работы

Как уже было сказано выше, механические компрессоры приводятся в действие от коленчатого вала. Чаще всего для этого используется приводной ремень. Что касается компрессора, в его

autoexpert.today

Компрессор (приводной нагнетатель)


Прокачать «сердце» автомобиля, усилить его движущую мощь хочет каждый автолюбитель. Есть несколько способов для получения заметного результата, но самым простым и распространенным является оборудование двигателя наддувом воздуха. Благодаря этому простому методу, можно добиться значительной прибавки лошадиных сил без увеличения рабочего объема, что в последнее время активно применяется большинством зарубежных автопроизводителей. Самыми распространенными являются турбокомпрессоры и приводные нагнетатели, которые на первый взгляд очень похожи, но в действительности имеют различия в конструкциях, тем самым оказывая разное влияние на характер автомобиля.


Чтобы понять, как работает эта система, не нужна специальная подготовка. Всё довольно просто: в цилиндры подается дополнительная порция воздуха, которая создает положительное давление на впуске. Это изменение отслеживается системой управления двигателем, которая настроена на приготовление рабочей смеси оптимального состава, что заставляет ее увеличить подачу топлива. В итоге мы получаем состав, при сгорании которого выделяется больше энергии, что и приводит к повышению мощности двигателя.


Рассмотрим основные отличия данных систем. Источником энергии для турбокомпрессоров являются отработанные газы двигателя, которые вращают турбинное колесо устройства. В отличие от них, приводные нагнетатели используют механическую передачу от коленвала двигателя. Поэтому производительность наддува находится в прямой зависимости от частоты вращения мотора, то есть компрессор в любой момент обеспечивает необходимую подачу воздуха.

Типы приводных нагнетателей


За последние сто лет было создано много типов приводных нагнетателей, но в современном автомобилестроении применяются чаще всего только три разновидности: роторные, винтовые и центробежные. Подача воздуха в первых двух видах производится при помощи двух цилиндрических вращающихся роторов особой формы, а в третьем — лопатками крыльчатки.

Роторные компрессоры


Ключевыми характеристиками роторных компрессоров является простота конструкции, большой срок эксплуатации, уравновешенность, высокая чистота подаваемого воздуха и положительная зависимость давления воздуха за компрессором от частоты вращения роторов. Эта особенность важна при работе двигателя в часто меняющихся режимах. Воздух в рабочей полости компрессора не сжимается, поэтому роторные приводные нагнетатели еще называют компрессорами с внешним сжатием. Устройства эффективны только при умеренной степени повышения давления, которая равна отношению величины давления нагнетания к давлению всасывания. При росте давления на впускном окне, КПД компрессора резко падает.



Чаще всего применяются роторные компрессоры, оснащенные двумя одинаковыми роторами и отличающиеся поперечным расположением впускного и выпускного окон в корпусе устройства. Это наглядно видно на приведенном рисунке.


К недостаткам таких компрессоров можно отнести заметную зависимость КПД устройства от величины зазоров между работающими деталями, большой нагрев, пульсацию давления нагнетания и сильный шум, которые заметны при применении простых в изготовлении прямозубых роторов. Исходя из этого, роторные компрессоры в основном используют для создания положительного давления со значениями не более 0,5-0,6 бара.


Стараясь уменьшить шум и улучшить равномерность подачи воздуха, роторы делают спиральной формы. Но даже эти ухищрения, как и применение окон клиновидной формы, только уменьшают пульсацию давления. Устранить ее полностью в компрессоре с внешним сжатием практически невозможно. Заметного уменьшения амплитуды пульсаций позволяет добиться применение трехзубчатых роторов вместо двухзубчатых. В этом случае период пульсации давления и скорости в проточной части устройства соответствует 60° угла поворота роторов.

Винтовые компрессоры


В отличие от роторного типа устройств, винтовые компрессоры обеспечивают диагональное движение воздуха в проточной части. Внутреннее сжатие достигается изменением объема полостей между корпусом и вращающимися винтовыми роторами. Такая конструкция позволяет получать довольно высокую степень повышения давления воздуха при высоком КПД (более 80%). Большая скорость вращения компрессора (до 12 тыс. об/мин) позволила снизить его габариты, к тому же появилась возможность использовать привод от газовой турбины.


Основными преимуществами винтового компрессора являются его высокая надежность и уравновешенность. Нагнетаемый воздух не содержит примесей масла, поэтому он наиболее пригоден для работы с поршневым двигателем.


Недостатком такого компрессора часто называют особую сложность формы роторов и их массивность, что ведет к их высокой стоимости. При работе винтовой компрессор производит шум высокой частоты, который вызывается пульсациями давления в режимах всасывания и нагнетания.


Рассмотрим конструкцию винтового компрессора на приведенном рисунке:



Его роторы представляют собой зубчатые колеса со спиральными зубьями, которые имеют большой угол наклона спирали. Профили зубьев и выемок роторов полностью соответствуют друг другу. В процессе работы зубья роторов не соприкасаются с корпусом и между собой, что достигается применением синхронизирующих шестерен на валах роторов. При этом отношение количества зубьев шестерен равно отношению количества зубьев соответствующих роторов. Основным распределительным органом при этом выступает ротор с впадинами.


Винтовые компрессоры могут создавать давление до 1 бара, а в некоторых случаях и выше, поэтому чаще всего применяются на мощных и скоростных автомобилях.


Центробежные компрессоры


Наибольшее распространение в двигателях внутреннего сгорания получили центробежные компрессоры. Этот тип устройств относится к лопаточным машинам, принцип действия которых основан на взаимодействии потока воздуха с лопатками рабочего колеса и неподвижных элементов машины. По сравнению с другими конструкциями, центробежные компрессоры имеют более компактные размеры и относительно просты в изготовлении.


Конструкция центробежного компрессора состоит из входного устройства, рабочего колеса (крыльчатки), и диффузора, который включает в себя безлопаточную и лопаточную части, причём последняя может отсутствовать. Также имеется воздухосборник, чаще всего выполняемый в виде улитки. В центробежном компрессоре воздух, пройдя через фильтр, попадает во входное устройство, которое для устойчивости потока постепенно сужается по направлению движения и служит для равномерного его подвода к колесу при минимальных потерях. Рабочее колесо устанавливается на шлицах, но в случае небольших размеров, может крепиться на гладком валу, который через механическую передачу связывается с коленвалом двигателя или рабочим колесом газовой турбины.



Основополагающими параметрами центробежного компрессора являются: расход воздуха, степень повышения давления и КПД компрессора. В современных устройствах, применяемых для наддува двигателей внутреннего сгорания, эти параметры могут изменяться в широком диапазоне. Так, например, степень повышения давления в компрессорах, приводимых в движение валом двигателя, может достигать 1,2 единиц. А в случае использования центробежного компрессора в форсированном комбинированном двигателе ее значение может достигать 3-3,5.


Центробежные компрессоры имеют много общего с турбокомпрессорами. Они довольно компактны, имеют небольшую цену и достаточно долговечны. Конечно, они не отличаются большим КПД и теряют свою эффективность на малых оборотах, но довольно часто применяются на отечественных автомобилях ВАЗ.


Хорошим примером такого устройства может служить компрессор «АutoTurbo» для ВАЗ 2110-2112 16V, 2170-2172 16V. Он может быть установлен на модель Лада-Приора, оснащенную ГУР или кондиционером. В комплекте используется серийный компрессор PK 23-1, создающий избыточное давление наддува до 0,5 бар при скорости вращения 5200 об/мин. Для его установки не требуется внесения изменений в конструкцию двигателя, только рекомендуется понизить степень сжатия путем замены штатной прокладки головки блока на более толстую. Разработчики изначально рассчитывали на максимальное упрощение установки компрессора, поэтому он может быть установлен автолюбителем самостоятельно.


Для установки на модель Нива-Шевроле предназначен центробежный компрессор «АutoTurbo» с установочным комплектом для ВАЗ 2123. В устройстве применен компрессор ПК-23, который при своевременной замене ремня и подшипников обладает неограниченным ресурсом. Создавая давление наддува до 0,5 бар, устройство отличается сравнительно небольшими габаритами и бесшумностью работы. Этот комплект может устанавливаться на двигатели с максимальным объемом 2 л.

tuningsport.ru

Компрессор с ДВС (бензиновым двигателем) — Законченные проекты

В связи с отсуствием трехфазной сети и присутствием необходимости компрессора производительностью 400-500 л/мин. и рабочим давлением 3-6 атмосфер решил приделать китайский двигатель к советскому компрессору. Компрессор (модель СО-7Б)купил за 500 гривен, китайский двигатель (Forte 200 новый)мощностью 6,5 л/с. 3400 об/мин.купил за 1400 гривен. Заказал у токаря шкив на двигатель диаметром 120мм. (родной шкив 130 мм) шкив меньшего диаметра в связи с большей частотой вращения коленчатого вала ДВС сравнительно с родным електрическим двигателем (4 киловатта 2880 об/мин). Следующий шаг — изготовил переходную плиту для ДВС ибо крепежные отверстия не совпадают. Пластина толщиной 10 мм размерностью 200х210 мм. с низу (крепление к ресиверу) вварено четыре шпильки 10 мм. сверху (крепление к ДВС) 4 шпильки 6 мм. Между ДВС и переходной плитой есть прокладка из резины от тракторной камеры для уменьшения вибрации. На ресивере были два маленьких металлических колеса которые я срезал а вместо них (к их остаткам впоперек ресивера) приварил швеллер 50 мм. к швеллеру приварил вместе со ступицами резиновые колеса от еще советского культиватора (мотыги) без камер. Колеса поставил значительно шире родных, с учетом того, чтобы можно было свободно ставить защитный кожух на шкивы. Ремень родной 1400 мм. Все собрал и начались сюрпризы. Первый и главный, что даже без давления в ресивере но одетом ремне, ДВС не заводился. Без ремня заводится с первого раза. Решил поставить натяжное устройство но посмотрев фотографии в инете убедился в отсуствии натяжного устройства на каком либо из самодельных или заводских компрессоров и засомневался в практичности идеи. Натяжное усложняет конструкцию. Поетому завел двигатель с ослабленым ремнеми натянул ремень вручную (тянул за двигатель) чтобы начал вращатся компрессор. После некоторой обкатки (минут 10) я заметил что сам компрессор стал проворачиватся намного легче чем сначала. До етого я вскрывал компрессор и ржавчины либо изношенности поршневой группы не заметил. Поменял масло компрессора на синтетическое 5W-40. После сделанного агрегат стал заводится с натянутым ремнем даже после полного охлаждения до минус 2.Завести двигатель даже с минимальным остаточным давлением в ресивере не удалось (мне ето и ненужно). На полном газу удалось достичь давления 7 кг/см. но после 4 кг/см. двигатель начинает вибрировать а после 5 кг/см. снижать обороты. Пожалел что не взял двигатель помощней лошадок на 8-10. Есть подозрение что двигатель после обкатки добавит мощность. Еще одна проблема — на выходе из компрессора вылетает масло. Первое подозрение — плохие кольца в сочетании с жидким маслом. Также не работают разгрузочные клапана ни основной ни аварийный. Завтра сниму почищу. Именно поетому проект считаю незаконченным. Аппарат получается симпатичный и автономный, можно регулировать частоту вращения коленвала (одновременно с перерегулировкой клапанов давления). Из недостатков: вибрирует как стиральная машина на отжиме, шумноват, нельзя использовать в помещении (угарный газ), ну и бензин дорогой.Главное преимущество — полная автономность а мне нужно работать в полевых условиях. Что касается фотографий то сделаю чуть позже. Если кто интересуется пишите на e-mail — постараюсь ответить. Изготовление агрегата заняло два дня интсрументы: сварочный аппарат, дрель,болгарка, ключи гаечные. Стоимость ориентировочно 2400 грн. Что смущает: излишняя производительность и малая мощность двигателя. Перспектива сделать еще один шкив двигателя на 100 мм. поменять малосемные кольца.

www.chipmaker.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о