Роторный двигатель принцип: Принципы работы, плюсы и минусы роторного двигателя — особенности роторно-поршневого ДВС — журнал За рулем

Содержание

Устройство автомобиля. Как работает роторный двигатель

Роторный двигатель представляет собой двигатель внутреннего сгорания, устройство которого в корне отличается от обычного поршневого двигателя.
В поршневом двигателе в одном и том же объеме пространства (цилиндре) выполняются четыре такта: впуск, сжатие, рабочий ход и выпуск. Роторный двигатель осуществляет те же такты, но все они происходят в различных частях камеры. Это можно сравнить с наличием отдельного цилиндра для каждого такта, причем поршень постепенно перемещается от одного цилиндра к другому.

Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

В этой статье мы расскажем о том, как работает роторный двигатель. Для начала рассмотрим принцип его работы.

Принцип работы роторного двигателя

Ротор и корпус роторного двигателя Mazda RX-7. Эти детали заменяют поршни, цилиндры, клапаны и распредвал поршневого двигателя. Как и поршневой, роторный двигатель использует давление, которое создается при сгорании топливовоздушной смеси. В поршневых двигателях, это давление создается в цилиндрах, и приводит поршни в движение. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания образуется в камере, сформированной частью корпуса, закрытой стороной треугольного ротора, который используется вместо поршней.

Ротор вращается по траектории, напоминающую линию, нарисованную спирографом. Благодаря такой траектории, все три вершины ротора контактируют с корпусом, образуя три разделенных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Это обеспечивает поступление топливовоздушной смеси в двигатель, сжатие, полезную работу при расширении газов и выпуск выхлопа.

Далее мы расскажем о строении роторного двигателя, но, прежде всего, рассмотрим некоторые автомобили с таким типом двигателя.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей с роторным двигателем. RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторным двигателем, начиная с Cosmo Sport 1967 года. Однако RX-7 не производится с 1995 года, но идея роторного двигателя не умерла.

Mazda RX-8 оснащена роторным двигателем под названием RENESIS. Этот двигатель был назван лучшим двигателем 2003 г. Он является атмосферным двухроторным и производит 250 л.с.

Строение роторного двигателя

Роторный двигатель имеет систему зажигания и систему впрыска топлива, схожие с используемыми в поршневых двигателях. Строение роторного двигателя в корне отличается от поршневого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых выполняет роль поршня. Каждая сторона ротора имеет углубление, что повышает скорость вращения ротора, предоставляя больше пространства для топливовоздушной смеси.

На вершине каждой грани расположена металлическая пластина, которая разделяет пространство на камеры. Два металлических кольца на каждой стороне ротора формируют стенки этих камер.

В центре ротора расположено зубчатое колесо с внутренним расположением зубьев. Оно сопрягается с шестерней, закрепленной на корпусе. Такое сопряжение задает траекторию и направление вращения ротора в корпусе.

Корпус (статор)

Корпус имеет овальную форму (форму эпитрохоиды, если быть точным). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три изолированных объемах газа.

В каждой части корпуса происходит один из процессов внутреннего сгорания. Пространство корпуса разделено для четырех тактов:

  • Впуск
  • Сжатие
  • Рабочий такт
  • Выпуск

Порты впуска и выпуска расположены в корпусе. В портах отсутствуют клапаны. Выпускной порт непосредственно соединен с выхлопной системой, а впускной порт — с дросселем.

Выходной вал

Выходной вал (обратите внимание на эксцентриковые кулачки) Выходной вал имеет закругленные выступы-кулачки, расположенные эксцентрично, т.е. смещены относительно центральной оси. Каждый ротор сопряжен с одним из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. При вращении ротор толкает кулачки. Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Сбор роторного двигателя

Роторный двигатель собирается слоями. Двухроторный двигатель состоит из пяти слоев, удерживаемых длинными болтами, установленными по кругу. Охлаждающая жидкость проходит через все части конструкции.

Два крайних слоя имеют уплотнения и подшипники для выходного вала. Они также изолируют две части корпуса, в которых расположены роторы. Внутренние поверхности этих частей являются гладкими, что обеспечивает надлежащее уплотнение роторов. Впускной порт подачи расположен в каждой из крайних частей. Часть корпуса, в которой расположен ротор (обратите внимание на расположение выпускного порта) Следующий слой включает корпус ротора овальной формы и выпускной порт. В этой части корпуса установлен ротор.

Центральная часть включает два впускных порта — по одному для каждого ротора. Она также разделяет роторы, поэтому ее внутренняя поверхность является гладкой.

В центре каждого ротора расположено зубчатое колесо с внутренним расположением зубьев, которое вращается вокруг меньшей шестерни, установленной на корпусе двигателя. Она определяет траекторию вращения ротора.

Мощность роторного двигателя

В центральной части расположен впускной порт для каждого ротора Как и поршневые двигатели, в роторном двигателе внутреннего сгорания используется четырехтактный цикл. Но в роторном двигателе такой цикл осуществляется иначе.

За один полный оборот ротора эксцентриковый вал выполняет три оборота.

Основным элементом роторного двигателя является ротор. Он выступает в роли поршней в обычном поршневом двигателе. Ротор установлен на большом круглом кулачке выходного вала. Кулачок смещен относительно центральной оси вала и выступает в роли коленчатой рукояти, позволяя ротору вращать вал. Вращаясь внутри корпуса, ротор толкает кулачок по окружности, поворачивая его три раза за один полный оборот ротора.

Размер камер, образованных ротором, изменяется при его вращении. Такое изменение размера обеспечивает насосное действие. Далее мы рассмотрим каждый из четырех тактов роторного двигателя.

Впуск

Такт впуска начинается при прохождении вершины ротора через впускной порт. В момент прохождения вершины через впускной порт, объем камеры приближен к минимальному. Далее объем камеры увеличивается, и происходит всасывание топливовоздушной смеси.

При дальнейшем повороте ротора, камера изолируется, и начинается такт сжатия.

Сжатие

При дальнейшем вращении ротора, объем камеры уменьшается, и происходит сжатие топливовоздушной смеси. При прохождении ротора через свечи зажигания, объем камеры приближен к минимальному. В этот момент происходит воспламенение.

Рабочий такт

Во многих роторных двигателях установлено две свечи зажигания. Камера сгорания имеет достаточно большой объем, поэтому при наличии одной свечи, воспламенение происходило бы медленнее. При воспламенении топливовоздушной смеси образуется давление, приводящее ротор в движение.

Давление сгорания вращает ротор в сторону увеличения объема камеры. Газы сгорания продолжают расширяться, вращая ротор и создавая мощность до момента прохождения вершины ротора через выпускной порт.

Выпуск

При прохождении ротора через выпускной порт, газы сгорания под высоким давлением выходят в выхлопную систему. При дальнейшем вращении ротора, объем камеры уменьшается, выталкивая оставшиеся выхлопные газы в выпускной порт. К тому моменту, как объем камеры приближается к минимальному, вершина ротора проходит через впускной порт, и цикл повторяется.

Необходимо отметить, что каждая из трех сторон ротора всегда вовлечена в один из тактов цикла, т.е. за один полный оборот ротора осуществляется три рабочих такта. За один полный оборот ротора, выходной вал совершает три оборота, т.к. на один оборот вала приходится один такт.

Различия и проблемы

По сравнению с поршневым двигателем, роторный двигатель имеет определенные отличия.

Меньше движущихся деталей

В отличие от поршневого двигателя, в роторном двигателе используется меньше движущихся деталей. Двухроторный двигатель включает три движущиеся детали: два ротора и выходной вал. Даже в простейшем четырехцилиндровом двигателе используется не менее 40 движущихся деталей, включая поршни, шатуны, распредвал, клапаны, клапанные пружины, коромысла, ремень ГРМ и коленвал.

Благодаря уменьшению количества движущихся деталей, повышается надежность роторного двигателя. По этой причине некоторые производители вместо поршневых двигателей используют роторные на своих воздушных судах.

Плавная работа

Все части роторного двигателя вращаются непрерывно в одном направлении, а не постоянно меняют направление движения, как поршни в обычном двигателе. В роторных двигателях используются сбалансированные вращающиеся противовесы, предназначенные для гашения вибраций.

Подача мощности также обеспечивается более плавно. В связи с тем, что каждый такт цикла протекает за поворот ротора на 90 градусов, и выходной вал совершает три оборота на каждый оборот ротора, каждый такт цикла протекает за поворот выходного вала на 270 градусов. Это значит, что двигатель с одним ротором обеспечивает подачу мощности при 3/4 оборота выходного вала. В одноцилиндровом поршневом двигателе, процесс сгорания происходит на 180 градусах каждого второго оборота, т.е. 1/4 каждого оборота коленвала (выходной вал поршневого двигателя).

Медленная работа

В связи с тем, что ротор вращается со скоростью, равной 1/3 скорости вращения выходного вала, основные движущиеся детали роторного двигателя движутся медленнее, чем детали в поршневом двигателе. Благодаря этому, также обеспечивается надежность.

Проблемы

Роторные двигатели имеют ряд проблем:
  • Сложное производство в соответствии с нормами состава выбросов.
  • Затраты на производство роторных двигателей выше по сравнению с поршневыми, так как количество производимых роторных двигателей меньше.
  • Расход топлива у автомобилей с роторным двигателей выше по сравнению с поршневыми двигателями, в связи с тем, что термодинамический КПД снижен из-за большого объема камеры сгорания и низкого коэффициента сжатия.

Устройство роторного двигателя

После создания двигателя внутреннего сгорания началась эра автомобилей. Самое большое распространение при этом получил мотор поршневого типа. Но при этом с момента создания ДВС перед конструкторами стала задача извлечения максимального КПД при минимальных затратах топлива. Решалась эта задача несколькими путями – от технического улучшения уже имеющихся двигателей, до создания абсолютно новых, с другой конструкцией. Одним из таковых стал роторный двигатель.

Роторный двигатель

Появился он значительно позже поршневого, в 30-х годах. Полноценно работоспособная же модель такого двигателя появилась и вовсе в 50-х годах. После появления роторный двигатель вызвал заинтересованность у многих автопроизводителей, и все они кинулись разрабатывать свои модели роторных силовых установок, однако вскоре от них отказались в пользу обычных поршневых. Из приверженцев роторного мотора осталась только японская фирма Mazda, которая сделала такого типа мотор своей визитной карточкой.

Особенностью такого мотора является его конструкция, которая вообще не предусматривает наличие поршней. В целом это сильно сказалось на конструктивной простоте.

В поршневых моторах энергия сгораемого топлива воспринимается поршнем, который за счет своего возвратно-поступательного движения передает ее на кривошипы коленвала, обеспечивая ему вращение.

У роторных же двигателей энергия сразу преобразовывается во вращение вала, минуя возвратно-поступательное движение. Это сказывается на уменьшении потерь мощности на трение, меньшую металлоемкость и простоту конструкции. За счет этого КПД двигателя значительно возрастает.

Конструкция

Чтобы понять принцип работы, следует разобраться, какова конструкция роторного двигателя. Итак, вместо поршней энергия сгорания топлива у такого силового агрегата воспринимается ротором. Ротор имеет вид равностороннего треугольника. Каждая сторона этого треугольника и играет роль поршня.

Ротор

Чтобы обеспечить процесс горения, ротор помещается в закрытое пространство, состоящее из трех элементов – двух боковых корпусов, и одного центрального, называющегося статором. Пространство, в котором производится процесс горения, сделано в статоре, боковые корпуса обеспечивают только герметичность этого пространства.

Внутри статора сделан цилиндр, в котором и размещается ротор. Чтобы внутри этого цилиндра происходили все необходимые процессы, выполнен он в виде овала, с немного прижатыми боками.

Сам статор с одной стороны имеет окна для впуска топливовоздушной смеси или воздуха, и выпуска отработанных газов. Противоположно им сделано отверстие под свечи зажигания.

Устройство двигателя

Особенностью движения ротора в цилиндре статора является то, что его вершины постоянно контактируют с поверхностью цилиндра, его движение сделано по эксцентриковому типу. Он не только вращается вокруг своей оси, но еще и смещается относительно нее.

Для этого в роторе сделано большое отверстие, с одной стороны этого отверстия имеется зубчатый сектор. С другой стороны в ротор вставлен вал с эксцентриком.

Чтобы обеспечить вращение в боковой корпус установлена неподвижная шестерня, входящая в зацепление с зубчатым сектором ротора, она является опорной точкой для него. При своем эксцентриковом движении он опирается на неподвижную шестерню, а зацепление обеспечивает ему вращательное движение. Вращаясь, он обеспечивает и вращение вала с эксцентриком, на который он одет.

Принцип работы

Теперь о самом принципе работы. Выполнение определенной работы поршня внутри цилиндров называется тактами. Классический поршневой двигатель имеет четыре такта:

  • впуск — в цилиндр подается горючая смесь;
  • сжатие — увеличение давления в цилиндре за счет уменьшения объема;
  • рабочий ход — энергия, выделенная при сгорании смеси, преобразовывается во вращение вала;
  • выпуск — из цилиндра выводятся отработанные газы;

Данные такты имеют все двигатели внутреннего сгорания, и сопровождаются они определенным движением поршня.

Однако они выполняются по-разному. Существуют двухтактные поршневые двигатели, в которых такты совмещены, но такие моторы чаще применяются на мотоциклах и другой бензиновой технике, хотя раньше создавались и дизельные двухтактные моторы. В них одно движение поршня включает два такта. При движении поршня вверх – впуск и сжатие, а при движении вниз – рабочий ход и выпуск. Все это обеспечивается наличием впускных и выпускных окон.

Классические автомобильные поршневые двигатели обычно являются 4-тактными, где каждый такт отделен. Но для этого в двигатель включен механизм газораспределения, который значительно усложняет конструкцию.

Что касается роторного двигателя, то отсутствие поршня как такового позволило несколько совместить конструктивные особенности 2-тактных и 4-тактных моторов.

Принцип работы

Поскольку цилиндр роторного двигателя имеет впускные и выпускные окна, то надобность в газораспределительном механизме отпала, при этом сам процесс работы сохранил все четыре такта по отдельности.

Теперь рассмотрим, как все это происходит внутри статора. Углы ротора постоянно контактируют с цилиндром статора, обеспечивая герметичное пространство между сторонами ротора.

Овальная форма цилиндра статора обеспечивает изменение пространства между стенкой цилиндра и двумя близлежащими вершинами ротора.

Далее рассмотрим действие внутри цилиндра только с одной стороны ротора. Итак, при вращении ротора, одна из его вершин, проходя сужение овала цилиндра, открывает впускное окно и в полость между стороной треугольника ротора и стенкой цилиндра начинает поступать горючая смесь или воздух. При этом движение продолжается, эта вершина достигает и проходит высокую часть овала и дальше идет на сужение. Возможность постоянного контакта вершины ротора обеспечивается его эксцентриковым движением.

Впуск воздуха производится до тех пор, пока вторая вершина ротора не перекроет впускное окно. В это время первая вершина уже прошла высоту овала цилиндра и пошла на его сужение, при этом пространство между цилиндром и стороной ротора начинает значительно сокращаться в объеме – происходит такт сжатия.

В момент, когда сторона ротора проходит максимальное сужение, в пространство между стороной ротора и стенкой цилиндра подается искра, которая воспламеняет горючую смесь, сжатую между зауженной стенкой цилиндра и стороной ротора.

Особенностью роторного двигателя является то, что воспламенение производится не перед прохождением стороны так называемой «мертвой точки», как это делается в поршневом двигателе, а после ее прохождения. Делается это для того, чтобы энергия, выделенная при сгорании, воздействовала на ту часть стороны ротора, которая уже прошла ВМТ (верхняя мёртвая точка). Этим обеспечивается вращение ротора в нужную сторону.

После прохождения свечи, первая вершина ротора начинает открывать выпускное окно, и постепенно, пока вторая вершина не перекроет выпускное окно – производится отвод газов.

Такты двигателя

Следует отметить, что был описан весь процесс, сделанный только одной стороной ротора, все стороны проделывают процесс один за другим. То есть, за одно вращение ротора производится одновременно три цикла – пока в полость между одной стороной ротора и цилиндра запускается воздух или горючая смесь, в это время вторая сторона ротора проходит ВМТ, а третья – выпускает отработанные газы.

Теперь о вращении вала, на эксцентрик которого надет ротор. За счет этого эксцентрика полный оборот вала производится меньше чем за один оборот ротора. То есть, за один полный цикл вал сделает три оборота, при этом отдавая полезное действие дальше. В поршневом двигателе один цикл происходит за два оборота коленчатого вала и только один полуоборот при этом является полезным. Этим обеспечивается высокий выход КПД.

Если сравнить роторный двигатель с поршневым, то выход мощности с одной секции, которая состоит из одного ротора и статора, равна мощности 3-цилиндрового двигателя.

А если учитывать, что Mazda устанавливала на свои авто двухсекционные роторные моторы, то по мощности они не уступают 6-цилиндровым поршневым моторам.

Достоинства и недостатки

Теперь о достоинствах роторных моторов, а их вполне много. Выходит, что одна секция по мощности равна 3-цилиндровому мотору, при этом она в габаритных размерах значительно меньше. Это сказывается на компактности самых моторов. Об этом можно судить по модели Mazda RX-8. Этот автомобиль, обладая хорошим показателем мощности, имеет средне моторную компоновку, чем удалось добиться точной развесовки авто по осям, влияющую на устойчивость и управляемость авто.

Помимо компактных размеров в этом двигателе отсутствует газораспределительный механизм (ГРМ), ведь все фазы газораспределения выполняются самим ротором. Это значительно уменьшило металлоемкость конструкции, и как следствие – массу двигателя.

Из-за ненадобности поршней и ГРМ снижено количество подвижных частей в двигателе, что сказывается на надежности конструкции.

Сам двигатель из-за отсутствия разнонаправленных движений, которые есть в поршневом моторе, при работе меньше вибрирует.

Но и недостатков у такого двигателя тоже хватает. Начнем с того, что система смазки у него идентична с системой 2-тактного двигателя. То есть, смазка поверхности цилиндра производится вместе с топливом. Но только организация подачи масла несколько иная. Если в 2-тактном двигателе масло для смазки добавляется прямо в топливо, то в роторном оно подается через форсунки, а потом оно уже смешивается с топливом.

Использование такого типа смазки привело к тому, что для двигателя подходит только минеральное масло или специализированное полусинтетическое. При этом в процессе работы масло сгорает, что негативно сказывается на составе выхлопных газов. По экологичности роторный двигатель сильно уступает 4-тактному поршневому двигателю.

При всей простоте конструкции роторный мотор обладает сравнительно небольшим ресурсом. У той же Mazda пробег до капитального ремонта составляет всего 100 тыс. км. В первую очередь «страдают» апексы – аналоги компрессионных колец в поршневом двигателе. Апексы размещаются на вершинах ротора и обеспечивают плотное прилегание вершины к стенке цилиндра.

Недостатком является также невозможность проведения восстановительных работ. Если у ротора изношены посадочные места апексов – ротор полностью заменяется, поскольку восстановить эти места невозможно.

То же касается и цилиндра статора. При его повреждении расточка практически невозможна из-за сложности выполнения такой работы.

Из-за большой скорости вращения эксцентрикового вала, его вкладыши изнашиваются значительно быстрее.

В общем, при значительно простой конструкции, из-за сложности процессов его работы роторный двигатель оказывается по надежности значительно хуже поршневого.

Но в целом, роторный двигатель не является тупиковой ветвью развития двигателей внутреннего сгорания. Та же Mazda постоянно совершенствует данный тип мотора. К примеру, мотор, устанавливаемый на RX-8 по токсичности уже мало отличается от поршневого, что является большим достижением.

Теперь они стараются еще и увеличить ресурс. Однако это скорее всего будет достигнуто за счет использования особых материалов изготовления элементов двигателя, а также из-за высокой степени обработки поверхностей, что еще больше осложнит и увеличит стоимость ремонта.

особенности, преимущества и недостатки моторов

Идея роторного двигателя слишком заманчива: когда и конкурент весьма далек от идеала, кажется, что вот-вот преодолеем недостатки и получим не мотор, а само совершенство… Mazda находилась в плену этих иллюзий аж до 2012 года, когда была снята с производства последняя модель с роторным двигателем — RX-8.

История создания роторного двигателя

Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.

На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.

После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.

Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.

Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.

Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.

Феликс Ванкель и его первый роторный двигатель

Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.

РПД в СССР

А вот Советский Союз лицензию не покупал вовсе. Разработки собственного роторного двигателя начались с того, что в Союз привезли и разобрали немецкий автомобиль Ro-80, производство которого NSU начала в 1967 году.

Через семь лет после этого на заводе ВАЗ появилось конструкторское бюро, разрабатывающее исключительно роторно-поршневые двигатели. Его трудами в 1976 году возник двигатель ВАЗ-311. Но первый блин получился комом, и его дорабатывали еще шесть лет.

Первый советский серийный автомобиль с роторным двигателем — это ВАЗ-21018, представленный в 1982 году. К сожалению, уже в опытной партии у всех машин вышли из строя моторы. Дорабатывали еще год, после чего появился ВАЗ-411 и ВАЗ 413, которые были взяты на вооружение силовыми ведомствами СССР. Там не особо переживали за расход топлива и малый ресурс мотора, зато нуждались в быстрых, мощных, но неприметных авто, способных угнаться за иномаркой.

ВАЗ с роторным двигателем (ГАИ)

РПД на Западе

На Западе роторный двигатель не произвел бума, а конец его разработкам в США и Европе положил топливный кризис 1973 года, когда цены на бензин резко взлетели, и покупатели машин стали прицениваться к моделям с экономным расходованием топлива.

Если учесть, что роторный двигатель съедал до 20 литров бензина на сотню км, продажи его во время кризиса упали до предела.

Единственной страной на Востоке, не утратившей веру, стала Япония. Но и там производители довольно быстро охладели к двигателю, который никак не желал совершенствоваться. И в конце концов там остался один стойкий оловянный солдатик — компания Mazda. В СССР топливный кризис не ощущался. Производство машин с РПД продолжалось и после распада Союза. ВАЗ прекратил заниматься РПД только в 2004 году. Mazda смирилась только в 2012.

Особенности роторного мотора

В основу конструкции положен ротор треугольной формы, каждая из граней которого имеет выпуклость (треугольник Рёло). Ротор вращается по планетарному типу вокруг центральной оси — статора. Вершины треугольника при этом описывают сложную кривую, именуемую эпитрохоидой. Форма этой кривой обуславливает форму капсулы, внутри которой вращается ротор.



У роторного мотора те же четыре такта рабочего цикла, что и у его конкурента — поршневого мотора.

Камеры образуются между гранями ротора и стенками капсулы, их форма — переменная серповидная, что является причиной некоторых существенных недостатков конструкции. Для изоляции камер друг от друга используются уплотнители — радиальные и торцевые пластины.

Если сравнивать роторный ДВС с поршневым, то первым бросается в глаза то, что за один оборот ротора рабочий ход происходит три раза, а выходной вал при этом вращается в три раза быстрее, чем сам ротор.

У РПД отсутствует система газораспределения, что весьма упрощает его конструкцию. А высокая удельная мощность при малом размере и весе агрегата являются следствием отсутствия коленвала, шатунов и других сопряжений между камерами.

Достоинства и недостатки роторных двигателей

Преимущества

  • Роторный двигатель хорош тем, что состоит из куда меньшего числа деталей, чем его конкурент — процентов на 35-40.

  • Два двигателя одинаковой мощности — роторный и поршневый — будут сильно отличаться габаритами. Поршневый в два раза больше.

  • Роторный мотор не испытывает большой нагрузки на высоких оборотах даже в том случае, если на низкой передаче разгонять машину до скорости более 100 км/ч.

  • Автомобиль, на котором стоит роторный двигатель, проще уравновесить, что дает повышенную устойчивость машины на дороге.

  • Даже самые легкие из транспортных средств не страдают от вибрации, потому что РПД вибрирует куда меньше, чем «поршневик». Это происходит в силу большей сбалансированности РПД.

Недостатки

  • Главным недостатком роторного двигателя автомобилисты назвали бы его малый ресурс, который является прямым следствием его конструкции. Уплотнители изнашиваются крайне быстро, так как их рабочий угол постоянно меняется.

  • Мотор испытывает перепады температур через каждый такт, что также способствует износу материала. Добавьте к этому давление, которое оказывается на трущиеся поверхности, что лечится только впрыскиванием масла непосредственно в коллектор.

  • Износ уплотнителей становится причиной утечки между камерами, перепады давления между которыми слишком велики. Из-за этого КПД двигателя падает, а вред экологии растет.

  • Серповидная форма камер не способствует полноте сгорания топлива, а скорость вращения ротора и малая длина рабочего хода — причина выталкивания еще слишком горячих, не до конца сгоревших газов на выхлоп. Помимо продуктов сгорания бензина там еще присутствует масло, что в совокупности делает выхлоп весьма токсическим. Поршневый — приносит меньше вреда экологии.

  • Непомерные аппетиты двигателя на бензин уже упоминались, а масло он «жрет» до 1 литр на 1000 км. Причем стоит раз забыть про масло и можно попасть на крупный ремонт, если не замену двигателя.

  • Высокая стоимость — из-за того, что для изготовления мотора нужно высокоточное оборудование и очень качественные материалы.


Как видите, недостатков у роторного двигателя полно, но и поршневый мотор несовершенен, поэтому состязание между ними не прекращалось так долго. Закончилось ли оно навсегда? Время покажет.

Рассказываем как устроен и работает роторный двигатель

Устройство роторного двигателя. Принцип работы роторного двигателя — видео

Автор Master OffRoad На чтение 13 мин. Просмотров 307 Опубликовано

История создания роторного двигателя


Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.

На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.

После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.

Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.

Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.

Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.

Феликс Ванкель и его первый роторный двигатель

Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.


Как самому полировать фары автомобиля? Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.





Как самостоятельно полировать автомобиль? Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Фазы работы

Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:

  1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
  2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
  3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
  4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.

Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.

Плюсы и минусы

Есть ряд преимуществ:

  • меньшее количество деталей, как минимум на 35% меньше относительно поршневого. Меньше деталей — меньше поломок;
  • если сопоставить с конкурентом такой же мощности, то РПД будет в 2 раза меньше по размеру;
  • отсутствие высокой нагрузки даже на больших оборотах и если на низких передачах разогнаться сильнее сотни километров в час;
  • меньше весит, поэтому машину проще уравновесить, она становится более устойчивой;
  • нет проблемы вибрации даже у самых легких авто. Поршневой вибрирует гораздо сильнее, ввиду чего роторный лучше сбалансирован.

Но есть и недостатки:

  • главный минус — небольшой ресурс, это издержка простой конструкции. Рабочий угол уплотнителей постоянно меняется, из-за чего они быстро изнашиваются. Износ усиливается и от того, что через каждый такт меняется температура. Вдобавок давление, оказываемое на трущиеся поверхности, от этого есть только одно средство — впрыскивание масла в коллектор;
  • при износе уплотнителей образуются утечки между камерами. Разница в давлении очень большая, от этого страдает КПД. Вред для экологии усиливается;
  • из-за серповидной конфигурации камер топливо сгорает не полностью. Из-за небольшой длины рабочего хода и скорости вращения ротора выталкиваются несгоревшие газы высокой температуры. Выделяются не только продукты сгорания бензина, но и масло, ввиду чего окружающая среда подвергается крайне негативному влиянию. Поршневые двигатели не настолько вредные для экологии;
  • про высокий расход топлива уже было сказано, но это касается не только бензина, но и масла. Такой двигатель съедает до литра на тысячу километров. Если забыть про масло, то можно столкнуться с необходимостью дорогого ремонта или вовсе замены мотора;
  • высокая себестоимость. Требуются качественные дорогие материалы и высокотехнологичное оборудование.

У роторного двигателя достаточно недостатков, но и его конкурент не совершенный. Поэтому соревнование между ними длилось достаточно долго. Сейчас гонка окончена, но никто не может сказать, навсегда или нет.

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Перегревы и высокие нагрузки

Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.


В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.

Ресурс

Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.


После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.

Машины с роторным двигателем

В разработке усовершенствованных концепций силового агрегата с базовым элементом конструкции в виде подвижного ротора участвовали и российские конструкторы, включая Зуева, Желтышева, ингушских изобретателей братьев Ахриевых.

Игнорируя инновации, на автомобили по-прежнему устанавливают двигатели Ванкеля.

В число моделей с РПД входят:

  1. Мазда RX-8. Конструкторское бюро японского концерна достигло прогресса в усовершенствовании. Их последняя разработка вместимостью 1,3 л развивает мощность 215 л.с. Более поздняя версия с аналогичным объемом выдает 231 л.с. Производство прекращено с августа 2011 г. в результате снижения спроса.
  2. ВАЗ 2109-90. Такими машинами пользовались в служебных целях сотрудники российских правоохранительных органов. Милицейские автомобили за 8 секунд могли разогнаться до 100 км/ч и развивали скорость 200 км/ч, легко догоняя преступников. Производились и агрегаты с большей мощностью. Но большая цена и малый ресурс не позволили прижиться РПД, и полицейским пришлось пересесть на транспортные средства с поршневыми моторами.
  3. Мерседес С-111. Впервые был представлен автолюбителям на женевском автосалоне в 1970 г. Спортивный автомобиль оснащался трехкамерным двигателем Ванкеля. Максимальная скорость составляла 275 км/ч. На разгон до первой сотни уходило 5 секунд.
  4. ВАЗ 21019 Аркан. Модель также закупалась для нужд МВД. Советских милиционеров на таких машинах догнать было невозможно и, тем более, уйти от погони. Большинство преследований завершалось поимкой преступников. Объяснение тому – способность служебного транспорта развивать предельную скорость 160 км/ч. Трехсекционный мотор в 1,3 л выдавал 120 л.с.

Видео: как устроен и работает роторный двигатель

Подведем итоги

Моторы роторно-поршневого типа превосходно показывают себя в гонках. У них есть для этого высокая мощность, большое количество оборотов. Немаловажно, что машины на нем очень легкие относительно других, так как двигатель меньше и легче. Ресурс двигателя для гонок — не самый важный показатель, как и прожорливость. Но в обычной жизни нельзя этого не учитывать.

Вне недостатки обусловлены строением и принципом работы роторно-поршневого двигателя. Их нельзя отнести к недоработкам, скорее, это особенности. Но в теории есть способ вновь начать пользоваться РПД. Для этого нужно сделать его более экологичным, повысить ресурс и сделать его более экономичным.

Источники

  • https://dolauto.ru/informations/articles/chto-takoe-rotornyy-dvigatel/
  • https://krossovery.info/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy-sistemy/
  • https://syl.ru/article/158520/new_rotornyiy-dvigatel-printsip-rabotyi-plyusyi-i-minusyi-rotornogo-dvigatelya
  • https://geekometr.ru/statji/kak-rabotaet-rotorno-porshnevoy-dvigatel-v-mashine.html
  • https://zewerok. ru/dvigatel-vankelya/
  • https://remontautomobilya.ru/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy.html

Роторный двигатель — устройство, особенности и принцип работы

Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.

Немного истории

В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков — Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.

Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство роторных моторов стали сразу же приобретать одна автомобильная компания за другой.

Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. Роторный двигатель внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.

В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.

В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.

Основы устройства роторного двигателя

Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД — ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни — статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.

Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.

  • На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
  • Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
  • На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
  • При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).

Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.

Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.

Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.

Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.

Типы роторных двигателей

Древнейшие роторные двигатели — это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:

  • герметично закрыта;
  • постоянно контактировать с внешней средой.

Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация роторных моторов следующая.

  1. Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
  2. Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
  3. Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
  4. Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
  5. Двигатели с ротором, совершающим планетарное движение.

Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. Двигатель Ванкеля относится к пятому пункту из представленного выше списка.

Преимущества РПД

Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.

РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.

Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.

Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.

Высокий расход топлива РПД

Устройство и принцип работы роторного двигателя на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.

Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.

В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.

Другие важные недостатки

Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.

В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.

Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.

Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.

В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.

На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.

Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.

Достоинства

Недостатки

Хорошая сбалансированность Высокий расход топлива, особенно на малых оборотах
Минимальные вибрации Нарушение герметичности из-за перегрева
Быстрый разгон Требует частой замены масла (каждые 5 тысяч км)
Компактные размеры Быстрый износ уплотнителей
Высокая мощность Дороговизна производства некоторых деталей
Небольшое количество основных деталей Повышенный уровень выброса CO2

Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс.  км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.

Роторно-поршневые двигатели Мазды

В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.

Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.

С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.

На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.

В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.

Принцип работы роторного двигателя авто, разновидности, плюсы и минусы

 Принцип работы «обычного» ДВС знаком, наверное, почти всем. Именно такими моторами оснащается подавляющее число автомобилей, и мало кто знает о, так сказать, «параллельных» изысканиях конструкторов, ищущих другие пути создания двигателей.
В силу ряда причин, многие «новинки» в среде ДВС так и остались неизвестными широкой публике, хотя некоторые из таких «необычных» двигателей устанавливались на серийные автомобили.
Речь пойдёт о роторно-поршневых двигателях (РПД). Наибольшее внимание мы уделим описанию принципов работы роторного двигателя Ванкеля – ведь машины с именно его роторными двигателями выпускались на некоторых автозаводах (в частности, на ВАЗе).

Содержание статьи

Устройство обычного двигателя

В обычном двигателе ударная волна расширяющихся в результате вспышки газов толкает поршень, который передаёт усилие на коленчатый вал.

Всем известно что, в обычном двигателе ударная волна расширяющихся в результате вспышки газов толкает поршень, который передаёт усилие через кривошипно-шатунный механизм на коленчатый вал, который под воздействием усилия, передаваемого шатунами, начинает вращаться. Для того, чтобы впуск топлива/выпуск отработанных газов и момент воспламенения топлива были согласованы, требуется достаточно сложный газораспределительный механизм.

Работа роторного двигателя

 

 

Сам ротор, напоминающий по форме треугольник, имеет внутри зубчатое колесо, которое сцеплено с валом двигателя.

Сам ротор, напоминающий по форме треугольник, имеет внутри зубчатое колесо, которое сцеплено с валом двигателя, приводимым во вращение за счёт расширяющихся газов, воздействующих на ротор. Для обеспечения сжатия-расширения топливной смеси камера («цилиндр»), в которой вращается ротор, имеет сложную форму. Такую форму поверхности называют эпитрохоидальной, и для её точного изготовления требуется высокоточное оборудование. Более того, зубцы ротора и вала расположены таким образом, чтобы поршень (имеющий вид треугольника Рело), вращался по этой сожной траектории, «углами» прижимаясь к поверхности «цилиндра» – иначе не избежать прорыва газов в процессе работы двигателя.
Рисунок наглядно демонстрирует, как работает роторный двигатель. Взрывающаяся топливная смесь, впрыснутая через специальное «окно», толкает ротор, а впускное окно автоматически перекрывается стенкой поршня.
Точно также, в нужные моменты, закрывается и открывается «выпускной клапан».

Плюсы и минусы роторного двигателя

 

 

Помимо прочих достоинств РПД достаточно динамичен и быстро развивает высокие обороты.

Как видите, вся конструкция достаточно изящна. Как подсчитали эксперты, в РПД используется примерно на 1000 деталей меньше, чем в «привычных» ДВС (например, отпадает сложная конструкция газораспределительного механизма и его привода). К тому же РПД, имеющий две рабочих камеры (и, соответственно, два ротора), может за одно и то же время совершить такое же число циклов, как и V-образная «восьмёрка».
Хоть на схематическом рисунке предоставлена работа роторного двигателя внутреннего сгорания с воспламенением от искрового разряда, в РПД можно реализовать практически любой рабочий цикл – включая дизельный.
К несомненным достоинствам, такая конструкция двигателя, все вращающиеся детали работают соосно, придаёт непревзойдённую плавность работе роторного двигателя и отсутствие разрушительных вибраций.
Помимо прочих достоинств РПД достаточно динамичен и быстро развивает высокие обороты. Правда, «на холостых» он достаточно «прожорлив». Если мотор имеет два цилиндра, один из них при необходимости отключают.
КПД роторного двигателя является рекордным – 40%, но, к сожалению, он имеет также рекордно низкий ресурс некоторых деталей (зачастую вызванных «резвостью» двигателя), но частая замена моторного масла способна значительно продлить жизнь механизмов и ресурс роторного двигателя. Пока конструкторам удаётся справиться с чрезмерным износом «граней» «треугольника» путем применения высоколегированных сталей.

Другие виды роторных двигателей

Двигатель Ванкеля не явился единственной попыткой (притом, весьма удачной!) создания роторного двигателя – существуют и другие, менее известные, их варианты.

Двигатель Зуева

 

 
По сравнению с двигателем Ванкеля, двигатель Зуева достаточно громоздкая конструкция:

Роторно-лопастной двигатель

Господинн Прохоров именно роторно-лопастными двигателями планировал оснащать «Ё-мобили».

Конструкция оригинальная, но почему-то создатели данного мотора так и не явили миру её безупречно действующий образец. Кстати, г-н Прохоров именно такими моторами планировал оснащать «Ё-мобили».

Автомобили с роторным двигателем

Среди автопроизводителей, оснастивших машины РПД, наиболее известна Mazda RX-8. Но были и другие. В частности, советскими спецслужбами всячески поощрялось создание ВАЗ именно с роторными двигателями. Видимо, оперативные службы заинтересовались «резвостью» мотора.
Впрочем, кроме вышеперечисленных, роторно-поршневые двигатели уже давно «прошли обкатку» на многих авто.
 

Принцип работы роторного двигателя, плюсы и минусы системы

Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.

Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.

Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.

Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.

Содержание статьи:

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Принцип работы роторного двигателя

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!

Роторный двигатель в разрезе Ротор роторного двигателя Камера роторного двигателя

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень.  Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа.  В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал роторного двигателя

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Преимущества роторного двигателя

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-х цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-х цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Малые габариты + высокая мощность

Компактность системы вместе с высоким КПД (сравнительно с обычным ДВС) позволяет из миниатюрного 1,3-литрового мотора выдавать порядка 200-250 л.с. Правда, вместе с главным недостатком конструкции в виде высокого расхода топлива.

Недостатки роторных моторов

Самые главные проблемы при производстве роторных двигателей:

  • Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
  • Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
  • Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
  • Роторные двигатели в силу конструкции ограничены в ресурсе — в среднем это порядка 60-80 тыс. км

Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.

Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.

Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л.с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.

Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб, однако проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.

Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.

Разные конструкции и разработки роторных двигателей

Двигатель Ванкеля

Двигатель Желтышева

Двигатель Зуева

Роторный двигатель Mazda | Преимущества и информация

Роторный двигатель: главный элемент наследия Mazda

Большинство двигателей внутреннего сгорания, которые вы видите сегодня на дорогах, построены с использованием стандартных принципов поршневых двигателей. Однако это не единственный двигатель внутреннего сгорания. Роторный двигатель, часто называемый двигателем Ванкеля в честь его изобретателя, доктора Феликса Ванкеля, является мощной альтернативой поршневому двигателю и важной частью фирменного наследия Mazda в области технических характеристик.

Как это работает

Роторный двигатель работает по тому же основному принципу, что и поршневой двигатель: сгорание в силовой установке высвобождает энергию для приведения в действие транспортного средства. Однако система подачи в роторном двигателе полностью уникальна.

Поршневой двигатель выполняет четыре ключевые операции: впуск, сжатие, сгорание и выпуск. Роторный двигатель также выполняет каждую из этих ключевых операций, но делает это совершенно уникальным образом. В случае роторного двигателя каждый из этих ключевых процессов обрабатывается отдельной секцией корпуса силовой установки.

Детали роторного двигателя

Роторный двигатель состоит из нескольких ключевых компонентов. Когда вы сами увидите роторный двигатель, станет ясно, насколько он отличается от обычного поршневого двигателя.

  • Ротор : три выпуклые поверхности ротора действуют аналогично поршню, но ротор подвижен, перемещаясь по пути через систему подачи корпуса двигателя.
  • Корпус : Корпус имеет овальную форму и состоит из нескольких частей, отвечающих за впуск, сжатие, сгорание и выпуск.
  • Выходной вал : Этот длинный цилиндрический инструмент построен со смещением относительно центральной линии вала. Каждый из роторов двигателя помещается над выступами выходного вала, чтобы заставить его вращаться. Величина вращения, выполняемая этими лопастями, определяет крутящий момент величиной силы, прикладываемой к ним роторами.

Гордые традиции

Mazda зарекомендовала себя в 1960-х и 1970-х годах как ведущий новатор, когда дело дошло до сложной разработки роторного двигателя.Новаторская традиция Mazda вошла в историю благодаря ряду популярных моделей с роторным двигателем, в том числе Mazda RX-7, которая поступила в продажу еще в 1978 году.

В то время как Mazda прекратила продажу RX-7 еще в 1995 году, нынешние разработчики и инженеры Mazda осознали уникальные возможности роторного двигателя. Радуйтесь возрождению роторного двигателя инженерами Mazda в ближайшие несколько лет!

Как работает роторный двигатель Ванкеля

Ну, вначале первый инженерный подход заключался в создании двигателя, отличного от конструкции поршневого двигателя внутреннего сгорания.И первым, кто построил и запатентовал такой двигатель, был Felix Millet в 1888 году. Милле создал 5-цилиндровый роторный двигатель, встроенный в спицы заднего колеса велосипеда. Его конструкция силового агрегата была позже запущена в производство компанией Darracq в 1900 году.

Ранние типы роторных двигателей имели нечетное количество цилиндров, смещенных по радиусу (обычно 7 или 9 цилиндров, поскольку эта нечетная конфигурация приводила к более плавной работе благодаря поршню). последовательность стрельбы). Начиная с этой конструкции, сначала двигатель имел неподвижный блок цилиндров, который непосредственно вращал коленчатый вал, расположенный в центре, и назывался радиальным двигателем.Теперь с винтом, прикрепленным к вращающемуся коленчатому валу, радиальный двигатель получил широкое применение в авиастроении.

Однако конструкция этого радиального двигателя вызвала проблему с охлаждением, особенно при работе в неподвижном состоянии, поскольку блок цилиндров не получал достаточного воздушного потока. Решение этой проблемы с охлаждением пришло в виде реверсирования роли вращающейся детали из ансамбля, то есть теперь коленчатый вал был прикреплен болтами к шасси, а пропеллер вращался вместе со всем блоком цилиндров.Так родился роторный двигатель . Положительным моментом было то, что охлаждение двигателя было улучшено, но недостатком было то, что самолет стал нестабильным и им было труднее управлять.

К началу 1920-х роторные двигатели (которые находили применение в основном в авиастроении) устарели, и интерес к дальнейшим разработкам двигателей этого типа резко упал. Но для роторного двигателя не все было потеряно, поскольку немецкий инженер Феликс Ванкель изобрел вращающуюся конструкцию в 1957 году, в которой использовался ротор треугольной формы, вращающийся внутри овального корпуса.Поскольку в конструкции не используются поршни, как в поршневом двигателе, роторный двигатель внутреннего сгорания Ванкеля считается разновидностью роторного двигателя без поршня. Исследования в области роторных двигателей действительно начались в 1960-х годах, но только японскому автомобилестроителю Mazda удалось успешно модифицировать его и интегрировать в фирменный стиль бренда, став единственным производителем автомобилей, способным выйти на массовое производство. Итак, как это работает

Роторный двигатель Ванкеля — это двигатель внутреннего сгорания, в котором используется тот же принцип преобразования давления во вращательное движение, но без вибраций и механических напряжений при высоких скоростях вращения поршневого двигателя.Доктор Феликс Ванкель и его коллеги получили конструкцию корпуса двигателя, выполнив следующие шаги: сначала они закрепили внешнее зубчатое колесо на белом листе и сцепили его с более крупным внутренним зубчатым колесом; с соотношением между двумя передачами 2: 3. Затем они прикрепили руку с ручкой к внешней стороне большего зубчатого колеса с внутренними зубьями. При повороте внутреннего зубчатого колеса на малой шестерне ручка образовывала трохоидную кривую в форме кокона.

Двигатель Ванкеля работает в том же 4-тактном цикле, что и поршневой двигатель с возвратно-поступательным движением, при этом центральный ротор последовательно выполняет четыре процесса впуска, сжатия, зажигания (сгорания) и выпуска внутри трохоидной камеры.Таким образом, хотя оба типа двигателей полагаются на давление расширения, создаваемое сгоранием топливно-воздушной смеси, разница между ними возникает из-за того, как они используют его для преобразования

в механическую силу. В роторном двигателе внутреннего сгорания это давление расширения прилагается к боковой поверхности ротора. Из-за треугольной формы ротора внутреннее пространство корпуса всегда будет разделено на три рабочие камеры. Это принципиально отличается от поршневого двигателя, где в каждом цилиндре происходят четыре процесса.Первоначальная конструкция

Ванкеля имела внешнее зубчатое колесо с 20 зубьями, в то время как более крупное внутреннее зубчатое колесо имело 30 зубцов. Из-за этого передаточного числа частота вращения между ротором и валом определяется как 1: 3 . Это означает, что в то время как меньшая шестерня совершает один оборот, большая шестерня с внутренними зубьями вращается три раза. Поскольку эксцентриковый вал , который аналогичен коленчатому валу в поршневом двигателе, соединен с меньшей зубчатой ​​передачей, это означает, что с двигателем, работающим со скоростью 3000 об / мин, ротор будет вращаться только со скоростью 1000 об / мин.Это не только означает, что роторный двигатель внутреннего сгорания работает более плавно, но также позволяет достичь более высокой красной черты.

Рабочий объем роторного двигателя обычно выражается объемом камеры агрегата и количеством роторов (например, 654 см3 x 2). Единичный объем камеры представляет собой разницу между максимальным объемом и минимальным объемом рабочей камеры, в то время как степень сжатия определяется как отношение между максимальным объемом и минимальным объемом.

Мы рекомендуем вам внимательнее изучить схемы и трехмерное анимационное видео Мэтта Риттмана в конце руководства, чтобы лучше визуализировать и понять режим работы двигателя Ванкеля. Плюсы и минусы двигателя Ванкеля
Первое, что в пользу двигателя Ванкеля — это его малый размер и облегченная конструкция . Это может оказаться решающим при разработке легкого автомобиля с высокой выходной мощностью и небольшим объемом двигателя. Это также обеспечивает улучшенную конструкцию защиты от столкновений , больше рабочего пространства для аэродинамики или отсеков для хранения вещей и лучшее распределение веса .

Второй благоприятной чертой роторного двигателя внутреннего сгорания является его плоская кривая крутящего момента во всем диапазоне скоростей. Результаты исследований показали, что при использовании конфигурации с двумя роторами колебания крутящего момента во время работы были на одном уровне с рядным 6-цилиндровым поршневым двигателем, в то время как схема с тремя роторами оказалась более плавной, чем поршневой двигатель V8.

Другими преимуществами роторного двигателя внутреннего сгорания являются простая конструкция, надежность и долговечность .Из-за отсутствия поршней, штоков, механизма приведения в действие клапана, ремня газораспределительного механизма и коромысла двигатель легче построить и требует гораздо меньшего количества деталей. Кроме того, из-за отсутствия этих компонентов двигатель Ванкеля более надежен и долговечен при работе с высокими нагрузками. И помните, когда роторный двигатель работает со скоростью 8000 об / мин, ротор (который составляет большую часть всей совокупности) вращается только на одну треть от этой скорости. Недостатки
двигателя Ванкеля включают несовершенное уплотнение по концам камеры, которое учитывается на утечку между соседними камерами, и несгоревшую топливную смесь.Роторный двигатель внутреннего сгорания также на имеет продолжительность хода на 50% больше, чем у поршневого двигателя. Работа двигателя также допускает увеличение количества окиси углерода и несгоревших углеводородов в потоке выхлопных газов, что делает его очевидным изгоем среди любителей деревьев.

Самым большим недостатком, однако, является его значительный расход топлива . Сравнительные испытания показали, что Mazda RX8 потребляет больше топлива, чем более тяжелый двигатель V8 с рабочим объемом двигателя более чем в четыре раза, но с сопоставимыми характеристиками.Еще одним недостатком является то, что небольшое количество масла попадает в рабочую камеру, и в результате владельцы должны периодически добавлять масло, что увеличивает эксплуатационные расходы. Вклад Mazda в двигатель Ванкеля

Mazda представила первый в мире автомобиль с двухроторным роторным двигателем в мае 1967 года — модель Cosmo Sport / Mazda 110S . Он был оснащен двигателем Ванкеля объемом 491 куб.см, который развивал 110 л.с. при 7000 об / мин. В 1970 году Mazda представила первую автоматическую коробку передач с двигателем Ванкеля, а три года спустя — первый в мире пикап с роторным двигателем.

После внедрения шестипортовой впускной системы для большей экономии топлива и мощности Mazda продолжила разработку роторного двигателя внутреннего сгорания для достижения низких выбросов. Индукционная система с шестью портами имела по три впускных отверстия на камеру ротора и позволяла снизить расход топлива за счет трехступенчатого управления. Еще одним примечательным событием стало внедрение двухступенчатого монолитного катализатора .

Следующая эра в развитии двигателей Ванкеля Mazda ознаменовалась введением турбонагнетателей.В 1982 году Cosmo RE Turbo поступил в продажу как первый в мире автомобиль с роторным двигателем, оснащенный турбонагнетателем. Основываясь на этом достижении, Mazda позже применила турбонаддув с двойной прокруткой, чтобы минимизировать турбо-лаг двигателя.

Однако ключевым нововведением Mazda стала презентация двигателя RENESIS, который означает ГЕНЕЗИС RE (роторный двигатель). RENESIS — это двигатель объемом 654 куб. См x 2, который развивает мощность 250 л.с. при 8500 об / мин и 216 Нм крутящего момента при 5500 об / мин. Помимо плавной работы двигателя и четкого отклика, двигатель RENESIS обеспечивает значительные улучшения с точки зрения топливной экономичности и выбросов выхлопных газов.RENESIS от Mazda получил награды «Международный двигатель года» и «Лучший новый двигатель» в 2003 году. Вдохновленная международным успехом RENESIS, Mazda представила новый двигатель Ванкеля, способный работать как на водороде, так и на бензине. Однако этот водородный двигатель RE не смог вызвать такой же интерес, как бензиновый, возможно, из-за отсутствия водородной инфраструктуры в то время. В мае 2007 года японский производитель автомобилей Mazda отпраздновал 40 лет разработок двигателя Ванкеля.

Роторный двигатель внутреннего сгорания RENESIS следующего поколения уже находится в разработке и появился в концептуальном автомобиле Mazda Taiki. Двигатель следующего поколения обещает больший рабочий объем 1600 куб. См (800 куб. См x 2), что, как ожидается, увеличит крутящий момент на всех оборотах двигателя и увеличит тепловую эффективность. Но, несмотря на прогресс, достигнутый в отношении выбросов выхлопных газов, выходной мощности и уплотнения рабочей камеры, двигатель Ванкеля по-прежнему будет бороться с расходом масла и топлива из-за его особой конструкции функционирования.

Руководство для начинающих: что такое роторный двигатель (и как он работает)?

Роторная и поршневая

ПРОФИ
• Природа двигателя означает, что гораздо меньший рабочий объем может производить значительно большую мощность, чем поршневой двигатель сопоставимого размера — Mazda RX-8 технически имеет объем 1,3 литра, но выдает около 230 л.с.

• Двигатели физически намного меньше, легче и имеют меньше движущихся частей, которые могут выйти из строя.

• Из-за характера двигателя они внутренне сбалансированы — роторы действуют как вращающиеся противовесы, поэтапно компенсирующие друг друга. Это означает, что вибрации меньше, поэтому двигатель работает более плавно и будет раскручиваться до более высоких оборотов (10000 об / мин, конечно, не является чем-то неслыханным) без повреждений.

МИНУСЫ
• Роторные двигатели менее топливосберегающие, чем их эквиваленты с поршневыми двигателями, поскольку они менее эффективны с точки зрения тепла.

• Выбросы низкие из-за частичного совпадения событий впуска и выпуска, и ни одно из них не соответствует действующим нормам.

• Наконечники ротора, также известные как уплотнения вершины, подвергаются огромным нагрузкам и склонны к выходу из строя — это была огромная проблема для старых моделей Wankels, и ее еще предстоит полностью решить в современных вариантах.

• Высокий расход масла из-за необходимости поддерживать внутреннюю смазку роторов и уплотнений.

• Из-за небольшого эксцентриситета вала по сравнению с ходом коленчатого вала роторные двигатели имеют небольшой крутящий момент по сравнению с обычным двигателем на низких оборотах.

Mazda была крупнейшим производителем роторных двигателей и единственным производителем, который использовал их с конца 1970-х годов. General Motors разрабатывала свою собственную более 40 лет назад, но законы о смоге и первое нефтяное эмбарго в 1973 году заставили их отказаться от нее до того, как она была завершена для производства. NSU и Citroen в Европе продавали автомобили в небольших количествах, а Hercules, Norton и Suzuki производили мотоциклы, но никто не производил столько, сколько Mazda. Mazda Cosmo впервые появилась с роторным двигателем в 1965 году, за ним последовали R100, R130, RX-2, RX-3, RX-7, Luce, Rotary Pickup Truck, RX-7 и, наконец, RX-8, выпускавшийся до тех пор, пока 2012 г.

Недавно было проведено исследование производства небольших роторных двигателей для питания генераторной части гибрида из-за их компактных размеров и плавности хода. Считается, что, работая на постоянной скорости для выработки энергии, двигатель Ванкеля может, наконец, решить проблемы с топливной экономичностью и выбросами.

Как работает двигатель Ванкеля? — MechStuff

Больше никаких скучных представлений, давайте начнем и разберемся, как работает двигатель Ванкеля и что это такое!

История: —
Первый двигатель Ванкеля был разработан немецким инженером — Феликс Ванкель .Ванкель получил свой первый патент на двигатель в 1929 году.
Однако конструкция двигателя Ванкеля, используемая сегодня, была разработана Ханнсом Дитером Пашке , который он принял, образуя современный двигатель!

Двигатель Ванкеля: —

Двигатель Ванкеля — это двигатель внутреннего сгорания, в отличие от поршневого цилиндра. В этом двигателе используется эксцентриковая конструкция ротора, которая напрямую преобразует энергию давления газов во вращательное движение. В системе поршень-цилиндр поступательное движение поршня используется для преобразования во вращательное движение коленчатого вала.
По сути, ротор вращается просто в корпусах, выполненных в виде толстой восьмерки .

Части механизма Ванкеля: —

Для этого слайд-шоу требуется JavaScript.

Ротор: — Ротор имеет три выпуклые поверхности, которые действуют как поршень. 3 угла ротора образуют уплотнение снаружи камеры сгорания. Он также имеет внутренние зубья шестерни в центре с одной стороны. Это позволяет ротору вращаться вокруг фиксированного вала.
Корпус: — Корпус эпитрохоидальной формы (примерно овал).Корпус имеет продуманную конструкцию, так как 3 вершины или угла ротора всегда находятся в контакте с корпусом. Впускной и выпускной патрубки расположены в корпусе.
Впускной и выпускной патрубки: — Впускной патрубок позволяет свежей смеси поступать в камеру сгорания, а отработавшие газы выводятся через выпускное / выпускное отверстие.
Свеча зажигания: — Свеча зажигания подает электрический ток в камеру сгорания, которая воспламеняет топливно-воздушную смесь, что приводит к резкому расширению газа.
Выходной вал: — Выходной вал имеет эксцентриковых лепестков , установленных на нем, что означает, что они смещены на относительно оси
осевой линии вала . Ротор не вращается в чистом виде, но нам нужны эти эксцентрические выступы для чистого вращения вала.

Примечание: — Выходной вал — вещь, которую нельзя полностью объяснить словами. Довольно сложно представить его вклад в работу. эта ссылка на видео может помочь вам понять это.

Рабочий: — Анимация двигателя Ванкеля.

Впуск: —
Когда кончик ротора проходит через впускное отверстие, свежая смесь начинает поступать в первую камеру. Камера всасывает свежий воздух, пока вторая вершина не достигнет впускного отверстия и не закроет его. В данный момент свежая топливовоздушная смесь запаяна в первую камеру и отводится на сжигание.

Сжатие: —
Первая камера (между углом 1 и углом 2), содержащая свежий заряд, сжимается из-за формы двигателя к тому времени, когда он достигает свечи зажигания.
При этом новая смесь начинает поступать во вторую камеру (между углом 2 и углом 3).

Четыре такта двигателя с пронумерованными углами.

Сгорание: —
При воспламенении свечи зажигания сильно сжатая смесь взрывоопасно расширяется. Давление расширения толкает ротор вперед. Это происходит до тех пор, пока первый угол не пройдет через выхлопное отверстие.

Выхлоп: —
Когда пиковый угол ИЛИ 1 проходит через выхлопное отверстие, горячие газы сгорания под высоким давлением могут свободно выходить из порта.
По мере того как ротор продолжает двигаться, объем камеры продолжает уменьшаться, вытесняя оставшиеся газы из порта. К тому времени, когда угол 2 закрывает выпускное отверстие, угол 1 проходит мимо впускного отверстия, повторяя цикл.

Пока первая камера выпускает газы, вторая камера (между углом 2 и углом 3) находится под давлением . Одновременно камера 3 (между углом 3 и углом 1) всасывает свежую смесь .
В этом прелесть двигателя — четыре последовательности четырехтактного цикла, которые происходят последовательно в поршневом двигателе, происходят одновременно в двигателе Ванкеля, вырабатывая мощность в непрерывном потоке.

Преимущества: —

  1. Двигатель Ванкеля имеет очень мало подвижных частей; намного меньше, чем 4-тактный поршневой двигатель. Это делает конструкцию двигателя более простой, а двигатель — надежной.
  2. Это примерно 1/3 размера поршневых двигателей , обеспечивающих такую ​​же выходную мощность.
  3. Может развивать более высокие обороты в минуту, чем поршневой двигатель.
  4. Двигатель Ванкеля весит почти 1/3 веса поршневого двигателя , обеспечивая такую ​​же выходную мощность.Это приводит к более высокому соотношению мощности к весу.

Недостатки: —

  1. Поскольку каждая секция имеет разницу температур, расширение материала корпуса в разных регионах разное. Поэтому ротор иногда не может полностью герметизировать камеру в области высоких температур.
  2. Горение происходит медленно, поскольку камера сгорания длинная, тонкая и подвижная. Следовательно, может существовать вероятность того, что свежий заряд разрядится, даже не сгорая.
  3. Поскольку несгоревшее топливо находится в потоке выхлопных газов, требования по выбросам трудно выполнить.

Сопутствующие товары

Малый двигатель — отличная сила | MIT News

Шум, чрезмерная вибрация и относительная неэффективность — это недостатки поршневых двигателей внутреннего сгорания (ДВС), которые используются в современном газонном и садовом оборудовании, таком как воздуходувки и триммеры для газонов.

Но теперь стартап из Массачусетского технологического института LiquidPiston разработал роторный ДВС, который, по его словам, значительно меньше, легче и тише, а также на 20 процентов более экономичен, чем ДВС, используемые во многих подобных устройствах с малым объемом двигателя.

«Если вы думаете о ручных инструментах — например, о цепной пиле или кусторезе — примерно через полчаса вы больше не хотите их использовать, потому что ваша рука кажется, что он вот-вот упадет», — говорит Александр Школьник, доктор философии. ’10, президент LiquidPiston и соавтор двигателя. «В нашем двигателе совсем нет вибрации, и он намного тише. Это должно быть намного приятнее для пользователей ».

Двигатель LiquidPiston объемом 70 кубических сантиметров, X Mini, выдает около 3,5 лошадиных сил при 10 000 об / мин; при весе 4 фунта он также примерно на 30 процентов меньше, чем четырехтактные поршневые ДВС с объемом двигателя 50 кубических сантиметров, которые он намерен заменить.По словам Школьника, в полностью собранном виде X Mini может выдавать около 5 лошадиных сил при 15000 оборотах в минуту и ​​весить 3 фунта.

Двигатель работает по новому высокоэффективному гибридному циклу (HEHC), разработанному Школьником и его отцом-физиком Николаем, который обеспечивает сгорание при постоянном объеме и избыточное расширение для большего извлечения энергии. По словам Школьника, с двумя движущимися частями, ротором и валом, и без тарельчатых клапанов, которые обычно используются в других четырехтактных ДВС для управления подачей топлива, двигатель также имеет пониженные характеристики шума, вибрации и резкости.

Первыми приложениями будут портативные газоны и садовая техника, говорит Школьник. Но двигатель можно масштабировать и модифицировать для других приложений, включая мопеды, дроны, судовое силовое оборудование, робототехнику, расширители диапазона и вспомогательные силовые агрегаты для лодок, самолетов и других транспортных средств. Компания также продемонстрировала концепцию высокоэффективных дизельных версий двигателя, включая 70-сильный X1 и 40-сильный X2, для генераторов и других приложений. Компания надеется в конечном итоге разработать небольшие дизельные версии двигателя X Mini для военных целей.

«Если вы посмотрите на 3-киловаттный военный генератор, это 270-фунтовая горилла, которой нужно пять человек, чтобы передвигаться», — говорит Школьник. «Вы можете себе представить, что если мы сможем превратить его в 15-фунтовое устройство, для них это будет довольно революционно».

Школьник представил доклад о X2 и X Mini 19 ноября на конференции и выставке по технологии малых двигателей 2014 года в Италии.

Обратный двигатель Ванкеля

X Mini — это, по сути, модернизация конструкции и эффективности компактного роторного двигателя Ванкеля, изобретенного в 1950-х годах и используемого сегодня в спортивных автомобилях, лодках и некоторых самолетах.

В машине Ванкеля ротор с закругленным треугольником вращается по эксцентрической орбите внутри овальной камеры, причем каждое вращение производит три такта мощности, где двигатель создает силу. В X Mini овальный ротор вращается внутри модифицированного скругленного треугольного корпуса.

«Мы перевернули все в традиционном роторном двигателе, и теперь мы можем выполнить этот новый термодинамический цикл [HEHC] и решить все проблемы, которые преследовали традиционный двигатель Ванкеля» для небольших двигателей, — говорит Школьник.

В двигателе Ванкеля, например, используется длинная камера сгорания (похожая на тонкий полумесяц), что способствует плохой экономии топлива — поскольку пламя не достигает задних краев камеры и гасится из-за большой площади поверхности камеры. . Камера сгорания X Mini более округлая и толстая, поэтому пламя горит на меньшей площади.

Впуск воздуха, топлива и выпуска газа в X Mini происходит через два отверстия в роторе, которые открываются или закрываются по мере вращения ротора, что устраняет необходимость в клапанах.Асимметричное расположение этих портов немного задерживает процесс выхлопа при расширении. Это позволяет осуществлять процесс сверхрасширения HEHC — из термодинамического цикла Аткинсона, используемого в некоторых гибридных автомобилях, — когда газ расширяется в камере до тех пор, пока давление не исчезнет, ​​что дает двигателю больше времени для извлечения энергии из топлива. Эта конструкция также обеспечивает «горение постоянного объема» HEHC — из термодинамического цикла Отто, используемого в поршневых двигателях с искровым зажиганием — где сжатый газ удерживается в камере в течение длительного периода, позволяя воздуху и топливу смешиваться и полностью воспламеняться перед расширением. что приводит к увеличению давления расширения и повышению эффективности.

«Топливо в двигателе сжигается очень долго, — говорит Школьник. «В большинстве двигателей к тому времени, когда вы сжигаете топливо, вы расширяете газы и теряете эффективность процесса сгорания. Мы продолжаем горение, пока ротор находится наверху камеры, и при этих условиях форсируем горение. Так намного эффективнее.

Кроме того, на X Mini были перемещены уплотнения верхушки, что привело к снижению расхода масла. У Ванкельса уплотнения вершины соединяются с краями треугольного ротора, где они скользят и перемещаются.Смазка их требует подачи в топливовоздушную смесь большого количества масла, которое горит и протекает, что увеличивает выбросы и расход масла. Однако в X Mini эти уплотнения расположены в корпусе треугольной формы, который остается на месте. «Теперь мы можем подавать крошечные количества масла через стационарный корпус, ровно столько масла, которое требуется уплотнению, и при этом вы не сжигаете масло и не теряете его в окружающей среде», — говорит Школьник.

«Дорожная карта» LiquidPiston

Интерес к робототехнике и искусственному интеллекту привел Школьника в Массачусетский технологический институт в 2003 году в качестве аспиранта по электротехнике и информатике.В том же году Николай Школьник подал свой первый патент HEHC, а его сын узнал о конкурсе MIT Entrepreneurship Competition стоимостью 50 тысяч долларов (сейчас 100 тысяч долларов) в классе, посвященном техническому предпринимательству. Они объединились со студентами школы менеджмента MIT Sloan School of Management, чтобы создать бизнес-план и представить двигатель HEHC на конкурсе 2004 года, где они забрали домой приз за второе место в размере 10 000 долларов для запуска LiquidPiston.

Сам конкурс оказался полезным для предпринимателей-отцов и сыновей, у которых на тот момент еще не было опыта стартапов.При составлении подробного бизнес-плана и изучении того, как объяснить свои технологии инвесторам, «он действительно показал нам план действий, и мы были вынуждены много обдумывать проблемы, с которыми нам пришлось столкнуться», — говорит Школьник.

В течение следующих шести лет Школьник помогал своему отцу разработать двигатель LiquidPiston из семейного гаража, используя навыки, которые он отточил в группе Robot Locomotion при Массачусетском технологическом институте под руководством Рассела Тедрейка, доцента электротехники и информатики.«Это было много оптимизации, контроля, моделирования и моделирования», — говорит он. «Все те же методы применимы к проектированию двигателя».

Школьник приписывает большую часть разработки LiquidPiston расширенному сообществу MIT. Во время розыгрыша 50 тысяч долларов венчурный капиталист Билл Фрезза ’76, SM ’78 был наставником команды; его фирма тогда стала одним из первых инвесторов. Члены команды MIT Sloan Брайан Роуган, MBA ’05, Дженнифер Эндрюс Берк, MBA ’05, и Викрам Сани, MBA ’05, провели исследование рынка, написали бизнес-план, работали над развитием бизнеса и представили компанию инвесторам.

Наставники из Venture Mentoring Service (VMS) Массачусетского технологического института, в том числе покойный Дэйв Сталин, основавший VMS, также руководили развитием LiquidPiston, предлагая советы по разработке продуктов, найму и поиску венчурного капитала. (На данный момент компания заработала более 15 миллионов долларов финансирования.)

В 2006 году, проанализировав десятки итераций двигателей, LiquidPiston получила военный грант в размере 70 000 долларов на производство первого прототипа дизельного двигателя. (Сегодня LiquidPiston проанализировала и запатентовала около 60 различных конструкций двигателей, воплощающих HEHC.

В связи с многочисленными отзывами производителей силового оборудования, призывающими к более легким, тихим и безвибрационным двигателям, LiquidPiston недавно перешел на X Mini, который был разработан и выпущен в течение последних шести месяцев. Компания вызвала интерес потенциальных клиентов и ведет переговоры с производителями двигателей, заинтересованных в лицензировании технологии X Mini.

«В дополнение к улучшению существующих приложений для двигателей, — объясняет Школьник, — X Mini может позволить использовать совершенно новые приложения, которые в настоящее время невозможны с текущими двигателями или аккумуляторными технологиями.”

В начале следующего года компания планирует провести конкурс, чтобы узнать у общественности идеи, касающиеся этих новых применений X Mini. «Мы хотим, чтобы творческие соки текли и открылись для более широкого сообщества, чтобы увидеть, есть ли что-нибудь интересное», — говорит Школьник.

Как работает роторный двигатель Ванкеля

Одна из проблем обычного автомобиля двигатель дизайн заключается в том, что поршни двигаться по прямой вверх и вниз в своих цилиндры , производить то, что есть известный как возвратно-поступательное движение .

Внутри двухроторного двигателя Ванкеля

В NSU Ro80 и более современных автомобилях Mazda с двигателями Ванкеля используются сдвоенные роторы. Роторы приводят в движение выходной вал, проходящий через их центр. Этот вал соединен с маховиком для сглаживания импульсов мощности двигателя. Преимущество сдвоенных роторов заключается в том, что, когда они настроены на поворот на 180 ° в противофазе друг с другом, один ротор компенсирует любые вибрации, производимые другим ротором, что обеспечивает исключительно плавную работу двигателя.

И все же опорные колеса требуют другого движения — вращательное движение . К преобразовать возвратно-поступательное движение во вращательное движение, поршни связаны с коленчатый вал так что, когда поршни поднимаются и опускаются, они заставляют коленчатый вал повернуть. Тогда вращательное движение коленчатого вала может передаваться на дорогу. колеса, чтобы вести их.

Двигатель автомобиля был бы намного проще, если бы поршни могли вращаться вместо движение вверх и вниз, потому что создаваемое таким образом вращательное движение может быть передается непосредственно на опорные колеса (хотя передача все равно будет нужный).

Еще одно преимущество такого роторный двигатель было бы что поршни бы всегда двигаться в одном направлении — по кругу. Ни один из двигателей мощность будет потрачена впустую, остановив поршни в конце их Инсульт а также снова ускоряя их в обратном направлении, как это происходит в Поршневой двигатель.

Емкости Ванкеля

Дизайн Двигатель Ванкеля делает его намного более мощным, чем поршневой двигатель такой же мощности.NSU Wankel Spyder с двигателем объемом 498 куб. См, обеспечивающим максимальную скорость почти 100 миль в час, это один из примеров. Еще совсем недавно купе Mazda RX-7 имеет объем двигателя всего 1308 куб. См (654 куб. См на ротор), но имеет аналогичные рабочие характеристики Porsche 924S объемом 2479 куб. Чтобы уравнять мощности двигателей Ванкеля и поршневых двигателей в с точки зрения производительности, мощность двигателя Ванкеля должна быть увеличена на 1.8. Это означает, что двигатель RX-7 объемом 1308 куб. См имеет такую ​​же выходную мощность, что и поршневой двигатель объемом 2354 куб. см.

Разработка

Несмотря на привлекательность идеи, когда-либо применялся только один тип роторного двигателя. успешно применяется в автомобилях. Это двигатель Ванкеля, разработанный Феликсом. Ванкель.

Он начал исследования роторных компрессоры в 1938 году. После Второй мировой войны он объединился с NSU (немецкий производитель автомобилей, позже ставший частью VW Audi) превратить его компрессоры в практичный двигатель внутреннего сгорания .

К 1957 году Ванкель построил экспериментальный роторный двигатель, работавший на испытательный стенд, и в 1964 году этот двигатель был предложен публике в NSU Wankel Spyder.Этот небольшой спортивный автомобиль с задним расположением двигателя имел двигатель Ванкеля объемом 498 куб. мог развивать 50 л.с. и иметь максимальную скорость 95 миль в час (152 км в час).

Spyder так и не завоевал популярность у публики, и автомобиль, который действительно прославил двигатель Ванкеля NSU R080, который был признан автомобилем Год 1968. Он имеет двухроторный двигатель 995c и может развивать скорость до 110 миль в час. (176км в час).

Внутри Ванкеля

Сердце двигателя Ванкеля — трехсторонний поршень, называемый ротором. вращающийся внутри корпус ротора .На каждой стороне корпуса есть торцевая пластина.

Боковые стороны ротора изогнуты на три лопасти, а корпус ротора имеет в форме большой восьмерки, так что при вращении ротора зазор между каждой стороной ротора и корпусом попеременно увеличивается и меньше. Этот постоянно меняющийся разрыв является ключом к горение процесс.

топливо / воздушная смесь поступает в корпус в момент, когда в ловушке объем между стенкой корпуса и одним из лопастей ротора увеличивается.По мере увеличения этого объема создается вакуум , рисунок в топливовоздушная смесь через отверстия в корпусе и на концевой пластине.

По мере вращения ротора этот объем начинает сокращаться, сжимая топливно-воздушная смесь. Затем эта смесь проходит через свеча зажигания , установлен в стенка корпуса. В Искра загорается загорание, чтобы воспламенить смесь, в результате чего она развернуть и вращать ротор вокруг его цикл . На данный момент объем между ротор и корпус увеличиваются, чтобы обеспечить расширение газов.Наконец, объем снова уменьшается, вытесняя отработанные газы через выхлопные отверстия.

Таким образом, ротор совершает тот же четырехтактный цикл, что и поршневой двигатель. двигатель — индукция , сжатие , мощность и выхлоп — но каждый из трех лепестки ротора проходят через этот процесс непрерывно, поэтому есть три силовые удары за каждый оборот ротора.

Через центр ротора проходит выходной вал , к которому ротор связан системой планетарные передачи аналогично автоматическому коробка передач (см. Системы 44 и 45).Зубчатая передача позволяет ротору следовать эксцентричный орбите так, чтобы три конца ротора постоянно касались Корпус.

Когда ротор вращается, он вращает этот вал. Вал несет это вращательное движение к коробка передач и так с опорными катками.

Рабочий цикл роторного двигателя Ванкеля

Индукция

Когда кончик ротора проходит через впускное отверстие, следующая камера начинает увеличиваться в размерах из-за эксцентрической орбиты ротора.Это приводит к засасыванию топливно-воздушной смеси в камеру.

Сжатие

По мере того как ротор продолжает вращаться, камера начинает уменьшаться в размерах, сжимая топливно-воздушную смесь, готовую к воспламенению.

Зажигание

Когда камера проходит над свечами зажигания, они загораются, чтобы воспламенить смесь. Все современные двигатели Ванкеля имеют две свечи зажигания, обеспечивающие равномерное сгорание топливно-воздушной смеси по всей камере.

Выхлоп

Расширение горящих газов заставляет ротор совершать полный цикл, проходя через выхлопное отверстие, где газы вытесняются из камеры. Этот цикл продолжается во всех трех камерах одновременно.

Различия

Конструкция двигателя Ванкеля означает, что он не имеет клапаны — топливо / воздух смесь просто входит и выходит из камеры через отверстия в корпусе ротора и торцевую пластину.Поэтому и качелей нет, распредвал или толкатели.

Это означает, что Ванкель имеет примерно половину количества частей Поршневой двигатель. Он также легче и компактнее. Тем не менее, это все еще нуждается во многих из тех же вспомогательных устройств, что и другие двигатели — стартер , генератор , система охлаждения , карбюратор или же впрыск топлива , масляный насос и так далее. Однажды двигатель установлен со всем этим, он теряет большую часть своего преимущества компактность и меньший вес.

Тем не менее, двигатель Ванкеля в Ro80 получил широкую признательность за его плавность хода и отсутствие вибрации.Отчасти это было из-за неисправности двигателя. с двумя роторами, установленными на одной линии друг с другом, но в отдельных корпусах. Каждый вращались примерно на том же выходном валу, но их время было установлено на 180 ° наружу, так что любой дисбаланс сила произведенные одним ротором, будут аннулированы тем же сил другого ротора, и чтобы они вместе производили более равномерный поворотное движение.

Ограничения Ванкеля

Хотя проблема уплотнения теперь в значительной степени разобрались, он до сих пор не удалось полностью использовать потенциал двигателя Ванкеля для использования в транспортных средствах из-за ограниченного срока службы компонентов двигателя.Еще одна проблема заключается в том, что двигатель обычного поршневого автомобиля хорошо работает в довольно широком диапазоне скоростей и нагрузок, тогда как Двигатель Ванкеля лучше всего работает только в гораздо более узком диапазоне.

Ранние проблемы

После того, как базовая конструкция Ванкеля была определена, вскоре возникнут проблемы. стало очевидным. Один из них — износ уплотнений. Роторы герметизированы со всех сторон, чтобы убедитесь, что газы не просачиваются через наконечники из частей с высокой степенью сжатия корпус к частям с низкой степенью сжатия.Эти уплотнения были подвержены износу и поломка, в результате чего двигатель теряет компрессию и, следовательно, мощность.

На поршневом двигателе это уплотнение частично обеспечивается клапанами и частично за счет поршневые кольца , но уплотнения на двигателе Ванкеля представляли особую проблемы.

Уплотнения наименее эффективны при низких оборотах двигателя, где они должны быть снабжены пружинами, чтобы удерживать их прижатыми к стенке корпуса.

Но при высоких оборотах двигателя комбинация центробежные силы и высокий газ давление плотнее прижмите уплотнения к корпусу.Результирующий трение означало потерю мощности и значительный износ уплотнений, что вскоре сломал.

Ранние Ванкели имели печати, сделанные из углерод , но в более поздних конструкциях были особые чугунные уплотнения, которые оказались более прочными. Для дополнительной защиты внутри корпуса и концевых пластин нанесено износостойкое покрытие.

Вторая серьезная проблема — износ восьмиугольной рабочей поверхности, вызванный «стуком» печатей. Это приводит к гофре на ходу. поверхность и сокращает срок службы двигателя.

Формы камеры

Mazda 13B Роторный двигатель

Схема впуска, двигателя и выхлопа роторного двигателя Mazda 13B. Этот двигатель имеет электронный впрыск топлива с двумя топливными форсунками на ротор. Первичные форсунки работают постоянно, в то время как вторичные форсунки включаются только при повышенных оборотах двигателя или под нагрузкой. Выбросы выхлопных газов сокращаются за счет использования термического реактора для нагрева выходящих газов — тепло подается теплообменником дальше по выхлопной трубе.

Другая проблема с двигателем Ванкеля — это форма горение камера . В типичном поршневом двигателе камера составляет примерно полусферический, что обеспечивает равномерное сгорание топливно-воздушной смеси и постепенно. В двигателе Ванкеля камера сгорания неизбежно длинная. и плоская, форма которой значительно затрудняет оптимальное сгорание.

Частичное решение проблемы камеры сгорания заключалось в соответствовать две искры заглушки расположены на небольшом расстоянии друг от друга.Mazda — чей RX-7 теперь единственный Автомобиль с двигателем Ванкеля, который продается сегодня в Великобритании (см. Ниже) — взял этот принцип за основу. далее, установив две свечи, одна из которых зажигает доли секунды. позже, чем другой. Это расположение требует двух отдельных зажигание системы с двумя катушки .

Отсутствие успеха

Несмотря на мощность и плавность хода Ванкеля, ему пока не удалось завоевать популярность среди подавляющего большинства производителей автомобилей.

Основная причина — высокий расход топлива, вызванный тенденцией топливно-воздушная смесь гореть неравномерно.Неравномерное сгорание в двигателе Ванкеля также создает еще одну проблему — высокий эмиссия уровни частично обгоревшего углеводороды (загрязнение выхлопными газами).

За годы, прошедшие с тех пор, как R080 принес теоретические преимущества Ванкеля двигатель к известности, были различные нефтяные кризисы и продолжающиеся давление со стороны правительств и общественности с целью снижения уровня выбросов выхлопных газов и лучший расход топлива.

Ни одно из этих требований не благоприятствует двигателю Ванкеля, и, кроме того, он означало, что большинству производителей автомобилей пришлось потратить много времени и денег на повышение эффективности существующих двигателей.

Поршневой двигатель

— Energy Education

Поршневой двигатель — это двигатель, в котором используется один или несколько поршней для преобразования давления во вращательное движение. Они используют возвратно-поступательное движение поршней (вверх и вниз) для передачи этой энергии. [1] Существует много различных типов, включая двигатель внутреннего сгорания, который используется в большинстве автомобилей, паровой двигатель, который является одним из типов двигателя внешнего сгорания, и двигатель Стирлинга.Роторный двигатель будет выполнять ту же задачу, что и поршневой двигатель, но совсем другим образом из-за его треугольного ротора.

Как это работает

Все типы имеют один или несколько поршней, которые следуют четырехтактному циклу, показанному на Рисунке 1. Общие конфигурации блока цилиндров включают один ряд цилиндров (рядный), два ряда, сходящихся к одной точке (V-образный двигатель), двойной зигзаг (W-образный двигатель) и два горизонтальных ряда (оппозитный двигатель). [1] Все двигатели, упомянутые выше (внутреннего сгорания, паровые, Стирлинга), используют несколько разные процессы для завершения цикла, поэтому будет рассмотрен общий случай (как показано на рисунке 2).

  1. Впуск: Чтобы начать цикл, топливная смесь вводится внутрь цилиндра через впускной канал, расширяя поршень до нижней части цилиндра.
  2. Компрессия: Затем поршень выталкивается вверх, сжимая топливную смесь и воспламеняя ее через свечу зажигания.
  3. Зажигание: Зажигание толкает поршень вниз, обеспечивая полезную работу двигателя.
  4. Выхлоп: Отработанные химические вещества выводятся через выхлопное отверстие, и цикл повторяется.
  • Поршневой двигатель
  • Рисунок 1: 4-тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа сделана), 4: выхлоп. [2]

  • Рис. 2: Коленчатый вал (красный) преобразует возвратно-поступательное движение поршней (серый), которые часто сочетаются с маховиком (черный). [3]

Четырехтактный цикл — это то, что дает двигателю энергию, но теперь он должен преобразовать эту энергию в энергию вращения для трансмиссии, приводного вала и колес.

Добавить комментарий

Ваш адрес email не будет опубликован.