Кпд двигателя внутреннего сгорания формула: КПД теплового двигателя — урок. Физика, 8 класс.

Содержание

КПД дизельного двигателя

Коэффициент полезного действия (КПД) является величиной, которая в процентном отношении выражает эффективность того или иного механизма (двигателя, системы) касательно преобразования полученной энергии в полезную работу.

Что касается двигателя внутреннего сгорания (ДВС), такой силовой агрегат осуществляет преобразование тепловой энергии. Данная высвобождающаяся энергия является результатом сгорания топлива в цилиндрах двигателя. КПД мотора представляет собой фактически совершенную механическую работу, которая состоит в соотношении полученной поршнем энергии от сгорания топлива и конечной мощности, которая отдается установкой на коленчатом валу ДВС.

Содержание статьи

Почему КПД дизеля выше

Показатель КПД для различных двигателей может сильно отличаться и зависит от ряда факторов. Бензиновые моторы имеют относительно низкий КПД благодаря большому количеству механических и тепловых потерь, которые возникают в процессе работы силового агрегата данного типа.

Вторым фактором выступает трение, возникающее при взаимодействии сопряженных деталей. Большую часть расхода полезной энергии составляет приведение в движение поршней двигателя, а также вращение деталей внутри мотора, которые конструктивно закреплены на подшипниках. Около 60% энергии сгорания бензина расходуется только на обеспечение работы этих узлов.

Дополнительные потери вызывает работа других механизмов, систем и навесного оборудования. Также учитывается процент потерь на сопротивление в момент впуска очередного заряда топлива и воздуха, а далее выпуска отработавших газов из цилиндра ДВС.

Если сравнить дизельную установку и мотор на бензине, дизельный двигатель имеет заметно больший КПД сравнительно с бензиновым агрегатом. Силовые агрегаты на бензине имеют КПД на отметке около 25-30% от общего количества полученной энергии.

Другими словами, из потраченных на работу двигателя 10 литров бензина только 3 литра израсходованы на выполнение полезной работы. Остальная энергия от сгорания топлива разошлась на потери.

Что касается КПД атмосферного дизельного агрегата, то этот показатель составляет около 40%. Установка турбокомпрессора позволяет увеличить отметку до внушительных 50%. Использование современных систем топливного впрыска на дизельных ДВС в сочетании с турбиной позволило добиться КПД около 55%.

Такая разница в производительности конструктивно схожих бензиновых и дизельных ДВС напрямую связана с видом топлива, принципом образования рабочей топливно-воздушной смеси и последующей реализацией воспламенения заряда. Бензиновые агрегаты более оборотистые по сравнению с дизельными, но большие потери связаны с расходами полезной энергии на тепло. Получается, энергия бензина менее эффективно превращается в полноценную механическую работу, а большая доля попросту рассеивается системой охлаждения в атмосферу.

Мощность и крутящий момент

При одинаковом показателе рабочего объёма, мощность атмосферного бензинового мотора выше, но достигается при более высоких оборотах. Двигатель нужно «крутить», потери возрастают, увеличивается расход топлива. Также необходимо упомянуть крутящий момент, под которым в буквальном смысле понимается сила, которая передается от мотора на колеса и движет автомобиль. Бензиновые ДВС выходят на максимум крутящего момента при более высоких оборотах.

Аналогичный атмосферный дизель выходит на пик крутящего момента при низких оборотах, при этом расходует меньше солярки для выполнения полезной работы, что означает более высокий КПД и экономию топлива.

Солярка образует больше тепла по сравнению с бензином, температура сгорания дизтоплива выше, показатель детонационной стойкости более высокий. Получается, у дизельного ДВС произведённая полезная работа на определенном количестве топлива больше.

Энергетическая ценность солярки и бензина

Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.

Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом  становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.

Итоги

Конструкторы постоянно стремятся повысить КПД как дизельного, так и бензинового двигателя. Увеличение количества впускных и выпускных клапанов на один цилиндр, активное применение систем изменения фаз газораспределения, электронное управление топливным впрыском, дроссельной заслонкой и другие решения позволяют существенно повысить коэффициент полезного действия. В большей мере это касается дизельного двигателя.

Благодаря таким особенностям современный дизель способен  полностью сжечь насыщенную углеводородами порцию дизтоплива в цилиндре и выдать большой показатель крутящего момента на низких оборотах. Низкие обороты означают меньшие потери на трение и возникающее в результате трения сопротивление. По этой причине дизельный мотор сегодня является одним из наиболее производительных и экономичных типов ДВС, КПД которого зачастую превышает отметку в 50%.

 

Читайте также

Эффективный КПД двигателя

Автор: Владимир Егоров
Источник: icarbio.ru
28934 1

В настоящее время источниками механической энергии в автомобилях являются в основном тепловые двигатели, в первую очередь двигатели внутреннего сгорания. Преобразование энергии топлива в механическую энергию в них связано со значительными потерями, поэтому необходимо в первую очередь найти пути уменьшения этих потерь и достичь максимальной отдачи энергии, содержащейся в топливе.

Важным показателем является коэффициент полезного действия (КПД) двигателя, показывающий, какое количество энергии топлива преобразуется в механическую работу.

Эффективный КПД
Характеристика двигателя, отражающая степень использования теплоты с учетом всех видов потерь как тепловых, так и механических. Представляет собой отношение полезной механической работы ко всей затраченной теплоте.

По определению выше:

ηe = Ae/Q1,

где Ae – полезная механическая работа; Q1 – затраченная теплота.

Также можно выразить эффективный КПД, используя другие коэффициенты полезного действия двигателя:

ηe = ηi·ηm = ηt·ηg·ηm,

где ηi – индикаторный КПД; ηm – механический КПД; ηt – термический КПД; ηg – относительный КПД.

Например, при работе двигателя внутреннего сгорания 1/3 энергии топлива преобразуется в механическую работу, 1/3 путем охлаждения передается в окружающую среду и 1/3 отводится в виде теплоты, содержащейся в отработавших газах. Любое использование тепловых потерь двух последних видов означает экономию энергии, более рациональное использование мощности двигателя и улучшение теплового, баланса автомобиля.

Так, использование теплоты, поглощенной охлаждающей жидкостью, которую в принципе необходимо отвести от двигателя для отопления кабины или кузова, является типичным примером экономии топлива, необходимого для независимого отопления. Такими же примерами служат обогрев отработавшими газами кузовов грузовых автомобилей, которые перевозят смерзающиеся грузы (руду, уголь, жидкости), использование энергии отработавших газов для привода турбокомпрессора или вспомогательной турбины.

Последнее обновление 02.03.2012
Опубликовано 24.03.2011

Читайте также

  • Трицикл: прошлое, настоящее, будущее

    Почему мы так редко видим на дороге трёхколёсные транспортные средства — трициклы? Для ответа на этот вопрос вспомним историю трицикла, рассмотрим современный период его развития, обсудим его преимущества, недостатки и перспективы в будущем.

Комментарии

Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей

Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей

Подробности
Просмотров: 980

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели.

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2, которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника. Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q1, совершает работу А’ и передаёт холодильнику количество теплоты Q2 < Q1.

Для того чтобы двигатель работал непрерывно, необходимо рабочее тело вернуть в начальное состояние, при котором температура рабочего тела равна Т1. Отсюда следует, что работа двигателя происходит по периодически повторяющимся замкнутым процессам, или, как говорят, по циклу.

Цикл — это ряд процессов, в результате которых система возвращается в начальное состояние.

Коэффициент полезного действия (КПД) теплового двигателя.

Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Второй закон термодинамики может быть сформулирован следующим образом:

Второй закон термодинамики:
невозможно создать вечный двигатель второго рода, который полностью превращал бы теплоту в механическую работу.

Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

А’ = Q1 — |Q2|,         (13.15)

где Q1 — количество теплоты, полученной от нагревателя, a Q2 — количество теплоты, отданной холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы А’, совершаемой двигателем, к количеству теплоты, полученной от нагревателя:

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η < 1.

Максимальное значение КПД тепловых двигателей.

Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, а также определить пути его повышения.

Впервые максимально возможный КПД теплового двигателя вычислил французский инженер и учёный Сади Карно (1796—1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824).

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т1, при этом он получает количество теплоты Q1.

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т2. После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q2, сжимаясь до объёма V4 < V1. Затем сосуд снова теплоизолируют, газ сжимается адиабатно до объёма V1 и возвращается в первоначальное состояние. Для КПД этой машины было получено следующее выражение:

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 — 800 К и Т2 — 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД — около 44% — имеют двигатели Дизеля.

Охрана окружающей среды.

Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский



Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Насыщенный пар — Давление насыщенного пара — Влажность воздуха — Примеры решения задач по теме «Насыщенный пар. Влажность воздуха» — Кристаллические тела — Аморфные тела — Внутренняя энергия — Работа в термодинамике — Примеры решения задач по теме «Внутренняя энергия. Работа» — Количество теплоты. Уравнение теплового баланса — Примеры решения задач по теме: «Количество теплоты. Уравнение теплового баланса» — Первый закон термодинамики — Применение первого закона термодинамики к различным процессам — Примеры решения задач по теме: «Первый закон термодинамики» — Второй закон термодинамики — Статистический характер второго закона термодинамики — Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей — Примеры решения задач по теме: «КПД тепловых двигателей»

КПД теплового двигателя. КПД теплового двигателя

Работу многих видов машин характеризует такой важный показатель, как КПД теплового двигателя. Инженеры с каждым годом стремятся создавать более совершенную технику, которая при меньших затратах топлива давала бы максимальный результат от его использования.

Устройство теплового двигателя

Прежде чем разбираться в том, что такое КПД (коэффициент полезного действия), необходимо понять, как же работает этот механизм. Без знания принципов его действия нельзя выяснить сущность этого показателя. Тепловым двигателем называют устройство, которое совершает работу благодаря использованию внутренней энергии. Любая тепловая машина, превращающая тепловую энергию в механическую, использует тепловое расширение веществ при повышении температуры. В твердотельных двигателях возможно не только изменение объема вещества, но и формы тела. Действие такого двигателя подчинено законам термодинамики.

Принцип функционирования

Для того чтобы понять, как же работает тепловой двигатель, необходимо рассмотреть основы его конструкции. Для функционирования прибора необходимы два тела: горячее (нагреватель) и холодное (холодильник, охладитель). Принцип действия тепловых двигателей (КПД тепловых двигателей) зависит от их вида. Зачастую холодильником выступает конденсатор пара, а нагревателем — любой вид топлива, сгорающий в топке. КПД идеального теплового двигателя находится по такой формуле:

КПД = (Тнагрев. — Тхолод.)/ Тнагрев. х 100%.

При этом КПД реального двигателя никогда не сможет превысить значения, полученного согласно этой формуле. Также этот показатель никогда не превысит вышеупомянутого значения. Чтобы повысить КПД, чаще всего увеличивают температуру нагревателя и уменьшают температуру холодильника. Оба эти процесса будут ограничены реальными условиями работы оборудования.

КПД теплового двигателя (формула)

При функционировании теплового двигателя совершается работа, по мере которой газ начинает терять энергию и охлаждается до некой температуры. Последняя, как правило, на несколько градусов выше окружающей атмосферы. Это температура холодильника. Такое специальное устройство предназначено для охлаждения с последующей конденсацией отработанного пара. Там, где имеются конденсаторы, температура холодильника иногда ниже температуры окружающей среды.

В тепловом двигателе тело при нагревании и расширении не способно отдать всю свою внутреннюю энергию для совершения работы. Какая-то часть теплоты будет передана холодильнику вместе с выхлопными газами или паром. Эта часть тепловой внутренней энергии неизбежно теряется. Рабочее тело при сгорании топлива получает от нагревателя определенное количество теплоты Q1. При этом оно еще совершает работу A, в ходе которой передает холодильнику часть тепловой энергии: Q2<Q1.

КПД характеризует эффективность двигателя в сфере преобразования и передачи энергии. Этот показатель часто измеряется в процентах. Формула КПД:

η*A/Qx100 %, где Q — затраченная энергия, А — полезная работа.

Исходя из закона сохранения энергии, можно сделать вывод, что КПД будет всегда меньше единицы. Другими словами, полезной работы никогда не будет больше, чем на нее затрачено энергии.

КПД двигателя — это отношение полезной работы к энергии, сообщенной нагревателем. Его можно представить в виде такой формулы:

η = (Q1-Q2)/ Q1, где Q1 — теплота, полученная от нагревателя, а Q2 — отданная холодильнику.

Работа теплового двигателя

Работа, совершаемая тепловым двигателем, рассчитывается по такой формуле:

A = |QH| — |QX|, где А — работа, QH — количество теплоты, получаемое от нагревателя, QX — количество теплоты, отдаваемое охладителю.

КПД теплового двигателя (формула):

|QH| — |QX|)/|QH| = 1 — |QX|/|QH|

Он равняется отношению работы, которую совершает двигатель, к количеству полученной теплоты. Часть тепловой энергии при этой передаче теряется.

Двигатель Карно

Максимальное КПД теплового двигателя отмечается у прибора Карно. Это обусловлено тем, что в указанной системе он зависит только лишь от абсолютной температуры нагревателя (Тн) и охладителя (Тх). КПД теплового двигателя, работающего по циклу Карно, определяется по следующей формуле:

(Тн — Тх)/ Тн = — Тх — Тн.

Законы термодинамики позволили высчитать максимальный КПД, который возможен. Впервые этот показатель вычислил французский ученый и инженер Сади Карно. Он придумал тепловую машину, которая функционировала на идеальном газу. Она работает по циклу из 2 изотерм и 2 адиабат. Принцип ее работы довольно прост: к сосуду с газом подводят контакт нагревателя, вследствие чего рабочее тело расширяется изотермически. При этом оно функционирует и получает определенное количество теплоты. После сосуд теплоизолируют. Несмотря на это, газ продолжает расширяться, но уже адиабатно (без теплообмена с окружающей средой). В это время его температура снижается до показателей холодильника. В этот момент газ контактирует с холодильником, вследствие чего отдает ему определенное количество теплоты при изометрическом сжатии. Потом сосуд снова теплоизолируют. При этом газ адиабатно сжимается до первоначального объема и состояния.

Разновидности

В наше время существует много типов тепловых двигателей, которые работают по разным принципам и на различном топливе. У всех у них свой КПД. К ним относятся следующие:

• Двигатель внутреннего сгорания (поршневой), представляющий собой механизм, где часть химической энергии сгорающего топлива переходит в механическую энергию. Такие приборы могут быть газовыми и жидкостными. Различают 2- и 4-тактные двигатели. У них может быть рабочий цикл непрерывного действия. По методу приготовления смеси топлива такие двигатели бывают карбюраторными (с внешним смесеобразованием) и дизельными (с внутренним). По видам преобразователя энергии их разделяют на поршневые, реактивные, турбинные, комбинированные. КПД таких машин не превышает показателя в 0,5.

• Двигатель Стирлинга — прибор, в котором рабочее тело находится в замкнутом пространстве. Он является разновидностью двигателя внешнего сгорания. Принцип его действия основан на периодическом охлаждении/нагреве тела с получением энергии вследствие изменения его объема. Это один из самых эффективных двигателей.

• Турбинный (роторный) двигатель с внешним сгоранием топлива. Такие установки чаще всего встречаются на тепловых электрических станциях.

• Турбинный (роторный) ДВС используется на тепловых электрических станциях в пиковом режиме. Не так сильно распространен, как другие.

• Турбиновинтовой двигатель за счет винта создает некоторую часть тяги. Остальное он получает за счет выхлопных газов. Его конструкция представляет собой роторный двигатель (газовая турбина), на вал которого насаживают воздушный винт.

Другие виды тепловых двигателей

• Ракетные, турбореактивные и реактивные двигатели, которые получают тягу за счет отдачи выхлопных газов.

• Твердотельные двигатели используют в качестве топлива твердое тело. При работе изменяется не его объем, а форма. При эксплуатации оборудования используется предельно малый перепад температуры.

Как можно повысить КПД

Возможно ли повышение КПД теплового двигателя? Ответ нужно искать в термодинамике. Она изучает взаимные превращения разных видов энергии. Установлено, что нельзя всю имеющуюся тепловую энергию преобразовать в электрическую, механическую и т. п. При этом преобразование их в тепловую происходит без каких-либо ограничений. Это возможно из-за того, что природа тепловой энергии основана на неупорядоченном (хаотичном) движении частиц.

Чем сильнее разогревается тело, тем быстрее будут двигаться составляющие его молекулы. Движение частиц станет еще более беспорядочным. Наряду с этим все знают, что порядок можно легко превратить в хаос, который очень трудно упорядочить.

Коэффициент полезного действия реальной тепловой машины формула. Максимальный кпд тепловых машин (теорема Карно)

КПД характеризует эффективность двигателя в сфере преобразования и передачи энергии. Этот показатель часто измеряется в процентах. Формула КПД:

η*A/Qx100 %, где Q — затраченная энергия, А — полезная работа.

Исходя из закона сохранения энергии, можно сделать вывод, что КПД будет всегда меньше единицы. Другими словами, полезной работы никогда не будет больше, чем на нее затрачено энергии.

КПД двигателя — это отношение полезной работы к энергии, сообщенной нагревателем. Его можно представить в виде такой формулы:

η = (Q 1 -Q 2)/ Q 1 , где Q 1 — теплота, полученная от нагревателя, а Q 2 — отданная холодильнику.

Работа теплового двигателя

Работа, совершаемая тепловым двигателем, рассчитывается по такой формуле:

A = |Q H | — |Q X |, где А — работа, Q H — количество теплоты, получаемое от нагревателя, Q X — количество теплоты, отдаваемое охладителю.

|Q H | — |Q X |)/|Q H | = 1 — |Q X |/|Q H |

Он равняется отношению работы, которую совершает двигатель, к количеству полученной теплоты. Часть тепловой энергии при этой передаче теряется.

Двигатель Карно

Максимальное КПД теплового двигателя отмечается у прибора Карно. Это обусловлено тем, что в указанной системе он зависит только лишь от абсолютной температуры нагревателя (Тн) и охладителя (Тх). КПД теплового двигателя, работающего по определяется по следующей формуле:

(Тн — Тх)/ Тн = — Тх — Тн.

Законы термодинамики позволили высчитать максимальный КПД, который возможен. Впервые этот показатель вычислил французский ученый и инженер Сади Карно. Он придумал тепловую машину, которая функционировала на идеальном газу. Она работает по циклу из 2 изотерм и 2 адиабат. Принцип ее работы довольно прост: к сосуду с газом подводят контакт нагревателя, вследствие чего рабочее тело расширяется изотермически. При этом оно функционирует и получает определенное количество теплоты. После сосуд теплоизолируют. Несмотря на это, газ продолжает расширяться, но уже адиабатно (без теплообмена с окружающей средой). В это время его температура снижается до показателей холодильника. В этот момент газ контактирует с холодильником, вследствие чего отдает ему определенное количество теплоты при изометрическом сжатии. Потом сосуд снова теплоизолируют. При этом газ адиабатно сжимается до первоначального объема и состояния.

Разновидности

В наше время существует много типов тепловых двигателей, которые работают по разным принципам и на различном топливе. У всех у них свой КПД. К ним относятся следующие:

Двигатель внутреннего сгорания (поршневой), представляющий собой механизм, где часть химической энергии сгорающего топлива переходит в механическую энергию. Такие приборы могут быть газовыми и жидкостными. Различают 2- и 4-тактные двигатели. У них может быть рабочий цикл непрерывного действия. По методу приготовления смеси топлива такие двигатели бывают карбюраторными (с внешним смесеобразованием) и дизельными (с внутренним). По видам преобразователя энергии их разделяют на поршневые, реактивные, турбинные, комбинированные. КПД таких машин не превышает показателя в 0,5.

Двигатель Стирлинга — прибор, в котором рабочее тело находится в замкнутом пространстве. Он является разновидностью двигателя внешнего сгорания. Принцип его действия основан на периодическом охлаждении/нагреве тела с получением энергии вследствие изменения его объема. Это один из самых эффективных двигателей.

Турбинный (роторный) двигатель с внешним сгоранием топлива. Такие установки чаще всего встречаются на тепловых электрических станциях.

Турбинный (роторный) ДВС используется на тепловых электрических станциях в пиковом режиме. Не так сильно распространен, как другие.

Турбиновинтовой двигатель за счет винта создает некоторую часть тяги. Остальное он получает за счет выхлопных газов. Его конструкция представляет собой роторный двигатель на вал которого насаживают воздушный винт.

Другие виды тепловых двигателей

Ракетные, турбореактивные и которые получают тягу за счет отдачи выхлопных газов.

Твердотельные двигатели используют в качестве топлива твердое тело. При работе изменяется не его объем, а форма. При эксплуатации оборудования используется предельно малый перепад температуры.

Как можно повысить КПД

Возможно ли повышение КПД теплового двигателя? Ответ нужно искать в термодинамике. Она изучает взаимные превращения разных видов энергии. Установлено, что нельзя всю имеющуюся механическую и т. п. При этом преобразование их в тепловую происходит без каких-либо ограничений. Это возможно из-за того, что природа тепловой энергии основана на неупорядоченном (хаотичном) движении частиц.

Чем сильнее разогревается тело, тем быстрее будут двигаться составляющие его молекулы. Движение частиц станет еще более беспорядочным. Наряду с этим все знают, что порядок можно легко превратить в хаос, который очень трудно упорядочить.

И полезные формулы .

Задачи по физике на КПД теплового двигателя

Задача на вычисление КПД теплового двигателя №1

Условие

Вода массой 175 г подогревается на спиртовке. Пока вода нагрелась от t1=15 до t2=75 градусов Цельсия, масса спиртовки уменьшилась с 163 до 157 г Вычислите КПД установки.

Решение

Коэффициент полезного действия можно вычислить как отношение полезной работы и полного количества теплоты, выделенного спиртовкой:

Полезная работа в данном случае – это эквивалент количества теплоты, которое пошло исключительно на нагрев. Его можно вычислить по известной формуле:

Полное количество теплоты вычисляем, зная массу сгоревшего спирта и его удельную теплоту сгорания.

Подставляем значения и вычисляем:

Ответ: 27%

Задача на вычисление КПД теплового двигателя №2

Условие

Старый двигатель совершил работу 220,8 МДж, при этом израсходовав 16 килограмм бензина. Вычислите КПД двигателя.

Решение

Найдем общее количество теплоты, которое произвел двигатель:

Или, умножая на 100, получаем значение КПД в процентах:

Ответ: 30%.

Задача на вычисление КПД теплового двигателя №3

Условие

Тепловая машина работает по циклу Карно, при этом 80% теплоты, полученной от нагревателя, передается холодильнику. За один цикл рабочее тело получает от нагревателя 6,3 Дж теплоты. Найдите работу и КПД цикла.

Решение

КПД идеальной тепловой машины:

По условию:

Вычислим сначала работу, а затем КПД:

Ответ: 20%; 1,26 Дж.

Задача на вычисление КПД теплового двигателя №4

Условие

На диаграмме изображен цикл дизельного двигателя, состоящий из адиабат 1–2 и 3–4, изобары 2–3 и изохоры 4–1. Температуры газа в точках 1, 2, 3, 4 равны T1 , T2 , T3 , T4 соответственно. Найдите КПД цикла.

Решение

Проанализируем цикл, а КПД будем вычислять через подведенное и отведенное количество теплоты. На адиабатах тепло не подводится и не отводится. На изобаре 2 – 3 тепло подводится, объем растет и, соответственно, растет температура. На изохоре 4 – 1 тепло отводится, а давление и температура падают.

Аналогично:

Получим результат:

Ответ: См. выше.

Задача на вычисление КПД теплового двигателя №5

Условие

Тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 2,94 кДж и отдаёт за один цикл охладителю количество теплоты Q2 = 13,4 кДж. Найдите КПД цикла.

Решение

Запишем формулу для КПД:

Ответ: 18%

Вопросы на тему тепловые двигатели

Вопрос 1. Что такое тепловой двигатель?

Ответ. Тепловой двигатель – это машина, которая совершает работу за счет энергии, поступающей к ней в процессе теплопередачи. Основные части теплового двигателя: нагреватель, холодильник и рабочее тело.

Вопрос 2. Приведите примеры тепловых двигателей.

Ответ. Первыми тепловыми двигателями, получившими широкое распространение, были паровые машины. Примерами современного теплового двигателя могут служить:

  • ракетный двигатель;
  • авиационный двигатель;
  • газовая турбина.

Вопрос 3. Может ли КПД двигателя быть равен единице?

Ответ. Нет. КПД всегда меньше единицы (или меньше 100%). Существование двигателя с КПД равным единице противоречит первому началу термодинамики.

КПД реальных двигателей редко превышает 30%.

Вопрос 4. Что такое КПД?

Ответ. КПД (коэффициент полезного действия) – отношение работы, которую совершает двигатель, к количеству теплоты, полученному от нагревателя.

Вопрос 5. Что такое удельная теплота сгорания топлива?

Ответ. Удельная теплота сгорания q – физическая величина, которая показывает, какое количество теплоты выделяется при сгорании топлива массой 1 кг. При решении задач КПД можно определять по мощности двигателя N и сжигаемому за единицу времени количеству топлива.

Задачи и вопросы на цикл Карно

Затрагивая тему тепловых двигателей, невозможно оставить в стороне цикл Карно – пожалуй, самый знаменитый цикл работы тепловой машины в физике. Приведем дополнительно несколько задач и вопросов на цикл Карно с решением.

Цикл (или процесс) Карно – это идеальный круговой цикл, состоящий из двух адиабат и двух изотерм. Назван так в честь французского инженера Сади Карно, который описал данный цикл в своем научном труде «О движущей силе огня и о машинах, способных развивать эту силу» (1894).

Задача на цикл Карно №1

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 73,5 кДж. Температура нагревателя t1 =100° С, температура холодильника t2 = 0° С. Найти КПД цикла, количество теплоты, получаемое машиной за один цикл от нагревателя, и количество теплоты, отдаваемое за один цикл холодильнику.

Решение

Рассчитаем КПД цикла:

С другой стороны, чтобы найти количество теплоты, получаемое машиной, используем соотношение:

Количество теплоты, отданное холодильнику, будет равно разности общего количества теплоты и полезной работы:

Ответ: 0,36; 204,1 кДж; 130,6 кДж.

Задача на цикл Карно №2

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А=2,94 кДж и отдает за один цикл холодильнику количество теплоты Q2=13,4 кДж. Найти КПД цикла.

Решение

Формула для КПД цикла Карно:

Здесь A – совершенная работа, а Q1 – количество теплоты, которое понадобилось, чтобы ее совершить. Количество теплоты, которое идеальная машина отдает холодильнику, равно разности двух этих величин. Зная это, найдем:

Ответ: 17%.

Задача на цикл Карно №3

Условие

Изобразите цикл Карно на диаграмме и опишите его

Решение

Цикл Карно на диаграмме PV выглядит следующим образом:

  • 1-2. Изотермическое расширение, рабочее тело получает от нагревателя количество теплоты q1;
  • 2-3. Адиабатическое расширение, тепло не подводится;
  • 3-4. Изотермическое сжатие, в ходе которого тепло передается холодильнику;
  • 4-1. Адиабатическое сжатие.

Ответ: см. выше.

Вопрос на цикл Карно №1

Сформулируйте первую теорему Карно

Ответ. Первая теорема Карно гласит: КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела.

Вопрос на цикл Карно №2

Может ли коэффициент полезного действия в цикле Карно быть равным 100%?

Ответ. Нет. КПД цикла карно будет равен 100% только в случае, если температура холодильника будет равна абсолютному нулю, а это невозможно.

Если у вас остались вопросы по теме тепловых двигателей и цикла Карно, вы можете смело задавать их в комментариях. А если нужна помощь в решении задач или других примеров и заданий, обращайтесь в

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели .

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя .

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 , которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 , совершает работу А» и передаёт холодильнику количество теплоты Q 2 .

Для того чтобы двигатель работал непрерывно, необходимо рабочее тело вернуть в начальное состояние, при котором температура рабочего тела равна Т 1 . Отсюда следует, что работа двигателя происходит по периодически повторяющимся замкнутым процессам, или, как говорят, по циклу.

Цикл — это ряд процессов, в результате которых система возвращается в начальное состояние.

Коэффициент полезного действия (КПД) теплового двигателя.

Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Второй закон термодинамики может быть сформулирован следующим образом:

Второй закон термодинамики:
невозможно создать вечный двигатель второго рода, который полностью превращал бы теплоту в механическую работу.

Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

А» = Q 1 — |Q 2 | , (13.15)

где Q 1 — количество теплоты, полученной от нагревателя, a Q2 — количество теплоты, отданной холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы А», совершаемой двигателем, к количеству теплоты, полученной от нагревателя:

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η

Максимальное значение КПД тепловых двигателей.

Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , а также определить пути его повышения.

Впервые максимально возможный КПД теплового двигателя вычислил французский инженер и учёный Сади Карно (1796-1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824).

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т 1 , при этом он получает количество теплоты Q 1 .

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т 2 . После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q 2 , сжимаясь до объёма V 4

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 — 800 К и Т 2 — 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД — около 44% — имеют двигатели Дизеля.

Охрана окружающей среды.

Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Класс: 10

Тип урока: Урок изучения нового материала.

Цель урока: Разъяснить принцип действия теплового двигателя.

Задачи урока:

Образовательные: познакомить учащихся с видами тепловых двигателей, развивать умение определять КПД тепловых двигателей, раскрыть роль и значение ТД в современной цивилизации; обобщить и расширить знания учащихся по экологическим проблемам.

Развивающие: развивать внимание и речь, совершенствовать навыки работы с презентацией.

Воспитательные: воспитывать у учащихся чувство ответственности перед последующими поколениями, в связи с чем, рассмотреть вопрос о влиянии тепловых двигателей на окружающую среду.

Оборудование: компьютеры для учащихся, компьютер учителя, мультимедийный проектор, тесты (в Excel), Физика 7-11 Библиотека электронных наглядных пособий. “Кирилл и Мефодий”.

Ход урока

1. Оргмомент

2. Организация внимания учащихся

Тема нашего урока: “Тепловые двигатели”. (Слайд 1)

Сегодня мы вспомним виды тепловых двигателей, рассмотрим условия их эффективной работы, поговорим о проблемах связанных с их массовым применением. (Слайд 2)

3. Актуализация опорных знаний

Прежде чем перейти к изучению нового материала предлагаю проверить как вы к этому готовы.

Фронтальный опрос:

– Дайте формулировку первого закона термодинамики. (Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количество теплоты, переданное системе. U=A+Q)

– Может ли газ нагреться или охладиться без теплообмена с окружающей средой? Как это происходит? (При адиабатических процессах.) (Слайд 3)

– Напишите первый закон термодинамики в следующих случаях: а) теплообмен между телами в калориметре; б) нагрев воды на спиртовке; в) нагрев тела при ударе. (а) А=0 , Q=0, U=0; б) А=0, U= Q; в) Q=0, U=А)

– На рисунке изображен цикл, совершаемый идеальным газом определенной массы. Изобразить этот цикл на графиках р(Т) и Т(р). На каких участках цикла газ выделяет теплоту и на каких – поглощает?

(На участках 3-4 и 2-3 газ выделяет некоторое количество теплоты, а на участках 1-2 и 4-1 теплота поглощается газом.) (Слайд 4)

4. Изучение нового материала

Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу. (Слайд 5)

Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Тепловой двигатель – устройство, превращающее внутреннею энергию топлива в механическую энергию. (Слайд 6)

Рассмотрим устройство и принцип работы теплового двигателя. Тепловая машина работает циклично.

Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника. (Слайд 7)

КПД замкнутого цикла (Слайд 8)

Q 1 – количество теплоты полученное от нагревания Q 1 >Q 2

Q 2 – количество теплоты отданное холодильнику Q 2

A / = Q 1 – |Q 2 | – работа совершаемая двигателем за цикл?

Цикл C. Карно (Слайд 9)

T 1 – температура нагревания.

Т 2 – температура холодильника.

На всех основных видах современного транспорта преимущественно используются тепловые двигатели. На железнодорожном транспорте до середины XX в. основным двигателем была паровая машина. Теперь же главным образом используют тепловозы с дизельными установками и электровозы. На водном транспорте также использовались вначале паровые двигатели, сейчас используются как двигатели внутреннего сгорания, так и мощные турбины для крупных судов.

Наибольшее значение имеет использование тепловых двигателей (в основном мощных паровых турбин) на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Около 80 % всей электроэнергии в нашей стране вырабатывается на тепловых электростанциях.

Тепловые двигатели (паровые турбины) устанавливают также на атомных электростанциях.Газовые турбины широко используются в ракетах, в железнодорожном и автомобильном транспорте.

На автомобилях применяют поршневые двигатели внутреннего сгорания с внешним образованием горючей смеси (карбюраторные двигатели) и двигатели с образованием горючей смеси непосредственно внутри цилиндров (дизели).

В авиации на легких самолетах устанавливают поршневые двигатели, а на огромных лайнерах – турбовинтовые и реактивные двигатели, которые также относятся к тепловым двигателям. Реактивные двигатели применяются и на космических ракетах. (Слайд 10)

(Показ видеофрагментов работы турбореактивного двигателя.)

Рассмотрим более подробно работу двигателя внутреннего сгорания. Просмотр видеофрагмента. (Слайд 11)

Работа четырехтактного ДВС.
1 такт: впуск.
2 такт: сжатие.
3 такт: рабочий ход.
4 такт: выпуск.
Устройство: цилиндр, поршень, коленчатый вал, 2 клапана(впуск и выпуск), свеча.
Мертвые точки – крайнее положение поршня.
Сравним эксплуатационные характеристики тепловых двигателей.

  • Паровой двигатель – 8%
  • Паровая турбина – 40%
  • Газовая турбина – 25-30%
  • Двигатель внутреннего сгорания – 18-24%
  • Дизельный двигатель – 40– 44%
  • Реактивный двигатель – 25% (Слайд 112)

Тепловые двигатели и охрана окружающей среды (Слайд 13)

Неуклонный рост энергетических мощностей – все большее распространение укрощенного огня – приводит к тому, что количество выделяемой теплоты становится сопоставимым с другими компонентами теплового баланса в атмосфере. Это не может не приводить к повышению средней температуры на Земле. Повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана. Но этим не исчерпываются негативные последствия применения тепловых двигателей. Растет выброс в атмосферу микроскопических частиц – сажи, пепла, измельченного топлива, что приводит к увеличению “парникового эффекта”, обусловленного повышением концентрации углекислого газа в течение длительного промежутка времени. Это приводит к повышению температуры атмосферы.

Выбрасываемые в атмосферу токсические продукты горения, продукты неполного сгорания органического топлива – оказывают вредное воздействие на флору и фауну. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена.

Все это ставит ряд серьезных проблем перед обществом. (Слайд 14)

Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях, а также увеличения эффективности использования энергии, экономии ее на производстве и в быту.

Альтернативные двигатели:

  • 1. Электрические
  • 2. Двигатели, работающие на энергии солнца и ветра (Слайд 15)

Пути решения экологических проблем:

    Использование альтернативного топлива.

    Использование альтернативных двигателей.

    Оздоровление окружающей среды.

    Воспитание экологической культуры. (Слайд 16)

5. Закрепление материала

Всем вам предстоит всего лишь через год сдавать единый государственный экзамен. Предлагаю вам решить несколько задач из части А демоверсии по физике за 2009 год. Задание вы найдете на рабочих столах ваших компьютеров.

6. Подведение итогов урока

С момента, когда была построена первая паровая машина, до настоящего времени прошло более 240 лет. За это время тепловые машины сильно изменили содержание жизнь человека. Именно применение этих машин позволило человечеству шагнуть в космос, раскрыть тайны морских глубин.

Выставляет оценки за работу на уроке.

7. Домашнее задание:

§ 82 (Мякишев Г.Я.), упр. 15 (11, 12) (Слайд 17)

8. Рефлексия

Прежде чем покинуть класс просьба заполнить таблицу.

Что такое эффективность. Разбираемся, что такое КПД

КПД, по своему определению, это отношение полученной энергии к затраченной. Если двигатель сжигает бензин и только треть образовавшегося тепла превращается в энергию движения автомобиля, то КПД равен одной трети или (округляя до целых) 33%. Если лампочка дает световой энергии в пятьдесят раз меньше потребляемой электрической, ее КПД равен 1/50 или 2%. Однако тут сразу возникает вопрос: а если лампочка продается как инфракрасный обогреватель? После того как продажа ламп накаливания была запрещена, точно такие же по конструкции устройства стали продаваться как «инфракрасные обогреватели», поскольку именно в тепло преобразуется свыше 95% электроэнергии.

(Бес)полезное тепло

Обычно тепло, выделяющееся при работе чего-либо, записывают в потери. Но это далеко не бесспорно. Электростанция, например, превращает в электроэнергию примерно треть выделяющегося при сгорании газа или угля тепла, однако еще часть энергии может при этом пойти на нагрев воды. Если горячее водоснабжение и теплые батареи тоже записать в полезные результаты работы ТЭЦ, то КПД вырастет на 10-15%.

Схожим примером может служить автомобильная «печка»: она передает в салон часть тепла, образующегося при работе двигателя. Это тепло может быть полезным и необходимым, а может рассматриваться как потери: по этой причине оно обычно не фигурирует в расчетах КПД автомобильного мотора.

Инженер осматривает паровую турбину. Фото Christian Kuhna / Wikimedia, с разрешения производителя — Siemens.

Особняком стоят такие устройства, как тепловые насосы. Их КПД, если считать его по соотношению выданного тепла и затраченного электричества, больше 100%, однако это не опровергает основы термодинамики. Тепловой насос перекачивает тепло от менее нагретого тела к более нагретому и затрачивает на это энергию, так как без затрат энергии подобное перераспределение теплоты запрещено той же термодинамикой. Если тепловой насос берет из розетки киловатт, а выдает пять киловатт тепла, то четыре киловатта будут взяты из воздуха, воды или грунта вне дома. Окружающая среда в том месте, откуда устройство черпает тепло, остынет, а дом прогреется. Но потом эта теплота вместе с потраченной насосом энергией все равно рассеется в пространстве.

Внешний контур теплового насоса: через эти пластиковые трубы прокачивается жидкость, забирающая тепло из толщи воды в отапливаемое здание. Mark Johnson / Wikimedia

Много или эффективно?

Некоторые устройства имеют очень высокий КПД, но при этом — неподходящую мощность.

Электрические моторы тем эффективнее, чем они больше, однако поставить электровозный двигатель в детскую игрушку физически невозможно и экономически бессмысленно. Поэтому КПД двигателей в локомотиве превышает 95%, а в маленькой машинке на радиоуправлении — от силы 80%. Причем в случае с электрическим двигателем его эффективность зависит так же от нагрузки: недогруженный или перегруженный мотор работает с меньшим КПД. Правильный подбор оборудования может значить даже больше, чем просто выбор устройства с максимальным заявленным КПД.

Самый мощный серийный локомотив, шведский IORE. Второе место удерживает советский электровоз ВЛ-85. Kabelleger / Wikimedia

Если электрические моторы выпускаются для самых разных целей, от вибраторов в телефонах до электровозов, то вот ионный двигатель имеет гораздо меньшую нишу. Ионные двигатели эффективны, экономичны, долговечны (работают без выключения годами), но включаются только в вакууме и дают очень малую тягу. Они идеально подходят для отправки в дальний космос научных аппаратов, которые могут лететь к цели несколько лет и для которых экономия топлива важнее затрат времени.

Электрические моторы, кстати, потребляют почти половину всей вырабатываемой человечеством электроэнергии, так что даже разница в одну сотую процента в мировом масштабе может означать необходимость построить еще один ядерный реактор или еще один энергоблок ТЭЦ.

Эффективно или дешево?

Энергетическая эффективность далеко не всегда тождественна экономической. Наглядный пример — светодиодные лампы, которые до недавнего времени проигрывали лампам накаливания и флуоресцентным «энергосберегайкам». Сложность изготовления белых светодиодов, дороговизна сырья и, с другой стороны, простота лампы накаливания заставляли выбирать менее эффективные, но зато дешевые источники света.

Кстати, за изобретение синего светодиода, без которого бы нельзя было сделать яркую белую лампу, японские исследователи получили в 2014 году Нобелевскую премию. Это не первая премия, вручаемая за вклад в развитие освещения: в 1912 году наградили Нильса Далена, изобретателя, который усовершенствовал ацетиленовые горелки для маяков.

Синие светодиоды нужны для получения белого света в сочетании с красными и зелеными. Эти два цвета научились получать в достаточно ярких светодиодах намного раньше; синие долгое время оставались слишком тусклыми и дорогими для массового применения

Другой пример эффективных, но очень дорогих устройств — солнечные батареи на основе арсенида галлия (полупроводник с формулой GaAs). Их КПД достигает почти 30%, что в полтора-два раза выше используемых на Земле батарей на основе куда более распространенного кремния. Высокая эффективность оправдывает себя только в космосе, куда доставка одного килограмма груза может стоить почти как килограмм золота. Тогда экономия на массе батареи будет оправдана.

КПД линий электропередач можно поднять за счет замены меди на лучше проводящее ток серебро, однако серебряные кабели слишком дороги и потому используются разве что в единичных случаях. А вот к идее построить сверхпроводящие ЛЭП из дорогой и требующей охлаждения жидким азотом редкоземельной керамики в последние годы несколько раз обращались на практике. В частности, такой кабель уже проложен и подключен в германском городе Эссене. Он рассчитан на 40 мегаватт электрической мощности при напряжении в десять киловольт. Кроме того что потери на нагрев сведены к нулю (однако взамен нужно питать криогенные установки), такой кабель намного компактнее обычного и за счет этого можно сэкономить на покупке дорогой земли в центре города или отказаться от прокладки дополнительных туннелей.

Не по общим правилам

Из школьного курса многие помнят, что КПД не может превышать 100% и что он тем выше, чем больше разница температур между холодильником и нагревателем. Однако это верно лишь для так называемых тепловых двигателей: паровая машина, двигатель внутреннего сгорания, реактивные и ракетные двигатели, газовые и паровые турбины.

Электродвигатели и все электрические устройства этому правилу не подчиняются, поскольку они не тепловые машины. Для них верно только то, что КПД не может превышать ста процентов, а частные ограничения в каждом случае определяются по-разному.

В случае с солнечной батареей потери определяются как квантовыми эффектами при поглощении фотонов, так и потерями на отражение света от поверхности батареи и на поглощение в фокусирующих зеркалах. Проведенные расчеты показали, что выйти за 90% солнечная батарея не может в принципе, а на практике достижимы значения около 60-70%, да и те при весьма сложной структуре фотоячеек.

Великолепным КПД обладают топливные элементы. В эти устройства поступают некие вещества, которые вступают в химическую реакцию друг с другом и дают электрический ток. Этот процесс опять-таки не является циклом тепловой машины, поэтому КПД получается достаточно высоким, порядка 60%, в то время как дизель или бензиновый двигатель не выходят обычно за 50%.

Именно топливные элементы стояли на летавших к Луне космических кораблях «Аполло», и они могут работать, например, на водороде и кислороде. Их недостаток заключается только в том, что водород должен быть достаточно чистым и к тому же его надо где-то хранить и как-то передавать от завода к потребителям. Технологии, позволяющие заменить водородом обычный метан, пока что не доведены до массового использования. На водороде и топливных элементах работают лишь экспериментальные автомобили и некоторое количество подводных лодок.

Плазменные двигатели серии СПД. Их делает ОКБ «Факел», и они используются для удержания спутников на заданной орбите. Тяга создается за счет потока ионов, которые возникают после ионизации инертного газа электрическим разрядом. КПД этих двигателей достигает 60 процентов

Ионные и плазменные двигатели уже существуют, но тоже работают лишь в вакууме. Кроме того, их тяга слишком мала и на порядки ниже веса самого устройства — с Земли они не взлетели бы даже при отсутствии атмосферы. Зато во время межпланетных полетов длительностью в многие месяцы и даже годы слабая тяга компенсируется экономичностью и надежностью.

 Алексей Тимошенко

Коэффициент полезного действия. Формула, определение. КПД двигателя внутреннего сгорания – познаем эффективность в сравнении

Коэффициент полезного действия (КПД) — термин, которые можно применить, пожалуй, к каждой системе и устройству. Даже у человека есть КПД, правда, наверно, пока не существует объективной формулы для его нахождения. В этой статье расскажем подробно, что такое КПД и как его можно рассчитать для различных систем.

КПД-определение

КПД — это показатель, характеризующий эффективность той или иной системы в отношении отдачи или преобразования энергии. КПД — безмерная величина и представляется либо числовым значением в диапазоне от 0 до 1, либо в процентах.

Общая формула

КПД обозначается символом Ƞ.

Общая математическая формула нахождения КПД записывается следующим образом:

Ƞ=А/Q, где А — полезная энергия/работа, выполненная системой, а Q — энергия, потребляемая этой системой для организации процесса получения полезного выхода.

Коэффициент полезного действия, к сожалению, всегда меньше единицы или равен ей, поскольку, согласно закону сохранения энергии, мы не можем получить работы больше, чем потрачено энергии. Кроме того, КПД, на самом деле, крайне редко равняется единице, так как полезная работа всегда сопровождается наличием потерь, например, на нагрев механизма.

КПД теплового двигателя

Тепловой двигатель — это устройство, превращающее тепловую энергию в механическую. В тепловом двигателе работа определяется разностью количества теплоты, полученного от нагревателя, и количества теплоты, отданной охладителю, а потому КПД определяется по формуле:

  • Ƞ=Qн-Qх/Qн, где Qн — количество теплоты, полученное от нагревателя, а Qх — количество теплоты, отданное охладителю.

Считается, что высочайший КПД обеспечивают двигатели, работающие по циклу Карно. В данном случае КПД определяется по формуле:

  • Ƞ=T1-T2/T1, где Т1 — температура горячего источника, T2 — температура холодного источника.

КПД электрического двигателя

Электрический двигатель — это устройство, которое преобразует электрическую энергию в механическую, так что КПД в данном случае — это коэффициент эффективности устройства в отношении преобразования электрической энергии в механическую. Формула нахождения КПД электрического двигателя выглядит так:

  • Ƞ=P2/P1, где P1 — подведенная электрическая мощность, P2 — полезная механическая мощность, выработанная двигателем.

Электрическая мощность находится как произведение тока и напряжения системы (P=UI), а механическая — как отношение работы к единице времени (P=A/t)

КПД трансформатора

Трансформатор — это устройство, которое преобразует переменный ток одного напряжения в переменный ток другого напряжения, сохраняя частоту. Кроме того, трансформаторы также могут преобразовывать переменный ток в постоянный.

Коэффициент полезного действия трансформатора находится по формуле:

  • Ƞ=1/1+(P0+PL*n2)/(P2*n), где P0 — потери режима холостого хода, PL — нагрузочные потери, P2 — активная мощность, отдаваемая нагрузке, n — относительная степень нагружения.

КПД или не КПД?

Стоит заметить, что помимо КПД существует еще ряд показателей, которые характеризуют эффективность энергетических процессов, и иногда мы можем встретить описания типа — КПД порядка 130%, однако в данном случае нужно понимать, что термин применен не совсем корректно, и, вероятнее всего, автор или производитель понимает под данной аббревиатурой несколько иную характеристику.

К примеру, тепловые насосы отличаются тем, что они могут отдавать больше теплоты, чем расходуют. Так, холодильная машина может отвести от охлаждаемого объекта больше теплоты, чем затрачено в энергетическом эквиваленте на организацию отвода. Показатель эффективности холодильной машины называется холодильным коэффициентом, обозначается буквой Ɛ и определяется по формуле: Ɛ=Qx/A, где Qx — тепло, отводимое от холодного конца, A — работа, затраченная на процесс отвода. Однако иногда холодильный коэффициент называют и КПД холодильной машины.

Интересно также, что КПД котлов, работающих на органическом топливе, рассчитывается обычно по низшей теплоте сгорания, при этом он может получиться больше единицы. Тем не менее, его все равно традиционно называют КПД. Можно определять КПД котла по высшей теплоте сгорания, и тогда он всегда будет меньше единицы, однако в данном случае неудобно будет сравнивать показатели котлов с данными других установок.

Общие положения

Коэффициент полезного действия определяется как отношение полезной, или отдаваемой, мощности P 2 к потребляемой мощности P 1:

Современные электрические машины имеют высокий коэффициент полезного действия (к. п. д.). Так, у машин постоянного тока мощностью 10 кВт к. п. д. составляет 83 – 87%, мощностью 100 кВт – 88 – 93% и мощностью 1000 кВт – 92 – 96%. Лишь малые машины имеют относительно низкие к. п. д.; например, у двигателя постоянного тока мощностью 10 Вт к. п. д. 30 – 40%.

Кривая к. п. д. электрической машины η = f (P 2) сначала быстро растет с увеличением нагрузки, затем к. п. д. достигает максимального значения (обычно при нагрузке, близкой к номинальной) и при больших нагрузках уменьшается (рисунок 1). Последнее объясняется тем, что отдельные виды потерь (электрические I а 2 r а и добавочные) растут быстрее, чем полезная мощность.

Прямой и косвенный методы определения коэффициента полезного действия

Прямой метод определения к. п. д. по экспериментальным значениям P 1 и P 2 согласно формуле (1) может дать существенную неточность, поскольку, во-первых, P 1 и P 2 являются близкими по значению и, во-вторых, их экспериментальное определение связано с погрешностями. Наибольшие трудности и погрешности вызывает измерение механической мощности.

Если, например, истинные значения мощности P 1 = 1000 кВт и P 2 = 950 кВт могут быть определены с точностью 2%, то вместо истинного значения к. п. д.

η = 950/1000 = 0,95

можно получить

Поэтому ГОСТ 25941-83, «Машины электрические вращающиеся. Методы определения потерь и коэффициента полезного действия», предписывает для машин с η% ≥ 85% косвенный метод определения к. п. д., при котором по экспериментальным данным определяется сумма потерь p Σ .

Подставив в формулу (1) P 2 = P 1 — p Σ , получим

Применив здесь подстановку P 1 = P 2 + p Σ , получим другой вид формулы:

(4)

Так как более удобно и точно можно измерять электрические мощности (для двигателей P 1 и для генераторов P 2), то для двигателей более подходящей является формула (3) и для генераторов формула (4). Методы экспериментального определения отдельных потерь и суммы потерь p Σ описываются в стандартах на электрические машины и в руководствах по испытанию и исследованию электрических машин. Если даже p Σ определяется со значительно меньшей точностью, чем P 1 или P 2 , при использовании вместо выражения (1) формул (3) и (4) получаются все же значительно более точные результаты.

Условия максимума коэффициента полезного действия

Различные виды потерь различным образом зависят от нагрузки. Обычно можно считать, что одни виды потерь остаются постоянными при изменении нагрузки, а другие являются переменными. Например, если генератор постоянного тока работает с постоянной скоростью вращения и постоянным потоком возбуждения, то механические и магнитные потери являются также постоянными. Наоборот, электрические потери в обмотках якоря, добавочных полюсов и компенсационной изменяются пропорционально I а ², а в щеточных контактах – пропорционально I а. Напряжение генератора при этом также приблизительно постоянно, и поэтому с определенной степенью точности P 2 ∼ I а.

Таким образом, в общем, несколько идеализированном случае можно положить, что

где p 0 – постоянные потери, не зависящие от нагрузки; p 1 – значение потерь, зависящих от первой степени k нг при номинальной нагрузке; p 2 – значение потерь, зависящих от квадрата k нг, при номинальной нагрузке.

Подставим P 2 из (5) и p Σ из (7) в формулу к. п. д.

Установим, при каком значении k нг к. п. д. достигает максимального значения, для чего определим производную d η/dk нг по формуле (8) и приравняем ее к нулю:

Это уравнение удовлетворяется, когда его знаменатель равен бесконечности, т. е. при k нг = ∞. Этот случай не представляет интереса. Поэтому необходимо положить равным нулю числитель. При этом получим

Таким образом, к. п. д. будет максимальным при такой нагрузке, при которой переменные потери k нг ² × p 2 , зависящие от квадрата нагрузки, становятся равными постоянным потерям p 0 .

Значение коэффициента нагрузки при максимуме к. п. д., согласно формуле (9),

Если машина проектируется для заданного значения η макс, то, поскольку потери k нг × p 1 обычно относительно малы, можно считать, что

p 0 + p 2 ≈ p Σ = const.

Изменяя при этом соотношение потерь p 0 и p 2 , можно достичь максимального значения к. п. д. при различных нагрузках. Если машина работает большей частью при нагрузках, близких к номинальной, то выгодно, чтобы значение k нг [смотрите формулу (10)] было близко к единице. Если машина работает в основном при малых нагрузках, то выгодно, чтобы значение k нг [смотрите формулу (10)] было соответственно меньше.

В реальной действительности работа, совершаемая при помощи какого — либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу — $A_{poln}$. При этом имеем:

Определение

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $\eta $, тогда:

\[\eta =\frac{A_p}{A_{poln}}\ \left(2\right).\]

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\ \left(2\right).\]

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия — это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

КПД при передаче энергии

Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):

\[\eta =\frac{A_p}{Q}\cdot 100\%\ \left(5\right).\]

Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:

\[\eta =\frac{Q_n-Q_{ch}}{Q_n}\left(6\right),\]

где $Q_n$ — количество теплоты, полученное от нагревателя; $Q_{ch}$ — количество теплоты переданное холодильнику.

КПД идеальной тепловой машины, которая работает по циклу Карно равно:

\[\eta =\frac{T_n-T_{ch}}{T_n}\left(7\right),\]

где $T_n$ — температура нагревателя; $T_{ch}$ — температура холодильника.

Примеры задач на коэффициент полезного действия

Пример 1

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $\Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана?\textit{}

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

Воспользуемся определением коэффициента полезного действия для его нахождения:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\left(1.3\right).\]

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

\[\eta =\frac{mgh}{N\Delta t}\cdot 100\%.\]

Ответ. $\eta =\frac{mgh}{N\Delta t}\cdot 100\%$

Пример 2

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $\eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

\[\eta =\frac{A_p}{Q}\left(2.1\right).\]

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$. Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

Газ совершает полезную работу, которую равна:

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_{34}$). В результате имеем:

Преобразуем формулу (2.1) учитывая результаты (2.2) — (2.4):

\[\eta =\frac{A_{12}+A_{34}}{A_{12}}\to A_{12}\eta =A_{12}+A_{34}\to A_{34}=(\eta -1)A_{12}\left(2.4\right).\]

Так как по условию $A_{12}=A_0,\ $окончательно получаем:

Ответ. $A_{34}=\left(\eta -1\right)A_0$

Работа, совершаемая двигателем, равна:

Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД ≤ 5 %) и поиски путей их усовершенствования.

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

На рисунке изображены термодинамические процес-сы цикла. В процессе изотермического расширения (1-2) при температуре T 1 , работа совершается за счет измене-ния внутренней энергии нагревателя, т. е. за счет подве-дения к газу количества теплоты Q :

A 12 = Q 1 ,

Охлаждение газа перед сжатием (3-4) происходит при адиабатном расширении (2-3). Изменение внутренней энергии ΔU 23 при адиабатном процессе (Q = 0 ) полностью преобразуется в механическую работу:

A 23 = -ΔU 23 ,

Температура газа в результате адиабатического рас-ширения (2-3) понижается до температуры холодильни-ка T 2 T 1 . В процессе (3-4) газ изотермически сжимает-ся, передавая холодильнику количество теплоты Q 2 :

A 34 = Q 2 ,

Цикл завершается процессом адиабатического сжатия (4-1), при котором газ нагревается до температуры Т 1 .

Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

.

Суть формулы выражена в доказанной С . Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

Сегодня мы расскажем, что такое КПД (коэффициент полезного действия), как его вычислять, и где это понятие применяется.

Человек и механизм

Что объединяет стиральную машинку и консервный завод? Желание человека снять с себя необходимость делать все самостоятельно. До изобретения парового двигателя в распоряжении людей были только их мускулы. Они все делали сами: пахали, сеяли, готовили, добывали рыбу, ткали лен. Чтобы обеспечить выживание долгой зимой, каждый член крестьянской семьи работал светлое время суток с двух лет до самой смерти. Самые маленькие дети приглядывали за животными и были на подмоге (принеси, скажи, позови, отведи) у взрослых. Девочку впервые сажали за прялку в пять лет! Даже глубокие старики резали ложки и а самые пожилые и немощные бабушки сидели за ткацкими станками и прялками, если позволяло зрение. Им некогда было задумываться над тем, что такое звезды и почему они светят. Люди уставали: каждый день надо было идти и работать, невзирая на состояние здоровья, боль и моральный настрой. Естественно, человек хотел обрести помощников, которые хоть чуть-чуть разгрузили бы его натруженные плечи.

Смешное и странное

Самыми передовыми технологиями в те времена были лошадь и мельничное колесо. Но они делали всего лишь в два-три раза больше работы, чем человек. Но вот первые изобретатели начали придумывать приспособления, которые выглядели очень странно. В фильме «История вечной любви» Леонардо да Винчи приделал к ногам маленькие лодочки, чтобы ходить по воде. Это привело к нескольким смешным казусам, когда ученый плюхнулся в озеро прямо в одежде. Хотя этот эпизод всего лишь выдумка сценариста, наверняка подобные изобретения так и выглядели — комично и забавно.

Век XIX: железо и уголь

Но в середине XIX века все изменилось. Ученые осознали силу давления расширяющегося пара. Самыми главными товарами того времени стали железо для производства котлов и уголь для нагревания воды в них. Ученым того времени надо было понять, что такое КПД в физике пара и газа, и как его повысить.

Формула для коэффициента в общем случае такая:

Работа и тепло

Коэффициент полезного действия (сокращенно КПД) — это безразмерная величина. Она определяется в процентах и вычисляется как соотношение затраченной энергии к полезной работе. Последний термин часто используют мамы нерадивых подростков, когда принуждают их делать что-то по дому. Но на самом деле это реальный результат затраченных усилий. То есть если КПД машины 20%, то она только одну пятую полученной энергии превращает в действие. Теперь при покупке автомобиля у читателя не должно возникнуть вопроса, что такое КПД двигателя.

Если коэффициент вычисляется в процентах, то формула такая:

η — КПД, A — полезная работа, Q — затраченная энергия.

Потери и реальность

Наверняка все эти рассуждения вызывают недоумение. Почему бы не изобрести машину, которая может использовать больше энергии топлива? Увы, реальный мир не таков. В школе дети решают задачи, в которых нет трения, все системы замкнуты, а излучение строго монохроматическое. Настоящие инженеры на заводах-производителях вынуждены учитывать присутствие всех этих факторов. Рассмотрим, например, что такое и из чего этот коэффициент складывается.

Формула в данном случае выглядит так:

η=(Q 1 -Q 2)/Q 1

При этом Q 1 — количество теплоты, которое двигатель получил от нагревания, а Q 2 — количество теплоты, которое он отдал в окружающую среду (в общем случае это называется холодильником).

Топливо нагревается и расширяется, сила толкает поршень, который приводит в действие вращательный элемент. Но топливо содержится в каком-то сосуде. Нагреваясь, оно передает тепло и стенкам сосуда. Это приводит к потерям энергии. Чтобы поршень опустился, газ надо охладить. Для этого его часть выпускается в окружающую среду. И было бы хорошо, если все тепло газ отдал на полезную работу. Но, увы, он охлаждается очень медленно, поэтому наружу выходит еще горячий пар. Часть энергии тратится на то, чтобы нагреть воздух. Поршень движется в полом металлическом цилиндре. Его края плотно прилегают к стенкам, при движении вступают в действие силы трения. Поршень нагревает полый цилиндр, что тоже приводит к потере энергии. Поступательное движение стержня вверх-вниз передается на крутящий момент через ряд соединений, которые трутся друг об друга и нагреваются, то есть часть первичной энергии расходуется еще и на это.

Конечно, в заводских машинах все поверхности полируются до атомарного уровня, все металлы прочны и имеют наименьшую теплопроводность, а масло для смазывания поршней обладает наилучшими свойствами. Но в любом двигателе энергия бензина идет на нагрев частей, воздуха и трения.

Кастрюля и котел

Сейчас мы предлагаем разобраться в том, что такое КПД котла, и из чего он складывается. Любая хозяйка знает: если оставить воду кипеть в кастрюле под закрытой крышкой, то или вода будет капать на плиту, или крышка будет «танцевать». Любой современный котел устроен примерно так же:

  • тепло нагревает закрытую емкость, полную воды;
  • вода становится перегретым паром;
  • при расширении газо-водяная смесь вращает турбины или двигает поршни.

Так же, как и в двигателе, совершаются потери энергии на нагрев котла, труб и трение всех соединений, поэтому ни один механизм не может иметь КПД, равный 100%.

Формула для машин, которые работают по циклу Карно, выглядит как общая формула для теплового двигателя, только вместо количества теплоты — температура.

η=(Т 1 -Т 2)/Т 1 .

Космическая станция

А если поместить механизм в космос? Бесплатная энергия Солнца доступна 24 часа в сутки, охлаждение любого газа возможно буквально до 0 о по Кельвину почти мгновенно. Может быть, в космосе КПД производства было бы выше? Ответ неоднозначный: и да, и нет. Все эти факторы действительно могли бы существенно улучшить передачу энергии на полезную работу. Но доставить на нужную высоту даже тысячу тонн пока что неимоверно дорого. Даже если такая фабрика проработает пятьсот лет, она не окупит затраты на подъем оборудования, поэтому фантасты так активно эксплуатируют идею космического лифта — это значительно упростило бы задачу и сделало бы коммерчески выгодным перенос фабрик в космос.

Цикл Отто

— обзор

13.18 Цикл Отто

Циклы внешнего сгорания газа Стирлинга и Эрикссона были первоначально разработаны для борьбы с опасными котлами высокого давления первых паровых двигателей. Двигатель внутреннего сгорания Ленуара был проще, меньше по размеру и использовал более удобное топливо, чем любой из этих двигателей, но имел очень низкий тепловой КПД. Брайтону удалось повысить тепловой КПД двигателя внутреннего сгорания, обеспечив процесс сжатия перед сгоранием с использованием двухпоршневой техники Стирлинга и Эрикссона с отдельной камерой сгорания.Но конечной целью разработки коммерческих двигателей внутреннего сгорания было объединение всех основных процессов впуска, сжатия, сгорания, расширения (мощности) и выпуска в одном поршневом цилиндре. Это было окончательно достигнуто в 1876 году немецким инженером Николаусом Августом Отто (1832–1891). Основные элементы модели ASC цикла Отто показаны на рисунке 13.48. Он состоит из двух изохорных процессов и двух изоэнтропических процессов.

Рисунок 13.48. Стандартный цикл воздуха Отто.

После нескольких лет экспериментов Отто наконец построил успешный двигатель внутреннего сгорания, который позволил всем основным процессам протекать в пределах одного поршневого цилиндра. Для завершения термодинамического цикла двигателя Отто требовалось четыре хода поршня и два оборота коленчатого вала, но он работал плавно, был относительно тихим и очень надежным и эффективным. Двигатель Отто имел немедленный успех, и к 1886 году было продано более 30 000 экземпляров. Они стали первым серьезным конкурентом паровой машины на рынке двигателей малого и среднего размера.

Первоначально двигатель Отто использовал осветительный газ (метан) в качестве топлива, но к 1885 году многие двигатели с циклом Отто уже были преобразованы в двигатели, работающие на жидких углеводородах (бензине). Разработка гениального карбюратора с поплавковой подачей для испарения жидкого топлива в 1892 году немцем Вильгельмом Майбахом (1847–1929) ознаменовала начало автомобильной эры. Немецкому инженеру Карлу Фридриху Бенцу (1844–1929) обычно приписывают создание в 1885 году первого практичного автомобиля с низкооборотным двигателем цикла Отто, работающим на жидком углеводородном топливе.Он использовал тепло выхлопных газов двигателя для испарения топлива перед его подачей в двигатель.

Кто изобрел цикл «Отто»?

Николаус Отто не знал, что четырехтактный двигатель внутреннего сгорания был запатентован в 1860-х годах французским инженером Альфонсом Эженом Бо де Роша (1815–1893). Однако Рошас на самом деле не строил и не тестировал двигатель, который он запатентовал. Поскольку Отто был первым, кто фактически сконструировал и эксплуатировал двигатель, цикл назван в его честь, а не в честь Роша.

В 1878 году шотландский инженер Дугальд Клерк (1854–1932) разработал двухтактную версию цикла Отто, производящую один оборот коленчатого вала за термодинамический цикл (это было похоже на двигатель Ленуара, но с предварительным сжатием).В 1891 году Клерк продолжил разработку концепции наддува двигателя внутреннего сгорания. Это увеличило тепловой КПД двигателя за счет дальнейшего сжатия индукционного заряда перед зажиганием.

Хотя двухтактный двигатель Клерка по своей природе был менее экономичен, чем четырехтактный двигатель Отто, он давал более равномерную выходную мощность (что важно только для одно- или двухцилиндровых двигателей) и почти вдвое превышал мощность по отношению к весу. передаточное отношение двигателя Отто. Двухтактный двигатель с циклом Отто (он никогда не стал известен как цикл Клерка) стал успешным в качестве небольшого и легкого двигателя для лодок, газонокосилок, пил и т. Д.

Тепловой КПД цикла Отто определяется как

(ηT) Otto = (W˙out) netQ˙H = Q˙H− | Q˙L | Q˙H = 1− | Q˙L | Q˙ H

, где из рисунка 13.48 | Q˙L | = m˙ (u2s − u3) и Q˙H = m˙ (u1 − u4s).

Тогда термический КПД Otto hot ASC составляет

(ηT) Ottohot ASC = 1 − u2s − u3u1 − u4s

Для Otto hot ASC , таблица C.16a или C.16b в термодинамических таблицах для сопровождения современной инженерной термодинамики используются для определения значений удельных внутренних энергий.Поскольку процессы с 1 по 2 с и с 3 по 4 с являются изоэнтропическими, мы используем столбцы v r в этих таблицах, чтобы найти

v3v4s = vr3vr4 = v2sv1 = vr2vr1 = CR

, где CR = v3 / v4s — степень изоэнтропического сжатия. Если температура и давление на входе ( T 3 и p 3 ) известны, мы можем найти u 3 и v r 3 из таблицы.Затем, если мы знаем степень сжатия (CR), мы можем найти

vr4 = vr3CR и vr2 = vr1 × CR

Теперь мы можем найти u 4 s и T 4 s из таблиц. Однако, чтобы найти u 1 , T 1 , u 2s и T 2s , нам необходимо знать больше информации о системе. Следовательно, теплота сгорания ( Q H / м = Q˙H / m˙), максимальное давление ( p 1 ) или максимальная температура ( T 1 ) в цикле обычно дается завершить анализ.

Для Otto холодный ASC ,

| Q˙L | = m˙ (u2s − u3) = m˙cv (T2s − T3) и Q˙H = m˙ (u1 − u4s) = m˙cv (T1 − T4s).

Тогда

(ηT) Ottocold ASC = 1 − T2s − T3T1 − T4s = 1− (T3T4s) (T2s / T3−1T1 / T4s − 1)

Процесс с 1 по 2 с и процесс 3 по 4 с изоэнтропичны, поэтому

T1 / T2s = T4s / T3 = (v1 / v2s) 1 − k = (v4s / v3) 1 − k = (p1 / p2s) (k − 1) / k = ( p4s / p3) (k − 1) / k

Так как T1 / T4s = T2s / T3,

(13.30) (ηT) Ottocold ASC = 1 − T3 / T4s = 1 − PR (1 − k) / k = 1 − CR1 − k

, где CR = v3 / v4s — степень изоэнтропического сжатия, а PR = p4s / p3 — степень изоэнтропического давления.

Поскольку T3 = TL, но T4s T 1 и T 3 ). Поскольку цикл Отто требует процесса сгорания с постоянным объемом, он может эффективно осуществляться только в пределах поршневого цилиндра или другого устройства с фиксированным объемом с помощью почти мгновенного процесса быстрого сгорания.

Пример 13.14

Изэнтропическая степень сжатия бензинового двигателя с циклом Отто новой газонокосилки составляет 8.От 00 до 1, а температура входящего воздуха составляет T 3 = 70,0 ° F при давлении p 3 = 14,7 фунтов на кв. Дюйм. Определите

a.

Температура воздуха в конце такта изоэнтропического сжатия T 4 с .

б.

Давление в конце такта изоэнтропического сжатия перед воспламенением p 4 s .

г.

Тепловой КПД двигателя Otto cold ASC.

Решение
a.

Степень изоэнтропического сжатия для двигателя с циклом Отто определяется как

CR = v3v4s = (T3T4s) 11 − k

, откуда получаем

T4s = T3CR1 − k = T3 × CRk − 1 = (70,0 + 459,67 R ) (8,00) 0,40 = 1220 R

б.

Для цикла Отто изоэнтропическое давление и степени сжатия связаны соотношением PR = CR k , где PR = p4s / p3 и CR = v 3 / v 4 s .Тогда

p4s = p3CRk = (14,7 фунтов на кв. Дюйм) (8,00) 1,40 = 270. psia

c.

Уравнение (13.30) дает тепловой КПД холодного ASC Отто как

(ηT) Ottocold ASC = 1 − T3T4s = 1 − PR1 − kk = 1 − CR1 − k = 1− (8,00) 1−1,40 = 0,565 = 56,5%

Упражнения
40.

Если газонокосилку в примере 13.14 оставляют на улице в холодный день, когда температура T 3 понижается с 70,0 ° F до 30,0 ° F, определите новую температура в конце такта изоэнтропического сжатия.Предположим, что все остальные переменные не изменились. Ответ : T 4 с = 1130 R.

41.

Если зазор на газонокосилке в Примере 13.14 уменьшен таким образом, что степень сжатия увеличится с 8,00 до 8,50 до 1, определите новое давление в конце такта изоэнтропического сжатия. Предположим, что все остальные переменные не изменились. Ответ : p 4 s = 294.1 фунт / кв. Дюйм.

42.

Если максимальная температура в цикле ( T 4 с ) составляет 2400 R, определите тепловой КПД этого двигателя для цикла Отто hot ASC . Предположим, что все остальные переменные не изменились. Ответ : ( η T ) Otto hot ASC = 52,8%.

Фактическая диаграмма давление-объем для двигателя, работающего на газовом или паросиловом цикле, называется индикаторной диаграммой , 10 , а замкнутая площадь равна чистой реверсивной работе, производимой внутри двигателя. среднее эффективное давление (МПа) поршневого двигателя — это среднее эффективное давление , действующее на поршень во время его перемещения. обозначает (или реверсивный) рабочий выход (WI) из поршня — это чистая положительная площадь, ограниченная индикаторной диаграммой, как показано на рисунке 13.49, и равна произведению mep и смещения поршня, V̶2− V̶1 = π4 (Диаметр отверстия) 2 (Ход), или

(13,31) (WI) out = mep (V̶2 − V̶1)

Рисунок 13.49. Соотношение среднего эффективного давления (mep) и индикаторной диаграммы.

Номер обозначил выходную мощность (Вт˙I) — это чистая (реверсивная) мощность, развиваемая внутри всех камер сгорания двигателя, содержащего n цилиндров, и составляет

(13,32) (Вт˙I) вне = mep (n) (V̶2 − V̶1) (N / C)

, где N — частота вращения двигателя, а C — количество оборотов коленчатого вала за рабочий такт ( C = 1 для двух -тактный цикл и C = 2 для четырехтактного цикла).Фактическая выходная мощность двигателя , измеренная динамометром, называется выходной мощностью тормоза (Вт˙Б), а разница между указанной мощностью и мощностью торможения известна как мощность трения (т. Е. Мощность рассеивается на внутреннем трении двигателя) W˙F, или

(W˙I) out = (W˙B) out + W˙F

, следовательно, механический КПД двигателя η м просто равен ( см. таблицу 13.2)

(13,33) ηm = W˙actualW˙reversible = (W˙B) out (W˙I) out = 1 − W˙F (W˙I) out

Из уравнения.(13.31) можно записать

mep = (WI) out / (V̶2 − V̶1) = ((WI) out / ma) / v2 − v1 = [(W˙I) out / m˙a] / (v2 −v1)

, где m a и m˙a — масса воздуха в цилиндре и массовый расход воздуха в цилиндре, соответственно. ASC (т.е. реверсивный или указанный, см. Таблицу 13.2) тепловой КПД любого двигателя внутреннего или внешнего сгорания теперь можно записать как

(ηT) ASC = (W˙out) reversibleQ˙in = (W˙1) outQ˙fuel = (W˙1) out / m˙aQ˙fuel / m˙a

, где Q˙in = Q˙fuel — теплотворная способность топлива.Объединение этих уравнений дает

mep = (ηT) ASC (Q˙fuel / m˙a) v2 − v1 = (ηT) ASC (Q˙fuel / m˙fuel) (A / F) (v2 − v1)

где A / F = m˙a / m˙fuel — соотношение воздух-топливо в двигателе. Теперь

v2 − v1 = v1 (v2 / v1−1) = RT1 (CR − 1) / p1

, поэтому уравнение. (13.32) становится

(13.34) (W˙1) out = (ηT) ASC (Q˙ / m˙) топливо (DNp1 / C) (A / F) (RT1) (CR − 1)

где D = n (V̶2 − V̶1) = π4 (Диаметр цилиндра) 2 × (Ход) × (Количество цилиндров) — общий рабочий объем поршня двигателя. Уравнение (13.34) позволяет нам определить выходную мощность идеального двигателя внутреннего сгорания без трения, и, когда доступны фактические данные динамометрических испытаний, уравнение.(13.33) позволяет определить механический КПД двигателя.

Пример 13,15

Шестицилиндровый четырехтактный двигатель внутреннего сгорания с циклом Отто имеет полный рабочий объем 260, 3 и степень сжатия 9,00: 1. Он заправляется бензином с удельной теплотворной способностью 20,0 × 10 3 БТЕ / фунт-метр и представляет собой впрыскиваемое топливо с массовым соотношением воздух-топливо от 16,0 до 1. Во время динамометрического испытания давление и температура на впуске оказались равными 8,00 фунт / кв.дюйм и 60.0 ° F, в то время как двигатель выдавал 85,0 л. С. На торможении при 4000 об / мин. Для холодного ASC Отто с k = 1,40 определите

a.

Холодный ASC тепловой КПД двигателя.

б.

Максимальное давление и температура цикла.

г.

Указанная выходная мощность двигателя.

г.

Механический КПД двигателя.

e.

Фактический тепловой КПД двигателя.

Решение
a.

Из уравнения. (13.30), используя k = 1,40 для холодного ASC,

(ηT) Ottocold ASC = 1 − CR1 − k = 1−9,00−0,40 = 0,585 = 58,5%

b.

Из рисунка 13.48 a ,

Q˙H = Q˙fuel = (m˙cv) a (T1 − T4s) = m˙fuel (A / F) (cv) a (T1 − T4s)

и

T1 = Tmax = T4s + (Q˙ / m˙) топливо (A / F) масса (cv) a

Поскольку процесс с 3 по 4 с является изоэнтропическим, уравнение. (7.38) дает

T4s = T3CRk − 1 = (60,0 + 459.67) (9,00) 0,40 = 1250 R

Тогда

Tmax = 20,0 × 103 Btu / lbm топлива (16,0 lbm air / lbm fuel) [0,172 Btu / (lbm air · R)] + 1250 R = 8520 R

Поскольку процесс 4 с до 1 является изохорическим, уравнение состояния идеального газа дает

pmax = p1 = p4s (T1 / T4s)

и, поскольку процесс 3–4 с является изоэнтропическим,

T4s / T3 (p4s / p3) (k − 1) / k

или

p4s = p3 (T4s / T3) k / (k − 1) = (8,00 psia) (1250 R520 R) 1,40 / 0,40 = 172 psia

, тогда

pmax = (172 фунтов на кв. дюйм) [(8520 R) / 1250 R] = 1170 фунтов на квадратный дюйм

c.

Уравнение (13.34) дает указанную мощность как

| W˙I | out = (0,585) (20,0 × 103 БТЕ / фунт) (260 дюймов3 / об) (4000 об / мин) (1170 фунт-сила / дюйм2) / 2 (16,0) [0,0685 БТЕ / (фунт · м · R)] (8520 R) (9,00-1) (12 дюймов / фут) (60 с / мин) = (132,00 ft⋅lbf / s) (1 л.с. 550 фут · фунт-сила / с) = 241 л.с.

d.

Уравнение (13.33) дает механический КПД двигателя как

ηm = (W˙B) out (W˙I) out = 85,0 л.с. 241 л.с. = 0,353 = 35,3%

e.

Наконец, фактический тепловой КПД двигателя может быть определен по формулам.(7,5) и (13,33) как

(ηT) Ottoactual = (W˙B) outQ˙fuel = (ηm) (W˙I) outQ˙fuel = (ηm) (ηT) Ottocold ASC = (0,353) (0,585 ) = 0,207 = 20,7%

Упражнения
43.

Если у двигателя с циклом Отто, описанного в примере 13.15, степень сжатия увеличится до 10,0: 1, какова будет его новая тепловая эффективность холодного ASC? Предположим, что все остальные переменные остаются неизменными. Ответ : ( η T ) Отто холодный ASC = 60.2%.

44.

Найдите p max и T max для двигателя с циклом Отто, обсуждаемого в примере 13.15, когда степень сжатия уменьшена с 9,00 до 8,00 до 1. Предположим, что все другие переменные остаются неизменными. . Ответ : p max = 1040 psia и T max = 8460 R.

45.

Определите указанную мощность в Примере 13.15, если рабочий объем двигателя увеличился с 260.в 3 до 300. в 3 . Предположим, что все остальные переменные остаются неизменными. Ответ : (W˙I) из = 280. л.с.

46.

Определите механический КПД двигателя цикла Отто в Примере 13.15, если фактическая тормозная мощность составляет 88,0 л.с. вместо 85,0 л.с. Предположим, что все остальные переменные остаются неизменными. Ответ : η м = 36,3%.

Предыдущий пример показывает, что анализ холодного ASC Отто обычно предсказывает термический КПД, который намного превышает фактический тепловой КПД.Типичные двигатели с циклом Отто IC имеют фактический рабочий тепловой КПД в диапазоне 15-25%. Большая разница между тепловым КПД холодного АСК (который содержит по крайней мере один изоэнтропический процесс) и фактическим тепловым КПД обусловлена ​​влиянием второго закона термодинамики за счет большого количества тепловых и механических необратимостей, присущих этому типу поршневого поршня. -цилиндровый двигатель. Для повышения фактического теплового КПД необходимо уменьшить тепловые потери при сгорании и количество движущихся частей в двигателе.

Какой двигатель внутреннего сгорания самый маленький?

Модель авиадвигателя Cox Tee Dee .010 (рис. 13.50) имеет самый маленький двигатель внутреннего сгорания, когда-либо производившийся в производстве. Этот удивительный маленький двигатель весит чуть меньше унции и работает со скоростью 30 000 об / мин. Топливо представляет собой 10–20% касторового масла плюс 20–30% нитрометана, смешанного с метанолом. С отверстием 0,237 дюйма (6,02 мм) и ходом 0,226 дюйма (5,74 мм) он имеет выходную мощность около 5 Вт.

Рисунок 13.50. Двигатель Cox Tee.

% PDF-1.4 % 2394 0 объект > эндобдж xref 2394 285 0000000016 00000 н. 0000010652 00000 п. 0000010818 00000 п. 0000011227 00000 п. 0000011626 00000 п. 0000012409 00000 п. 0000012461 00000 п. 0000013135 00000 п. 0000013250 00000 п. 0000013501 00000 п. 0000013759 00000 п. 0000014169 00000 п. 0000020889 00000 н. 0000021077 00000 п. 0000023885 00000 п. 0000026780 00000 п. 0000029537 00000 п. 0000031954 00000 п. 0000034729 00000 п. 0000037585 00000 п. 0000037710 00000 п. 0000037811 00000 п. 0000040553 00000 п. 0000043038 00000 п. 0000046010 00000 п. 0000046148 00000 п. 0000046301 00000 п. 0000046453 00000 п. 0000046605 00000 п. 0000046758 00000 н. 0000046911 00000 п. 0000047064 00000 п. 0000047217 00000 п. 0000047370 00000 п. 0000047521 00000 п. 0000047672 00000 п. 0000047825 00000 п. 0000047978 00000 п. 0000048130 00000 н. 0000048281 00000 п. 0000048433 00000 п. 0000048586 00000 п. 0000048739 00000 п. 0000048892 00000 п. 0000049045 00000 п. 0000049198 00000 п. 0000049351 00000 п. 0000049504 00000 п. 0000049657 00000 п. 0000049810 00000 п. 0000049963 00000 н. 0000050116 00000 п. 0000050267 00000 п. 0000050418 00000 п. 0000050571 00000 п. 0000050724 00000 п. 0000050877 00000 п. 0000051030 00000 п. 0000051183 00000 п. 0000051336 00000 п. 0000051489 00000 п. 0000051642 00000 п. 0000051795 00000 п. 0000051948 00000 п. 0000052101 00000 п. 0000052254 00000 п. 0000052407 00000 п. 0000052560 00000 п. 0000052713 00000 п. 0000052866 00000 п. 0000053019 00000 п. 0000053168 00000 п. 0000053317 00000 п. 0000053468 00000 п. 0000053619 00000 п. 0000053770 00000 п. 0000053921 00000 п. 0000054072 00000 п. 0000054223 00000 п. 0000054374 00000 п. 0000054525 00000 п. 0000054678 00000 п. 0000054831 00000 п. 0000054984 00000 п. 0000055135 00000 п. 0000055286 00000 п. 0000055439 00000 п. 0000055592 00000 п. 0000055745 00000 п. 0000055898 00000 п. 0000056051 00000 п. 0000056204 00000 п. 0000056355 00000 п. 0000056506 00000 п. 0000056658 00000 п. 0000056810 00000 п. 0000056963 00000 п. 0000057116 00000 п. 0000057269 00000 п. 0000057422 00000 п. 0000057574 00000 п. 0000057726 00000 п. 0000057879 00000 п. 0000058032 00000 п. 0000058185 00000 п. 0000058338 00000 п. 0000058489 00000 н. 0000058640 00000 п. 0000058793 00000 п. 0000058946 00000 п. 0000059099 00000 н. 0000059252 00000 п. 0000059405 00000 п. 0000059558 00000 п. 0000059705 00000 п. 0000059850 00000 п. 0000060001 00000 п. 0000060154 00000 п. 0000060307 00000 п. 0000060460 00000 п. 0000060613 00000 п. 0000060766 00000 п. 0000060919 00000 п. 0000061072 00000 п. 0000061225 00000 п. 0000061378 00000 п. 0000061531 00000 п. 0000061684 00000 п. 0000061834 00000 п. 0000061984 00000 п. 0000062137 00000 п. 0000062290 00000 н. 0000062441 00000 п. 0000062592 00000 п. 0000062743 00000 п. 0000062892 00000 п. 0000063043 00000 п. 0000063196 00000 п. 0000063349 00000 п. 0000063502 00000 п. 0000063655 00000 п. 0000063808 00000 п. 0000063961 00000 п. 0000064114 00000 п. 0000064267 00000 п. 0000064419 00000 п. 0000064571 00000 п. 0000064724 00000 н. 0000064877 00000 п. 0000065029 00000 п. 0000065181 00000 п. 0000065334 00000 п. 0000065487 00000 п. 0000065640 00000 п. 0000065793 00000 п. 0000065944 00000 п. 0000066095 00000 п. 0000066248 00000 п. 0000066401 00000 п. 0000066553 00000 п. 0000066705 00000 п. 0000066856 00000 п. 0000067007 00000 п. 0000067160 00000 п. 0000067311 00000 п. 0000067462 00000 п. 0000067615 00000 п. 0000067768 00000 п. 0000067921 00000 п. 0000068074 00000 п. 0000068227 00000 п. 0000068380 00000 п. 0000068532 00000 п. 0000068684 00000 п. 0000068837 00000 п. 0000068990 00000 н. 0000069143 00000 п. 0000069296 00000 п. 0000069449 00000 п. 0000069601 00000 п. 0000069753 00000 п. 0000069906 00000 н. 0000070059 00000 п. 0000070212 00000 п. 0000070365 00000 п. 0000070518 00000 п. 0000070671 00000 п. 0000070822 00000 п. 0000070973 00000 п. 0000071125 00000 п. 0000071277 00000 п. 0000071430 00000 п. 0000071582 00000 п. 0000071734 00000 п. 0000071887 00000 п. 0000072038 00000 п. 0000072187 00000 п. 0000072338 00000 п. 0000072491 00000 п. 0000072644 00000 п. 0000072797 00000 п. 0000072950 00000 п. 0000073103 00000 п. 0000073254 00000 п. 0000073405 00000 п. 0000073552 00000 п. 0000073699 00000 п. 0000073852 00000 п. 0000074005 00000 п. 0000074157 00000 п. 0000074309 00000 п. 0000074462 00000 н. 0000074615 00000 п. 0000074767 00000 п. 0000074919 00000 п. 0000075072 00000 п. 0000075550 00000 п. 0000075703 00000 п. 0000075856 00000 п. 0000076009 00000 п. 0000076162 00000 п. 0000076315 00000 п. 0000076468 00000 п. 0000076621 00000 п. 0000076774 00000 п. 0000076927 00000 п. 0000077080 00000 п. 0000077233 00000 п. 0000077384 00000 п. 0000077533 00000 п. 0000077684 00000 п. 0000077837 00000 п. 0000077990 00000 п. 0000078143 00000 п. 0000078296 00000 п. 0000078449 00000 п. 0000078602 00000 п. 0000078755 00000 п. 0000078908 00000 п. 0000079061 00000 п. 0000079213 00000 п. 0000079365 00000 п. 0000079518 00000 п. 0000079671 00000 п. 0000079824 00000 п. 0000079977 00000 н. 0000080130 00000 п. 0000080281 00000 п. 0000080432 00000 п. 0000080585 00000 п. 0000080737 00000 п. 0000080889 00000 п. 0000081040 00000 п. 0000081191 00000 п. 0000081344 00000 п. 0000081496 00000 н. 0000081648 00000 н. 0000081799 00000 п. 0000081950 00000 п. 0000082103 00000 п. 0000082256 00000 п. 0000082409 00000 п. 0000082562 00000 н. 0000082713 00000 п. 0000082864 00000 н. 0000083017 00000 п. 0000083170 00000 п. 0000083323 00000 п. 0000083476 00000 п. 0000083627 00000 п. 0000083778 00000 п. 0000083931 00000 п. 0000084084 00000 п. 0000084239 00000 п. 0000084396 00000 п. 0000084553 00000 п. 0000084709 00000 п. 0000084865 00000 п. 0000085022 00000 п. 0000085162 00000 п. 0000102910 00000 н. 0000141178 00000 н. 0000141331 00000 н. 0000010428 00000 п. 0000006123 00000 н. трейлер ] / Назад 2066931 / XRefStm 10428 >> startxref 0 %% EOF 2678 0 объект > поток h [P -%! U! @ Xe5 @.* «»: ˪: ࠣ3> | TUb [tsOws

Тепловой КПД для цикла Отто | Уравнение

Типичный бензиновый автомобильный двигатель работает с тепловым КПД от 25% до 30% . Около 70-75% отбраковывается как отходящее тепло без преобразования в полезную работу, то есть работу, передаваемую на колеса.

Когда мы переписываем выражение для термического КПД с использованием степени сжатия, мы заключаем, что стандартный цикл Отто для воздуха Тепловой КПД является функцией степени сжатия и κ = c p / c v .

Тепловой КПД для цикла Отто

В целом тепловой КПД , η th , любого теплового двигателя определяется как отношение выполняемой им работы, Вт , к погонной энергии при высокой температуре Q H .

Тепловой КПД , η th , представляет собой долю тепла , Q H , которое преобразовано в работу .Поскольку энергия сохраняется в соответствии с первым законом термодинамики и энергия не может быть полностью преобразована для работы, подвод тепла Q H должен равняться проделанной работе, Вт, плюс тепло, которое должно рассеиваться как отходы . нагреть Q C в окружающую среду. Поэтому мы можем переписать формулу теплового КПД как:

Поглощенное тепло происходит при сгорании топливно-воздушной смеси, когда возникает искра, примерно при постоянном объеме.Поскольку во время изохорного процесса система не выполняет никакой работы или над ней, первый закон термодинамики диктует ∆U = ∆Q. Следовательно, добавленное и отклоненное тепло выражается следующим образом:

Q add = mc v (T 3 — T 2 )

Q out = mc v (T 4 — T 1 )

Подставляя эти выражения для добавленного и отклоненного тепла в выражение для теплового КПД, дает:

Мы можем упростить приведенное выше выражение, используя тот факт, что процессы 1 → 2 и из 3 → 4 являются адиабатическими, а для адиабатического процесса действительна следующая формула p, V, T:

Можно вывести, что:

В этом уравнении соотношение V 1 / V 2 известна как степень сжатия , CR .Когда мы переписываем выражение для термического КПД с использованием степени сжатия, мы заключаем, что стандартный цикл Отто для воздуха Тепловой КПД является функцией степени сжатия и κ = c p / c v .

Тепловой КПД для цикла Отто — κ = 1,4

Это очень полезный вывод, потому что желательно достичь высокой степени сжатия , чтобы извлечь больше механической энергии из данной массы топливовоздушной смеси.Более высокая степень сжатия позволяет достичь той же температуры сгорания с меньшим количеством топлива, обеспечивая при этом более длительный цикл расширения. Это создает больше механической выходной мощности, и снижает температуру выхлопа . Снижение температуры выхлопных газов приводит к снижению энергии, отбрасываемой в атмосферу. Это соотношение показано на рисунке для κ = 1,4, представляющего окружающий воздух.

КПД двигателей на транспорте

  • В середине двадцатого века типичный паровоз имел тепловой КПД около 6% .Это означает, что на каждые 100 МДж сожженного угля было произведено 6 МДж механической энергии.
  • Типичный автомобильный бензиновый двигатель работает с тепловым КПД от 25% до 30% . Около 70-75% отбраковывается как отходящее тепло без преобразования в полезную работу, то есть работу, передаваемую на колеса.
  • Типичный автомобильный дизельный двигатель работает при от 30% до 35% . В целом двигатели, использующие дизельный цикл, обычно более эффективны.
  • В 2014 году были введены новые правила для автомобилей Формулы 1 . Эти правила автоспорта подтолкнули команды к разработке высокоэффективных силовых агрегатов. По данным Mercedes, их силовой агрегат теперь достигает более 45% и близкого к 50% теплового КПД, то есть 45-50% потенциальной энергии топлива передается на колеса.
  • Дизельный двигатель имеет самый высокий тепловой КПД среди всех двигателей внутреннего сгорания. Низкооборотные дизельные двигатели (используемые на судах) могут иметь тепловой КПД, превышающий 50% .Самый большой дизельный двигатель в мире — 51,7%.

Степень сжатия — двигатель Otto

Степень сжатия , CR определяется как соотношение объема в нижней мертвой точке и объема в верхней мертвой точке. Это ключевая характеристика многих двигателей внутреннего сгорания. В следующем разделе будет показано, что степень сжатия определяет тепловой КПД используемого термодинамического цикла двигателя внутреннего сгорания.Как правило, желательно иметь высокую степень сжатия, поскольку это позволяет двигателю достичь более высокого теплового КПД.

Например, предположим, что цикл Отто со степенью сжатия CR = 10: 1. Объем камеры составляет 500 см³ = 500 × 10 -6 м 3 (0,5 л) до такта сжатия. Для этого двигателя и ll требуемые объемы известны:

  • V 1 = V 4 = V max = 500 × 10 -6 м 3 (0.5l)
  • V 2 = V 3 = V min = V max / CR = 55,56 × 10 -6 м 3

Обратите внимание, что (V max — V мин. ) x количество цилиндров = общий рабочий объем двигателя.

Примеры степеней сжатия — бензин и дизельное топливо

  • Степень сжатия в бензиновом двигателе обычно не будет намного выше 10: 1 из-за потенциальной детонации двигателя (самовоспламенение) и не ниже 6: 1 .
  • Subaru Impreza WRX с турбонаддувом имеет степень сжатия 8,0: 1 . Как правило, двигатели с турбонаддувом или наддувом уже имеют сжатый воздух на впуске воздуха, поэтому они обычно строятся с более низкой степенью сжатия.
  • Стандартный двигатель Honda S2000 (F22C1) имеет степень сжатия 11,1: 1 .
  • Некоторые атмосферные двигатели спортивных автомобилей могут иметь степень сжатия до 12,5: 1 (например, Ferrari 458 Italia).
  • В 2012 году Mazda выпустила новые бензиновые двигатели под торговой маркой SkyActiv со степенью сжатия 14: 1 .Чтобы снизить риск детонации двигателя, остаточный газ уменьшается за счет использования выхлопных систем двигателя 4-2-1, реализации полости поршня и оптимизации впрыска топлива.
  • Дизельные двигатели имеют степень сжатия, которая обычно превышает 14: 1, и степень сжатия более 22: 1 также является обычным явлением.

Ссылки:

Ядерная и реакторная физика:
  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Эддисон-Уэсли, Ридинг, Массачусетс (1983).
  2. Дж. Р. Ламарш, А.Дж. Баратта, Введение в ядерную инженерию, 3-е изд., Прентис-Холл, 2001, ISBN: 0-201-82498-1.
  3. У. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Glasstone, Сесонске. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
  5. W.S.C. Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
  6. Kenneth S. Krane. Введение в ядерную физику, 3-е издание, Wiley, 1987, ISBN: 978-0471805533
  7. G.Р.Кипин. Физика ядерной кинетики. Аддисон-Уэсли Паб. Co; 1-е издание, 1965 г.
  8. Роберт Рид Берн, Введение в эксплуатацию ядерных реакторов, 1988 г.
  9. Министерство энергетики, ядерной физики и теории реакторов США. Справочник Министерства энергетики США по основам, том 1 и 2. Январь 1993 г.

Advanced Reactor Physics:

  1. KO Ott, WA Bezella, Introductory Nuclear Reactor Statics, American Nuclear Society, Revised edition (1989), 1989, ISBN: 0-894-48033-2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Льюис, У. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

Тепловой КПД

Загрузка

Тепловой КПД — это способ измерения КПД двигателя внутреннего сгорания.Двигатели внутреннего сгорания в целом по своей сути неэффективны, и даже продвинутые современные двигатели F1 не являются исключением. Они очень неэффективны, когда дело доходит до преобразования мощности топливно-воздушной смеси в мощность на задних колесах. Для двигателя F1 это значение (до изменения технических правил 2014 г.) обычно составляло около 30% и ниже. Это означает, что если типичный двигатель F1 выдает на динамометрическом стенде чуть меньше 560 кВт (примерно 750 л.с.), то теряется примерно 1500 кВт (или потенциально 2000 л.с.) энергии, в основном из-за тепла.После изменения правил в 2014 году цифра 30% изменилась: от старых двигателей внутреннего сгорания 2,6 V8 без наддува с тепловым КПД около 30% до 40% с новыми двигателями 1,6 V6, и это огромный шаг вперед.
Между тем, после 2015 года технология повысила эффективность двигателей до 47% и достигла исторического максимума мощности — и все это с ДВС, ограниченным потреблением топлива со скоростью всего 100 кг / час, что означает, что 50% потенциальной мощности чем можно вывести из единицы конвертируемого бензина.Цель — 100%, но это еще далеко. В начале двигателя внутреннего сгорания стандартным был КПД 12%. За 130 лет этот показатель увеличился до 29%, что соответствует уровню двигателей F1 V8 в 2013 году. С тех пор постепенно он увеличился до 50%.

Турбогибридные силовые агрегаты V6, представленные в Формуле-1 в 2014 году, представляют собой шедевры технологий, которые сделали революционный шаг вперед в характеристиках двигателя внутреннего сгорания. За 130 лет КПД увеличился с 12% до 29%, то есть на 0 в год.68%. За 3 года, когда у F1 появились эти новые силовые агрегаты, они повысили эффективность почти до 50%. Ежегодное увеличение на 20%. Это означает, что скорость прогресса в отношении эффективности более чем на 98% выше с тех пор, как были задействованы инженеры F1.


Mercedes доминировал в Формуле-1 с момента введения действующего регламента в 2014 году и большую часть этого периода имел значительное преимущество в силе над своими соперниками. Выступая перед СМИ на заводе по производству двигателей в Бриксворте, Энди Коуэлл, руководитель двигателей Mercedes, объяснил, что текущая версия 1.6-литровый турбогибрид V6 теперь производит больше мощности, чем 3,0-литровый двигатель V10 Mercedes 2005 года, превышающий 900 л.с., и говорит, что нет никаких оснований полагать, что темпы его развития замедлятся в ближайшие несколько лет.
«Это самый мощный двигатель Формулы-1, [который мы сделали], его мощность превышает 900 л.с. автомобильные технологии и новые развивающиеся технологии присутствуют в MGU-H.
Коуэлл показал, что силовой агрегат Mercedes в настоящее время достигает более 45 и почти 50 процентов теплового КПД, то есть 45-50 процентов потенциальной энергии топлива передается на коленчатый вал, а КПД превышает 50 процентов, когда ERS работает на полную мощность.
Для сравнения: двигатели V8 до 2014 года имели тепловой КПД 29 процентов, а первая итерация Mercedes V6 turbo в 2014 году обеспечивала 40-процентный тепловой КПД.


Вообще говоря, если вы хотите выяснить эффективность двигателя внутреннего сгорания, вы, как правило, смотрите на дизельные двигатели на огромных кораблях, которые работают со скоростью 100 об / мин или что-то в этом роде.Они настолько медленные, что у них очень мало трения, и они настолько устойчивы в работе, что их можно настроить и оптимизировать для работы в одном цикле для достижения оптимальной эффективности. Этот одноцелевой, специально разработанный для экономии топлива двигатель работает в течение нескольких дней, и никто к нему не прикасается, и у них есть отличные, большие установки для рекуперации тепла размером с дом. Это своего рода ориентир для термически эффективного двигателя внутреннего сгорания.

Потери энергии через выхлопные газы представляют собой очень важный источник энергии для повышения эффективности и, следовательно, выходной мощности двигателя.Чтобы сделать двигатели более энергоэффективными и иметь большее отношение к производственной автомобильной промышленности, FIA и производители двигателей договорились изменить формат двигателей на 2014 год и далее. Согласованная конфигурация представляет собой 6-цилиндровый двигатель объемом 1600 куб. См -V- 90 градусов с ограничением REV 15 000 об / мин. При желании сохранить уровни мощности, аналогичные двигателям спецификации 2013 года, разрешены системы турбонаддува и рекуперации энергии. Эти двигатели являются наиболее впечатляющими двигателями в истории отрасли, с неслыханными показателями теплового КПД и впечатляющими показателями мощности в лошадиных силах для используемого количества топлива.Чтобы узнать больше о новых двигателях 2014 года (силовых агрегатах), прочтите мою статью здесь.
Внедрение такой технологии в Формуле-1, несомненно, будет иметь большое значение для повышения экологичности автоспорта и, кроме того, разработки технологии, которая окажется полезной для применения в дорожных автомобилях.

Это изображение и путь энергии для современных бензиновых дорожных автомобилей. Автомобиль F1 примерно на 25% эффективнее! (зеленая часть диаграммы).

Например, тепло смазочного масла рассеивает около 120 кВт энергии, система водяного охлаждения около 160 кВт и гидравлика около 30 кВт.
30% оставшейся потерянной энергии теряется из-за выхлопных газов и тепла, в то время как до 10% доступной энергии может приходиться на несгоревшее топливо. Небольшой процент превращается в характерный звук автомобиля F1. И это сложная задача, поскольку по определению шум — это потеря энергии, и весь смысл гибридных двигателей состоит в том, чтобы регенерировать как можно больше того, что традиционно было бы потраченной впустую энергии.

Отвести это тепло в окружающий воздух — настоящая проблема для дизайнеров. Хотя теплообменники гоночного автомобиля чрезвычайно эффективны, их способность охлаждать двигатель зависит от «производительности по воздуху».По сути, насколько большую массу воздуха вы можете заставить проходить через радиатор для данной области в данный момент. Это зависит от создания высоких скоростей воздуха во впускных каналах радиатора. Однако, как правило, скорость воздуха в воздуховодах радиатора (боковые части автомобиля F1) составляет всего 10-15% от скорости автомобиля. Таким образом, даже если машина движется со скоростью 300 км / ч, воздух в воздуховодах, вероятно, будет только 30-40 км / ч. Эти данные более или менее одинаковы для всех гоночных автомобилей без дополнительного вентилятора. Для семейной машины скорость воздуха еще ниже, но помогает вентилятор охлаждения.
Если проектировщик сделает отверстия воздухозаборников охлаждающих каналов слишком большими, это улучшит охлаждение, но затянет. Если они будут слишком маленькими, перегрев будет проблемой. Они должны найти правильный баланс между охлаждением и аэродинамическими характеристиками, потому что чем больше воздуха они пропускают через радиаторы, тем менее эффективной становится общая аэродинамика. Больше воздуха они пропускают через радиаторы, меньше воздуха остается под полом, диффузором и задними крыльями.

Они не могут сделать внутреннюю аэродинамику такой чистой и эффективной, как внешняя.Фактически, переключение между минимальным и максимальным охлаждением может снизить прижимную силу на целых 5%, что означает дефицит времени прохождения круга около 0,4 с на средней трассе. Поскольку воздухозаборник определяется в основном на ранних этапах проектирования автомобиля F1 и не может быть легко изменен в течение сезона (воздухозаборник очень часто проектируется как часть зоны бокового удара), воздушный поток, проходящий через боковые стойки, контролируется различными конфигурациями выход радиатора, и у автомобиля F1 есть множество различных возможных конфигураций, чтобы справиться с любыми условиями.Конфигурация, используемая в конкретном контуре, определяется в зависимости от температуры окружающей среды, «факторов контура», таких как степень использования полного дросселя, и температурных пределов, при которых может работать двигатель.

Как правило, температура масла составляет около 100 ° C и выше, а давление воды составляет 3,75 бар (ограничено FIA), что позволяет поднять точку кипения примерно до 120 ° C. Использование более высоких температур воды означает, что они требуют меньшего потока воздуха через радиаторы. и таким образом они могут улучшить аэродинамические характеристики.
Этот выбор влечет за собой штраф: каждые дополнительные 5 ° C температуры воды, которую они запускают, в результате чего выпускные отверстия радиатора становятся меньше, лишают двигатель мощности более 1 л.с. Однако важность аэродинамики в современной Формуле-1 означает, что они продолжают уделять значительные ресурсы и время в аэродинамической трубе охлаждению и внутренней аэродинамике. Это лучше проиллюстрировано тем фактом, что потери с точки зрения аэродинамической эффективности, которые они должны принять за падение температуры в автомобиле на 10 ° C, на 80% меньше, чем это было всего четыре года назад.Это доказывает, что внутренняя аэродинамика автомобиля F1 так же важна, как и внешняя аэродинамика. Только мы этого не видим.

После изменения формулы двигателя 2014 года в двигателях F1 используются две отдельные гибридные технологии. Один восстанавливает энергию от задней оси во время торможения, сохраняет ее в батарее и повторно использует ее при ускорении. Вторая, совершенно новая технология, восстанавливает энергию вала турбокомпрессора и используется для двух целей. Его можно наносить непосредственно на задние колеса для ускорения ускорения, и его можно использовать для запуска электродвигателя на турбонагнетателе, чтобы раскрутить его, чтобы вы имели немедленное ускорение, как только водитель нажимает на педаль акселератора.Это почти полностью устраняет задержку отклика дроссельной заслонки, присущую двигателям с турбонаддувом, которая известна как «турбо-лаг». Вот где двигатели F1 актуальны для дорог.

Сочетание этих двух гибридных технологий привело к тому, что двигатели F1 теперь имеют тепловой КПД более 40% — лучше, чем у дорожного дизельного двигателя.

Вернуться к началу страницы

Тепловой КПД двигателей от EPI, Inc.

И насколько это эффективно?

ПРИМЕЧАНИЕ
: Все наши продукты, конструкции и услуги являются ОРГАНИЧЕСКИМИ, БЕЗ ГЛЮТЕНА, НЕ СОДЕРЖАТ ГМО и не нарушают чьи-либо драгоценные ЧУВСТВА

«Двигатель внутреннего сгорания» — это устройство, которое преобразует химическую энергию, хранящуюся в топливе, в тепловую энергию, а затем преобразует часть этой тепловой энергии в механическую работу.Любой двигатель внутреннего сгорания можно эффективно визуализировать с помощью так называемой модели «черного ящика». («Черный ящик» — это разговорное название концептуального объекта, который имеет известные входы и выходы и который выполняет определенную функцию, но чье внутреннее устройство и функционирование неизвестны.)

Ниже приведен эскиз «черного ящика», который представляет собой двигатель внутреннего сгорания.

Эскиз не требует пояснений. В коробку попадают воздух и топливо. Что-то происходит внутри. Мощность вала выходит вместе с эклектичной смесью отработанных газов, которые содержат как тепло, так и скорость.(Акустическая энергия и другие малые потери здесь для простоты не учтены.)

Эта модель одинаково подходит для поршневых и газотурбинных двигателей. В случае турбины в потоке выхлопных газов относительно большая скорость, и может быть, а может и не быть какой-либо извлекаемой мощности на внешнем валу (турбовальный против турбореактивного двигателя). Как в турбинных, так и в поршневых двигателях выходные газы включают нагретый воздух (из теплообменников и воздух, не потребляемый при сгорании) и очень горячие газы, которые являются продуктами сгорания.

Конфигурация выхода будет определять температуру, давление и скорость выходящего потока. В некоторых случаях выходящий поток представляет собой смесь обоих компонентов (охлаждающий и выхлопной газы) и может использоваться для создания тяги.

Источником энергии для двигателя является химическая энергия, запасенная в топливе. Эта энергия высвобождается при окислении топлива (сгорание) окислительной средой, которой в большинстве случаев является кислород, составляющий около 20,95% (по объему) воздуха, которым мы дышим.Вариации на эту тему включают использование окисляющих добавок (например, закиси азота) и высокоэнергетического топлива, которое содержит значительный запас окислителя в составе (например, нитрометан).

Для этого объяснения предположим, что мы обсуждаем поршневой двигатель, работающий на бензине в качестве топлива. (Этот анализ работает с бензином, метанолом, дизельным топливом, реактивным топливом, китовым маслом и т. Д. Каждый вид топлива имеет свой вес и энергосодержание.)

Бензин, согласно техническим характеристикам Pratt & Whitney Aircraft, имеет удельный вес 0.71, и, следовательно, весом около 5,92 фунта на галлон, и выделяет около 19 000 БТЕ энергии на фунт сожженного топлива, что известно как более низкая теплотворная способность.

Что такое БТЕ? «Британский тепловой блок » определяется как тепловая энергия, необходимая для повышения температуры одного фунта чистой воды на один градус по Фаренгейту, и эквивалентна 778 фут-фунтам работы / энергии. С помощью арифметики можно показать, что одна лошадиная сила (33000 фунт-сила-футов в минуту) эквивалентна 42.4 БТЕ в минуту или 2545 БТЕ в час, рассчитывается следующим образом:

33000 фут-фунт / мин ÷ 778 фут-фунт / БТЕ = 42,4165 БТЕ / мин

42,4165 БТЕ / мин × 60 минут / час = 2544,98 БТЕ / час

Чем это полезно? Вот пример. Мы протестировали достаточно хороший 4-тактный поршневой двигатель, который преобразует приблизительно 24 галлона бензина в час (142 фунта топлива в час) в 300 измеренных лошадиных сил.

Итак, сколько общей энергии топлива этот двигатель преобразует в лошадиные силы? Если вы сжигаете 24 галлона бензина (142 фунта) в течение одного часа, вы высвобождаете 2 699 520 БТЕ энергии (19 000 x 142).Если вы разделите 2699520 БТЕ на 2545 (количество БТЕ в час в одном HP), вы, к своему удивлению, обнаружите, что это 1061 л.с. Но двигатель выдает всего 300 л.с. Куда уходит вся остальная энергия?

Это известный факт, что поршневой двигатель выполняет довольно неэффективную работу по преобразованию энергии топлива в мощность. Эмпирическое правило приближение состоит в том, что почти 1/3 энергии топлива уходит из выхлопной трубы в виде потерянного тепла, примерно 1/3 энергии топлива теряется в системе охлаждения (охлаждающая жидкость, масло и окружающий поток воздуха), оставляя примерно 1/3 энергии (в лучшем случае), доступной для выходной мощности.Часть этой мощности теряется на подъем и опускание поршней, приводное оборудование (масляный насос, насос охлаждающей жидкости, генератор переменного тока, вакуумный насос, гидравлический насос и т. Д.), Потери от прокачки воздуха через двигатель, разрушения масла в картере. , и трение в различных формах.

Разница между энергоемкостью потребляемого топлива и полезной мощностью, извлекаемой из двигателя, известна как тепловой КПД (TE). Таким образом, в нашем примере двигателя мощностью 300 л.с. TE составляет 300 л.с. / 1061 л.с. = 28,3% (что довольно хорошо по современным стандартам для 4-тактных серийных поршневых двигателей).

Расчет теплового КПД (TE):

л.с. = TE x ПОТОК ТОПЛИВА (PPH) x 19000 (БТЕ на #) / 2545 (БТЕ на л.с. в час)

, что сокращается до:

л.с. = TE x FUEL FLOW (PPH) x 7,466

решение для ТЕПЛОВОЙ ЭФФЕКТИВНОСТИ:

TE = 0,1339 x HP / FUEL FLOW (PPH)

решение для FUEL FLOW:

FUEL FLOW (PPH) = 0,1339 x HP / TE

Уравнение 1

Возвращаясь к нашему примеру 300 л.с., TE = 0,1339 x 300 л.с. / 142 PPH = 0.283 (28,3%)

(Обратите внимание, что при использовании% в вычислениях вы должны разделить процентное число на 100. Таким образом, 28,3% становится 0,283.)

Если вы предпочитаете галлонов в час, расчет тепловой эффективности будет:

л.с. = TE x ПОТОК ТОПЛИВА (GPH) x 5,92 (# на галлон) x 19000/2545 (БТЕ на л.с. в час)

, что сокращается до:

л.с. = TE x FUEL FLOW (GPH) x 44,2

решение для ТЕПЛОВОЙ ЭФФЕКТИВНОСТИ:

TE = 0,0226 x HP / РАСХОД ТОПЛИВА (GPH)

решение для FUEL FLOW:

FUEL FLOW (GPH) = 0.0226 x HP / TE

Значение этого отношения термического КПД состоит в том, что, приняв разумное значение TE (27% — 29%), вы можете оценить количество топлива, необходимое для производства заданного количества энергии.

Предположим, например, что вам нужно произвести 300 л.с. Какой будет требуемый расход топлива при 28,3% ТЕ?

ПОТОК ТОПЛИВА = 0,1339 x 300 л.с. / 0,283 (28,3%),

или

ПОТОК ТОПЛИВА = 142 PPH или 24 GPH.

Удельный расход топлива при тормозах (BSFC)

Более широко используемый критерий для выражения термической эффективности известен как удельный расход топлива тормозной системы ( BSFC ).Это просто расход топлива (в фунтах в час), деленный на измеренное количество л.с., и выражается в фунтах в час на л.с.

BSFC = Расход топлива (PPH) ÷ Мощность

т.

Расход топлива (PPH) = BSFC x

л.с.

галлонов в час,

BSFC = 5,92 x Расход топлива (галлонов в час) ÷

лошадиных сил

, что также равно

Расход топлива (галлонов в час) = BSFC x Мощность в лошадиных силах ÷ 5,92

Уравнение 2

Этот инструмент также является важным критерием для сравнения производительности одного двигателя с другим и для оценки обоснованности заявлений о производительности .

Превосходный BSFC для хорошо разработанного 4-тактного безнаддувного высокопроизводительного двигателя с жидкостным охлаждением на 100% мощности находится в районе 0,44–0,45. Утверждения о значениях BSFC для бензиновых двигателей ниже 0,42 при максимальной мощности вызывают подозрения. При пониженных настройках мощности (в районе 70% и ниже) были достигнуты значения BSFC 0,38, которые станут более обычным явлением по мере развития усовершенствований технологии сжигания с целью экономии энергии.

В руководстве по эксплуатации двигателя Lycoming IO-540-K, серии L или M мощностью 300 л.с. указано, что расход топлива на полной мощности составляет 24 галлона в час, что соответствует BSFC, равному 0.474 (24 * 5,92 ÷ 300) и TE 28,3% (объяснено выше). Эти цифры не так уж и плохи для двигателя с воздушным охлаждением, который соответствует требованиям FAR по пределу детонации. Однако для TIO-540-V2AD с турбонаддувом требуется МИНИМУМ 39,2 галлона в час при 350 л.с. для BSFC 0,663 и TE 20,4%.

Итак, если кто-то скажет вам, что они разработали 4-тактный поршневой двигатель, который при максимальной мощности развивает 300 л.с. на 20 галлонах в час бензина, вы можете быстро вычислить BSFC 0,39 и тепловой КПД 34.4%. Вы должны отнестись к такому заявлению с большим подозрением.

Существует множество задокументированных примеров хорошо разработанных двигателей, обеспечивающих максимальную мощность при значениях BSFC в диапазоне 0,45–0,48. Если мы используем расчетный BSFC в качестве отправной точки, несложно рассчитать воздушный поток, который потребуется двигателю для выработки заданной мощности.

Мы знаем, что плотность воздуха составляет 0,0765 фунта / куб. Фут при стандартных условиях на уровне моря: 14,7 фунтов на кв. Дюйм (101,325 кПа) и 59 ° F (15 ° C). Мы также знаем, что фунт бензина при сжигании выделяет около 19000 БТЕ, и что типичное соотношение воздух / топливо для максимальной мощности составляет 12.6 и 12,9 фунта / фунт

Итак, с этими знаниями, если нам нужно оценить воздушный поток, требуемый от двигателя для развития заданного количества мощности, его можно рассчитать с предполагаемым BSFC и AFR максимальной мощности.

Так, например, если мы оценим BSFC в 0,47 фунта / л.

Требуемый расход воздуха (фунт / мин) = мощность x BSFC x AFR / 60

или

Требуемый воздушный поток = 600 x 0.47 x 12,6 / 60 = 59,2 фунта / мин

Преобразование в стандартный CFM,

59,2 фунта / мин ÷ 0,0765 фунта / кубический дюйм = 774 кубических футов в минуту.

Тогда возникает вопрос: с какой скоростью вы хотите запустить двигатель, чтобы создать такой воздушный поток? Ответ на этот вопрос содержится в следующем разделе, озаглавленном «Объемная эффективность».

Миф об высокоэффективном двигателе Стирлинга внешнего сгорания

Инженерное дело Vol.07 No12 (2015), Идентификатор статьи: 62006,7 стр.
10.4236 / eng.2015.712068

Миф о высокоэффективном двигателе Стирлинга внешнего сгорания

Пол Х. Райли

Департамент электротехники и электроники, Ноттингемский университет, Ноттингем, Великобритания

Авторские права © 2015, автор и компания Scientific Research Publishing Inc.

Эта работа находится под лицензией Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Поступила 6 ноября 2015 г .; принята 14 декабря 2015 г .; опубликовано 17 декабря 2015 г.

РЕФЕРАТ

Сообщенное расхождение между теорией и экспериментом для двигателей Стирлинга внешнего сгорания объясняется добавлением термического сопротивления газов сгорания к стандартной модели Карно. В этих случаях идеальный КПД двигателя Стирлинга не равен КПД цикла Карно, как обычно сообщается, а значительно ниже.Представлено новое уравнение идеального КПД двигателя Стирлинга, когда тепло получается за счет внешнего сгорания без предварительного нагрева воздуха, а результаты для различных видов топлива сведены в таблицу. Результаты показывают, что бензиновые и дизельные двигатели внутреннего сгорания (цикл Отто) имеют более высокий идеальный КПД, чем двигатель Стирлинга. При сравнении термоакустических двигателей, обогреваемых дровами, эффективность следует указывать не в процентах от эффективности Карно, а в сравнении с цифрой на 48% ниже, чем у Карно. Эффект не наблюдается в установках с электрическим подогревом, двигателях с подогревом от солнечной энергии или ядерного реактора.

Ключевые слова:

Цикл Карно, цикл Стирлинга, цикл Ренкина, цикл Отто, термоакустика, тепловой двигатель, внешнее сгорание, внутреннее сгорание, термическое сопротивление горению

1. Введение

Максимальный теоретический КПД цикла Стирлинга часто цитируют как то же, что и КПД Карно [1]:

(1)

Целью написания этой статьи является обеспечение нового верхнего предела эффективности двигателей Стирлинга внешнего сгорания и, следовательно, объяснение для часто сообщаемой низкой измеряемой эффективности двигателей Стирлинга в реальных ситуациях с внешним сгоранием по сравнению с теоретическими или экспериментальными результатами.Надеюсь, исследователи и преподаватели включат открытие этой статьи в свое обучение двигателям Стирлинга.

Есть много ссылок на расхождение между теоретической и экспериментальной эффективностью цикла Стирлинга. Результаты термоакустических испытаний на стенде с использованием электрического нагрева на горячем теплообменнике показали впечатляющий тепловой КПД, превышающий 18% [2], который не воспроизводится при использовании процессов внешнего сгорания. Это потому, что (1) верно только в том случае, если тепло подается с фиксированной температурой, например, при солнечной энергии, посредством электрического нагрева или источника деления.В таких приложениях корреляция теории с экспериментом находится в пределах ожидаемой экспериментальной ошибки. Например, использование плутония в качестве источника тепла в термоакустическом двигателе [3] имеет 15% согласие между моделированием и экспериментом с заявленной термодинамической эффективностью 18%. В термокустических испытаниях с электрическими нагревателями согласие между моделированием DeltaEC [4] и экспериментом колеблется от 40% [5] до 15% [6].

Однако работа над наклонной шайбой V4X2 двигателя Стирлинга для автомобильного использования [7] отмечена »… явление падения мощности [которое] [не] полностью изучено. Менеджер по дизайну ошибся из-за слишком оптимистичных расчетов группы Heat Transfer: Причина заключалась в недостаточной способности теплопередачи снаружи нагревателя… »

Другие автомобильные приложения, такие как двигатель Philips [8], также показали необъяснимые потери. эффективности.

Совсем недавно моделирование альфа-двигателя Стирлинга для автомобильной промышленности [9] предполагает, что двигатель Стирлинга с внешним сгоранием более эффективен, чем дизельный двигатель, и что единственной проблемой является время для нагрева двигателя и, следовательно, доступная мощность.Однако в том же отчете обсуждается «50% неизвестное снижение эффективности».

Очевидное расхождение между теорией и экспериментом также объясняется градиентами давления в термоакустическом регенераторе и большой работой, предпринятой для математического моделирования характеристик регенератора [10]. В других работах [11] — [16] сообщалось об эффективности ниже ожидаемой.

Путем моделирования всей системы, включая сгорание, эта статья представляет более точную верхнюю границу для КПД двигателя Стирлинга внешнего сгорания и лучше объясняет расхождения.Когда горячий теплообменник нагревается за счет внешнего сгорания, его КПД намного меньше КПД Карно даже в идеализированном случае.

2. Методология

В этой статье мы увеличили максимальную теоретическую эффективность Карно для конкретных видов топлива, используя модель на рисунке 1.

Рисунок 1. Модель для двигателей Стирлинга с подогревом топлива.

В идеальном случае с идеальными теплообменниками:

(2)

Следует отметить, что Rθ c является функцией самого газа сгорания и не зависит от механизма теплопередачи, т.е.е. это в равной степени относится к механизмам излучения, теплопроводности или конвекции, и где:

(3)

Пламя при температуре T f передает тепло через тепловые сопротивления окружающей температуре T a . Таким образом, количество тепла, выделяемого при сгорании, равно

(4)

И количество тепла, подаваемого в двигатель Стирлинга (SE), составляет:

(5)

Разница между теплотой, потерянной в выхлопных газах, и.

Проверка Уравнения (5) и (1) показывают, что когда тепло, доступное для SE, приближается к нулю и когда эффективность Стирлинга падает.В обоих случаях общий КПД двигателя.

Для общего случая, когда топливо может содержать воду (например, древесину), массовый расход продуктов сгорания является суммой его составляющих:

(6)

и позволяя

(7)

Удельная теплоемкость Количество продуктов сгорания является функцией топлива, воздуха и влажности топлива, определяемой по формуле:

(8)

Тепло, получаемое от сгорания, уменьшается из-за испарения воды, содержащейся в топливе, поэтому:

(9)

Предполагая отсутствие диссоциации составляющих газов, идеализированная температура пламени составляет:

(10)

Выполнение замен из (6) и деление на массовый расход топлива дает: двигатель:

(12)

Определение общей эффективности как

(13)

И замена из уравнений (4), (5) на

(14)

дает:

(15)

Дифференцирование и установка :

(16)

Дает условие максимальной эффективности, когда:

(17)

3.Результаты и обсуждение

Результаты для различных видов топлива с использованием уравнений (11), (15) и (17) показаны в таблице 1. Эффективность Карно определяется как [1]:

(18)

Столбец η SE , демонстрирует идеализированный КПД двигателя Стирлинга внешнего сгорания с учетом идеальных теплообменников для горячей и окружающей среды.

η SE — это максимальная теоретическая эффективность показанных видов топлива, и можно видеть, что она варьируется от 39,3% для древесины до 53.3% для водорода, что представляет собой снижение по сравнению с обычно цитируемым максимальным КПД (Carnot) SE (показанным как «Отношение» в таблице) на 48,2% и 58,8% соответственно.

Все условия соответствуют использованию воздуха в качестве окислителя при стандартном давлении и без предварительного нагрева.

Сжигание древесины, особенно при использовании обрезанных веток, сильно варьируется, а количество выделяемого тепла зависит от того, насколько сухая древесина и насколько хорошо разводится огонь. Значения 50% избытка воздуха (Xs = 1,5) и содержания влаги 15% считаются наилучшими достижимыми условиями.

Цифры для дизельного топлива показывают значение избытка воздуха 50% для сравнения с циклом Отто, обсуждаемым в следующем разделе. Без лишнего воздуха результаты очень похожи на показатели бензина.

Таблица 1. Сравнение КПД двигателей для различных видов топлива.

Таблица 2. Сравнение внешнего сгорания Стирлинга с двигателем внутреннего сгорания.

4. Сравнение с другими циклами

4.1. Цикл Отто

Максимальный КПД идеального двигателя с циклом Отто определяется по формуле [1]:

(19)

Из таблицы 2 и с использованием репрезентативных степеней сжатия 10: 1 для бензина и 20: 1 для воспламенения от сжатия ( Дизельные) двигатели, можно увидеть, что идеальный КПД двигателя внутреннего сгорания значительно выше, чем у двигателя внешнего сгорания, тем самым разоблачая миф о двигателе Стирлинга.

4.2. Rig Testing

Результаты предыдущего раздела в некоторой степени объясняют расхождение между наблюдаемыми теоретическими и экспериментальными результатами для внешнего сгорания. Однако есть случаи, когда уравнение (1) действительно выполняется. Во многих экспериментах Стирлинга или термоакустических двигателей используется электрический нагрев для моделирования процесса внешнего сгорания. В таких случаях передача тепла от электрического нагревателя к HHX осуществляется за счет комбинации излучения, конвекции и теплопроводности, причем пропорция каждого из них зависит от относительной температуры.Температура нагревательного змеевика будет выше, чем T e для передачи тепла. Однако эту температуру не следует путать с T f, , которая представляет собой температуру пламени топлива, или Rθ c , которая представляет собой тепловое сопротивление, основанное на продуктах сгорания. Разница в перспективе возникает из-за потерь тепла. При электрическом нагреве повышение температуры катушки не приводит к увеличению потерь, поскольку подвод тепла зависит от произведения напряжения катушки на ток.Еще есть значение Rθ, но это метод определения повышения температуры катушки и не влияет напрямую на потери. Могут быть другие вторичные и паразитные потери из-за неэффективной изоляции, когда повышенная температура змеевика увеличивает тепло в окружающую среду, минуя двигатель, но в идеальном случае эти потери равны нулю.

4.3. Солнечная и атомная энергия

Уравнение (1) по-прежнему справедливо для любого источника тепла, который сохраняет свою температуру, когда SE поглощает тепло. Одним из типичных примеров является солнечное излучение, когда температура поверхности Солнца не меняется независимо от того, сколько энергии поглощают наземные двигатели Стирлинга.Другой — нагрев с ядерным делением, где концепция T f недействительна.

5. Выводы

Идеальный цикл Стирлинга для двигателей внешнего сгорания, в которых в качестве окислителя используется не подогретый воздух, всегда значительно ниже, чем у эквивалентного двигателя цикла Карно, а для обычно используемых видов топлива ниже, чем идеальный КПД цикла Отто.

Измерение η SE дает более точное представление об идеализированной эффективности цикла двигателя Стирлинга внешнего сгорания.

При моделировании КПД внешнего сгорания циклов Стирлинга в расчет следует включать эффективное тепловое сопротивление продуктов сгорания.

Идеальный двигатель Стирлинга дает более низкий КПД для автомобильной промышленности, чем обычные двигатели с циклом Отто.

Благодарности

Эта работа спонсировалась грантом EPSRC EP / J013986 / 1.

Процитируйте эту статью

Пол Х. Райли, (2015) Миф об высокоэффективном двигателе Стирлинга внешнего сгорания. Инженерное дело , 07 , 789-795. DOI: 10.4236 / eng.2015.712068

Ссылки

  1. 1. Истоп Т.Д. и МакКонки А. (1993) Прикладная термодинамика для инженеров-технологов. Лонгман, Эссекс.

  2. 2. Wu, Z.H., Zhang, L.M., Dai, W. и Luo, E. (2014) Исследование термоакустического электрического генератора бегущей волны мощностью 1 кВт. Журнал прикладной энергетики, 124, 140-147.
    http://dx.doi.org/10.1016/j.apenergy.2014.02.063

  3. 3.Бакхаус, С., Твард, Э. и Петах, М. (2004) Термоакустический электрический генератор бегущей волны. Applied Physics Letters, 85, 1085-1087.
    http://dx.doi.org/10.1063/1.1781739

  4. 4. Свифт, Г.В. (2002) Термоакустика: объединяющая перспектива для некоторых двигателей и холодильников. Акустическое общество Америки, Нью-Йорк.

  5. 5. Абдулрахман, С., Абдулджалил, А., Ю, З., Яворски, А.Дж. и Ши Л. (2009) Конструкция и характеристика характеристик термоакустического двигателя бегущей волны с петлевой трубкой и керамическим регенератором.Proceedings of World Academy of Science, Engineering and Technology, 37.

  6. 6. Луо, Э., Ву, З.Х., Дай, В., Ли, С.Ф. и Чжоу Ю. (2008) Термоакустический генератор энергии бегущей волны класса 100 W. Китайский научный бюллетень, 53, 1453-1456.
    http://dx.doi.org/10.1007/s11434-008-0200-1

  7. 7. Лундхольм, Г. (2002) Экспериментальный двигатель Стирлинга V4x — новаторская разработка. Кандидат наук. Диссертация, Лундский университет, Швеция.

  8. 8. Hargreaves, C.M.(1991) Двигатель Стирлинга Philips. Издательство Elsevier Science, Амстердам.

  9. 9. Винот-Кумар, М. (2014) Модификация двигателя Альфа-Стирлинга с помощью [sic] системы управления рабочей жидкостью на основе Вентури для продвижения его автомобильного применения. Международный журнал исследований в области машиностроения и робототехники, 3, 101-113.

  10. 10. de Boer, P.C.T. (2007) Основные ограничения производительности двигателей Стирлинга. Транзакции ASME, 129, 104-113.
    http: // dx.doi.org/10.1115/1.2204629

  11. 11. Yu, Z., Jaworski, A.J. и Бакхаус, С. (2010) Недорогой генератор электроэнергии для сельских районов, использующий термоакустический двигатель с бегущей волной с петлевой трубкой. Журнал Power and Energy: Proceedings of the IMechE — Part A, 224, 787-795.
    http://dx.doi.org/10.1243/09576509JPE864

  12. 12. Чен Б., Абдалла-Абакр Ю., Райли П. Х. и Ханн, Д. (2012) Разработка термоакустического двигателя, работающего на отходящем тепле от кухонной плиты. Материалы конференции AIP, 1440, 532-540.
    http://dx.doi.org/10.1063/1.4704259

  13. 13. Yu, Z., Jaworski, A.J. и Бакхаус, С. (2012) Генератор термоакустической энергии бегущей волны с использованием сверхсовместимого генератора переменного тока для использования низкопотенциальной тепловой энергии. Прикладная энергия, 99, 135-145.
    http://dx.doi.org/10.1016/j.apenergy.2012.04.046

  14. 14. Чен Б.М., Райли П.Х., Абдалла-Абакр Ю., Пуллен К., Ханн Д. и Джонсон, К. (2013) Проектирование и разработка недорогой, производящей электричество кухонной плиты Score-Stove ™.Труды Института инженеров-механиков, часть A: журнал Power and Energy.

  15. 15. Чен Б.М., Райли П.Х., Абдалла-Абакр Ю. и Ханн Д. (2012) Разработка и оценка термоакустических генераторов, работающих на отходящем тепле от кухонной плиты. Инженерная, 4, 894-902.
    http://dx.doi.org/10.4236/rus.2012.412113

  16. 16. Яворски, А.Дж. и Мао, X. (2013) Разработка термоакустических устройств для производства электроэнергии и охлаждения. Труды Института инженеров-механиков, Часть A: Journal of Power and Energy, 227, 762-782.
    http://dx.doi.org/10.1177/0957650
  17. 3622

Номенклатура

Расчет тепловыделения двигателей внутреннего сгорания путем анализа излучения пламени с разрешением по углу коленчатого вала

Образец цитирования: Фон Имхофф Б., Мюльталер М. и Вахтмайстер Г. «Расчет тепловыделения двигателей внутреннего сгорания путем анализа излучения пламени с разрешением по углу коленчатого вала», SAE Int.J. Engines 10 (4): 1524-1537, 2017, https://doi.org/10.4271/2017-01-0787.
Скачать Citation

Автор (ы): Бенедикт фон Имхофф, Маркус Мюльталер, Георг Вахтмайстер

Филиал: TU Muenchen

Страницы: 14

Событие: WCX ™ 17: опыт Всемирного конгресса SAE

ISSN: 1946–3936

e-ISSN: 1946–3944

Также в: Международный журнал двигателей SAE-V126-3EJ, Международный журнал двигателей SAE-V126-3

.

Добавить комментарий

Ваш адрес email не будет опубликован.