Двигателей внутреннего сгорания: Назначение и классификация двигателей внутреннего сгорания

Содержание

Кафедра судовых двигателей внутреннего сгорания и дизельных установок

Вы можете скачать БУКЛЕТ КАФЕДРЫ в формате Adobe PDF.

Кафедра является выпускающей по дневной, вечерней и заочной формам обучения. Она готовит:

  • инженеров по специальности «Двигатели внутреннего сгорания»,
  • морских инженеров по специальности «Судовые энергетические установки»,
  • бакалавров по направлению «Энергомашиностроение»,
  • бакалавров и магистров по направлению «Кораблестроение и океанотехника»,
  • кандидатов технических наук по специальностям «Тепловые двигатели» и «Судовые энергетические установки и их элементы (главные и вспомогательные)»,
  • мотористов двигателей внутреннего сгорания.

Возможно обучение студентов и аспирантов на коммерческой основе, включая граждан других государств. Иногородним студентам предоставляется благоустроенное общежитие.

Выпускники кафедры – более 2000 инженеров, сотни кандидатов и докторов технических наук успешно трудятся во всех сферах дизельного и судостроительного производства, в известных организациях России (ЦНИДИ, ЦНИИ им. академика А.Н.Крылова, ОАО «Звезда», ОАО «Коломенский завод», и многих других) и за рубежом (МАК, МАН и т.д.). Среди выпускников немало ведущих специалистов, инженеров, руководителей всех рангов, преподавателей ВУЗов и авторитетных ученых.

Высокий уровень подготовки выпускников обеспечивается сбалансированным учебным планом. В нем предусмотрена значительная доля специальных дисциплин, дисциплин специализаций и дисциплин по выбору.

Кафедра располагает уникальной и обширной методической и учебной литературой, техническим архивом, библиотекой. В обучении широко используются компьютерная техника, телевизионные установки, кинофильмы. Занятия проводятся в специализированных аудиториях, оборудованных большим количе-ством наглядных пособий, натурными макетами двигателей, их деталями и узлами. В классе «холодных» двигателей студенты изучают конструкции дизелей, получают навыки их ремонта. Предусмотрен обязательный лабораторный практикум в лаборатории на современных судовых и тепловозных дизелях.

На старших курсах студенты учатся в филиале кафедры на ОАО «Звезда», там же проходят практики: учебную и производственную.

При создании Ленинградского кораблестроительного института в числе первых кафедр была организована кафедра Судовых двигателей внутреннего сгорания, создание которой было поручено начальнику конструкторского бюро завода «Русский дизель» Всеволоду Александровичу Ваншейдту. Необходимо отметить дальновидность этого решения, созревшего в эпоху господства на военном и гражданском флотах паромашинных и паротурбинных энергетических установок.

Профессор В.А. Ваншейдт в 1980-е гг.

Незаурядная, исключительно квалифицированная деятельность профессора В.А. Ваншейдта в должности заведующего кафедрой наложила своеобразный отпечаток на учебный процесс и послужила мощнейшим фундаментом, на котором уже долгие годы выстраивается вся методическая и научная работа кафедры. Здесь необходимо отметить, что переход в преподавание инженера самого высокого ранга в годы творческого расцвета является редчайшим событием в истории отечественной высшей школы. Как результат, в кратчайшие сроки, в 1938 и 1941 гг. В.А. Ваншейдт издает основополагающие учебники, в которых методически точно были приведены описания, методики, справочные данные в области конструкции, теории рабочих процессов и теории проектирования дизелей, относящихся к группе судовых, тепловозных и стационарных. Заложенная В.А. Ваншейдтом практическая направленность подготовки специалистов органично сочеталась с академичностью базовых научных дисциплин и широтой решаемых инженерных вопросов.

В первые послевоенные годы кафедру пришлось создавать практически заново. В сентябре 1945 г. после демобилизации на кафедре начал преподавать Михаил Михайлович Фуки. В послужном списке М.М. Фуки были заведование технологическим сектором завода “Русский дизель”, работа в должности начальника механосборочного цеха, ведущего инженера по доводке и испытанию опытного судового дизеля на этом же заводе, в период войны — служба в инженерных службах по ремонту авиамоторов и самолетов. Имея богатейший опыт научной и практической инженерной деятельности, М.М. Фуки много сил отдал созданию дизельной лаборатории. До сих пор в действии находятся два лабораторных стенда, созданных под его руководством. По рассказам преподавателей старшего поколения, Михаил Михайлович был необычайно деятелен и колоритен, работая в лаборатории наравне с механиками, он неизменно облачался в оставшийся от военных лет авиационный комбинезон и белоснежную рубашку с накрахмаленными манжетами. 

М.М. Фуки, П.А. Истомин, В.А. Ваншейдт, П.А. Гордеев, 1953 г.

С 1930-го по 1960-е гг. вся научная деятельность на кафедре проводилась под руководством В.А. Ваншейдта. В том числе он являлся научным руководителем всех первых аспирантов и соискателей. Здесь будет уместно вспомнить рассказ П.А. Гордеева о том, каким научным чутьем обладал Всеволод Александрович. Тема диссертации П.А. Гордеева предполагала выработку рекомендации по изменению формы камеры сгорания в двухтактном дизеле.

Многократное изменение конструкции длительное время не давало в экспериментах должного эффекта.

У стенда для скоростной киносъемки процесса впрыска топлива.

Видны слева направо: В.А. Плотников, В.А. Ваншейдт, И.Е. Калакуцкий, П.А. Гордеев, В.И. Березин.

Ветераны кафедры профессор П.А. Гордеев, старший преподаватель В.А. Плотников, доцент Г.В. Яковлев, 2003 г.

В 1982 г. заведующим кафедрой был назначен к.т.н. доцент П.А. Гордеев, ученик В.А. Ваншейдта. К этому времени Петр Андреевич имел опыт работы во Вьетнаме, Румынии, Индии, освоил многие дисциплины кафедры, получил известность и авторитет на поприще партийной и общественной работы. Его научные интересы охватывали системы газообмена и воздухоснабжения, профилирование камер сгорания, смесеобразование, анаэробные энергетические установки подводных аппаратов. Он являлся автором двухсеместровой дисциплины “Агрегаты наддува двигателей”. Став заведующим в трудное для кафедры время, когда в результате горьких событий кафедра в один год лишилась профессора В.А. Ваншейдта, профессора Б.А. Захаренко и доцента В.Г. Шишкина, П.А. Гордеев как важнейшие вынужден был решать задачи по сохранению традиций и комплектованию кафедры перспективными специалистами.

Профессор В.К. Румб

С 1989 г. по 2008 г. кафедрой руководил к.т.н., доцент В.К. Румб, в настоящее время профессор кафедры. В этот период принцип сквозного курсового проектирования обрел законченные формы, были укомплектованы учебные классы с полномасштабными макетами и двигателями для осуществления практических работ с разборкой и сборкой двигателей.

Важным этапом стало открытие в 1993 г. специальности «Двигатели внутреннего сгорания» направления «Энергомашиностроение». С 2005 г. В.К. Румб организовал на Среднетехническом факультете подготовку техников по специальности 180405 «Монтаж и техническое обслуживание судовых машин и механизмов». После защиты дипломов эти студенты обучаются по специальности «Судовые энергетические установки» со сроком 3,5 года. Кроме того, В.К. Румб оформил лицензию и организовал курсы обучения  с выдачей рабочего диплома моториста. В период действия лицензии эти курсы дали возможность некоторым студентам получить работу в достаточно сложных и специфичных условиях рынка труда периода 1990-х гг.

Профессор М.А. Минасян на занятии  с будущими мотористами, 2001 г.

С 1995 г. штатным сотрудником кафедры работает Минас Арменакович Минасян, в настоящее время д.т.н., профессор, известный специалист в области колебаний, виброизоляции и вибродиагностики ДВС. В 2001 г. на кафедре начал работу опытный преподаватель д.т.н. профессор Геннадий Иванович Шаров, деятельность которого была направлена на внедрение в учебный процесс новаций в области улучшения экологических параметров двигателей. В 2005 г. на кафедру пришел к.т.н. доцент Сергей Аркадьевич Кравченко, имевший опыт работы судового моториста, научного сотрудника Военно-морской  академии, второго механика ледокола.

В сферу его деятельности были преданы курсы по конструкции и теоретическим основам эксплуатации дизелей.

В настоящее время кафедра является выпускающей по образовательным программам:

  • бакалавриат — направление 13.03.03 Энергетическое машиностроение, профиль 13.03.03.01 «Двигатели внутреннего сгорания» 
  • специалитет – специальность 26.05.02 «Проектирование, изготовление и ремонт энергетических установок и систем автоматизации кораблей и судов», специализация  26.05.02.02 «Корабельные и судовые главные двигатели» 
  • магистратура — направление 26.04.02 «Кораблестроение, океанотехника и системотехника объектов морской инфраструктуры», магистерская программа 26.04.02.27 «Энергетические комплексы и  оборудование морской техники» 

Учебные планы и программы специальных дисциплин, разработанные на кафедре, обеспечивают системность и непрерывность обучения.

На кафедре работают 4 профессора, 6 доцентов, 4 старших преподавателя. Необходимо отметить, что из 14 преподавателей совместителями или же имеющими дополнительную работу являются 7 человек, в основном молодые сотрудники.

Основные направления научной деятельности кафедры последних лет:

• рабочие процессы, топливоподача, смесеобразование и горение, камеры сгорания, токсичность дизелей;

• крутильные, осевые, изгибные, случайные, ударные и связанные колебания судовых валопроводов;

• ударовиброшумозащита установок с ДВС;

• прочность, надежность, долговечность дизелей и их деталей, длительно работающих на переменных режимах;

• формализованный анализ безопасной эксплуатации судовых дизелей;

• судовые энергетические установки и их элементы;

• воздухонезависимые энергетические установки с поршневыми двигателями;

• история техники.

Результаты научных исследований кафедры обеспечили возможность регулярной организации конференций и семинаров Всероссийского уровня по вопросам двигателестроения и энергетических установок.

Ежегодно студенты кафедры участвуют в научно-технических семинарах и конференциях, делают более 10 публикаций в научных изданиях. Это дает им возможность участвовать и побеждать в конкурсах научных работ и претендовать на получение персональных стипендий, в том числе стипендий Президента РФ и Правительства РФ.

О двигателе внутреннего сгорания : Кафедра ДВС : АлтГТУ

Весьма скромный по габаритам, малютка в сравнении с такими монстрами энергетики, как гидравлические, тепловые и атомные станции, но далеко не простой по конструкции, впитавший в себя все лучшие мировые достижения в технологиях, материалах, нефтехимии, гидравлики, электротехники и электроники, двигатель внутреннего сгорания обеспечивает более 90% от суммарного объема мощности всех установленных энергетических агрегатов мира.

На первый взгляд, это феномен, так как мощность единичного ДВС относительно невысокая: от десятой доли киловатта до десятков тысяч. Но никакого феномена нет. Двигатель весьма востребован в деятельности человека и берет фантастическими объемами, массовостью производства. Он всюду — где человек, там и он. На земле и под землей, на воде и под водой, в околоземном пространстве и в космосе. Нет сферы деятельности человека, где бы не использовался ДВС, и в этом его первая особенность.

Вторая особенность в том, что именно ДВС, осуществляя энергообеспечение машин и механизмов, на которые он устанавливается, главным образом и обеспечивает качество и прогресс в развитии этой техники. Легендарный танк Т-34 времен Великой Отечественной войны стал эталоном боевых машин благодаря установленному на нем дизелю Д-12, производство которого осуществлялось и на барнаульском заводе «Трансмаш». Современный легковой автомобиль стал таким, какой он есть: экономичным, надежным, комфортным, безопасным, динамичным, эргономичным благодаря значительным успехам, достигнутым в конце прошлого и начале нынешнего столетия в развитии двигателестроения. Газотурбинный регулируемый и динамический наддув, непосредственный впрыск бензина, многоклапанные системы газораспределения с изменяемыми фазами, рециркуляция отработавших газов, электронные системы управления, гибридные двигатели (ДВС + электрическая машина)  — вот далеко не полный перечень мероприятий, которые позволили современному ДВС обеспечить жесткие требования ЕВРО по удельной мощности и вредным выбросам, по расходу топлива и масла, приемистости, экономичности мобильных машин. Шестьдесят киловатт мощности с литра объема цилиндра дизеля (в бензиновых еще выше), менее четырех литров топлива на 100 км пробега, разгон до 100 км/час менее чем за 5 секунд. 

Но это не предел — эволюционное развитие двигателя продолжается. Впереди новые задачи, среди них — расширение создания гибридных двигателей, использование водорода как топлива, адаптация двигателя к работе на биологическом топливе и др.

Вы, нынешние абитуриенты, а затем студенты — бакалавры и магистры, будете их решать и решите, ведь прогресс в энергетике остановить невозможно.

4.2. Двигатели внутреннего сгорания — Энергетика: история, настоящее и будущее

4.2. Двигатели внутреннего сгорания

Тепловые двигатели, в цилиндрах которых одновременно протекают процессы сгорания топлива, выделения теплоты и преобразования ее части в механическую работу, называются двигателями внутреннего сгорания.

Отказ от котла, наиболее дорогой и громоздкой части паросиловой установки, позволил создать дешевый и экономичный двигатель внутреннего сгорания, который впоследствии стал основным двигателем транспортных средств.

Развитие этих двигателей началось с 1860 года, когда французский механик Ленуар впервые построил небольшой двухтактный газовый двигатель. Двигатель работал без сжатия смеси светильного газа с воздухом. Воспламенение рабочей смеси происходило при помощи электрической искры. К.п.д. такого двигателя колебался от 3 до 5% и был ниже к.п.д. поршневых паровых машин того времени, что было следствием нерационального цикла, предложенного изобретателем. Однако это изобретение сыграло крупную роль в деле создания двигателей внутреннего сгорания.

Дальнейшее развитие двигателей внутреннего сгорания пошло по пути усовершенствования предложенной конструкции без изменения рабочего цикла. На рис. 4.10. представлен такой тип двигателя.

И только немецкому технику Николаусу Августу Отто (1832 – 1891) из Кельна в 1887 году в содружестве с инженером Е. Лангеном удалось построить четырёхтактный горизонтальный одноцилиндровый газовый двигатель мощностью 4 л.с. со сжатием рабочей смеси. Двигатель работал по принципу, предложенному французским инженером Бо-де-Роша. К.п.д. их двигателей достигал уже 7 – 18%, то есть был выше к.п.д. паровых машин того времени. Созданный двигатель можно считать прототипом современных двигателей внутреннего сгорания, работающих на газообразном и жидком топливе.

На рис. 4.11 представлена индикаторная диаграмма работы четырехтактного двигателя в координатах Р (давление) – V (полный объем цилиндра). При первом такте хода поршня происходит процесс всасывания в цилиндр рабочей смеси (линия 1–2 на индикаторной диаграмме). При обратном ходе поршня (второй такт) впускной клапан закрывается и в цилиндре протекает процесс сжатия рабочей смеси (линия 2–), при этом температура и давление смеси повышаются. В начале третьего хода поршня совершается быстрое воспламенение рабочей смеси от искры, а температура и давление резко увеличиваются (линия 3–4). Затем происходит расширение рабочих газов (линия 4–5), то есть выполняется полезная работа. При крайнем положении поршня в третьем такте процесс расширения заканчивается и открывается выпускной клапан, через который при четвертом ходе поршня выбрасываются отработанные газы (линия 6 – 1, которая проходит несколько выше атмосферной линии).

Рис. 4.10. Атмосферный двигатель Отто и Лангена (1865–1866 гг.) (а) и индикаторная диаграмма (б)

Рис. 4.11. Двигатель Отто. Индикаторная диаграмма

Один из первых наиболее удачных бензиновых двигателей для автомобильной промышленности был запатентован Г. Даймлером в Германии в 1885 году.

Постройка двигателя началась на заводе Дейти. В дальнейшем на заводе конструкция двигателя была значительно усовершенствована. Вскоре двигатели Отто – Дейти благодаря компактности, экономичности и надежности в работе получили общее признание и стали выпускаться другими заводами.

К тому времени надо отнести появление двухтактных двигателей, которые по принципу действия мало чем отличаются от четырехтактных двигателей Отто. В двухтактном двигателе посреди цилиндра расположены впускные и продувочные отверстия (клапаны), открытие и закрытие которых производится поршнем. Во время первого хода поршня в цилиндре протекают процессы воспламенения и расширения рабочей смеси, в конце хода поршня открываются отверстия цилиндра и начинаются процессы выпуска отработанных газов и продувки цилиндра воздухом или горючей смесью. Эти процессы продолжаются при обратном ходе поршня, втором такте, пока поршень не перекроет отверстия и не начнется процесс сжатия свежего воздуха или горючей смеси в зависимости от типа двигателя.

Рудольф Дизель (1858–1913) – немецкий инженер, создатель двигателя внутреннего сгорания с воспламенением от сжатия. В 1878 году он окончил Высшую политехническую школу в Мюнхене. В патентах 1892 и 1893 гг. Дизель выдвинул идею создания двигателя внутреннего сгорания, работающего по циклу, близкому к идеальному, в котором наивысшая температура достигалась сжатием чистого воздуха.

В 1913 году для ведения переговоров Дизель, взяв с собой наиболее ценные документы по изготовлению двигателя, отплыл в Англию. Однако до Англии он не добрался, а бесследно исчез с корабля при неизвестных обстоятельствах.

Двухтактные двигатели имеют более равномерный ход, вдвое меньший объем цилиндра, дешевле и нашли широкое применение в автомобильной промышленности, вытеснив четырехтактные.

Все рассмотренные выше газовые, газогенераторные, а также быстроходные двигатели, работающие на жидком топливе, – автомобильные, относятся к двигателям быстрого сгорания, у которых процессы воспламенения и горения протекают

 

настолько быстро, что поршень не успевает совершить даже небольшое перемещение.

Рис. 4.12. Индикаторная диаграмма дизеля

У таких двигателей к.п.д. очень зависит от степени сжатия, поэтому они работают с предельным давлением сжатия, при котором температура рабочей смеси близка к температуре её самовоспламенения. Однако двигатели быстрого сгорания, работающие на жидком топливе (нефти, керосине, бензине), не допускают высоких степеней сжатия (3, 5, 6), так как температура воспламенения этих топлив сравнительно низкая (350 – 415°С), что и обуславливает небольшой к.п.д. двигателя.

Повышение к.п.д. двигателей, работающих на жидком топливе, было достигнуто благодаря введению в технику рабочего процесса с постепенным сгоранием топлива. Процесс постепенного сгорания топлива был предложен в 1872 году американцем Брайтоном. После этого были попытки создать такой двигатель Гаргреавесом, Капитеном и др. Однако их двигатели были ненадежными в работе. Слава создания двигателя с постепенным сгоранием топлива принадлежит Р. Дизелю.

Предложение Дизеля сводилось к высокому сжатию воздуха в полости двигателя для повышения его температуры выше температуры воспламенения горючего. Будучи подано в полость двигателя в конце хода сжатия, горючее воспламеняется от нагретого воздуха и, нагнетаемое постепенно, осуществляет процесс подвода тепла без изменения температуры в соответствии с циклом Карно. Испытание опытного образца в 1896 году принесло успех, а в 1897 году Дизель построил на Аугсбургском машиностроительном заводе первый промышленный четырехтактный одноцилиндровый двигатель с постепенным сгоранием топлива, работающий на керосине, мощностью 20 л.с. Двигатель такого типа в дальнейшем получил название дизель. Он отличался высоким к.п.д., но работал на дорогостоящем керосине, имел ряд конструктивных дефектов. После некоторых усовершенствований, внесённых в 1898 – 1899 гг., двигатель стал надёжно работать на дешёвом топливе – нефти – и получил широкое распространение в промышленности и на транспорте.

Рабочий процесс двигателя постепенного сгорания (см. индикаторную диаграмму, рис. 4.12) отличается от рабочего процесса двигателя быстрого сгорания (см. рис. 4.11) следующими особенностями:

В рабочем цилиндре дизеля при втором такте – сжатии – сжимается не рабочая смесь, а воздух (линия 2 – 3) до давления 3,2–3,4 МПа. При этом температура воздуха в конце сжатия достигает 500–600 o С, то есть температуры воспламенения вводимого в цилиндр жидкого топлива.

Вследствие высокой температуры сжатого воздуха происходит самовоспламенение вводимого топлива и не требуется зажигательного приспособления.

В третьем такте топливо вводится в цилиндр не сразу, а постепенно, вследствие чего оно сгорает при постоянном давлении на некоторой части хода поршня (линия 3 – 4), а затем происходит дальнейшее расширение образовавшихся газов (линия 4 – 5).

Распыление топлива осуществляется форсункой при помощи сжатого воздуха. Для получения сжатого воздуха применяется компрессор с давлением 5–6 МПа двух-трехступенчатого сжатия с промежуточным охлаждением воздуха.

Рабочие процессы в первом и четвертом тактах дизеля подобны процессам, протекающим в двигателях быстрого сгорания (линии 1 – 2 и 6 – 1).

Наиболее ответственной частью двигателя является компрессор, который приводится в действие от самого дизеля.

Первоначально все дизели работали по рассмотренному выше четырехтактному рабочему процессу, но затем стал применяться двухтактный рабочий процесс как более экономичный. Этому способствовало введение в технику принципа безвоздушного распыления топлива, то есть бескомпрессорных дизелей.

Первый в мире городской автобус с двигателем внутреннего сгорания вышел на линию 12 апреля 1903 года в Лондоне. Его предшественником можно считать автобус с паровым двигателем, который курсировал в течение четырех месяцев 1831 года между английскими городами Глостером и Челтенхемом (Наука и жизнь, 1984, № 5).

Действительное преимущество дизелей заключалось не в отличии их рабочего процесса, а в возможности получить высокие степени сжатия, неосуществимые в двигателях быстрого сгорания из-за низкой температуры самовоспламенения жидких сортов топлива. Рабочий процесс в дизелях проводился при степени сжатия 14–16 против 5–6 в двигателях быстрого сгорания, что повысило к.п.д. компрессорных дизелей до 28–32%, бескомпрессорных – до 30–34%.

После демонстрации на Парижской выставке 1900 года усовершенствованного двигателя Дизеля, где он получил высокую оценку, начался процесс бурного дизелестроения.

Большой вклад в усовершенствование дизельных двигателей внесли русские изобретатели. Б.Г. Луцкой (1865–1920) проектировал и строил многоцилиндровые двигатели различного назначения – автомобильные, авиационные, судовые, лодочные. В 1896 г. Г.В. Тринклер (1876–1957) построил бескомпрессорный двигатель внутреннего сгорания. В 1910 г. Р.А. Корейво (1852–1920) сконструировал дизельный двигатель с противоположно движущимися поршнями и передачей на два вала. А.Г. Уфимцев (1880–1936) в 1910 г. разработал шестицилиндровый карбюраторный двигатель для самолетов.

В России производство дизелей началось в 1899 году на заводе «Русский дизель» в Санкт-Петербурге. Выпускаемые заводом нефтяные дизели оказались вполне надежными в работе благодаря применению двухступенчатого компрессора и усовершенствованной нефтяной форсунки. Дизели завода «Русский дизель» получили впоследствии всеобщее признание и широко использовались в промышленности и на транспорте.

В торговом и на военном флоте дизели впервые были применены в России. Первая в мире судовая дизельная установка, состоящая из трех дизелей завода «Русский дизель» мощностью по 120 л.с., была смонтирована в 1903 году на нефтетопливной барже «Вандал». А первый реверсивный дизель был построен заводом в 1908 году для подводной лодки «Минога» мощностью 120 л.с. Перед первой мировой войной дизельные двигатели производились не только в Петербурге, но и в Москве, Сормове, Риге, Ревеле, Воронеже и других городах.

Двигатели внутреннего сгорания после значительных конструктивных изменений стали в ХХ веке основными двигателями всех транспортных средств.

Симондс: Двигатели внутреннего сгорания рано хоронить

Правительства разных стран и многие автопроизводители считают, что эпоха двигателей внутреннего сгорания подходит к концу, и транспорт будет постепенно переходить на электрическую тягу, однако специалисты Формулы 1 и другие представители мира автоспорта не готовы с этим согласиться.

Современные гибридные силовые установки уже достаточно эффективны, их не стоит сравнивать с атмосферными монстрами прошлого, у которых было по 10-12 цилиндров, а в 2025 году Формула 1 перейдёт на двигатели нового поколения, которые будут работать на топливе, получаемом из полностью возобновляемых источников.

Команды чемпионата надеются, что работа над новым техническим регламентом на двигатели в основном завершится к июню этого года.

«Многие думают, что двигатель внутренного сгорания пора хоронить, но я готов спорить, что это не так, – заявил Пэт Симондс, технический директор Формулы 1, выступая на недавней конференции Ассоциации автомобильной индустрии (MIA). – Мы активно продвигаем использование биотоплива в Формуле 1, и я считаю, что это надо внедрять и в других категориях автоспорта.

Формула 1 с недавних пор присоединилась к MIA, это позволяет обмениваться идеями с автопроизводителями, вникать в их проблемы, а поскольку чемпионат мира готовится к переходу на технику нового поколения, в которой будет больше стандартизованных компонентов, для нас очень важно установить более тесные связи с их поставщиками. И участие в работе MIA – правильный путь к этому».

Топливо, которое применяется в Формуле 1 сейчас, уже на 5,75% состоит из биокомпонентов, а в следующем году в нём будет 10% этанола, получаемого из возобновляемых источников. К 2030-му чемпионат мира планирует достичь углеродной нейтральности.

Ульрих Барецки, бывший главный моторист Audi Sport, не исключает, что в будущем не только в гонках на выносливость, но и в Формуле 1 будут применяться водородные двигатели внутреннего сгорания. Например, в Ле-Мане планируют ввести отдельную категорию для машин с такими силовыми установками уже к 2024 году.

«Всё-таки и в 2025 году в Ле-Мане мы ещё увидим машины с двигателями внутреннего сгорания, поскольку топливо, которое в них применяется, отличается самой высокой плотностью энергии, – сказал он. – Но ещё через пять лет я надеюсь увидеть более разнообразную картину, поскольку должны появиться водородные двигатели, силовые установки на топливных элементах, но ДВС всё равно останутся».

Роторно-лопастной двигатель внутреннего сгорания

Валерий Васильев, фото автора

За историю автомобилестроения лучшие умы человечества придумали немало самых разнообразных конструкций двигателей. Но только некоторым из них удалось стать серийными образцами. Остальные, несмотря на оригинальность заложенных идей, так и не вышли из стадии эксперимента. Возможно, судьба роторно-лопастного мотора, созданного в Псковском государственном политехническом университете, окажется более удачливой.

Расклад сил

Развитие и область применения двигателей внутреннего сгорания (ДВС) приобрели сегодня всеобъемлющий характер. Многочисленные научные исследования и разработки превратили ДВС в сложнейшую, но надежную и универсальную систему. В то же время опыт длительной эксплуатации в составе транспортных средств выявил недостатки, которые практически невозможно исключить путем модернизации конструкции двигателя, не затронув базовых принципов его организации, таких как механические потери на трение и процесс внутреннего сгорания топлива.

Главным недостатком ДВС, который в результате массового распространения автомобильного транспорта занял лидирующее положение, стал фактор загрязнения окружающей среды выхлопными газами. Доля вредных веществ, поступающих в атмосферу с отработавшими газами автомобильных двигателей, составляет до 63% от общего загрязнения окружающей среды. В связи с этим в последние десятилетия в мире ужесточаются требования к экологическим нормам для транспортных средств, и в первую очередь это касается двигателей внутреннего сгорания. Последние, потребляя пятую часть первичных энергоносителей, являются основным источником загрязнения окружающей среды. Однако планируемые меры, даже в случае их полной реализации, способны лишь снизить темпы увеличения загрязняющего действия ДВС транспортных средств на фоне быстрого роста их количества и мощности.

Экологические преимущества двигателей с внешним подводом теплоты
Тип двигателя Токсичность, мг/(л.с..с)
NOx CO CxHy
Карбюраторный двигатель 0,6–2,0 40–100 15–120
Дизель 0,4–2,0 0,2–5,0 0,6–12
Газовая турбина 0,7–2,0 2,0–3,6 0,012–0,07
Двигатель внешнего сгорания 0,1–0,2 0,05–0,2 0,0015–0,009
Нормы Euro 5 0,414 0,311 0,095

Таким образом, назрела необходимость производства принципиально иного двигателя, способного кардинально изменить ситуацию, работающего на различных видах топлива и не имеющего вредных выбросов в атмосферу.

По критерию экологичности использования любого вида топлива наилучшие характеристики у двигателя с внешним подводом тепла (ДВПТ), реализующего цикл Стирлинга. Внешний подвод тепла позволяет применять различные тепловые источники без каких-либо существенных изменений конструкции двигателя. В подобных двигателях могут быть использованы практически все виды ископаемого топлива – от твердых до газообразных. Для оценки уровня токсичности двигателя с внешним подводом тепла его удельные выделения токсичных веществ можно сравнить с таковыми у дизеля, газовой турбины и карбюраторного двигателя. По таким показателям вредных веществ, как CO, NOx и CxNy, мотор с внешним подводом тепла выглядит не только значительно лучше перечисленных конкурентов, но и соответствует перспективным экологическим нормам, еще не введенным в действие.

Итак, преимущества двигателей с внешним подводом тепла выражаются в термическом КПД, достигающем 60%, использовании практически всех видов топлива, включая солнечную энергию, возможности регулирования мощности путем изменения давления рабочего тела и температуры, легком пуске при низкой температуре, герметичности, высоком моторесурсе.

Исходя из этого можно сказать, что в сфере создания двигателей возникло техническое противоречие: с одной стороны, имеются компактные и дешевые двигатели внутреннего сгорания, а с другой – массивные и дорогие в изготовлении моторы с внешним подводом теплоты.

Давайте рассмотрим недостатки поршневого двигателя Стирлинга. Во-первых, это сложность конструктивного исполнения отдельных узлов, проблемы в области уплотнений, регулирования мощности и т. д. Особенности технического решения обусловливаются применяемыми рабочими телами. Так, например, гелий обладает сверхтекучестью, что определяет повышенные требования к уплотняющим элементам рабочих поршней, штока вытеснителя и т. д. Во-вторых, формирование облика перспективных, предполагаемых к производству машин Стирлинга невозможно без разработки новых технических решений основных узлов. В-третьих, высокий уровень технологии производства.

Кроме того, данная проблема связана с необходимостью применения в машинах Стирлинга жаростойких сплавов и цветных металлов, их сварки и пайки. Отдельный вопрос – изготовление регенератора и насадки для него для обеспечения, с одной стороны, высокой теплоемкости, а с другой – низкого гидравлического сопротивления. Все это требует высокой квалификации рабочего персонала и современного технологического оборудования. Зарубежный опыт создания современных высокоэффективных машин Стирлинга показывает, что без точного математического моделирования рабочих процессов и оптимального проектирования основных узлов доводка таких машин превращается в многолетние изнурительные экспериментальные исследования.

Свой путь

Взвесив все «за» и «против», в Псковском государственном политехническом университете (ППИ) подумали, почему бы не создать новый тип двигателя, соединяющего в себе преимущества роторно-лопастной расширительной машины и принципа внешнего подвода теплоты.

Кстати, работы по созданию роторно-лопастного двигателя ведутся в ППИ уже более 30 лет. За это время создан коллектив из высококвалифицированных научных сотрудников, накоплены значительный опыт и научно-технический материал. Результатом исследований стало создание натурного образца роторно-лопастной расширительной машины на основе рычажно-кулачкового преобразователя движения.

В практическое русло работы вошли в 1998 году, когда в рамках федеральной целевой программы ППИ заключил договор с Миннауки на опытно-конструкторские работы на тему: «Разработка технологии и изготовление опытного образца роторно-лопастного двигателя внутреннего сгорания». Итогом работы стало создание технологии изготовления и макета РЛД внутреннего сгорания.

Исследование данных макетов позволило доказать принцип работы роторно-лопастной машины, отработать конструкцию рычажно-кулачкового механизма, утвердиться в надежности и долговечности работы РЛД и подтвердить достоинства роторно-лопастных машин.

Принцип работы роторно-лопастного двигателя известен уже давно. Этот механизм содержит два ротора с лопастями и цилиндр с впускными и выпускными окнами. В двигателе предусмотрен механизм связи, позволяющий роторам совершать движение друг относительно друга и вращательно-колебательное движение относительно цилиндра, а также устройство, позволяющее суммировать движение роторов и передать равномерное вращение выходному валу.

При этом выяснилось, что коэффициент компактности основного объема роторно-лопастного двигателя (отношение эквивалентного рабочего объема к объему двигателя) достигает 15–20%, в то время как максимальное значение этого показателя для поршневых (V-образных с кривошипно-шатунным механизмом) составляет 1–2%. Столь большое (в несколько раз) преимущество по удельно-массовым показателям открывает перспективы практического применения двигателей данной схемы.

Предложенная конструктивная схема роторно-лопастного двигателя имеет ряд преимуществ по сравнению с шатунно-поршневым двигателем. На основании проведенных ранее исследований, выявления проблем в области создания двигателей с внешним подводом теплоты, требованиям к современным моторам возникла идея объединить роторно-лопастную конструкцию двигателя с принципом внешнего подвода теплоты. Данный синтез явился следствием тщательного анализа современных конструктивных вариантов двигателей с выявлением достоинств и недостатков каждого.

В настоящее время существует три основные проблемы в области создания роторно-лопастных машин. В основе конструкции предложенной расширительной машины и двигателя внутреннего сгорания лежит четырехзвенный механизм преобразования движения, особенность конструкции которого заключается в следущем: механизм состоит из четырехзвенника и кулачка. Четырехзвенник состоит из шарнирно связанных плеч одинаковой длины. К серединам плеч шарнирно прикреплены рычаги лопастей. Механизм обеспечивает основные функциональные требования к преобразователю движения. Закон изменения угла между лопастями синусоидальный. Графики скоростей и ускорений лишены резких скачков, поэтому достигается плавность и безударность работы механизма. В конструкции нет недостатков, связанных с использованием зубчатых колес. В свою очередь простота изготовления определяется отсутствием сложных прецизионных деталей, сферических шарниров и т. п., применением однотипных элементов. К тому же механизм реверсивен, обратим, уравновешен, что расширяет функциональные возможности двигателя, спроектированного на его основе.

Число рабочих тактов при одном обороте выходного вала равно четырем, в то время как для шатунно-поршневого ДВС оно равно двум. Равенство продолжительности рабочих тактов на одном обороте выходного вала обеспечивается симметричной конструкцией механизма преобразования. Степень сжатия рабочего тела зависит от диапазона изменения угла между лопастями. Для данного механизма она ограничивается лишь конструктивными и прочностными параметрами реального механизма.

Отличия и преимущества

В 2007 г. ППИ выиграл конкурс в рамках федеральной целевой программы и заключил государственный контракт с Федеральным агентством по науке и инновациям на проведение научно-исследовательских работ на тему «Разработка математической модели протекания термодинамического цикла с внешним подводом теплоты, позволяющей создать экологически чистый двигатель роторно-лопастного типа».

В итоге появилась методика расчета и проектирования РЛД с внешним подводом теплоты (РЛДВПТ), в частности, созданы математические модели отдельных узлов двигателя, а также математическая модель, подтверждающая возможность реализации термодинамического цикла с внешним подводом теплоты в РЛД. Для проведения экспериментальных исследований были созданы и исследованы макет механизма преобразователя движения и макет камеры сгорания. Полученные результаты явились доказательной базой правильности теоретических расчетов.

Сравнитльные характеристики роторно-лопастных (РЛД) и шатунно-поршневых (ШПД) двигателей
Показатели РЛД ШПД
Удельная масса, кг/кВт 0,4–0,8 2,5–4,5
Удельная мощность, кВт/л 200 50–80
Минимальная скорость вращения, мин-1 60 600–800
Потери на механическое трение, % 10 35
Средняя скорость лопастной (поршневой) группы, м/с 30–50 15–25
Амплитуда вибраций (в подвешенном состоянии), мкм 100 3000

Как следствие исследования механических и термодинамических процессов двигателя подтвердили возможность и перспективность создания нового типа двигателя – РЛДВПТ (роторно-лопастной двигатель с внешним подводом тепла).

Для практического осуществления цикла с внешним подводом теплоты в двигателе, имеющем замкнутое рабочее пространство, необходимы циклическое изменение объема рабочего пространства, подвод теплоты к рабочему телу, отвод теплоты от него и регенерация некоторой части тепла. Реализовать условия осуществления термодинамического цикла с внешним подводом теплоты на базе двигателя роторно-лопастного типа возможно несколькими способами, для осуществления которых используются соответствующие конструктивные решения.

Сравнение параметров двигателей Стирлинга с РЛДВПТ
Показатели 4S1210 «Дженерал Моторс» (экспери-ментальные данные) 4L23 «Дженерал Моторс» (расчетные данные) Рядный «Филипс» (расчетные данные) РЛДВПТ (расчетные данные)
Мощность, кВт 280 95 147 300
Частота вращения, мин-1 1500 2100 3000 1500
КПД, % 35 22,6
Температура нагревателя, °С 650 760 700 427
Температура охладителя, °С 32 57 40 77
Рабочее тело H2 H2 He СО2
Среднее давление, МПа 10,35 10,3 21,6 3,1
Количество цилиндров 4 4 4 2
Объем цилиндра, cм3 2270 1510 400 1000
Удельная мощность, Вт/ cм3 58 15,7 136 150
Масса, кг 2270 725 400 500
Габаритные размеры, мм 1880x1016x x1930 1360x600x x1000 1130x440x x963 1200x600x x900
Объемная мощность, кВТ/м3 76 116,4 308 464
Удельная масса, кг/кВТ 8 7,6 2,72 1,66

Конструктивно двигатель состоит из двух модулей, каждый из которых включает лопастную группу и механизм преобразования движения. Модули жестко соединены между собой и повернуты друг относительно друга на 45°. В конструкции для нагревания и охлаждения рабочего тела предусмотрены нагреватель и охладитель.

  • рабочее тело в отличие от поршневого Стирлинга может иметь большую молярную массу по сравнению с гелием и водородом, что приводит к уменьшению среднего давления рабочего тела и применению общедоступных уплотнений;
  • температура рабочего тела в нагревателе благодаря круговой циркуляции ниже, чем у обычных Стирлингов, что дает возможность применять недорогие по стоимости стали и сплавы;
  • применение конструктивной схемы роторно-лопастной машины позволяет снизить удельную массу двигателя.

Область применения

По данному принципу можно создать целое семейство двигателей различной мощности. Сейчас отрабатывается конструкция мотора мощностью до 300 кВт. Область применения роторно-лопастных двигателей с внешним подводом тепла достаточна велика. Они могут использоваться везде, где работают ДВС, в том числе и на автомобильном транспорте. РЛДВПТ способны функционировать в условиях, где ДВС не работают, а именно: в воде, под землей, в космосе, в условиях песчаных бурь. При изменении конструкции механизма преобразования движения роторно-лопастная машина работает как пневмодвигатель либо гидродвигатель, как расширительная (паровая) машина или дроссель в магистральных газопроводах для понижения давления с целью получения электричества. РЛДВПТ могут работать с такими источниками энергии, как компрессор; жидкостный, тепловой, вакуумный насосы, а также холодильная машина.

Cпециалисты Псковского государственного политехнического университета продолжают совершенствовать свое детище, и, возможно, очень скоро оно станет настоящей альтернативой традиционным конструкциям двигателей.

Автор благодарит М.А. Донченко за помощь в подготовке статьи

Geely и Volvo будут совместно разрабатывать двигатели внутреннего сгорания

Zhejiang Geely Holding Group (Geely) и ее дочерняя компания Volvo Car Group (Volvo) объединят свои усилия по разработке современных двигателей.

Zhejiang Geely Holding Group (Geely) и ее дочерняя компания Volvo Car Group (Volvo), полностью находящаяся в собственности концерна, объединят свои усилия по разработке современных двигателей с целью создания ведущего в мире предприятия по производству двигателей внутреннего сгорания (ДВС) и гибридных силовых установок нового поколения.

Бизнес-проект пока находится на стадии разработки. Предполагается, что данный шаг позволит Volvo Cars сосредоточиться на производстве полностью электрических автомобилей премиум-класса. Компания ожидает, что к середине следующего десятилетия половина глобальных продаж будет приходиться на полностью электрические автомобили, а другая половина – на гибридные модели, поставляемые новым предприятием.

Новое подразделение будет заниматься разработкой эффективных двигателей внутреннего сгорания (ДВС) и гибридных силовых установок, которые получат передовое техническое оснащение, а также их производством для компаний Volvo Cars, Geely Auto, Lynk & Co, Proton, Lotus и LEVC с целью укрепления взаимодействия между брендами.

Предприятие объединит 3000 специалистов Volvo и 5000 сотрудников Geely, работающих над двигателями внутреннего сгорания. Их деятельность включает в себя исследования, разработки, закупки, производство, ИТ и финансы. Сокращений рабочей силы не планируется.

С момента приобретения компанией Geely марки Volvo в 2010 году оба бренда достигли рекордных показателей продаж. Новое бизнес-подразделение должно способствовать дальнейшему сотрудничеству сторон в сфере научно-исследовательских и опытно-конструкторских работ, производства, закупок и прочих операций.

В мировой автомобильной промышленности возрастает спрос на эффективные двигатели внутреннего сгорания и гибридные силовые установки. Проект позволит компаниям продавать двигатели и силовые установки сторонним производителям, тем самым создавая возможности для роста.

«Продолжая работу над переходом к полностью электрифицированным автомобилям, мы в то же время будем увеличивать инвестиции в разработку высокоэффективных двигателей внутреннего сгорания и гибридных силовых установок. Это позволит нам обеспечить клиентов новейшими продуктами и услугами, а также повысить эффективность нашей совместной работы», − заявил президент Zhejiang Geely Holding Group и генеральный директор Geely Auto Group Ань Цунхуэй.

«Гибридным автомобилям необходимы лучшие двигатели внутреннего сгорания. У нового подразделения будут ресурсы, знания и опыт для эффективной разработки этих силовых агрегатов», — комментирует Хокан Самуэльссон, президент и главный исполнительный директор Volvo Cars.

В настоящее время бизнес-план находится на стадии разработки. Затем его рассмотрят руководители компаний и профсоюзов – проект должен получить одобрение со стороны совета директоров и соответствующих органов власти.

Классификация двигателей внутреннего сгорания. — Автомастер

Классификация двигателей внутреннего сгорания.

Подробности

Двигатели можно классифицировать по следующим признакам:

  1. по смесеобразованию и виду топлива:
    • с внутренним смесеобразованием (дизельный двигатель) приготовление смеси происходит непосредственно уже в самом цилиндре. Воспламенение горючего происходит от соприкосновения с нагретым до высокой температуры воздухом, за счет его сжатия поршнем. В качестве топлива используется дизтопливо.
    • с внешним смесеобразованием (бензиновые двигатели, также они могут работать и на газу). Смесеобразование происходит за пределами цилиндра. В цилиндр попадает уже готовая смесь, воспламенение которой происходит от искры свечи зажигания. В качестве топлива используется бензин или газ.
  2. по выполнению рабочего цикла существуют:
    • двухтактные. Рабочий цикл совершается за два такта. Такт – это процесс, происходящий в цилиндре за один ход поршня.
    • четырехтактные. Рабочий цикл совершается за четыре такта.
  3. по числу цилиндров различают:
    • одноцилиндровые.
    • двухцилиндровые.
    • многоцилиндровые
  4. по расположению цилиндров:
    • рядные (цилиндры расположены в ряд).
    • V – образные (цилиндры расположены под углом 90 градусов).
    • оппозитные (цилиндры расположены под углом 180 градусов).
  5. По способу охлаждения:
    • с воздушным охлаждением (обдувается встречным потоком воздуха или используются вентиляторы для принудительного обдува).
    • с водяным охлаждением (для охлаждения используется жидкость, которая циркулирует по каналам в головки блока цилиндров и не посредственно в самом блоке, отводя излишки тепла).

На современных автомобилях в наше время используются многоцилиндровые двигатели с водяным охлаждением со всеми видами расположения цилиндров. Используются как бензиновые, так и дизельные двигатели.

Обновленная информация о государственных целях по поэтапному отказу от продаж новых легковых автомобилей с двигателями внутреннего сгорания

Это глобальный обзор всех объявленных с июня 2021 года целей по прекращению продажи или регистрации новых пассажирских двигателей внутреннего сгорания (ДВС) машины. Он включает подробную информацию о каждой цели в заключительной таблице. Обратите внимание, что поэтапные отказы, требуемые в разных юрисдикциях, различаются по срокам и по определению того, что квалифицируется как автомобиль с нулевым выбросом или без ДВС.Понимание различных задействованных автомобильных технологий важно при рассмотрении потенциальных последствий этих инициатив для климата, и в этом брифинге представлен обзор этих технологий.

На политической карте ниже выделены страны, провинции и штаты, правительства которых заявили о своем намерении разрешить продажу или регистрацию только новых аккумуляторных электромобилей (BEV), электромобилей на водородных топливных элементах (FCEV) и подключаемых гибридных электромобилей. (PHEV) на некоторую дату в будущем.Объявления, которые сигнализируют о намерении прекратить продажу или регистрацию новых бензиновых и дизельных автомобилей, но прямо разрешают продажу или регистрацию других новых транспортных средств, использующих ископаемое топливо, таких как мягкие гибридные электромобили и гибридные электромобили, а также сжатые природные автомобили, работающие на газе и сжиженном углеводородном газе, не показаны. Кроме того, правительства, которые ограничивают целевой показатель отказа от ДВС определенными группами пользователей, например, частными легковыми автомобилями, не выделяются.

Установив эти цели, правительства послали четкий сигнал, даже если в настоящее время невозможно реализовать цели в форме обязательного регулирования, как это имеет место в странах Европейского Союза.Кроме того, по мере того, как страны стремятся уменьшить воздействие выбросов от транспорта на изменение климата и соблюдать цели по сокращению выбросов парниковых газов в соответствии с Парижским соглашением, эти цели будут приобретать все большую актуальность. Для достижения этих целей необходим переход на автомобили с нулевым уровнем выбросов.

FEV продвигает вперед разработку водородных двигателей внутреннего сгорания — пресс-релиз FEV

08. Октябрь 2020

FEV разрабатывает водородные двигатели внутреннего сгорания в качестве надежного и экономичного варианта для транспортировки с нулевым выбросом CO2, который может быть быстро реализован в рамках существующей производственной инфраструктуры, а также предлагает потенциал для существующих транспортных средств.Источник: FEV Group

Ахен, Германия, октябрь 2020 г. — С тех пор, как Европейский Союз инициировал «Европейский альянс чистого водорода» в июле 2020 г., водородный ДВС (двигатель внутреннего сгорания) все чаще находится в центре внимания в дебатах индустрии мобильности о приводе с нулевым уровнем выбросов. решения. Компания FEV из Аахена, ведущий международный разработчик транспортных средств и трансмиссий, приветствует эту открытость к технологиям, касающимся будущих решений в области мобильности, и имеет почти четыре десятилетия опыта в разработке водородных двигателей.

Расширение электронной мобильности рассматривается как важный шаг на пути к достижению поставленных климатических целей. «Однако мы всегда должны учитывать соответствующий сценарий применения при выборе технологии», — сказал профессор Стефан Пишингер, президент и генеральный директор FEV Group. «Это вызвало значительную активизацию дебатов вокруг водородного двигателя как еще одной устойчивой формы привода с огромным потенциалом для многих областей».

В качестве возобновляемого источника энергии с нулевым выбросом CO2 водород может транспортироваться на большие расстояния и использоваться для хранения большого количества энергии.Использование водорода может обезуглероживать те части транспортного сектора, где электрификация за счет использования тяжелых аккумуляторов неэффективна, в том числе для коммерческих автомобилей, автобусов, больших легковых автомобилей и даже поездов и кораблей.

Инфраструктура, которая, как ожидается, будет создана к 2030 году, возрождает дебаты о наиболее подходящем способе использования водорода. Одним из преимуществ топливных элементов является их высокий КПД при низких нагрузках. Но при более высоких удельных нагрузках их уровень КПД ухудшается по сравнению с водородным двигателем внутреннего сгорания, КПД которого может быть хуже при низких нагрузках, но тем выше, чем выше нагрузка.Другими словами, преимущества эффективности зависят от нагрузки.

Несмотря на известные преимущества, разработка топливных элементов все еще находится на начальной стадии, и очень немногие методы разработки и тестирования пока внедрились. С другой стороны, водородный двигатель внутреннего сгорания — это надежный и экономичный вариант для транспортировки с нулевым выбросом CO2, который может быть быстро реализован в рамках существующей производственной инфраструктуры, а также предлагает потенциал для существующих транспортных средств.

Основными направлениями разработки водородного двигателя внутреннего сгорания являются

  • топливопроводящие компоненты
  • Система зажигания
  • Вентиляция картера
  • Система непосредственного впрыска газа топливная смесь
  • Зарядка
  • Двигатель Контроль
  • Выхлопные газы после очистки

Поскольку водород является углеродно-нейтральным топливом, из сгоревшей смазки образуется лишь минимальное количество компонентов выбросов — углеводородов (HC), монооксида углерода (CO), диоксида углерода (CO2) и сажи.Таким образом, сокращение потребления масла является еще одним направлением развития. Основным компонентом выхлопных газов является оксид азота (NOx). Благодаря очень высокой ламинарной скорости горения и широким пределам воспламенения водород позволяет сжигать обедненную смесь с большим количеством избыточного воздуха. Низкие температуры выхлопных газов означают, что даже без доочистки выхлопных газов уровень оксида азота уже ниже текущих пределов. Последующая обработка является эффективным средством дальнейшего снижения выбросов NOx.Эффективное сжигание обедненной смеси также дает преимущество в расходе по сравнению с обычными двигателями внутреннего сгорания.

FEV имеет почти сорокалетний опыт работы в этой области и послужной список успешно реализованных проектов — от разработки водородных двигателей внутреннего сгорания для легковых и коммерческих автомобилей до стационарных и внедорожных двигателей. Обширный спектр услуг компании также включает разработку отдельных компонентов, таких как форсунки для прямого впрыска и многоступенчатые системы зарядки.FEV также применяет свой обширный опыт от разработки обычных трансмиссий до водородных двигателей.

«Наши клиенты ценят тот факт, что FEV — это универсальный магазин, который может предоставить все услуги по разработке от начала до конца», — сказал профессор Пишингер. «Это включает в себя разработку и проектирование, строительство, интеграцию транспортных средств, ввод в эксплуатацию, калибровку и тестирование компонентов и полных водородных двигателей». FEV имеет специальные испытательные стенды в Ахене, на которых можно испытать водородные двигатели внутреннего сгорания мощностью до 640 кВт.

FEV также проводит серию онлайн-семинаров на тему «Будущее, основанное на водороде»: https://fev-live.com/online-seminars/hydrogen-powered-future/

О компании FEV
FEV — ведущий независимый международный поставщик услуг в области разработки транспортных средств и силовых агрегатов для аппаратного и программного обеспечения. Спектр компетенций включает разработку и тестирование инновационных решений вплоть до серийного производства и все сопутствующие консультационные услуги. Спектр услуг по разработке транспортных средств включает проектирование кузова и шасси, включая точную настройку общих характеристик транспортного средства, таких как поведение при вождении и т. Д. NVH.FEV также разрабатывает инновационные системы освещения и решения для автономного вождения и связи. Деятельность по электрификации силовых агрегатов распространяется на мощные аккумуляторные системы, электронные машины и инверторы. Кроме того, FEV разрабатывает высокоэффективные бензиновые и дизельные двигатели, трансмиссии, EDU, а также системы топливных элементов и облегчает их интеграцию в автомобили, подходящие для омологации. Альтернативные виды топлива — это еще одна область развития.

Портфель услуг дополняется специализированными испытательными стендами и измерительной техникой, а также программными решениями, которые позволяют эффективно переносить основные этапы разработки вышеупомянутых разработок с дороги на испытательный стенд или моделирование.

В настоящее время в FEV Group работает 6300 высококвалифицированных специалистов в ориентированных на клиента центрах разработки в более чем 40 точках на пяти континентах.

Вывод из эксплуатации двигателей внутреннего сгорания? Это уже происходит

  • Несколько автопроизводителей уже признались, что прекратили разработку каких-либо новых двигателей внутреннего сгорания.
  • Некоторые использовали многоэтапный подход, однако постепенно свертывали разработку на одних рынках раньше других.
  • Видимый проблеск конца: Cadillac заявила, что CT4 и CT5 — последние V-образные автомобили, которые он будет производить.

    Автопроизводители делают это официально — они постепенно отказываются от внутреннего сгорания и с разной степенью счастья движутся к полностью электрическому будущему. Итак, в какой момент действительно заканчивается более чем 120-летняя история производства и совершенствования бензиновых и дизельных двигателей? Некоторые автопроизводители заявляют, что процесс уже идет полным ходом, и больше не будут утверждены многомиллионные планы разработки двигателей.

    Stellantis опоздал к электрификации, но в 2021 году он наверстывает упущенное, особенно после слияния Fiat Chrysler и PSA, в результате которого была создана компания. Jeep Wrangler 4xe — это подключаемый гибрид с четырехцилиндровым турбомотором и двумя электродвигателями, общая мощность которых составляет 350 л.с. На вопрос, дошел ли бензиновый двигатель до конца линейки, пресс-секретарь Stellantis Лиза Барроу ответила: «Мы сказали, что для обновленного Jeep Grand Cherokee будет установлена ​​трансмиссия 4xe. Других анонсов двигателей мы пока не делали.”

    Jeep заявил, что каждая новая модель будет иметь определенную степень электрификации.

    Stellantis

    Будет ли 4xe Grand Cherokee обладать большей мощностью, и превратится ли концепт Magneto на базе аккумуляторной батареи на базе Wrangler в серийный автомобиль, как это кажется вероятным? Бэрроу отказался вдаваться в подробности, но Jeep заявил, что каждая новая модель будет иметь определенную степень электрификации. Компания уже продает подключаемые гибридные 4xe версии Compass и Renegade, но только в Европе.Картина неоднозначна, но нынешняя эпоха, когда преобладают огромные бензиновые двигатели в автомобилях Dodge, Chrysler, Ram и Jeep, может иметь ограниченный срок службы.

    Генеральный директор Stellantis Карлос Таварес сыграл важную роль в развертывании электрического Leaf во время работы в Nissan и является горячим сторонником электрификации. В марте WardsAuto писал: «Stellantis стремится к будущему электричества и не будет делать в будущем никаких крупных инвестиций в двигатели внутреннего сгорания», — сказал Таварес. Он будет работать с существующими двигателями меньшего размера от PSA и более крупными двигателями от FCA.”

    Так же, как электрификация Stellantis ускоряется в Европе, Ford также лидирует на этом рынке. К 2026 году, по заявлению компании, 100 процентов ее европейских легковых автомобилей будут иметь «нулевые выбросы», как полностью электрические, так и гибридные, с полной электрификацией к 2030 году. BBC Top Gear высказал мнение: «Если вы в В США вашим пикапам и Mustang будет немного легче, потому что Ford электрифицировал только свой европейский модельный ряд ». Но это промежуточный шаг, и даже у Mustang теперь есть электромобиль Mach-E.

    И все же расписание на внутреннем рынке Форда более мутное. «Как вы знаете, мы инвестируем не менее 22 миллиардов долларов до 2025 года в поставку совершенно новых электрифицированных автомобилей», — сказал Т. Рид, директор по связям с общественностью и корпоративной политикой Ford. «Мы также видим роль эффективных и гибридных двигателей внутреннего сгорания в определенных областях применения в Северной Америке, поскольку мы работаем над выполнением нашего обязательства по снижению выбросов углерода к 2050 году. Помимо этого, мы не комментируем предположения о будущих транспортных средствах или трансмиссиях.”

    CT6-V Cadillac 2019 года: конец эпохи?

    ДЖЕССИКА ЛИНН УОКЕР

    General Motors удивила мир объявлением в январе прошлого года о том, что к 2035 году компания планирует прекратить продажу бензиновых и дизельных автомобилей. И, по крайней мере, в одном подразделении конвейер для новых V8, кажется, иссякает. «На стороне Cadillac нет никаких будущих двигателей внутреннего сгорания, которые я мог бы прокомментировать на данный момент», — сказал представитель Cadillac Стефан Кросс.«В то время как Cadillac стремится к полностью электрическому будущему, продукты электромобилей и интегральных схем будут по-прежнему предлагаться вместе по мере появления новых альтернатив электромобилей. 4,2-литровый двигатель V8 с двумя турбинами, известный как Blackwing, доступен только в Cadillac CT6 Platinum и CT6-V с 2019 по 2020 год. В настоящее время у нас нет никаких дополнительных планов по поводу этого движка ».

    Давайте на мгновение остановимся на Cadillac и его двигателе. Хотя совершенно новый Blackwing был собран вручную в Боулинг-Грин, штат Кентукки, и никогда не предназначался для массового производства, он определенно должен был иметь более длительный срок хранения, чем сейчас.Он предлагался в том, что тогда было CT6 V-Sport (с изменением названия в какой-то момент на CT6-V). В 2019 году было произведено всего 875 автомобилей, а в 2020 году — 600. Это был медовый двигатель с мощностью 550 л.с. и крутящим моментом 640 фунт-фут.

    550-сильный двигатель Cadillac с твин-турбонаддувом и 4,2-литровым двигателем V8 попал в очень немногие автомобили.

    Кадиллак

    Когда впервые показали на шоу-каре Escala, Cadillac сказал, что новый V8 был «прототипом новой системы, разрабатываемой для будущих моделей Cadillac.Но этого не произошло, и двигатель и затраты на его разработку списаны. Road & Track ссылается на источник, который сказал, что в Blackwing было вложено 16 миллионов долларов, при этом стоимость сборки каждого двигателя составила 20 000 долларов.

    Между тем, компания Cadillac высокого класса отошла от CT6 и включила в себя два аккумуляторных автомобиля, внедорожник Lyriq (будет доступен в начале 2022 года как модель 2023 года) и седан в стиле фастбэк Celestiq (который будет представлен позже этим летом).

    Материнская компания Cadillac, как и Ford, немного подстраховывается.«GM стремится к 2035 году исключить выбросы выхлопных газов из выхлопных труб новых легковых автомобилей и к 2040 году достичь нулевого уровня выбросов углерода в мировых продуктах и ​​операциях», — сказал Крис Бонелли, официальный представитель GM в области двигателей. «При этом у нас есть план продукта для поддержки наших основных программ внутреннего сгорания до 2035 года, который включает важные обновления наших текущих двигателей и совершенно новые конструкции двигателей, о которых еще не объявлено. Мы считаем, что можем стремиться к 2035 году и, в конечном итоге, к полностью электрическому будущему, продолжая при этом вводить новшества и развивать наши предложения IC.”

    Платформа Ultium — это основа стратегии GM в области электромобилей.

    GM

    Но большие деньги на разработку в GM идут на электромобили, включая инвестиции в размере 2,3 миллиарда долларов с LG Energy Solution в завод по производству аккумуляторов Ultium в Теннесси.

    В Европе автопроизводители с меньшей охотой говорят о своих планах по поэтапному отказу от бензина и дизельного топлива. Генеральный директор Audi Маркус Дюсманн сообщил немецкому изданию Automobilwoche : «Мы больше не будем разрабатывать новый двигатель внутреннего сгорания, а адаптируем наши существующие двигатели к новым директивам по выбросам.Он сказал, что новые и строгие правила выбросов Евро-7 очень ограничивают двигатели внутреннего сгорания. Генеральный директор VW Ральф Брандштеттер сказал примерно то же самое.

    Главный операционный директор Mercedes-Benz Cars Маркус Шефер, отвечающий за групповые исследования, также общался с немецкими СМИ. Он сказал Auto Motor und Sport , что у него нет планов по созданию двигателей IC следующего поколения. К 2022 году все автомобили Benz будут предлагаться в электрифицированных версиях.

    Только BMW сохраняет курс.Генеральный директор BMW Оливер Зипсе заявил, что компания не планирует прекращать разработку газовых и дизельных двигателей, и добавил, что спрос на автомобили внутреннего сгорания «останется устойчивым в течение многих лет». Но BMW также ускоряет планы по производству электромобилей и недавно выпустила электрический i4 2022 с запасом хода до 300 миль.

    Toyota заявила еще в 2017 году, что не планирует выпускать двигатели внутреннего сгорания после 2040 года, но неясно, что она думает сейчас. В 2019 году Honda объявила, что после 2022 года будет продавать в Европе только электромобили и гибриды.Возможно, мышление компании неуместно, по крайней мере, на внутреннем рынке, потому что Япония рассматривает вопрос о запрете традиционного внутреннего сгорания к середине 2030-х годов, оставив только аккумуляторные электромобили и подключаемые гибриды.

    Совершенно очевидно, что у традиционных автомобилей с бензиновым и дизельным топливом — на сегодняшний день большая часть рынка — в ближайшем будущем будет ограничен нулевой срок хранения. Корвет с батарейным питанием? Почему нет? У нас уже есть плагин Mustang.

    Неужели так быстро наступит конец пути для двигателей внутреннего сгорания ? Поделитесь своими мыслями в комментариях ниже.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

    Может быть, у двигателя внутреннего сгорания есть будущее

    Группа исследователей из Технологического университета Эйндховена (TU / e, Нидерланды) считает, что у двигателя внутреннего сгорания все-таки есть будущее.Секрет заключается в зеленом водороде в сочетании с благородным газом аргоном. Этот газ естественным образом присутствует в воздухе и может дешево производиться при отделении воздуха. С помощью Argon Power Cycle (APC) выбросы CO2 и оксидов азота могут быть сокращены до минимума. Мы рассказали об этом на прошлой неделе.

    Практически все уже отказались от двигателей внутреннего сгорания, так почему же они думают, что они все еще жизнеспособны?

    Еще до того, как выслушать весь вопрос, Йерун ван Ойен, научный сотрудник факультета машиностроения, расхохотался: «Это полная чушь.Возможно, это относится к легким транспортным средствам, таким как легковые автомобили и небольшие грузовики или фургоны. Все они в будущем будут электрическими. Но электродвигатели еще не совсем подходят для дальних поездок, поэтому двигатели внутреннего сгорания еще точно не списаны ».

    По словам ван Ойена, основная проблема заключается в ископаемом топливе, которое используется в этих двигателях внутреннего сгорания. «Ищутся другие виды топлива, чтобы минимизировать углеродный след и снизить выбросы почти до нуля. Вот где действительно списывается ископаемое топливо.Например, мы уже проводим много исследований по большегрузным автомобилям. Вы можете видеть здесь, что выбросы дизельных двигателей за последние десять лет значительно снизились. Юридические требования также становятся более строгими для достижения поставленных целей. Это хорошо, и они нужны, чтобы иметь еще более чистые автомобили ».

    Подпишитесь на нашу рассылку новостей!

    Ваш еженедельный обзор инноваций Каждое воскресенье лучшие статьи недели в вашем почтовом ящике.

    Как вам пришла в голову идея объединить аргон и водород?

    «Мы давно занимаемся исследованиями двигателей внутреннего сгорания.Как сделать их более эффективными? Какое топливо мы можем использовать? Как мы можем сократить выбросы? Газ аргон обеспечивает очень высокий КПД, и это привлекало некоторое внимание в прошлом. Но это была только теоретическая сторона дела, практическая сторона дела оказалась сложнее. В Беркли коллеги работали над газовым двигателем, который воспламеняется от искры, как бензиновый двигатель. КПД этого двигателя уже был немного выше, чем у газового двигателя, работающего на воздухе, но все же не так высок, как теоретически.”

    Но ван Ойен видел, что это было еще не все. «Тогда я действительно был укушен насекомым. Я не мог позволить этому уйти и начал играть с этим. Я хотел сделать это умнее и лучше. Тогда мне пришла в голову идея увидеть в нем дизельный двигатель. В таком традиционном двигателе воздух сильно сжимается, что приводит к повышению температуры. В момент максимального давления впрыскивается дизельное топливо, которое затем воспламеняется из-за высоких температур. Это заставляет поршень с силой двигаться вниз.”

    Почему тогда лучше использовать газ аргон?

    «Если вы поместите воздух под высоким давлением, он будет вибрировать. Это гарантирует, что энергия не попадет непосредственно на поршень при его воспламенении. Этого не происходит с газом аргоном, поэтому вся энергия топлива направляется на поршень гораздо более непосредственно. Это дает вам гораздо более эффективный двигатель. Вы также можете утилизировать выхлопные газы. Конденсатор охлаждает его до температуры ниже 100 градусов, так что вода исчезает, а аргон может быть возвращен в двигатель.Наша партнерская лаборатория в Беркли продемонстрировала, что этот замкнутый контур работает. Это не только эффективно, но и чисто ».

    Это также применимо, если биотопливо или природный газ подается в двигатель с аргоном вместо зеленого водорода, утверждает Ван Ойен. «Используя специальную систему, мы можем отфильтровать CO2, который выделяется при сгорании. Это делает двигатель немного менее эффективным, но уловленный CO2 можно снова использовать в качестве сырья для производства топлива, такого как, например, метанол ».

    Задача Van Oijen состоит в том, чтобы выяснить, в каком порядке и под каким давлением газообразный аргон, водород и воздух следует впрыскивать для наиболее оптимального двигателя.«Сравните это с качелями, вы толкаете в наиболее разумный момент — в наивысшую точку. Это применимо и здесь. Слишком раннее зажигание, которое иногда случается с аргоном, потому что он быстро нагревается, приведет к тому, что ваш поршень сломается быстрее. И если вы зажжете слишком поздно, оптимальное давление уже исчезнет, ​​и вы потеряете эффективность ».

    Доказательство того, что этот двигатель может быть более эффективным

    Чтобы выяснить, как это работает, Ван Ойен начинает с использования подхода численного моделирования.«Остальной мир на самом деле не заинтересован в этом, но меня это действительно радует. Никто никогда не исследовал кислород, аргон и водород в двигателе внутреннего сгорания. Обычно у вас есть два компонента, теперь их три. Это делает его более сложным и интересным для меня. Мне особенно интересно смотреть на проблемы с потоком. Как реагирует аргон, как он смешивается и что происходит, когда он находится под давлением? Это чрезвычайно сложные с математической точки зрения модели, на то, чтобы разобраться с которыми суперкомпьютеру потребовалось бы несколько дней.Для меня задача — продемонстрировать, что таким образом можно создать чистый и эффективный двигатель. Все это должно быть до нуля с научной точки зрения », — объясняет Ван Ойен.

    Ему все равно, появится ли на рынке когда-либо действующая версия? «Конечно, это было бы здорово. Раньше я исследовал более эффективные авиационные двигатели, и каждый раз, когда я сажусь в самолет, я все еще с чувством гордости заглядываю под крыло. Я способствовал этому.Так что было бы определенно обидно, если бы мы продемонстрировали, что двигатель на аргоне работает, а из этого ничего не вышло бы. Но продавать технику — не мое, я не продавец ».

    Сотрудничество с бывшим магистрантом

    Чтобы воплотить это исследование в работающий двигатель, Ван Ойен работает, среди прочего, со своим бывшим учеником магистра Мигелем Сьерра Аснаром. С тех пор Азнар основал стартап, основанный на этой технике, Noble Thermodynamics. «Мы всегда поддерживали связь, в том числе во время его докторской диссертации в Беркли.А пока, думаю, я могу сказать, что мы стали друзьями. Мы очень хорошо работаем вместе и у нас хорошие отношения. Он настоящий предприниматель и постоянно ведет переговоры со всеми, чтобы мы могли добиться успеха ».

    Стационарные поршневые двигатели внутреннего сгорания

    Требуется ли разрешение на установку дизельного двигателя, например генератора?
    Применимость разрешения будет зависеть в первую очередь от номинальной мощности двигателя и предполагаемого использования генератора.Чтобы установить неаварийный генератор мощностью более 300 тормозных лошадиных сил, вам необходимо получить разрешение на полеты или изменить существующее разрешение до выполнения каких-либо договорных обязательств, взятых на Производственный объект. Только аварийные генераторы обычно не нуждаются в разрешении или изменении разрешения для установки; тем не менее, программы пикового бритья не считаются чрезвычайной ситуацией, и все же есть несколько положений, которые могут применяться независимо от того, требуется ли разрешение. Эти положения и факторы, используемые для определения применимости, более подробно обсуждаются ниже.

    Что такое стационарный поршневой двигатель внутреннего сгорания?
    Стационарные поршневые двигатели внутреннего сгорания (RICE) — это двигатели, которые используют расширение газов и результирующее повышенное давление от сгорания топлива внутри ограниченного цилиндра (ов) для перемещения одного или нескольких поршней назад и вперед для вращения вала и производить механическую энергию. Механическая энергия может использоваться непосредственно для оборудования, такого как насосы или компрессоры, или может использоваться для питания электрического генератора и производства электроэнергии.

    Стационарные поршневые двигатели внутреннего сгорания используют воспламенение от сжатия (CI) или искровое зажигание (SI), чтобы вызвать горение внутри цилиндров. CI RICE обычно работает на дизельном топливе, а SI RICE обычно работает на более легких видах топлива (например, бензине, пропане, природном газе, биогазе и т. Д.). RICE приводит к загрязнению воздуха в результате сгорания топлива, обычно вызывая более высокий уровень загрязнения, чем другие источники сгорания, такие как котлы, из-за более высокого давления внутри RICE и повторяющегося «периодического» сгорания, которое происходит с каждым циклом сгорания, который перемещает поршень ( с).

    Чтобы соответствовать определению стационарного RICE в соответствии с правилами штата Вермонт, двигатель должен оставаться на стационарном источнике в течение 12 месяцев подряд или в течение всего сезона эксплуатации у сезонных источников. Федеральные правила отличаются тем, что, если двигатель установлен на шасси, предназначенном для перемещения, будь то его собственная мощность или внешний источник энергии, он считается не стационарным RICE, а скорее внедорожным двигателем.

    Как насчет двигателей для дорожных транспортных средств и внедорожных двигателей на моем предприятии?
    Дорожная техника (e.грамм. грузовые автомобили, автобусы, легковые автомобили и мотоциклы), зарегистрированные для использования на дорогах общего пользования, подпадают под действие отдельных стандартов выбросов от автотранспортных средств и не подпадают под действие каких-либо разрешений на использование стационарных источников, выданных Вермонтом AQCD, и не включаются в них. Внедорожные двигатели (например, локомотивы, морские суда, внедорожные транспортные средства для отдыха, газонная и садовая техника, а также внедорожное строительное оборудование, включая самосвалы, бульдозеры и переносные генераторы) также подпадают под действие отдельных стандартов выбросов, но их регулирование является более сложным. .Для любого стационарного источника в Вермонте, необходимого для получения разрешения на выбросы других загрязняющих веществ в атмосферу (см. VAPCR 5-401 для списка источников загрязнения воздуха, требующих разрешения на использование воздуха), выбросы загрязняющих веществ в атмосферу и использование топлива для любых внедорожных двигателей будут входит в разрешение на авиаперевозку. Основная причина их включения в разрешение на использование воздуха связано с тем, что выбросы от этих двигателей, вероятно, происходят полностью в стационарном источнике, в отличие от транспортных средств на шоссе, которые выбрасывают выбросы на многие мили автомагистралей.

    Однако федеральное определение внедорожных двигателей включает положения, в которых говорится, что эти двигатели станут стационарными источниками в зависимости от того, как они используются. Если внедорожный двигатель остается неподвижным в одном и том же фиксированном месте в течение 12 месяцев подряд или в течение всего сезона эксплуатации с сезонными источниками, он будет считаться стационарным двигателем. Для этого часто используются компрессоры и генераторы.

    Выбросы внедорожных двигателей и потребление топлива на Производственном объекте будут включены как часть регистрации Объекта и регулироваться в разрешении на использование Объекта на использование воздуха. Однако, если внедорожный двигатель не будет реклассифицирован как стационарный двигатель, разрешение не может налагать любые новые стандарты выбросов для двигателей, поскольку внедорожные двигатели уже подпадают под федеральные стандарты выбросов.

    Как регулируется стационарный рис?
    Есть несколько факторов, которые могут повлиять на то, какие правила применяются к стационарному RICE, например:

    • Номинальная тормозная мощность двигателя,
    • при изготовлении или установке двигателя,
    • независимо от того, расположен ли двигатель в основном источнике или области источника,
    • предполагаемое использование двигателя, в том числе когда / где двигатель перемещается (если применимо),
    • и является ли двигатель двигателем с воспламенением от сжатия или искровым зажиганием.Двигатели с искровым зажиганием далее подразделяются по циклам мощности (т. Е. Двухтактный против четырехтактного и «богатое горение» против «обедненное горение»).

    Таким образом, перед установкой стационарного RICE вы должны уведомить Отдел разрешений и проектирования AQCD, чтобы убедиться, что вы полностью осведомлены о своих обязательствах. Уведомление должно включать следующую информацию: марку, модель, мощность двигателя, мощность генератора в кВт (если применимо), год изготовления двигателя и сертификат выбросов для двигателя.Эта информация доступна на паспортной табличке двигателя, прикрепленной к двигателю, в отличие от паспортной таблички генератора, которая прикреплена к компоненту генератора. К уведомлению должна быть приложена фотография паспортной таблички двигателя, чтобы гарантировать, что вся информация точно собрана и отправлена. Если предполагается использование в качестве аварийного генератора, в уведомлении также должно быть указано, что аварийный генератор должен использоваться только для аварийного использования и что вы знакомы с государственными и федеральными определениями, ограничивающими, какие операции разрешены для аварийных генераторов.Генераторы, которые будут использоваться не в аварийных целях, в том числе в большинстве программ сокращения пиковых нагрузок, обычно требуют разрешения или изменения разрешения перед установкой.

    Что мне нужно сделать, чтобы получить разрешение на полеты?
    Заявление на получение разрешения на строительство должно быть подано с соответствующей пошлиной в AQCD. Разрешение должно быть выдано до того, как заявитель сможет начать строительство объекта. Это потребуется перед установкой или эксплуатацией неаварийного стационарного RICE на объекте.Дополнительную информацию см. На нашей веб-странице, посвященной разрешению на создание руководств по применению. В дополнение к информации, необходимой для подачи заявки на получение разрешения на строительство, пожалуйста, также предоставьте следующие спецификации оборудования и проекты.

    Технические характеристики и конструкция оборудования
    Пожалуйста, предоставьте следующую информацию в Отдел разрешений и инженерии при подаче заявления на разрешение.

    • Производитель двигателя, Модель №, Серийный №(при наличии), дата изготовления
    • Дата установки:
    • Использование двигателя (аварийный резерв, основное питание, пиковая мощность, использование без генератора (пояснение)):
    • Мощность двигателя (л.с.):
    • Номинальная мощность двигателя (непрерывный / основной / резервный):
    • Мощность генератора (кВт):
    • Рабочая скорость двигателя (об / мин):
    • Тип топлива (дорожное дизельное топливо [бесцветное, без оттенка] / стандартное дизельное топливо [красный оттенок] / природный газ / пропан / бензин / другое):
    • Максимальная скорость сжигания топлива при 100% нагрузке (жидкое топливо [галлоны / час] / газообразное топливо [кубические футы / час]):
    • Конструкция двигателя: количество цилиндров
      • Рабочий объем на цилиндр (кубические дюймы)
      • двухтактный или четырехтактный
      • с турбонаддувом, наддувом или без наддува?
      • с промежуточным или промежуточным охлаждением?
      • метод зажигания [искра или сжатие (дизельный цикл)]:
    • Сертифицирован ли двигатель на соответствие федеральным ограничениям выбросов для двигателей внедорожных транспортных средств согласно 40 CFR Part 89 или Part 1039?
    • Если да, укажите уровень сертификации двигателя и год сертификации (т. Е.год соответствия стандартам, по которым он сертифицирован):
    • Будет ли использоваться расслоенный заряд или замедление двигателя?
    • Будет ли двигатель использовать катализатор для борьбы с загрязнением воздуха?
    • Будет ли двигатель оборудован уловителем частиц дыма для снижения выбросов твердых частиц?
    • Производитель генератора, Модель №, Серийный № (при наличии)
    • Мощность генератора (кВт): основная мощность и / или резервная мощность
    • Химия выхлопных газов (при наличии)

    Государственные правила для генераторов
    Освобождение от государственных разрешений на аварийные генераторы распространяется только на аварийное использование только генераторов и только в том случае, если совокупная мощность этих двигателей-генераторов на всем объекте составляет менее 2000 л.с.Вермонтское определение для аварийного использования только допускает неограниченную работу во время аварийных событий вне контроля объекта, а также до 100 часов в год на плановые испытания и техническое обслуживание. Только в соответствии с определением штата Вермонт, аварийные события также включают работу в рамках программ реагирования на чрезвычайные ситуации ISO Новой Англии или местных энергетических компаний. Эти программы используются для обеспечения надежности электросети во время экстремально высоких нагрузок на электроэнергию и реализуются только после того, как будут выполнены отключения электроэнергии.Эти программы очень ограничены и не включают в себя большинство программ пиковых значений или сброса нагрузки, используемых для снижения потребления электроэнергии, когда затраты на электроэнергию высоки, но надежность сети не находится под угрозой. В случае сомнений вам следует обратиться в свою энергетическую компанию и в Отдел разрешений и инжиниринга AQCD, чтобы подтвердить, соответствует ли программа требованиям. Даже если ваш аварийный генератор имеет право на освобождение от разрешений, он не может быть освобожден от соблюдения минимальных стандартов выбросов. Если двигатель мощностью 450 л.с. или выше и установлен после 1 июля 2007 г., он должен как минимум соответствовать федеральным стандартам EPA Tier 2 на выбросы загрязняющих веществ для внедорожных двигателей 40 CFR Part 89 или аналогичным.Сюда входят двигатели, которые будут использоваться для аварийного резервного копирования. Эффект этого правила заключается в том, что многие старые несовместимые двигатели не могут быть установлены в Вермонте. Большинство существующих аварийных генераторов, установленных до этой даты, было разрешено использовать только в аварийных ситуациях. Если ваш двигатель имеет мощность 450 л.с. или больше, вам необходимо будет предоставить документацию в Отдел разрешений и проектирования AQCD, подтверждающую, что предлагаемый двигатель соответствует требованиям, прежде чем устанавливать двигатель.

    Федеральные правила для генераторов
    Федеральное Агентство по охране окружающей среды США имеет два правила, касающихся загрязнения воздуха, которые могут применяться к вашему генератору.Один применяется к новым двигателям, а другой — к существующим двигателям. Оба позволяют аварийным генераторам работать неограниченное количество часов в аварийных ситуациях и до 100 часов в год для проверок технического обслуживания и проверки готовности, но оба имеют более строгие требования к работе в рамках программ реагирования на чрезвычайные ситуации.

    Точное применение этих правил очень сложно для двигателей, установленных в переходный период 2005-2007 гг. Одно правило применяется к новым двигателям 2007 модельного года и новее, а также к тем, которые были заказаны после 11 июля 2005 года, которые были изготовлены (не установлены) после 1 апреля 2006 года, и одно применяется к существующим двигателям, установленным до 12 июня 2006 года.Применимость к этим правилам в переходный период не является безупречной, и на двигатель может распространяться один, оба или ни один из правил.

    Краткое изложение этих правил приводится ниже. Поскольку Вермонт не принял на себя делегирование этих правил, Агентство по охране окружающей среды США является исполнительным органом и несет ответственность за определение применимости и выполнения этих правил. Для получения дополнительной информации обратитесь непосредственно к Агентству по охране окружающей среды США и их веб-сайту.

    Часть 60, Подчасть IIII
    Настоящие правила применяются к более новым двигателям, включая аварийные генераторы, примерно 2007 модельного года и новее. За некоторыми исключениями, этот регламент для стационарных двигателей по существу указывает на стандарты выбросов для внедорожных двигателей, содержащиеся в 40 CFR Part 89 и 1039. Его требования возлагаются в первую очередь на производителя двигателей, который должен производить двигатели, соответствующие все более строгим стандартам выбросов для новых моделей. годы.Стандарты выбросов различаются в зависимости от года выпуска, размера двигателя и в некоторых случаях предполагаемого использования двигателя. В то время как большинство двигателей, произведенных после 2014 года, должны соответствовать стандартам выбросов Tier 4, которые требуют передовых средств контроля выбросов оксидов азота, состоящих из катализатора избирательного каталитического восстановления (SCR) и впрыска жидкости для выхлопных газов дизельных двигателей (DEF) 1 , некоторые двигатели производятся и сегодня. в соответствии с менее строгими стандартами выбросов, если они предназначены для аварийного режима , используйте только или большие (> 750 л.с.) приложения, не связанные с генераторными установками.Если двигатель сертифицирован для только для аварийного использования , оператор должен ограничить его работу только для аварийного использования. На сертификационной этикетке двигателя будет указано, есть ли у двигателя такие ограничения. Перед покупкой любого двигателя убедитесь, что он предназначен только для аварийного использования. Такие двигатели никогда не могут быть использованы или переведены на неаварийную работу в любой момент в будущем. Независимо от уровня сертификации выбросов двигателя, оператор двигателя должен использовать только топливо ULSD и должен обслуживать двигатель в соответствии с рекомендациями производителя и в соответствии с надлежащей практикой контроля загрязнения воздуха для минимизации выбросов.

    Если вы планируете использовать биодизельное топливо, обратите внимание, что должны выполняться все из следующих условий:

    • Биодизель соответствует требованиям к топливу 40 CFR 60.4207 (b),
    • Гарантия производителя двигателя на двигатель (включая системы контроля выбросов) включает использование биодизеля (или смеси биодизеля), используемого в двигателе, и
    • Биодизель соответствует ASTM D6751.

    1 Для стационарных двигателей, изготовленных и помеченных как , используйте только , Подчасть IIII не требует, чтобы они соответствовали последним стандартам выбросов (уровень 4), установленным для внедорожных двигателей в 40 CFR Part 89 и 1039.В таком стационарном аварийном режиме используются только двигатели с маркировкой , которые соответствуют требованиям Tier 3 для двигателей мощностью менее 750 л.с. и Tier 2 для двигателей мощностью более 750 л.с. Кроме того, для внедорожных двигателей мощностью более 750 л.с. (560 кВт), которые не являются компонентом генераторной установки, стандарты выбросов Tier 4, вероятно, могут быть выполнены без необходимости в катализаторе селективного каталитического восстановления (SCR) и впрыскивании дизельного топлива. выхлопная жидкость (DEF).

    Часть 63 Подчасть ZZZZ
    Этот регламент применяется к существующим двигателям, установленным до ~ 12 июня 2006 г., и его требования относятся в основном к предприятиям, эксплуатирующим двигатель.Требования различаются в зависимости от размера и использования двигателя. Аварийные генераторы на жилых / коммерческих / институциональных объектах, но не на промышленных объектах, не облагаются налогом. Федеральное определение экстренной операции не соответствует определению штата и является предметом текущих судебных разбирательств. В настоящее время двигатели , предназначенные только для аварийного использования, могут эксплуатироваться, но не , как часть программы реагирования на чрезвычайные ситуации ISO Новой Англии. Допускается некоторая неаварийная операция, но такая операция не может использоваться для снижения пиковой нагрузки или реагирования на неаварийный спрос или для получения дохода для предприятия, за исключением случаев, разрешенных в настоящее время в (f) (4) (ii), которые все еще позволяют до 50 часов реакции на «местный» спрос.Вам следует напрямую проконсультироваться с нормативными актами и EPA, чтобы убедиться, что вы соблюдаете эти положения, если вы намереваетесь использовать двигатель для любых неаварийных программ или программ реагирования на запросы.

    Аварийные генераторы на промышленных объектах и ​​неаварийные двигатели мощностью менее 300 л.с. должны устанавливать счетчик отработанного времени (аварийные блоки), менять масло и фильтр каждые 500 часов (аварийные блоки) или 1000 часов (неаварийные блоки) работы, но не реже одного раза в год, осматривайте воздушный фильтр двигателя каждые 1000 часов работы, но не реже одного раза в год, проверяйте шланги и ремни двигателя каждые 500 часов, но не реже одного раза в год, и ведите соответствующие записи.В неаварийных двигателях мощностью 300 л.с. и выше должен быть установлен катализатор окисления для снижения выбросов монооксида углерода, должно использоваться только топливо ULSD и двигатель должен обслуживаться в соответствии с рекомендациями производителя и в соответствии с надлежащей практикой контроля загрязнения воздуха для минимизации выбросов, включая ограничение времени работы на холостом ходу.

    Какие еще разрешения или требования могут быть применимы к моему проекту?
    Управление по содействию охране окружающей среды Департамента охраны окружающей среды имеет специалистов по разрешениям, которые могут оказать помощь в определении того, какие другие государственные разрешения или программы могут быть применимы к вашему проекту.Дополнительную информацию об этой услуге можно найти на следующем веб-сайте: http://dec.vermont.gov/environmental-assistance/permit

    Сколько времени потребуется электромобилям для замены двигателей внутреннего сгорания?

    На прошлой неделе я был у одного из формовщиков автомобилей, когда наш разговор перешел на электрификацию. Крупные автопроизводители делают большие ставки на электромобили. Они разрабатывают новые модели, улучшенные аккумуляторы, больше станций с более быстрой зарядкой и даже творческие способы продавать то, что в настоящее время является довольно дорогой технологией.

    Но электромобили по-прежнему остаются нишевым продуктом. Кейт Крейн, председатель нашей материнской компании Crain Communications и главный редактор Automotive News , недавно написал, что электромобили составляют менее 2 процентов продаж новых автомобилей, согласно недавнему исследованию J.D. Power. Большинство из них пришло от Tesla.

    По данным центра обработки данных Automotive News , в 2020 году автопроизводители продали в США чуть более 300000 аккумуляторных электромобилей. Это на 19 процентов больше, чем в 2019 году, но это все еще довольно небольшая доля рынка.Для сравнения, AN сказал, что это примерно столько же автомобилей Honda CR-V, которые продаются в Соединенных Штатах.

    Но электромобили должны быть волной будущего. Потребители в Китае и Европе пожирают их, и обозреватели автомобильной промышленности считают, что более строгие федеральные и государственные экологические нормы будут способствовать увеличению продаж электромобилей в Соединенных Штатах.

    Но пока не выбрасывайте эту кредитную карту заправочной станции. Формовщик, которого я посетил, указал, что некий U.Автопроизводители S. все еще разрабатывают новый двигатель внутреннего сгорания для будущих моделей. Это означает, что они делают ставку на то, что у ICE все еще есть как минимум десять лет массового производства новых, а может и больше.

    Колонка мистера Крейна на самом деле не была посвящена электромобилям. Он оплакивал кончину другой «старомодной» автомобильной технологии — стандартной трансмиссии.

    «Возможно, я единственный, кто помнит, как учился водить машину с механической коробкой передач», — написал он. «Моя первая машина, Ford ’51, была с механической коробкой передач, как и несколько последующих машин.«

    Вы не последний, мистер Крейн. Я научился водить ужасный Ford Fairmont 1970-х годов с четырехступенчатой ​​механической коробкой передач, которой едва хватало мощности для достижения скоростей на шоссе.

    Первой моей машиной был автобус VW 1960-х годов с механической коробкой передач. Второй была Toyota Tercel 1980-х годов с пятиступенчатой ​​коробкой передач. У него лучший расход бензина, чем у всех, на которых я ездил с тех пор. От себя лично я также научил свою жену водить машину на той Тойоте, и мы до сих пор женаты. Но не думаю, что смогу убедить ее купить еще одну машину со сцеплением.

    И мы не одни. Сегодня только около 1% новых автомобилей имеют стандартные коробки передач.

    Итак, за всю свою жизнь покупкой автомобиля я увидел серьезный сдвиг в потребительских предпочтениях от стандартных коробок передач к автоматическим. Когда мы купили нашу последнюю машину несколько лет назад, я сказал, когда мы выезжали со стоянки, что это может быть последний неавтономный автомобиль с бензиновым двигателем, который мы когда-либо купим.

    Моя жена думала, что я был неправ, и похоже, что она права. Мы еще не готовы к электромобилю.

    Пластмассы и ископаемое топливо тесно связаны на протяжении десятилетий. Некоторые производители нефти отказываются от бензина в пользу пластмасс и химикатов, делая ставку на более долгое и устойчивое будущее.

    Возможно, действия правительства ускорит переход от внутреннего сгорания к электромобилям. Согласно Automotive News , в ходе кампании 2020 года нынешний президент Джо Байден пообещал построить 550 000 зарядных станций для электромобилей и создать более 1 миллиона рабочих мест за счет инвестиций в исследования в области экологически чистой энергии.

    Автопроизводители, такие как General Motors, предвкушают будущее электричества. Федеральная политика может склонить чашу весов в этом направлении. Но не ждите, что изменения произойдут в одночасье. Мне кажется, что мы увидим на рынке как электромобили, так и двигатели внутреннего сгорания по крайней мере еще десять или два года.

    Лоэпп — редактор Plastics News и автор блога Plastics. Следуйте за ним в Twitter @donloepp .

    Прикладные науки о тепле: Киркпатрик, Аллан Т.: 9781119454502: Amazon.com: Книги

    Исчерпывающий ресурс, охватывающий фундаментальные науки о теплоносителях и методы инженерного анализа, используемые для проектирования и разработки двигателей внутреннего сгорания

    Двигатели внутреннего сгорания: прикладные науки о теплоте, четвертое издание объединяет фундаментальные науки о теплоносителях с методами инженерного анализа для моделирования и прогнозирование производительности двигателей внутреннего сгорания.

    Это новое четвертое издание включает в себя совершенно новые материалы по:

    • Новые технологии и концепции двигателей
    • Влияние скорости двигателя на производительность и выбросы
    • Гидравлическая механика впуска и выпуска в двигателях
    • Анализ производительности турбокомпрессора и нагнетателя
    • Химико-кинетическое моделирование, механизмы реакций и выбросы
    • Расширенные процессы горения, включая низкотемпературное горение
    • Анализ трения поршня, кольца и опорного подшипника

    Четвертое издание расширяет комбинированные аналитические и численные подходы, успешно использовавшиеся в предыдущих выпусках .Студентам и инженерам предоставляется несколько новых инструментов для применения фундаментальных принципов термодинамики, механики жидкости и передачи тепла в двигателях внутреннего сгорания.

    Каждая глава включает программы MATLAB ® и примеры, показывающие, как выполнять детальные инженерные вычисления. В главах также увеличено количество домашних заданий, с помощью которых читатель может оценить их прогресс и успеваемость. Все программное обеспечение имеет «открытый исходный код», так что читатели могут подробно увидеть, как выполняется вычислительный анализ и проектирование двигателей.Также предоставляется сопутствующий веб-сайт, предлагающий доступ к компьютерным программам MATLAB ® .

    Исчерпывающий ресурс, охватывающий фундаментальные науки о теплоносителях и методы инженерного анализа, используемые для проектирования и разработки двигателей внутреннего сгорания

    Двигатели внутреннего сгорания: прикладные науки о теплоте, четвертое издание объединяет фундаментальные науки о теплоносителях с методами инженерного анализа для моделирования и прогнозирование производительности двигателей внутреннего сгорания.

    Это новое четвертое издание включает в себя совершенно новые материалы по:

    • Новые технологии и концепции двигателей
    • Влияние скорости двигателя на производительность и выбросы
    • Гидравлическая механика впуска и выпуска в двигателях
    • Анализ производительности турбокомпрессора и нагнетателя
    • Химико-кинетическое моделирование, механизмы реакций и выбросы
    • Расширенные процессы горения, включая низкотемпературное горение
    • Анализ трения поршня, кольца и опорного подшипника

    Четвертое издание расширяет комбинированные аналитические и численные подходы, успешно использовавшиеся в предыдущих выпусках .Студентам и инженерам предоставляется несколько новых инструментов для применения фундаментальных принципов термодинамики, механики жидкости и передачи тепла в двигателях внутреннего сгорания.

    Каждая глава включает программы MATLAB ® и примеры, показывающие, как выполнять детальные инженерные вычисления. В главах также увеличено количество домашних заданий, с помощью которых читатель может оценить их прогресс и успеваемость. Все программное обеспечение имеет «открытый исходный код», так что читатели могут подробно увидеть, как выполняется вычислительный анализ и проектирование двигателей.Также предоставляется сопутствующий веб-сайт, предлагающий доступ к компьютерным программам MATLAB ® .

    Об авторе

    Доктор Киркпатрик — профессор кафедры машиностроения в Государственном университете Колорадо. Он имеет степень бакалавра и доктора наук в области машиностроения Массачусетского технологического института. Как международно признанный авторитет в области прикладных наук о теплоносителях, он опубликовал четыре книги и более 100 публикаций в области двигателей внутреннего сгорания, нестабильности горения, струй жидкости и инженерного образования.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *