Каталитического нейтрализатора – Почему выходит из строя каталитический нейтрализатор — журнал За рулем

Содержание

Почему выходит из строя каталитический нейтрализатор — журнал За рулем

Новости

Статьи

Тесты

БлогиДокументыМарки и моделиПарк ЗРФото и видеоПодборкиШиныСпецпроектыАвторыОпросы ЗРПДД онлайнФорум
Все НовостиДорогиТюнингСтрахованиеТопливоРетроПроисшествияЗаконАвторынокАвтоновинкиТехнологииКурьезыСпортПод влиянием Греты Тунберг: Шварценеггер повысил экологичность своего «проходимца» Pinzgauer 6×6 718 K

После встречи с известной активисткой Арнольд Шварценеггер решил сделать свой шестиколесный Пинцгауэр более экологичным.

Умельцы скрестили ГАЗ-66 с BMW 7-й серии

Автомобиль получился комфортабельным и при этом обладает невероятными проходимостью и харизмой.

Девушка сняла попойку в автомобиле и… заинтересовала ГИБДД

Коньяк-то был ненастоящий — оправдывалась она потом в полиции.

Все СтатьиДеталиДорогиСтатистикаКонсультантПрезентацияПерcонаТанки с огнеметом на борту: вся их недолгая история

Первый танк с огнеметом на борту появился в США. Это была машина на паровой тяге и гусеницах. Были подобные танки и в СССР.

Барашек вместо гайки — и вы сможете быстро обесточить автомобиль

Простой способ, которым поделился читатель «За рулем», стоит иметь в виду всем автовладельцам.

Renault Arkana в парке «За рулем»: уже есть претензии!

На одометре кросс-купе пока всего 11 000 км, и поломок не было. Но кое-какие вопросы к новичку уже появились.

Все ТестыТест-драйвСравнительный тестАвто с пробегомАвтопутешествиеПаровой мотоцикл

Пароцикл практически не нуждается в моторном масле и совсем не нуждается в трансмиссии.

Паровой мотоцикл

Пароцикл не нуждается в трансмиссии и моторном масле.

Новый Land Rover Discovery Sport — первый тест-драйв

Теперь у него прозрачный капот, сенсорные экраны и тотальная гибридизация. Спойлер: у нас гибридных версий не будет.

www.zr.ru

Каталитический нейтрализатор: устройство и принцип работы

В составе выхлопных газов автомобиля содержится довольно много токсичных веществ. Для предотвращения их попадания в атмосферу используется специальное устройство, получившее название «каталитический нейтрализатор» (более известный как «катализатор»). Он устанавливается на автомобилях, оснащенных двигателями внутреннего сгорания, работающих как на бензине, так и на дизельном топливе. Зная принцип работы катализатора, вы сможете понять важность его работы и оценить последствия, которые может вызвать его удаление.

Конструкция и функции каталитического нейтрализатора

Устройство каталитического нейтрализатора

Нейтрализатор является частью системы выхлопа. Он располагается сразу за выпускным коллектором двигателя. Катализатор состоит из:

  • Металлический корпус (монтажный мат), имеющий входной и выходной патрубки.
  • Керамический блок (монолит). Представляет собой пористую структуру с множеством ячеек, которые увеличивают площадь соприкосновения выхлопных газов с рабочей поверхностью.
  • Каталитический слой — специальное напыление на поверхностях ячеек керамического блока, состоящее из платины, палладия и родия. В последних моделях для напыления иногда используется золото — драгоценный металл, который имеет более низкую стоимость.
  • Металлический кожух. Выполняет функции теплоизоляции и защиты катализатора от механических повреждений.

Главная функция каталитического нейтрализатора — это нейтрализация трех основных токсических компонентов отработавших газов, поэтому он получил свое название — трехкомпонентный. Вот эти нейтрализуемые компоненты:

  • Окислы азота NOx – компонент смога, причина кислотных дождей, ядовиты для человека.
  • Угарный газ СО – смертельно опасен для человека при концентрации в воздухе от 0,1%.
  • Углеводороды CH – компонент смога, отдельные соединения канцерогены.

Принцип действия катализатора

На практике трехкомпонентный каталитический нейтрализатор имеет следующий принцип действия:

  • Выхлопные газы из двигателя попадают внутрь керамических блоков, где проникают в ячейки, полностью заполняя их.
  • Металлы-катализаторы палладий и платина провоцируют реакцию окисления, в результате которой несгоревшие углеводороды СН преобразуются в водяной пар, а угарный газ СО в углекислый.
  • Восстановительный металл-катализатор родий преобразует NOx (оксид азота) в обычный безвредный азот.
  • В атмосферу выпускаются очищенные отработавшие газы.

Если в автомобиле установлен дизельный двигатель, то возле катализатора всегда находится сажевый фильтр. Иногда эти два элемента могут быть совмещены в единую конструкцию.

Рабочая температура катализатора играет решающую роль в эффективности процесса нейтрализации токсичных компонентов. Реальное преобразование начинается только после достижения 300°С. Идеальной, с точки зрения эффективности и срока службы, считается температура от 400 до 800°С. В диапазоне температур от 800 до 1000°С наблюдается ускоренное старение нейтрализатора. Длительная работа при температуре свыше 1000°С оказывает губительное воздействие на катализатор. Альтернативой керамике, выдерживающей высокие температуры, является металлическая матрица из гофрированной фольги. Катализаторами в такой конструкции выступают платина и палладий.

Срок службы катализатора

Разрушение керамического блока катализатора

Средний ресурс катализатора составляет 100 тыс. километров пробега, но при правильной эксплуатации он может исправно функционировать и до 200 тыс. километров. Основные причины раннего износа — неисправность двигателя и качество топлива (топливовоздушной смеси). При наличии обедненной смеси происходит перегрев, а при слишком богатой возникает засорение пористого блока остатками несгоревшего топлива, что препятствует протеканию необходимых химических процессов. Это приводит к тому, что срок службы каталитического нейтрализатора существенно снижается.

Еще одной распространенной причиной неисправности керамического катализатора являются механические повреждения (трещины), возникающие при механических воздействиях. Они провоцируют быстрое разрушение блоков.

При возникновении неисправностей работа каталитического нейтрализатора ухудшается, что фиксируется при помощи второго лямбда-зонда. В этом случае электронный блок управления сообщит о неисправности, выдав на приборной панели ошибку «CHECK ENGINE». Также признаками выхода из строя являются дребезжание, увеличение расхода топлива и ухудшение динамики. В этом случае его меняют на новый (оригинального производства или универсальный). Почистить или восстановить катализаторы невозможно, а поскольку это устройство имеет высокую цену, многие автомобилисты предпочитают просто удалить его.

Можно ли удалить катализатор

При удалении катализатора его очень часто заменяют на пламегаситель. Последний выравнивает поток выхлопных газов. Его установка рекомендуется для устранения неприятных шумов, которые возникают при удалении катализатора. При этом, если вы выбрали именно удаление, лучше полностью снять устройство и не прибегать к рекомендациям некоторых автомобилистов пробить в нем отверстие. Подобная процедура улучшит ситуацию только на время.

В автомобилях, соответствующих экологическим стандартам Евро-3, помимо удаления катализатора необходима перепрошивка электронного блока управления. Ее обновляют до версии, в которой отсутствует каталитический нейтрализатор. Также можно установить эмулятор сигнала кислородного датчика, который избавит от необходимости перепрошивать ЭБУ.

Наилучшим решением при поломке каталитического нейтрализатора будет его замена на оригинальную деталь в специализированном сервисе. Таким образом будет исключено вмешательство в конструкцию автомобиля, а его экологический класс будет соответствовать заявленному производителем.

techautoport.ru

Каталитический нейтрализатор

Расскажем Вам о значении в автомобиле такого агрегата как катализатор.

Современные автомобили в обязательном порядке оснащаются каталитическим нейтрализатором. Причем это касается, как дизельных, так и бензиновых машин. Практические все страны ограничивают допуск автомобилей к участию в дорожном движении экологическими нормами. Пример – Евро4, Евро5.

Слово «катализатор» ассоциируется у рядового автолюбителя с двумя вещами:

1. Экология.

2. Разорительные затраты при его замене.

Разберем более подробно, что это, как устроено и как работает.

Как устроен и работает катализатор

Обычно катализатор находится за приемной трубой выпускной системы, в некоторых моделях авто он прикреплен к фланцу на выпускном коллекторе. В состав катализатора входят:

1. Блок-носитель.

2. Корпус.

3. Теплоизоляция.

Блок состоит из большого количества ячеек, напоминающих своим видом соты, которые имеют специальное рабочее химическое покрытие. Это покрытие начинает свою работу после прогрева катализатора до 300 C.

Каталитический нейтрализатор до конца сжигает оксид углерода в выхлопных газах, сажу и прочие вещества, которые пагубно влияют на слизистую оболочку человека. Ячейки нейтрализатора покрыты микропленкой из платины и иридия. Этот состав при сильном нагревании и дожигает несгоревшие вредные вещества. Для лучшего горения в этом процессе участвует оставшийся в отработанных газах кислород. После прохождения выхлопных газов через катализатор из него выходят безвредные N2 и CO2. Выхлопные газы современного автомобиля с исправно работающим катализатором практически не имеют запаха.

Разновидности катализаторов

Каталитические нейтрализаторы делятся по типу внутренних картриджей на металлические и керамические. Большую популярность получили блоки из керамики, которые не подвергаются коррозии и выдерживают очень высокую температуру. Еще одним преимуществом керамики является ее малая себестоимость.

Помните – ударив корпус катализатора о препятствие на дороге, вы практически всегда расколите керамические части внутри его. Это и есть его основной минус керамики, так как расположение катализатора под днищем машины увеличивает вероятность ее повреждения, например, о бордюр.

Минус катализатора с металлическим картриджем – его весьма высокая стоимость.

Правильная эксплуатация катализатора

Для уменьшения вероятности выхода из строя катализатора необходимо использовать качественное топливо, и приобретать его на проверенных АЗС. Некачественное топливо содержит вещества, уничтожающие покрытие сот. Наибольшее негативное влияние на покрытие сот оказывает тетраэтилсвинец. Кстати, его официальное использование теперь запрещено в цивилизованных странах, а активно использовался он в конце прошлого века для увеличения октанового числа.

Из-за высокой стоимости и невозможности найти в автомагазинах и на рынке новый катализатор для своего автомобиля многие автолюбители устанавливают пламегаситель или резонатор (в народе – «обманка»). После такой установки необходимо перепрошивать блок управления, поэтому уточняйте на СТО, сделают ли они это. В противном случае на панели приборов будет гореть ошибка, а сам автомобиль будет работать неправильно.

Не забывайте о том, что катализатор очень сильно (до 300 градусов) раскаляется во время работы, поэтому не стоит парковаться на сухой траве, листьях и других местах, которые содержат легковоспламеняющиеся частицы. Были известны случаи возгорания автомобилей от этого.

Для предотвращения попадания в катализатор несгоревшего топлива, водителю не стоит:

1. Часто крутить стартером для заводки машины, если она не запускается с первого раза.

2. Производить вращение коленчатого вала стартером с отключенными свечами зажигания.

3. Заводить автомобиль при помощи буксировки.

При несоблюдении этих правил высока вероятность попадания в катализатор несгоревшего топлива, которое при воспламенении даст вспышку внутри картриджа, что с большой вероятностью сразу же разрушит его.

В случае поломки катализатора

Первым сигналом о его поломке будет горящая лампочка ошибки на приборной панели. Обычно это ошибка «checkengine» (в народе — «джекичан»). Также на слух вы можете уловить некое дребезжание из-под днища. Это гремят осыпавшиеся соты. При этих симптомах стоит ехать на диагностику выхлопной системы. При отказе запуска двигателя, стоит попытаться завести его, отключив фишку лямбда-зонда, находящегося в катализаторе. Если после этого машина завелась – катализатор неисправен.

Но! Чаще выходит из строя лямбда-зонд, чем катализатор, и ошибка на панели будет гореть точно такая же. Поэтому диагностируйтесь в проверенных местах, чтоб не платить лишние деньги.

Покупая новый катализатор, помните: есть оригинальные и универсальные катализаторы. Первые очень сильно опустошат ваш кошелек. Главное не попасть в ситуацию, когда вы оплатили первый, а поставили вам второй. Лучше сразу рассчитывайте на установку универсального катализатора, как делают многие автолюбители.

Еще более бюджетным вариантом будет установка пламегасителя. Установка такой «обманки» сбережет еще больше денег, чем установка универсального катализатора. Таким приемом пользуются владельцы автомобилей с огромным пробегом, так как срок службы катализатора в таких авто сокращается в разы. При установке «обманки» лямбда-зонд также стоит «обмануть», ну и перепрошить блок управления (как было сказано выше). Но зато срок службы такого устройства равен сроку службы металла, из которого он сделан.

Видео, которое рассказывает о том, что такое катализатор:

Видео о том, как сделать пламегаситель взамен катализатора:

autoportal.pro

Катализатор подробно — Энциклопедия журнала «За рулем»

КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР ВЫХЛОПНЫХ ГАЗОВ


Об­щие све­де­ния

Тре­бо­ва­ния по ог­ра­ни­че­нию то­к­сич­но­сти от­ра­бо­тав­ших га­зов дви­га­те­лей вну­т­рен­не­го сго­ра­ния по­я­ви­лись в 70-х го­дах про­шло­го сто­ле­тия в США и Япо­нии, а за­тем и в дру­гих стра­нах. В свя­зи с уве­ли­че­ни­ем ко­ли­че­ст­ва ав­то­мо­би­лей и их от­ри­ца­тель­ным воз­дей­ст­ви­ем на ок­ру­жа­ю­щую сре­ду эти тре­бо­ва­ния по­сто­ян­но уже­сто­ча­ют­ся. На про­тя­же­нии трех де­ся­ти­ле­тий ве­дет­ся ра­бо­та, на­пра­в­лен­ная на ре­ше­ние этой про­б­ле­мы. Все из­вест­ные спо­со­бы сни­зить ко­ли­че­ст­во вред­ных вы­бро­сов за счет ре­гу­ли­ро­вок или из­ме­не­ния кон­ст­рук­ции дви­га­те­ля не да­ли ожи­да­е­мо­го эф­фе­к­та. Кро­ме то­го, их ис­поль­зо­ва­ние при­во­дит к уве­ли­че­нию рас­хо­да то­п­ли­ва и су­ще­ст­вен­но­му сни­же­нию мощ­но­сти.
Не­пол­но­та сго­ра­ния в порш­не­вых бен­зи­но­вых дви­га­те­лях не по­з­во­ля­ет умень­шить ко­ли­че­ст­во ок­си­да уг­ле­ро­да, уг­ле­во­до­ро­дов и оки­слов азо­та в от­ра­бо­тав­ших га­зах до тре­бу­е­мо­го уров­ня1.
Нейт­ра­ли­за­ция то­к­сич­ных ком­по­нен­тов от­ра­бо­тав­ших га­зов с ис­поль­зо­ва­ни­ем хи­ми­че­ских ре­ак­ций окис­ле­ния и (или) вос­ста­но­в­ле­ния яв­ля­ет­ся наи­бо­лее эф­фе­к­тив­ным спо­со­бом сни­же­ния то­к­сич­но­сти вы­хло­па при со­в­ре­мен­ном уров­не раз­ви­тия тех­ни­ки. С этой це­лью в вы­пу­ск­ную си­с­те­му дви­га­те­ля ус­та­на­в­ли­ва­ют спе­ци­аль­ный тер­ми­че­ский ре­а­к­тор (ней­т­ра­ли­за­тор).
В от­сут­ст­вие ка­та­ли­за­то­ров пол­ное пре­об­ра­зо­ва­ние ок­си­да уг­ле­ро­да и не­сго­рев­ших уг­ле­во­до­ро­дов про­ис­хо­дит в ди­а­па­зо­не тем­пе­ра­тур от 700 до 850°С при ус­ло­вии из­быт­ка ки­с­ло­ро­да. Нейт­ра­ли­зо­вать окис­лы азо­та при этом не­воз­мож­но, так как обя­за­тель­ным ус­ло­ви­ем их вос­ста­но­в­ле­ния яв­ля­ет­ся не­до­с­та­ток сво­бод­но­го ки­с­ло­ро­да.
В при­сут­ст­вии ка­та­ли­за­то­ров — ве­ществ, ак­ти­ви­зи­ру­ю­щих хи­ми­че­ские ре­ак­ции, тем­пе­ра­ту­ра ней­т­ра­ли­за­ции сни­жа­ет­ся и обес­пе­чи­ва­ет­ся воз­мож­ность пре­об­ра­зо­ва­ния всех то­к­сич­ных ком­по­нен­тов.
Ка­та­ли­ти­че­ские ней­т­ра­ли­за­то­ры ос­но­ва­ны на ис­поль­зо­ва­нии “бла­го­род­ных” ме­тал­лов, что свя­за­но с вы­со­кой хи­ми­че­ской аг­рес­сив­но­стью от­ра­бо­тав­ших га­зов. При­ме­не­ние со­от­вет­ст­ву­ю­щих ка­та­ли­за­то­ров обес­пе­чи­ва­ет воз­мож­ность од­но­вре­мен­но окис­лять ок­сид уг­ле­ро­да и уг­ле­во­до­ро­ды, а так­же вос­ста­на­в­ли­вать окис­лы азо­та. Та­кие ней­т­ра­ли­за­то­ры до­с­та­точ­но дол­го­веч­ны, их при­ме­не­ние не при­во­дит к су­ще­ст­вен­но­му уве­ли­че­нию рас­хо­да то­п­ли­ва и сни­же­нию мощ­но­сти дви­га­те­ля. При оп­ти­маль­ном уп­ра­в­ле­нии про­цес­сом сго­ра­ния и ре­цир­ку­ля­ци­ей от­ра­бо­тав­ших га­зов мо­гут быть вы­пол­не­ны са­мые же­ст­кие эко­ло­ги­че­ские тре­бо­ва­ния, предъ­я­в­ля­е­мые к ав­то­мо­би­лям.

Ус­т­рой­ст­во ней­т­ра­ли­за­то­ра

В штам­по­ван­ном кор­пу­се, из­го­то­в­лен­ном из не­ржа­ве­ю­щей ста­ли, рас­по­ло­жен ка­та­ли­ти­че­ский но­си­тель и эла­стич­ная тер­мо­изо­ля­ци­он­ная про­клад­ка (рис.1).
Устройство автомобильного нейтрализатора выхлопных газов:
1 — штампованный корпус из нержавеющей стали;
2 — каталитический носитель;
3 — эластичная термоизоляционная прокладка. а — керамический носитель; б — металлический носитель из гофрированной фольги.

Ке­ра­ми­че­ский но­си­тель (рис. “а”) про­ни­зан про­доль­ны­ми по­ра­ми-со­та­ми, на по­верх­ность ко­то­рых на­не­сен ак­тив­ный ка­та­ли­ти­че­ский слой. По­ры об­ра­зу­ют мно­же­ст­во тон­ких ка­на­лов для про­пу­с­ка от­ра­бо­тав­ших га­зов. Бла­го­да­ря спе­ци­аль­ной под­лож­ке тол­щи­ной 20—60 ми­к­рон с раз­ви­тым ми­к­ро­рель­е­фом об­щая пло­щадь по­верх­но­сти это­го слоя мо­жет до­хо­дить до 20000 м2. Мас­са ка­та­ли­за­то­ров, на­не­сен­ных на эту ог­ром­ную пло­щадь, со­ста­в­ля­ет все­го 2—3 грам­ма.
Для умень­ше­ния га­ба­ри­тов ке­ра­ми­че­ской де­та­ли и сни­же­ния тер­ми­че­ских на­пря­же­ний в ней но­си­тель из та­ко­го ма­те­ри­а­ла ча­с­то из­го­та­в­ли­ва­ет­ся со­став­ным.
Ме­тал­ли­че­ский но­си­тель (рис. “б”) пред­ста­в­ля­ет со­бой тон­чай­шие со­ты, из­го­то­в­лен­ные из гоф­ри­ро­ван­ной фоль­ги. Это по­з­во­ля­ет уве­ли­чить пло­щадь ра­бо­чей по­верх­но­сти по срав­не­нию с ке­ра­ми­че­ским но­си­те­лем, сни­зить со­про­ти­в­ле­ние дви­же­нию га­зов и ус­ко­рить ра­зо­грев бло­ка до ра­бо­чей тем­пе­ра­ту­ры.

Эла­стич­ная тер­мо­изо­ля­ци­он­ная про­клад­ка слу­жит для ком­пен­са­ции раз­ли­чия тер­ми­че­ско­го рас­ши­ре­ния кор­пу­са и но­си­те­ля. Она так­же пред­на­зна­че­на для за­щи­ты от ви­б­ра­ции, уда­ров, дру­гих ме­ха­ни­че­ских воз­дей­ст­вий и мо­жет из­го­та­в­ли­вать­ся:
— в ви­де про­во­лоч­ной сет­ки из не­ржа­ве­ю­щей тер­мо­стой­кой ста­ли;
— как по­душ­ка из во­ло­кон си­ли­ка­та алю­ми­ния с до­бав­кой слю­ды.

Нейт­ра­ли­за­то­ры для бен­зи­но­вых дви­га­те­лей

Окис­ли­тель­ные ка­та­ли­ти­че­ские ней­т­ра­ли­за­то­ры до­жи­га­ют в при­сут­ст­вии пла­ти­ны и из­быт­ке ки­с­ло­ро­да ок­сид уг­ле­ро­да и уг­ле­во­до­ро­ды.
Не­до­ста­ток за­клю­ча­ет­ся в том, что в этих ус­ло­ви­ях не­воз­мож­но ней­т­ра­ли­зо­вать окис­лы азо­та.

Двух­сту­пен­ча­тые ней­т­ра­ли­за­то­ры при­ме­ня­ют для пре­об­ра­зо­ва­ния всех трех то­к­сич­ных ком­по­нен­тов. Они со­сто­ят из двух ча­с­тей, ус­та­но­в­лен­ных по­с­ле­до­ва­тель­но. Пер­вая сту­пень вос­ста­на­в­ли­ва­ет окис­лы азо­та при де­фи­ци­те ки­с­ло­ро­да, а вто­рая окис­ля­ет ок­сид уг­ле­ро­да и уг­ле­во­до­ро­ды при при­ну­ди­тель­ной по­да­че в нее воз­ду­ха.
Двух­сек­ци­он­ные ней­т­ра­ли­за­то­ры име­ют от­но­си­тель­но слож­ную кон­ст­рук­цию. Ис­поль­зо­ва­ние сме­сей с из­быт­ком то­п­ли­ва, что не­об­хо­ди­мо для вос­ста­но­в­ле­ния оки­слов азо­та, при­во­дит к по­вы­шен­но­му рас­хо­ду то­п­ли­ва.

Трех­ком­по­нент­ные ней­т­ра­ли­за­то­ры спо­соб­ны од­но­вре­мен­но под­дер­жи­вать ре­ак­ции окис­ле­ния и вос­ста­но­в­ле­ния то­к­сич­ных ком­по­нен­тов, со­дер­жа­щих­ся в вы­хлоп­ных га­зах. В ка­че­ст­ве ка­та­ли­за­то­ров для пре­об­ра­зо­ва­ния оки­слов азо­та в азот при­ме­ня­ют пла­ти­ну и ро­дий. Для сни­же­ния тем­пе­ра­ту­ры до­жи­га­ния ок­си­да уг­ле­ро­да и уг­ле­во­до­ро­дов, кро­ме пла­ти­ны, ино­гда ис­поль­зу­ют ру­те­ний. Ре­ак­ции ней­т­ра­ли­за­ции в при­сут­ст­вии ка­та­ли­за­то­ров на­чи­на­ют­ся при тем­пе­ра­ту­ре 250°С. Пре­об­ра­зо­ва­ние наи­бо­лее эф­фе­к­тив­но в ди­а­па­зо­не тем­пе­ра­тур от 400 до 800°С.
Для обес­пе­че­ния ра­бо­ты трех­ком­по­нент­но­го ней­т­ра­ли­за­то­ра не­об­хо­дим сте­хио­мет­ри­че­ский со­став то­п­ли­во-воз­душ­ной сме­си. При этом на 1кг то­п­ли­ва долж­но по­да­вать­ся 14,7—14,9кг воз­ду­ха, что обес­пе­чи­ва­ет наи­бо­лее пол­ное сго­ра­ние.
Си­с­те­ма по­да­чи то­п­ли­ва с элек­трон­ным бло­ком уп­ра­в­ле­ния обес­пе­чи­ва­ет сте­хио­мет­ри­че­ский со­став го­рю­чей сме­си на всех ре­жи­мах ра­бо­ты дви­га­те­ля. Уп­ра­в­ле­ние осу­ще­ст­в­ля­ет­ся с ис­поль­зо­ва­ни­ем сиг­на­ла, ге­не­ри­ру­е­мо­го спе­ци­аль­ным дат­чи­ком ки­с­ло­ро­да (рис.5), ус­та­но­в­лен­ным в си­с­те­ме вы­пу­с­ка.

Лямбда-Зонд (Дат­чик ки­с­ло­ро­да) вы­да­ет элек­т­ри­че­ский им­пульс в за­ви­си­мо­сти от на­ли­чия или от­сут­ст­вия ки­с­ло­ро­да в от­ра­бо­тав­ших га­зах. Ес­ли ки­с­ло­род по­я­вил­ся, смесь со­дер­жит из­бы­ток воз­ду­ха (обед­не­на), ес­ли ки­с­ло­род ис­чез, смесь со­дер­жит из­бы­ток то­п­ли­ва (обо­га­ще­на). По сиг­на­лу дат­чи­ка элек­трон­ная си­с­те­ма уп­ра­в­ле­ния дви­га­те­лем по­сто­ян­но под­дер­жи­ва­ет смесь сте­хио­мет­ри­че­ско­го со­ста­ва.

Нейт­ра­ли­за­то­ры для ди­зе­лей

Срав­ни­тель­но не­боль­шое со­дер­жа­ние вред­ных ком­по­нен­тов в от­ра­бо­тав­ших га­зах ди­зе­лей не тре­бо­ва­ло в про­шлом ус­та­нов­ки спе­ци­аль­ных уст­ройств. Од­на­ко уже­сто­че­ние норм то­к­сич­но­сти кос­ну­лось и их. По­я­ви­лись си­с­те­мы сни­же­ния то­к­сич­но­сти вы­хло­па, вклю­ча­ю­щие ре­цир­ку­ля­цию от­ра­бо­тав­ших га­зов, ка­та­ли­ти­че­ский ней­т­ра­ли­за­тор и спе­ци­аль­ный са­же­вый фильтр. Са­жа, со­дер­жа­ща­я­ся в вы­хло­пе, не­то­к­сич­на, но она ад­сор­би­ру­ет на по­верх­но­сти сво­их ча­с­тиц кан­це­ро­ген­ные по­ли­ци­к­ли­че­ские уг­ле­во­до­ро­ды, в том чис­ле бенз-а-пи­рен. Ка­та­ли­ти­че­ские ней­т­ра­ли­за­то­ры в этом слу­чае не тре­бу­ют по­да­чи до­пол­ни­тель­но­го воз­ду­ха, по­сколь­ку ди­зе­ли ра­бо­та­ют на очень бед­ных сме­сях и в вы­хлоп­ных га­зах все­гда при­сут­ст­ву­ет сво­бод­ный ки­с­ло­род. Кон­цен­т­ра­ция про­ду­к­тов не­пол­но­го сго­ра­ния в от­ра­бо­тав­ших га­зах зна­чи­тель­но ни­же, чем в бен­зи­но­вом дви­га­те­ле.
Са­же­вые фильт­ры из­го­та­в­ли­ва­ют в ви­де по­ри­с­то­го фильт­ру­ю­ще­го ма­те­ри­а­ла из кар­би­да крем­ния. Пе­ри­о­ди­че­ски фильт­ры очи­ща­ют от­ра­бо­тав­ши­ми га­за­ми, тем­пе­ра­ту­ру ко­то­рых для это­го по­вы­ша­ют пу­тем впры­ска то­п­ли­ва в ци­лин­д­ры с за­по­зда­ни­ем. Для сни­же­ния тем­пе­ра­ту­ры ре­ге­не­ра­ции при­ме­ня­ет­ся спе­ци­аль­ная при­сад­ка к то­п­ли­ву. Очи­ст­ка фильт­ра про­ис­хо­дит по ко­ман­де бло­ка уп­ра­в­ле­ния по­с­ле ка­ж­дых 400—500 км про­бе­га ав­то­мо­би­ля.

Ре­ко­мен­да­ции

Для обес­пе­че­ния эф­фе­к­тив­ной ра­бо­ты ней­т­ра­ли­за­то­ра не­об­хо­ди­мо ис­поль­зо­вать толь­ко ка­че­ст­вен­ное не­эти­ли­ро­ван­ное то­п­ли­во, так как со­дер­жа­щий­ся в бен­зи­не те­т­ра­этил­сви­нец (ТЭС) не­об­ра­ти­мо “от­ра­в­ля­ет” ка­та­ли­ти­че­скую по­верх­ность.
Во вре­мя и по­с­ле ра­бо­ты дви­га­те­ля кор­пус ней­т­ра­ли­за­то­ра име­ет до­с­та­точ­но вы­со­кую тем­пе­ра­ту­ру. В свя­зи с этим, во из­бе­жа­ние по­жа­ра, не сле­ду­ет пар­ко­вать ав­то­мо­биль над лег­ко вос­пла­ме­ня­ю­щи­ми­ся пред­ме­та­ми, на­при­мер су­хи­ми ли­сть­я­ми, тра­вой, бу­ма­гой и т.д.
Сле­ду­ет со­блю­дать ос­нов­ные пра­ви­ла, при­ве­ден­ные в ин­ст­рук­ции по экс­плу­а­та­ции ав­то­мо­би­лей. Они на­пра­в­ле­ны на пре­ду­пре­ж­де­ние си­ту­а­ции, ко­гда в ней­т­ра­ли­за­тор мо­жет по­пасть зна­чи­тель­ное ко­ли­че­ст­во не­сго­рев­ше­го то­п­ли­ва. В этом слу­чае воз­мож­ная вспыш­ка мо­жет при­ве­с­ти к его раз­ру­ше­нию. На­и­бо­лее об­щие ре­ко­мен­да­ции мож­но из­ло­жить сле­ду­ю­щим об­ра­зом:
· не сле­ду­ет бес­по­лез­но кру­тить дви­га­тель стар­те­ром дли­тель­ное вре­мя;
· в хо­лод­ное вре­мя го­да, ес­ли дви­га­тель не за­пу­с­тил­ся с пер­вой по­пыт­ки, не­об­хо­ди­мо из­бе­гать по­втор­ных вклю­че­ний стар­те­ра че­рез ко­рот­кие про­ме­жут­ки вре­ме­ни;
· нель­зя пу­с­кать дви­га­тель пу­тем бу­к­си­ров­ки;
· за­пре­ща­ет­ся про­ве­рять ра­бо­ту ци­лин­д­ров, от­клю­чая све­чи за­жи­га­ния.

1Основным источником образования несгоревших остатков является гашение пламени в пристеночных зонах, в зазоре между поршнем и цилиндром, между поршневыми кольцами и канавками в поршне и т.д. Другая причина — неравномерность состава смеси по объему цилиндра, особенно у непрогретого двигателя и на переходных режимах.

wiki.zr.ru

Каталитический нейтрализатор отработавших газов | Автомобильный справочник

 

Законодательство в области ограничения ток­сичности отработавших газов устанавливает пре­делы содержания в них токсичных веществ. Для выполнения этих требований меры, связанные с совершенствованием конструкции двигателей, оказываются недостаточными. В дополнение к снижению количества неочищенных выбросов большое внимание уделяется каталитической очистке отработавших газов, с целью преоб­разования токсичных веществ. Вот о том как происходит каталитическая очистка отработавших газов, мы и поговорим в этой статье.

 

Содержание

 

 

Каталитические нейтрализаторы преобразуют загрязняющие вещества, образующиеся в процессе сгорания топлива, в безвредные компоненты.

Трехкомпонентный каталитический нейтрализатор отработавших газов

 

Современные технологии очистки отрабо­тавших газов для двигателей, работающих при стехиометрическом составе смеси, пред­ставляет трехкомпонентный каталитический нейтрализатор. Его задачей является преоб­разование токсичных веществ — НС (углеводо­родов), СО (оксида углерода) и NOх (оксидов азота), образующихся в процессе сгорания топлива, в безвредные составляющие. Ко­нечными продуктами являются Н2О (водяной пар), С02 (диоксид углерода) и N2 (азот).

Конструкция и принцип действия каталитического нейтрализатора

 

Каталитический нейтрализатор состоит из кон­тейнера из листовой стали, подложки, покрытия из пористого оксида и активного каталитиче­ского металлического покрытия. Подложка обычно представляет собой керамический монолит, хотя для специальных применений также используются металлические монолиты. На монолит наносится слой подложки, который увеличивает эффективную площадь каталити­ческого нейтрализатора примерно в 7000 раз. Каталитический слой поверх подложки содер­жит благородные металлы, такие как платина или палладий и родий. Платина и палладий уско­ряют окисление НС и СО, в то время как родий несет ответственность за восстановление NО.

Окисление СО и НС происходит в соответ­ствии со следующими реакциями:

2 СО + О2 —> 2 СО2,

2 С2Н6 + 7 O2 —> 4 С02 + 6 Н2O

Восстановление оксидов азота происходит в соответствии со следующей реакцией:

2 NO + 2 СО — N2+ 2 СO2

Кислород, требующийся для процесса окисле­ния, либо присутствует в отработавших газах (в результате неполного сгорания топлива), либо забирается из оксидов азота NОX, кото­рые в то же время восстанавливаются.

Концентрация токсичных веществ в отрабо­тавших газах (перед каталитическим нейтра­лизатором) зависит от коэффициента избытка воздуха λ (см. рис. а, «Эффективность каталитического нейтрализатора в функции коэффициента избытка воздуха λ» ). Для как можно более полного преобразования трехкомпонентным каталитическим нейтрализатором всех трех ток­сичных составляющих требуется стехиометриче­ский состав топливно-воздушной смеси (λ = 1, см. рис. Ь, «Эффективность каталитического нейтрализатора в функции коэффициента избытка воздуха λ» ). При λ = 1 имеет место состояние равновесия между реакциями окисления и вос­становления, что способствует полному окисле­нию НС и СО с одновременным восстановлением NО, При этом НС и СО действуют в качестве восстановителей для NO. «Окно» (диапазон регулирования λ), в пределах которого должно находиться среднее значение λ, очень невелико Отсюда следует, что смесеобразование должно корректироваться с использованием замкнутой системы регулирования λ с применением в ка­честве устройства, вырабатывающего сигнал об­ратной связи, кислородного датчика λ (см. рис. с, «Эффективность каталитического нейтрализатора в функции коэффициента избытка воздуха λ» ) (см. «Регулирование λ»).

 

 

Каталитический нейтрализатор кислород­ного типа

 

Точность регулирования λ в динамическом диапазоне, как правило, составляет 5 %, т.е. отклонения от значения λ = 1 являются не­избежными. Каталитический нейтрализатор способен сам компенсировать небольшие колебания состава смеси. Он обладает спо­собностью запасать избыточный кислород во время работы двигателя на бедной смеси и освобождать его при обогащении смеси. Слой подложки содержит цероксид, который может запасать и освобождать кислород в соответ­ствии со следующей обратимой реакцией:

Се2Оз + О2 <-> 4 СеO2

Следовательно, задача системы управления двигателем представляется вполне ясной. Усредненное по времени значение λ перед ката­литическим нейтрализатором должно поддер­живаться очень точно (допустимое отклонение составляет несколько тысячных долей). Откло­нения, переведенные в количество запасаемого и освобождаемого кислорода, не должны пре­вышать количества кислорода, которое может удерживать каталитический нейтрализатор. Типичные значения этого количества лежат в диапазоне от 100 мг до 1 г; в процессе старения каталитического нейтрализатора эти значения Уменьшаются. Все обычные методы диагно­стики каталитического нейтрализатора осно­ваны на прямом или косвенном определении его способности к накоплению кислорода.

При нормальной рабочей температуре каталитического нейтрализатора степень преобразования ограниченного количества токсичных веществ достигает 99%.

Каталитический нейтрализатор NOx аккуму­ляторного типа

 

Во время работы двигателя на бедной смеси трехкомпонентный каталитический нейтрализатор не способен преобразовывать оксиды азота, произведенные в процессе сгорания то­плива. СО и НС окисляются остаточным кисло­родом, содержащимся в отработавших газах, и, следовательно, не могут служить в качестве восстановителей оксидов азота.

Каталитический слой каталитического ней­трализатора NОx, аккумуляторного типа со­держит вещества, способные накапливать NОx, например, оксид бария. Все обычные покры­тия, накапливающие NОx, также обладают свой­ствами трехкомпонентного каталитического нейтрализатора, в результате чего каталитиче­ский нейтрализатор NОx аккумуляторного типа при λ = 1 работает таким же образом, как трех­компонентный каталитический нейтрализатор.

При работе двигателя на бедной смеси в режиме послойного распределения заряда NОx преобразуются в три этапа. Вовремя накопле­ния NОx сначала окисляются до диоксида азота NO2, который затем реагирует со специальными оксидами на поверхности каталитического ней­трализатора и кислородом (O2) с образованием нитратов, например, нитрата бария.

По мере того как количество накопленных NОx (нагрузка) возрастает, способность ней­трализатора связывать NОx понижается. При определенной нагрузке аккумулятор NОx должен быть регенерирован, т.е. связанные в нем оксиды азота должны быть снова освобождены и пре­образованы. С этой целью двигатель кратковре­менно переводится в режим работы на богатой однородной смеси (λ < 0,8) для восстановления NО до N2 без выработки в ходе процесса СО и НС.

Время окончания фазы хранения и начала фазы освобождения либо вычисляется с ис­пользованием модели, либо определяется при помощи кислородного датчика λ после каталитического нейтрализатора.

 

 

Десульфатация

 

Содержащаяся в топливе сера также вступает в реакцию с аккумуляторным материалом в каталитическом слое. В результате с течением времени количество материала, имеющегося в наличии для накопления NОх, уменьшается. Это приводит к образованию сульфатов, на­пример, сульфата бария, которые обладают очень высокой тепловой стойкостью и не вос­станавливаются во время регенерации NОх. Для десульфатации каталитический нейтрализатор необходимо нагреть до 600-650 °С, а затем в течение нескольких минут двигатель должен попеременно работать на богатой (λ = 0,95) и бедной (λ = 1,05) смеси. В ходе этого процесса количество сульфатов уменьшается.

Используя различные методы нагрева ка­талитического нейтрализатора NOx аккумуля­торного типа, расположенного под днищем автомобиля, следует соблюдать осторож­ность, чтобы не допустить перегрева первич­ного каталитического нейтрализатора.

Рабочая температура каталитического нейтрализатора

 

Каталитические нейтрализаторы не могут начать преобразование до тех пор, пока не достигнут определенной рабочей температуры (темпера­туры запуска). Для трехкомпонентного ката­литического нейтрализатора эта температура составляет приблизительно 300 °С. Идеальные условия для преобразования достигаются при температуре от 400 до 800 °С. Для каталитиче­ского нейтрализатора NОх, аккумуляторного типа благоприятный диапазон температур ниже: он достигает максимальной накопительной спо­собности при температуре от 300 до 400 °С.

Температуры от 800 °С до 1000 °С вызы­вают ускоренное тепловое старение катали­тического нейтрализатора. Это старение вы­зывается спеканием благородных металлов и слоя подложки, в результате которого умень­шается активная поверхность катализатора. При температурах свыше 1000 °С тепловое старение происходит настолько быстро, что каталитический нейтрализатор вообще пере­стает оказывать какой-либо эффект.

 

 

Конфигурации каталитических нейтрализаторов

 

Требуемая рабочая температура трехкомпо­нентного каталитического нейтрализатора ограничивает варианты его установки. При установке каталитического нейтрализатора вблизи двигателя он быстро достигает ра­бочей температуры, но затем может испыты­вать очень высокие тепловые нагрузки.

 

 

Широко используется конфигурация трех­компонентного каталитического нейтрализа­тора с разделенным на две части первичным нейтрализатором и главным каталитическим нейтрализатором, устанавливаемым под дни­щем автомобиля. Первичный каталитический нейтрализатор оптимизирован в отношении высокотемпературной стабильности, а глав­ный нейтрализатор — в отношении низкой тем­пературы активации. Различные возможные конфигурации первичного и главного (уста­навливаемого под днищем) каталитических нейтрализаторов показаны на рис. «Конфигурация установки каталитических нейтрализаторов» . В связи с их более низкими максимально допустимыми рабочими температурами каталитические ней­трализаторы NОх, аккумуляторного типа всегда устанавливаются под днищем автомобиля.

Нагрев каталитического нейтрализатора отработавших газов

 

Количество выбросов НС и СО особенно ве­лико, когда двигатель холодный, поскольку при этом топливо конденсируется на холод­ных стенках цилиндров, а затем выходит из камеры сгорания несгоревшим. Проблему усугубляет тот факт, что для эффективной ра­боты каталитический нейтрализатор должен достичь минимальной рабочей температуры. Поэтому крайне важно снизить количество не­обработанных отработавших газов во время прогрева двигателя, пока каталитический ней­трализатор не достиг рабочей температуры. Отсюда следует необходимость принятия мер к быстрому нагреву каталитического нейтра­лизатора до рабочей температуры. Требуемое для этого тепло может быть обеспечено за счет повышения температуры отработавших газов и увеличения их массового расхода. Это может быть сделано следующим образом.

Регулирование момента зажигания

 

Основным способом повышения температуры от­работавших газов является сдвиг момента зажи­гания в сторону запаздывания. При этом сгорание смеси происходит во время такта расширения. К окончанию такта расширения отработавшие газы имеют относительно высокую температуру. Позднее сгорание топлива оказывает неблаго­приятное влияние на к.п.д. двигателя.

Увеличение оборотов холостого хода

 

Дополнительной мерой является увеличение оборотов холостого хода и, соответственно, мас­сового расхода отработавших газов. Повышение оборотов позволяет еще больше сдвинуть мо­мент зажигания в сторону запаздывания. Тем не менее, в целях обеспечения устойчивой работы двигателя запаздывание зажигания ограничи­вается диапазоном от 10 до 15° после ВМТ. Дополнительного тепла, полученного выше­указанными способами, не всегда оказывается достаточно для надлежащего снижения содер­жания токсичных веществ в отработавших газах.

 

 

Регулирование фаз газораспределения

 

При необходимости, можно использовать еще один способ увеличения теплового по­тока, заключающийся в регулировании фаз газораспределения. При как можно более раннем открытии выпускных клапанов про­исходит раннее прерывание процесса за­держанного сгорания топлива, и количество произведенной механической работы умень­шается. Соответствующее количество энер­гии становится доступно в виде тепла для по­вышения температуры отработавших газов.

Разделение впрыска

 

Системы прямого впрыска бензина в принципе предоставляют возможность многократного впрыска топлива. Это позволяет быстро нагреть каталитический нейтрализатор до рабочей тем­пературы без использования каких-либо допол­нительных компонентов. Режим «разделения» заключается в первоначальном создании одно­родной бедной смеси посредством впрыска топлива во время такта впуска. Последующий впрыск топлива во время такта сжатия с перехо­дом в режим послойного распределения заряда топлива позволяет сдвинуть момент зажигания в сторону запаздывания и повысить температуру отработавших газов. При этом достижимые тепловые потоки отработавших газов сравнимы с потоками, которые могут быть получены по­средством нагнетания вторичного воздуха.

Система подачи дополнительных порций воздуха

 

Тепловое дожигания несгоревшего топлива по­вышает температуру в системе выпуска отрабо­тавших газов. С этой целью состав топливно-воздушной смеси регулируется в пределах от λ = 0,9 (богатая смесь) до λ = 0,6 (очень богатая смесь). Насос вторичного воздуха подает кисло­род в систему выпуска отработавших газов (см. рис. «Система подачи вторичного воздуха» ) в целях обеднения состава отработавших газов. Если базовая смесь очень богатая (λ = 0,6), несгоревшие составляющие топлива окисляются перед поступлением в каталитический нейтра­лизатор с выделением тепла (экзотермическая реакция) и подъемом температуры выше опреде­ленного порогового значения. Для достижения этой температуры необходимо: с одной сто­роны — сдвинуть момент зажигания в сторону запаздывания, а с другой стороны — подать вто­ричный воздух как можно ближе к выпускным клапанам. Экзотермическая реакция в системе выпуска отработавших газов увеличивает тепло­вой поток в направлении каталитического нейтра­лизатора и, следовательно, сокращает период его нагрева. НС и СО восстанавливаются в основном до поступления в каталитический нейтрализатор.

Если базовая смесь умеренно богатая (λ = 0,9), существенной реакции перед катали­тическим нейтрализатором не происходит. Несгоревшие составляющие топлива окисляются в каталитическом нейтрализаторе, что вызы­вает его нагрев изнутри. Однако для этого сна­чала необходимо довести температуру катали­тического нейтрализатора до уровня «запуска» посредством обычных мер, например, сдвига момента зажигания в сторону запаздывания.

Как правило, используется умеренно богатая базовая смесь, поскольку в случае очень богатой смеси экзотермическая реакция перед каталити­ческим нейтрализатором может стабильно проте­кать только при стабильных граничных условиях.

Нагнетание вторичного воздуха осуществля­ется электрическим насосом, который включает реле при увеличении требуемой эффективной мощности двигателя. Поскольку клапан в си­стеме вторичного воздуха предотвращает об­ратный поток отработавших газов в насос, когда насос выключен он должен быть закрыт. В каче­стве такого клапана может использоваться пас­сивный обратный клапан, электромагнитный клапан или (как показано на рис. «Система подачи вторичного воздуха» ) пневмати­ческий клапан с электромагнитным управляю­щим клапаном. При включении управляющего клапана — клапан подачи вторичного воздуха открывается под действием разрежения во впускном трубопроводе. Управление системой подачи вторичного воздуха осуществляется электронным блоком управления двигателем.

Альтернативные концепции активного нагрева

 

В некоторых случаях для быстрого нагрева каталитического нейтрализатора приме­няется электрообогрев. Нейтрализаторы с электрообогревом были ранее использованы в отдельных мелкосерийных проектах.

 

 

λ-регулирование

 

Для обеспечения как можно более высокой скорости преобразования НС, СО и NО, трех­компонентным каталитическим нейтрализа­тором компоненты реакции должны присут­ствовать в стехиометрическом соотношении. Для этого требуется поддержание значения λ = 1,0; т.е. стехиометрического соотношения воздух/топливо с очень высокой точностью.

Для этого управление процессом смесеобразо­вания должно осуществляться при помощи зам­кнутой системы регулирования, поскольку требу­емая точность не может быть достигнута только посредством управления дозированием топлива при использовании замкнутой системы регули­рования λ отклонения от заданного значения соотношения воздух/топливо могут быть обнару­жены и скорректированы посредством изменения количества впрыскиваемого топлива. В качестве показателя состава топливно-воздушной смеси используется остаточное содержание кислорода в отработавших газах, измеряемое при помощи кислородных датчиков (см. двухступенчатые и широкополосные кислородные датчики).

Двухступенчатое регулирование λ

 

Система двухступенчатого регулирования λ слу­жит для поддержания стехиометрического со­става смеси с λ = 1. Преобразованная переменная величина, включающая скачки и участки линей­ного изменения напряжения, изменяет свое на­правление при каждом скачке выходного напря­жения двухступенчатого кислородного датчика. Это означает переход от богатой смеси к бедной или наоборот (см. рис. «График изменения преобразованной переменной с регулируемым сдвигом в режиме разомкнутого регулирования» ). Типичная амплитуда колебаний этой преобразованной переменной должна быть в пределах 2-3 % от ее среднего значения. Результатом является ограничение ди­намики контроллера, которое в основном опре­деляется суммой значений времени реакции (обусловленных предварительным накоплением топлива во впускном трубопроводе, четырехтакт­ным принципом действия двигателя внутреннего сгорания и временем прохождения газов).

 

 

Асимметричная форма кривой преобразован­ной переменной позволяет скомпенсировать ти­пичную недостоверность сигнала двухступенча­того датчика, вызванную колебаниями состава топливно-воздушной смеси. При этом предпо­чтительным методом является задержка линей­ного возрастания преобразованной переменной в течение регулируемого времени выдержки tv после скачка выходного напряжения датчика.

Непрерывное регулирование λ

 

Динамическая характеристика системы двух­ступенчатого регулирования может быть улуч­шена только в том случае, если может быть измерено фактическое отклонение от значения λ = 1. Для непрерывного регулирования с под­держанием λ = 1 с очень низкой амплитудой колебаний в сочетании с высокими динамиче­скими характеристиками может быть исполь­зован широкополосный кислородный датчик. Параметры регулирования вычисляются и адап­тируются в соответствии с рабочими режимами двигателя. Кроме того, при такой системе регу­лирования λ компенсация неизбежного смеще­ния характеристики системы регулирования как в стационарном, так и нестационарном режиме осуществляется значительно быстрее.

Широкополосный кислородный датчик также позволяет регулировать состав смеси в случае его отклонения от λ = 1. Это позволяет осущест­влять контролируемое обогащение смеси (λ < 1), например, для защиты компонентов, или контро­лируемое обеднение (λ > 1), например, во время прогрева каталитического нейтрализатора.

Система регулирования λ с использованием двух кислородных датчиков

 

Когда кислородный датчик находится перед каталитическим нейтрализатором, он испы­тывает высокие тепловые нагрузки и под­вергается воздействию необработанных от­работавших газов, что ограничивает точность измерения. Изменения состава отработавших тазов могут вызывать сдвиг точки скачка вы­ходного напряжения двухступенчатого кис­лородного датчика или характеристической кривой широкополосного кислородного датчика. Кислородный датчик, расположен­ный после каталитического нейтрализатора, подвергается этим воздействиям в значи­тельно меньшей степени. Однако, система регулирования λ с использованием только кислородного датчика, расположенного поcле каталитического нейтрализатора, демон­стрирует ухудшение динамической характе­ристики, обусловленное конечным временем прохождения газов, и замедленной реакцией на изменения состава смеси.

Более высокая точность может быть достиг­нута в системе, включающей два датчика. Здесь контур двухступенчатого или непре­рывного регулирования λ дополняется более медленным корректирующим контуром, со­держащим дополнительный двухступенчатый кислородный датчик (см. рис. а, «Места установки кислородных датчиков» ). С этой це­лью выходное напряжения двухступенчатого кислородного датчика после каталитического нейтрализатора сравнивается со значением установки (например, 600 мВ). В зависимости от величины отклонения, система регулиро­вания соответствующим образом ступенчато изменяет установку состава смеси в сторону обогащения или обеднения для первого кон­тура регулирования, или значение установки для контура непрерывного регулирования.

Система регулирования λ с использованием трех кислородных датчиков

 

Установка третьего кислородного датчика по­сле главного каталитического нейтрализатора рекомендуется для облегчения диагностики каталитических нейтрализаторов и обеспечения повышенной стабильности состава отработав­ших газов для автомобилей категории SULEV (Автомобили со сверхнизким выбросом вредных веществ). Система регулирования с двумя кисло­родными датчиками (первый каскад) дополнена контуром регулирования с очень низким быстро­действием с использованием третьего кислород­ного датчика, установленного после главного каталитического нейтрализатора (см. рис. Ь, «Места установки кислородных датчиков» ).

Поскольку требования, предъявляемые к ка­тегории SULEV, относятся к величине пробега 150 000 миль, старение первичного каталити­ческого нейтрализатора может привести к сни­жению точности измерения двухступенчатого кислородного датчика после первичного катали­тического нейтрализатора. Этот эффект компен­сируется посредством установки дополнитель­ного двухступенчатого кислородного датчика после главного каталитического нейтрализатора.

В следующей статье я расскажу о системе впрыска топлива Common Rail.

 

Рекомендую еще почитать:

press.ocenin.ru

Каталитический нейтрализатор — это… Что такое Каталитический нейтрализатор?


Каталитический нейтрализатор

Каталитический конвертер — нейтрализатор (англ. catalytic converter) — устройство в выхлопной системе, предназначенное для снижения токсичности отработанных газов посредством восстановления оксидов азота и использования полученного кислорода для дожига угарного газа и недогоревших углеводородов. Основным требованием к успешной работе катализатора является стехиометрическое соотношение топлива и кислорода.

Вредные выбросы

На дороги ежедневно выезжают миллионы автомобилей, и каждый из них — источник загрязнения воздуха. Особенно это чувствуется в крупных городах, где выхлопные газы автомобилей могут создавать большие проблемы.

Задачей автомобильного катализатора является снижение количества вредных веществ в выхлопных газах. Среди них:

Принцип работы

Катализатор расположен либо на приемной трубе, либо сразу после нее. Внутри корпуса каталитического нейтрализатора находятся керамическая сотовая конструкция. Соты нужны для того, чтобы увеличить площадь контакта выхлопных газов с поверхностью, на которую нанесен тонкий слой платиноиридиевого сплава. Недогоревшие остатки (CO, CH, NO) касаясь поверхности каталитического слоя, окисляются до конца кислородом, присутствующим также в выхлопных газах. В результате реакции выделяется тепло, разогревающее катализатор и, тем самым, активизируется реакция окисления. В конечном итоге на выходе из катализатора (исправного) выхлопные газы содержат в основном N2 и СО2.

Катализаторы в дизельных двигателях

Каталитические преобразователи дизельных двигателей плохо справляются с сокращением выбросов NOx. Одна из причин в том, что дизельные двигатели сами по себе функционируют в более низком температурном режиме, чем обычные, а преобразователи работают лучше при нагреве. Некоторые ведущие эксперты в области «зеленого» автомобилестроения придумали новую выхлопную систему, которая помогает исправить этот недостаток. Они впрыскивают водный раствор мочевины в выхлопную трубу до того, как газы достигнут преобразователя. При этом возникает химическая реакция, которая уменьшает количество NOx. Карбамид, также известный как мочевина — органическое соединение углерода, азота, кислорода и водорода. Его можно обнаружить в моче млекопитающих и земноводных, что и объясняет такое название. Мочевина реагирует с NOx с получением азота и водяного пара, снижая количество оксидов азота в выхлопных газах более чем на 90 процентов.[1]

Источники

  1. 1 2 Автомобильный катализатор и его роль в выхлопной системе. AutoRelease.ru.

Ссылки

См. также

Выхлопные газы

Wikimedia Foundation. 2010.

  • Каталлаксия
  • Каталог (файловая система)

Смотреть что такое «Каталитический нейтрализатор» в других словарях:

  • каталитический нейтрализатор отработавших газов двигателя автомобиля — каталитический нейтрализатор Ндп. каталитический дожигатель каталитический конвертер каталитический очиститель Устройство для нейтрализации отработавших газов двигателя автомобиля методом каталитического воздействия. [ГОСТ 17.2.1.02 76]… …   Справочник технического переводчика

  • Каталитический нейтрализатор отработавших газов двигателя автомобиля — 18. Каталитический нейтрализатор отработавших газов двигателя автомобиля* Каталитический нейтрализатор Ндп. Каталитический дожигатель Каталитический конвертер Каталитический очиститель D Katalytischer Abgasreiniger Е. Catalytic converter F… …   Словарь-справочник терминов нормативно-технической документации

  • Каталитический конвертер — Каталитический конвертер  нейтрализатор (англ. catalytic converter)  устройство в выхлопной системе, предназначенное для снижения токсичности отработавших газов посредством восстановления оксидов азота и использования полученного… …   Википедия

  • ГОСТ 17.2.1.02-76: Охрана природы. Атмосфера. Термины и определения выбросов двигателей, автомобилей, тракторов, самоходных сельскохозяйственных и строительно-дорожных машин — Терминология ГОСТ 17.2.1.02 76: Охрана природы. Атмосфера. Термины и определения выбросов двигателей, автомобилей, тракторов, самоходных сельскохозяйственных и строительно дорожных машин оригинал документа: 9. Белый дым отработавших газов… …   Словарь-справочник терминов нормативно-технической документации

  • АВТОМОБИЛЬ ЛЕГКОВОЙ — самодвижущееся четырехколесное транспортное средство с двигателем, предназначенное для перевозок небольших групп людей по автодорогам. Легковой автомобиль, обычно вмещающий от одного до шести пассажиров, именно этим, в первую очередь, отличается… …   Энциклопедия Кольера

  • система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… …   Словарь-справочник терминов нормативно-технической документации

  • Глушитель (акустический фильтр) — У этого термина существуют и другие значения, см. Глушитель (значения). Глушитель  устройство для снижения шума от выходящих в атмосферу газов или воздуха из различных устройств. В системах вентиляции используются шумоглушители для снижения… …   Википедия

  • ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ — изучает химические силы, действующие на поверхности. В общем случае химия поверхности рассматривает свойства трех состояний вещества твердого (Т), жидкого (Ж) и газообразного (Г) и дает описание вещества как фазовой системы. Однако если два… …   Энциклопедия Кольера

  • Opel — Adam Opel AG Тип …   Википедия

  • Mercedes-Benz G-класс — Mercedes Benz G класс …   Википедия

dic.academic.ru

Каталитическая нейтрализация отработавших газов | Системы снижения токсичности автомобиля

Каталитическое действие нейтрализаторов основано на беспламенном поверхностном окислении токсичных веществ в присутствии катализатора, ускоряющего химическую реакцию. Процесс окисления происходит во время прохождения отработавших газов через слой носителя с нанесенным на него катализатором, причем скорость реакции сгорания зависит oт температуры носителя. Применение каталитических нейтрализаторов позволяет дожигать продукты неполного сгорания СН и СО и разлагать оксиды азота.

В качестве активных компонентов каталитических нейтрализаторов для СИ и СО применяют благородные металлы (до 1-2 г палладия, платины) а также оксиды переходных металлов (меди, кобальта, никеля, ванадия, хромата железа, марганца). Для нейтрализации могут применяться, кроме выше названных элементов, катализаторы на основе меди с добавкой ванадиевого ангидрида и оксида хрома, на основе оксида железа или алюминия, на основе металлических сплавов (нержавеющая сталь, бронза, латунь, легированные стали с хромоникелем).

Общая схема системы очистки отработавших газов бензинового двигателя показана на рисунке:

Рис. Общая схема системы очистки отработавших газов бензинового двигателя

В систему очистки отработавших газов современного двигателя входят:

  • трехкомпонентный каталитический нейтрализатор 1
  • входной 2 и выходной 9 датчики кислорода (лямда зонды)
  • блок управления двигателем 3
  • кабель шины CAN 4
  • блок управления датчиком NOx 5
  • датчик (датчики) оксидов азота NOx 6
  • накопительный нейтрализатор NOx 7
  • датчик температуры 8
  • датчик кислорода 9
  • двигатель 10

Каталитический нейтрализатор представляет собой металлический корпус 6 из жаропрочной нержавеющей стали толщиной около 1,5 мм, внутри которого находится керамический носитель 5. Наибольшее распространение получили гранулированные и блочные (монолитные) носители, которые пронизаны многочисленными мелкими сотами, созда­ющими максимальную поверхность контакта с отработавшими газами. Чтобы обеспечить необходимый массоперенос между отработавшими газами и каталитической поверхностью, площадь последней увеличивают путем нанесения на нее гамма-оксида алюминия с пористой структурой, в виде сферических гранул, которые укладываются в металлический цилиндр 2, закрытый по торцам сетками. Гранулы из оксида алюминия покрываются непосредственно каталитическим материалом. Поверх фольги или гранул алюминия нанесен тонкий слой катализаторов – платины и родия. Задача этих редких металлов – ускорять окисление углеводородов и окиси углерода до угле­кислого газа, а токсичные оксиды азота восстанавливать до азота. Между блоком-носителем и корпусом ставится специальная терморасширяющаяся прокладка.

Рис. Каталитический трехкомпонентный нейтрализатор отработавших газов:
1 – кислородный датчик; 2 –цилиндр; 3 – терморасширительная прокладка; 4 – катализатор; 5 – керамический носитель; 6 – металлический корпус

Недостатком нейтрализаторов является их достаточно большая стоимость из-за применения дорогостоящих редких металлов. В целях их экономии в конструкции нейтрализаторов начали применять нано технологии. Исследования фирмы «Мазда» показали, что частицы редких металлов крупнее 10 нм, напыленные на керамическую основу, дер­жатся на ней не слишком проч­но. При нагреве они начинают скользить по поверхности керамических зерен и сливаются, подобно капелькам ртути в агломераты все боль­ших размеров. При этом неиз­бежно уменьшается площадь поверхности, контактирующая с газами, и эффективность их обезвреживания падает. Однако, если уменьшить размер частиц металла до 5 нм и менее, они прочно застревают в нанопорах керамики и уже не могут срываются. Кроме того, применяя наночастицы пла­тины, удалось уменьшить ее общее количество в нейтрали­заторе на 70…90%.

Альтернативой керамическому моно­литному блоку является металлический каталитический нейтрализатор. Он из­готавливается из гофрированной ме­таллической фольги толщиной 0,05 мм, намотка и пайка которой твердым при­поем осуществляется при высокой тем­пературе. Поверхность фольги покры­вается эффективно действующим ката­лизатором. Благодаря тонким стенкам фольги в тех же габаритах, что и у кера­мического нейтрализатора, может быть размещено большее число каналов. Это приводит к меньшему сопротивлению прохождения отработавших газов.

Нейтрализатор вступает в работу после разогрева до 300°С. Оптимальный рабочий диапазон температур от 400 до 800°С. Чем ближе нейтрализатор к двигателю, тем быстрее разогревается до рабочей темпе­ратуры. Поэтому на смену нейтрализаторам под днищем кузова пришли нейтрализаторы, совмещен­ные с приемной трубой.

В целях уменьшения вибрационных нагрузок со стороны двигателя нейтрализатор присоединяется к выпускному трубопроводу или к приемной трубе через шарнирное соединение или через компенсатор колебаний.

Для работы системы с каталитическим окислительным нейтрализатором при использовании в двигателе обогащенных смесей необходимо к отработавшим газам добавлять воздух. Для этого используются специальные воздушные насосы ими специальные клапанные устройства (виброклапаны или пульсаторы), функционирующие под действием волн разрежения, возникающих в системе выпуска.

Наилучшую очистку отработавших газов дают двухсекционные катали­тические нейтрализаторы, позволяющие после прохождения первой секции уменьшать содержание NOx, а после ввода во вторую секцию дополнительного воздуха – содержание СО и СН.

В последнее время наибольшее распространение нашли трехкомпонентные каталитические нейтрализаторы, оборудованные системой обратной связи, позволяющие одновременно при восстановлении NOx окис­лять СО и СН.

ustroistvo-avtomobilya.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о