Что называется степенью сжатия: Компрессия и степень сжатия двигателя автомобиля

Содержание

Компрессия и степень сжатия двигателя автомобиля

Кто изучает устройство автомобиля, встречает непонятные термины из области работы двигателя. Расскажем что такое компрессия и степень сжатия мотора, их определения. Рассмотрим работу мотора с изменяемой степенью сжатия.

Что такое степень сжатия

Это отношение полного объема цилиндра к объему камеры сгорания. На бензиновом моторе, в зависимости от конкретной задачи, степень сжатия может серьезно варьироваться, достигая величин в 8 до 12. На дизельных двигателях из-за их конструктивных особенностей она намного больше и оставляет от 14 до 18 единиц. Для бензиновых двигателей, чем выше степень сжатия — тем выше удельная мощность. Но если её сильно увеличить, то может снизится ресурс и возрастает риск проблем с мотором при заправке некачественным топливом.

Что такое компрессия двигателя

Это максимальное давление воздуха в камере сгорания в конце такта сжатия.

Компрессия это давление в цилиндре. Поэтому она зависит от степени сжатия (величина давления в меньшем объеме всегда будет больше, т.

е. при увеличении степень сжатия компрессия растет). По величине компрессии можно предварительно судить о состоянии двигателя. При этом важно правильно провести процедуру замера компрессии.

При снижении уровня компрессии необходимо выяснить причину. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 грамм моторного масла. Процедуру замера повторяют. Если показания манометра выросли — причина падения в поршневых кольцах, если остались на прежнем уровне — в клапанах.

Двигатели с изменяемой степенью сжатия

Японские производители улучшили эффективность традиционного двигателя за счет поднятия степени сжатия до 14:1, что ранее было просто невозможно. Они заявляют, что с данной степенью сжатия могут работать, как бензиновый, так и дизельный двигатели, причем на обычном 95-ом бензине. Как это возможно? Один из недостатков бензиновых моторов с искровым зажиганием — относительно невысокая степень сжатия.
Если ее поднять с нынешних 10:1 до 12,5:1, то эффективность использования теплоты сгоревшего топлива возрастет процентов на шесть. Но чем сильнее сжимаем поршнем воздух с парами бензина, тем выше риск взрывного неконтролируемого самовоспламенения смеси — это детонация, страшный враг двигателя: ударные нагрузки, перегрев, разрушение поршней и колец.

Не зря степень сжатия бензиновых агрегатов редко поднимается выше 11:1.

На самом деле все дело в снижении средней температуры цикла. Чем «холоднее» горючая смесь в камере сгорания, тем сильнее ее можно сжать без риска возникновения детонации. Думаете, японцы решили охлаждать всасываемый воздух? Нет, они занялись системой выпуска.


Этот прием давно известен по гоночным моторам — «настроенные» выпускные каналы по схеме 4-2-1, в которых порции выхлопных газов из всех четырех цилиндров не «толкаются» друг с другом, а строго поочередно вылетают в атмосферу. При чем здесь температура цикла? «Настроенный» выпуск за счет газодинамического наддува улучшает продувку цилиндров — в них остается меньше горячих отработавших газов, которые неизбежно подмешиваются к свежему воздуху на такте впуска и поднимают температуру в конце такта сжатия.
Как уверяют, если долю выхлопа снизить с обычных 8% до 4%, то степень сжатия можно безболезненно поднять на три единицы. А за счет охлаждения воздуха при распыле бензина прямо в цилиндр — сжатие можно увеличить еще на единичку.

Чтобы реализовать продвинутый газообмен, пришлось раскошелиться на фазовращатели на обоих распредвалах — и впускном, и выпускном. А вдобавок с помощью компьютерного моделирования придумать еще кучу всяких ухищрений. К примеру, чтобы улучшить «термоизоляцию» камеры сгорания, диаметр цилиндра пришлось уменьшить с нынешних 87,5 мм до 83,5 мм, соответственно увеличив ход поршня.

Длинноходность способствует увеличению крутящего момента на низких оборотах, вдобавок тягу «на низах» улучшают непосредственный впрыск и увеличение степени сжатия — и возникает эффект, который именуют downspeeding. Мол, мотор настолько хорошо тянет «внизу», что среднестатистические обороты при езде снижаются на 15% — это дает эффект по части снижения расхода бензина и выбросов СО2 по сравнению с турбомотором с уменьшенным до 1,4 л рабочим объемом.

Вот что на самом деле означает ‘степень сжатия’, и почему это имеет значение

Почему для двигателей так важна степень сжатия, и на что она влияет.

 

Вы наверняка слышали термин «степень сжатия» в двигателях внутреннего сгорания. Но вы когда-нибудь задумывались, что он означает? Итак, пришло время точно объяснить, что же такое коэффициент сжатия (степень) в двигателях автомобиля и почему сегодня все автопроизводители одержимы этим показателем, как будто этот параметр представляет собой Святой Грааль для будущих продаж автоновинок. 

 

Сразу хотим отметить, что разобраться в том, что такое степень сжатия двигателя, не так просто, как кажется на первый взгляд. Вы наверняка заметили в различных рекламных проспектах и каталогах, а также в описании на сайтах автопроизводителей, что автобренды пытаются привлечь наше внимание такой характеристикой, как степень сжатия двигателей. Особенно стараются нам рассказать о степени сжатия менеджеры автосалонов.

Мы обычно делаем вид, что понимаем, о чем идет речь, пропуская мимо ушей эту информацию. И причина такого поведения в том, что многие автолюбители просто не представляют, что такое степень сжатия двигателей, равно как и на что она влияет. Но тем не менее мы считаем, что все автолюбители должны знать, что же это за показатель двигателей внутреннего сгорания, о котором недавно вспомнили многие автопроизводители. 

 

Мы знаем, что высокое сжатие двигателя – это хорошо, а низкое – плохо. Мы также знаем, что новый мотор Mazda Skyactiv-X имеет высокую степень сжатия. Не отстает от Mazda и Toyota со своими моторами «Dynamic Force», которые имеют высокую степень сжатия. Эти компании рекламируют новые двигатели с большим коэффициентом сжатия, заявляя, что они не только стали мощнее, но и получили большую экономичность. Но при чем здесь высокая степень сжатия и увеличение мощности с уменьшением расхода топлива? Сейчас объясним.

 

Двигатель Toyota «Dynamic Force»

 

Мы живем в эпоху, когда инженеры не могут просто дать двигателю больше энергии за счет укрупнения, как, например, это было раньше, когда автопроизводители на многие свои автоновинки устанавливали моторы с увеличенным объемом.

К тому же это приводило к неминуемому увеличению расхода топлива и росту уровня вредных выбросов в выхлопе автомобиля. Сегодня в связи с дороговизной топлива по всему миру и сложной экологической обстановкой подобный способ увеличения мощности мотора не подходит. Особенно если учитывать жесткие экологические нормы, предъявляемые автопроизводителям рядом развитых западных стран. 

В итоге автопроизводители стали улучшать эффективность нынешних моторов за счет применения турбин и увеличения степени сжатия современных двигателей. 

 

Как определяется степень сжатия, и что это такое?

Степень сжатия – это показатель, при котором устанавливается, какой максимальный объем цилиндра двигателя может быть сжат в минимальный объем цилиндра. Этот показатель степени сжатия определяется как соотношение. 

Например, обычно степень сжатия записывают вот таким образом: 9:1 (коэффициент сжатия двигателя «девять к одному»).  

 

Теперь представьте цилиндр двигателя. Внутри цилиндра двигателя, как вы знаете, перемещается поршень: вверх и вниз. Когда поршень находится в самой нижней точке цилиндра двигателя, это называется «нижней мертвой точкой». Именно в этом положении поршня сверху него находится наибольший объем цилиндра. Когда поршень находится в самой высокой точке внутри цилиндра двигателя, это положение поршня называется «верхней мертвой точкой». В этом положении объем цилиндра находится в наименьшем значении. Вот сравнение этих двух объемов цилиндров над поршнями двигателя и образует соотношение степени сжатия. Обратите внимание, что когда поршень находится в верхней мертвой точке, все-таки над ним есть объемное пространство, где и происходит сжатие топливно-воздушной смеси.

 

Для тех, кто любит больше смотреть, чем читать, внизу мы публикуем GIF-картинку, на которой демонстрируется, как работает четырехтактный двигатель. Обратите внимание, как поршень движется вверх во время такта сжатия топливной смести (топливо + кислород), которая подается клапанами головки блока двигателя.

Напомним, что воздух и топливо, поступаемые в цилиндр двигателя, сжимаются поршнем, чтобы затем воспламенить эту смесь с помощью свечи зажигания (в бензиновых моторах) или за счет сильного сжатия (в дизельных моторах). 

Если двигатель имеет высокую степень сжатия, это означает, что заданный объем воздуха и топлива в цилиндре сжимается в гораздо меньшем пространстве, чем в двигателях с небольшой степенью сжатия. 

 

 

А теперь математический пример соотношения степени сжатия в ДВС. 

Предположим, что у нас есть двигатель, объем цилиндра и камер сгорания которого в момент нахождения поршня в нижней мертвой точке составляет 10 куб. см. После того как впускной клапан головки блока двигателя закрывается и поршень поднимается вверх, начав такт сжатия, он сжимает воздух и топливную смесь в пространство 1 куб. см. Этот двигатель имеет коэффициент сжатия (степень) 10:1. 

 

Также часто производители любят вычислять итоговую степень сжатия, деля большее значение объема цилиндра над поршнем на меньший объем цилиндра. В итоге во многих технических характеристиках автомобилей вместо соотношения производители указывают результат деления этих значений. 

Таким образом вычисляется, во сколько раз сжимается топливно-воздушная смесь при движении из нижней мертвой точки поршня в верхнюю мертвую точку. Разделив большее значение на меньшее, мы и получим итоговое значение степени сжатия без соотношения большего объема к меньшему.

 

Почему производители стараются увеличить степень сжатия?

Но не все так просто со степенью сжатия. Одно дело – понимать, что такое степень сжатия. И это не менее важно по сравнению с пониманием, почему так важна высокая степень сжатия для современных двигателей. К сожалению, объяснить простыми словами, почему высокая степень сжатия в двигателях современных автомобилей – это отличное решение на ближайшие годы, не получится. Тем не менее мы попытаемся.

 

Вы знаете, что мощность двигателя появляется в тот момент, когда сгорание топливной смеси оказывает силу на поршень внутри цилиндра двигателя. Эта сила толкает поршень вниз по цилиндру. И чем выше поршень находится в цилиндре в момент сжигания топливно-воздушной смеси, тем больше сил будет приложено на поршень. 

Как мы уже сказали, чем больше степень сжатия, тем выше находится поршень в верхней мертвой точке. В итоге это позволяет вырабатывать больше мощности в момент сгорания топлива. Также помимо увеличения мощности для вырабатывания силы, толкающей поршень вниз по цилиндру двигателя, необходимо меньше топлива, что в конечном итоге влияет на топливную эффективность мотора. Это простое объяснение. Но оно неполное, поскольку при увеличении степени сжатия двигателей возникает ряд проблем, для решения которых необходимо в идеале знать термодинамику.

 

Итак, мы знаем, что высокая степень сжатия означает, что двигатель получает больше силы и мощности из того же количества топлива по сравнению с мотором с меньшим коэффициентом сжатия. Как мы выяснили, это хорошо для динамики автомобиля, а также для достижения хороших показателей его экономичности.

 

 

Чтобы объяснить вам точнее, почему более высокая степень сжатия дает больше экономии топлива, мы не будем погружаться слишком глубоко в науку о термодинамике. Тем не менее без нее нам также не объяснить вам в деталях, почему моторы с большой степенью сжатия более экономичные. Да, это нелегко понять. Но все же этот раздел термодинамики очень и очень интересен.

 

Более высокое сжатие в двигателе означает больше мощности, но больше давления

 

На приведенном выше рисунке показана диаграмма PV давления – объема для идеального типичного бензинового двигателя. Этот график наглядно демонстрирует, что происходит в двигателе, когда он сжигает воздушно-топливную смесь (в нашем примере бензин + кислород). 

На приведенном выше графике кривая 1-2 показывает ход сжатия. 

Линия 2-3 показывает сгорание топлива. 

Верхняя кривая 3-4 показывает ход расширения.

И линия 4-1 показывает отвод тепла, когда открывается выпускной клапан в головке блока цилиндров двигателя.  

 

Если описать все более техническим языком, то эту диаграмму следует понимать так:

 

На диаграмме кривая 1-2 показывает ход сжатия, при котором давление (ось Y) возрастает, а объем (ось Х) падает, когда поршень сжимает воздушно-топливную смесь внутри цилиндра, приближаясь к верхней мертвой точке. 

Линия 2-3 показывает тепло, выделяемое во время горения топливной смеси. Эта линия показывает, как быстро увеличивается давление и температура сгораемого топлива. 

Кривая 3-4 показывает увеличение объема цилиндра двигателя и падение давления, когда газ, полученный в процессе сгорания топливной смеси, оказывает силу на поршень, который начинает свое движение вниз по цилиндру двигателя (такт расширения). 

 

Линия 4-1 показывает отвод тепла от газов, образованных в процессе сгорания топлива. Когда давление внутри цилиндра возвращается к давлению окружающей среды, открывается выпускной клапан.  

Наконец, линия 1-5 демонстрирует нам ход выхлопа (выхлопной цикл мотора), в процессе которого поршень снова движется внутри цилиндра вверх (к верхней мертвой точке), чтобы снова сжать топливно-воздушную смесь для повторения цикла. 

 

Область в пределах линий 1-2-3-4 показывает нам, сколько работы было проделано двигателем в рамках одного лишь только цикла. Более высокая степень сжатия двигателя означает, что две вертикальные линии на графике выше будут двигаться влево и вверх, оставляя больший диапазон хода поршня, что влияет на получение большей мощности по сравнению с двигателем, имеющим низкий коэффициент сжатия. То есть двигатель с высокой степенью сжатия сделает больше работы за один цикл, чем мотор с небольшой степенью сжатия. 

И все дело в том, что в двигателях с высокой степенью сжатия в процессе сгорания топлива образуется больше давления, которое с большей силой двигает поршень вниз по цилиндру. Правда, в этом случае внутри двигателя выделяется больше тепла.  

 

Более высокое сжатие в двигателе также означает более высокую тепловую эффективность

 

Важно отметить, что образование тепла и потеря тепла в течение цикла работы двигателя напрямую связаны с его эффективностью (речь идет о коэффициенте полезного действия – КПД). Причем на КПД главное влияние оказывает степень сжатия двигателя. Все дело в двух идеях. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована в механическую или отработанную. Во-вторых, тепловая эффективность – это просто результат работы двигателя (мощность и сила), разделенный на теплопередачу.

Таким образом, с помощью уравнения можно вычислять взаимосвязь между тепловым КПД и степенью сжатия. 

Вот как выглядит уравнение этой взаимосвязи (nтепловой КПД, rстепень сжатия, а γ (гамма)свойство жидкости):

 

 

Теперь вернемся к нашей диаграмме выше. Когда вы обеспечиваете больший ход поршня между верхней и нижней мертвой точкой, вы увеличиваете степень сжатия. За счет этого вы смещаете на диаграмме PV вверх и влево и увеличиваете температуру (Qh на графике выше). Причем увеличение температуры будет больше, чем потери тепла (Ql). 

Иными словами, вы добываете в процессе сгорания топливной смеси больше энергии за один цикл работы двигателя. Кстати, вот один интересный ролик видеоблогера Джейсона Фенске, который рассказывает более простыми словами о взаимосвязи между степенью сжатия, теплопередачей и эффективностью (экономичностью двигателя):

 

 Для тех, кто не знает английский, включите субтитры и их машинный перевод на русский язык.

 

Так что, как вы, наверное, уже поняли, тепловая эффективность двигателя возрастает по мере увеличения степени сжатия двигателя. Таковы законы физики, а именно законы термодинамики. Особенно это становится ясно из уравнения, приведенного выше. 

Соответственно, чем выше степень сжатия мотора, тем больше он выдает лошадиных сил и меньше потребляет топлива. Для нас это означает более тяжелый кошелек за счет сэкономленных денег на заправке и больше адреналина при разгоне.

 

Чтобы это понять, вам нужно взять на прокат какой-нибудь старый американский неэффективный автомобиль с бензиновым V8 атмосферным двигателем, который имеет низкую степень сжатия. Поездив на таком автомобиле несколько дней, вы поймете, что автомобиль «жрет», как слон, но взамен не выдает хорошую мощность, которую сегодня показывают современные четырехцилиндровые и даже трехцилиндровые моторы. 

 

Например, знаменитый двигатель Skyactiv-G от Mazda является очень эффективным в плане не только мощности, но и хорошей экономичности. Во многом это благодаря большой степени сжатия. Также ряд и других производителей стали выпускать современные моторы с высоким коэффициентом сжатия. Так, сегодня компании Mazda, Nissan / Infiniti и Toyota и другие начали выпускать двигатели с очень высокой степенью сжатия – 14:1. 

Вы не поверите, но двигатели с такой степенью сжатия еще недавно казались фантастикой. Кстати, благодаря такой степени сжатия автопроизводителям нет необходимости оснащать двигатели турбинами, для того чтобы добиться соответствия современным стандартам экономичности, экологическим нормам, а также требованиям к мощности. 

 

Почему более высокая степень сжатия означает, что автомобиль должен заправляться топливом с высоким октановым числом

 

Но почему большинство автопроизводителей сегодня не перешли на выпуск двигателей с высокой степенью сжатия, если такие силовые агрегаты позволяют без турбокомпрессоров добиваться таких выдающихся результатов эффективности силовых агрегатов? Все дело в законах физики.

Многие двигатели с высоким коэффициентом сжатия нуждаются в премиальном топливе или в высокооктановом бензине. 

Тем, кто не знает или не помнит, что такое октан бензина и как он помогает избежать детонации в двигателе, советуем почитать наши следующие материалы:

 

Какой бензин лучше?

 

Почему премиум бензин является пустой тратой денег для большинства автомобилей

 

Сколько энергии в различных видах топлива

 

Топливо с низким октановым числом по сравнению с топливом с высоким октаном, скорее всего, будет самопроизвольно воспламеняться из-за более высоких температур и давления воздуха в двигателях с высокой степенью сжатия. Мы знаем, что воспламенение топливно-воздушной смеси должно происходить, когда это действительно нужно, а не наоборот. Такое неконтролируемое воспламенение топлива называется детонацией. Это очень вредно для любых двигателей внутреннего сгорания. Дело в том, что излишняя детонация уменьшает крутящий момент и может нанести непоправимый урон двигателю автомобиля. 

 

Высокая степень сжатия увеличивает риск сильной детонации двигателя. Вот почему моторы с большим коэффициентом сжатия, как правило, работают на высококачественном или высокооктановом бензине. 

Главная причина риска самовоспламенения топливно-воздушной смеси в двигателях с высокой степенью сжатия – это превышение допустимого давления, которое приводит к резкому нагреву топливной смеси. В итоге это вызывает преждевременное сжигание топлива еще до того, как свеча зажигания с помощью искры зажжет его. Повторяем, преждевременное воспламенение топлива – это очень плохо для любого двигателя. 

 

Для того чтобы снизить риск преждевременного воспламенения топлива, компания Mazda много работала над поршневыми и выпускными конструкциями бензиновых двигателей с высокой степенью сжатия (соотношение степени сжатия в цилиндрах двигателя 14:1). Например, мотор Skyactiv-X оснастили специальными поршнями, имеющими полость посередине, которая позволила предотвращать всплеск богатого кислородом топлива вокруг области воспламенения топливной смеси от свечи зажигания.

 

 

Именно проблема самовоспламенения топлива в двигателях с высокой степенью сжатия и препятствует сегодня массовому распространению данного типа моторов во всей автопромышленности. Подробнее об двигателе Mazda можно почитать здесь

 

Существуют ли ограничения по увеличению степени сжатия в двигателях

 

Интересно, почему автопроизводители не стараются сделать степень сжатия своих двигателей еще больше? Почему сегодня коэффициент сжатия 14:1 уже считается много? Неужели нельзя сделать двигатель с еще большим коэффициентом сжатия? Ведь в таком случае автомобили получили бы еще больше мощности и одновременно стали бы еще экономичней.

 

Например, почему бы не сделать двигатель со степенью сжатия 60:1? Но на самом деле это невозможно в сегодняшнем мире. 

Такую степень сжатия не выдержит ни один металл внутри двигателя. Да дело даже не в металле. Даже если бы у нас был такой крепкий дешевый металл, способный выдержать степень сжатия 60:1, все равно бы мы не смогли построить подобный рабочий мотор. Просто такая степень сжатия привела бы к чрезмерно высокой температуре внутри двигателя. В итоге мотор стал бы настолько горячим, что это вызвало бы его самоуничтожение (двигатель взорвался бы от высоких температур). 

 

Также, в принципе, нас не должна так сильно заботить высокая степень сжатия в современных автомобилях, если речь идет, конечно, не о спортивных мощных автомобилях, где каждая лишняя лошадиная сила на вес золота. Сегодня в рамках массового рынка нас больше волнует не мощность, а экономичность обычных повседневных автомобилей. Особенно во времена немалой стоимости топлива, где вопрос экономии топлива напрямую влияет на наши кошельки. Также сегодня более остро стоит вопрос экологии. А мы знаем, что чем менее экономичен автомобиль, тем меньше он загрязняет окружающую среду выхлопными газами. Так что, в принципе, увеличение степени сжатия в современных двигателях необходимо в первую очередь для улучшения экологической обстановки на всей планете. Но для того чтобы этого добиться, нет смысла существенно увеличивать в современных моторах степень сжатия. 

 

Вот мы и подошли к концу темы о степени сжатия двигателей внутреннего сгорания. Надеемся, что теперь вы не просто знаете, что такое степень сжатия силовых агрегатов, но и понимаете, какую важную роль она играет в современных двигателях. 

Степень сжатия

Понятие «степень сжатия» относится к поршневым двигателям, у которых есть камера сгорания. Под этим термином понимают отношение объема пространства над поршнем в момент, когда он находится в нижней мертвой точке к объему надпоршневого пространства в верхней мертвой точке. Иными словами, это выраженная математически разница в давлении внутри камеры сгорания на момент подачи горючей смеси в цилиндр, и на момент ее воспламенения. Вокруг этого термина очень много недоразумений и мифов. Чтобы понять, что истина, и что ложь, стоит разобраться, почему у разных двигателей этот параметр отличается, и какие преимущества дает низкая или высокая степень сжатия.

Преимущества высокой степени сжатия

Двигатель внутреннего сгорания работает за счет воспламенения смеси воздуха и паров топлива. При воспламенении смесь расширяется и толкает поршень, который вращает коленвал. При большей степени сжатия интенсивность давления на поршень увеличивается, и зак один такт двигатель совершает больше полезной работы.

Отсутствие детонации в дизельных двигателях объясняется просто: в камере сгорания сначала сжимается чистый воздух, а топливо впрыскивается позже

При этом подразумевается, что количество бензина в топливо-воздушной смеси остается неизменным, и за счет большего количества воздуха оно сгорает с более высоким КПД.

На современном этапе конструирования легковых автомобилей применение двигателей с низкой степенью сжатия практически прекратилось. Несмотря на то, что в них допустимо использовать низкооктановый и недорогой бензин А-80, их популярность равна нулю. Дело в том, что современные потребители стремятся приобретать автомобили с большим количеством «лошадей под капотом», а с двигателей, рассчитанных на низкооктановый бензин (например, двигателя УАЗ 469, (который, правда, с измененной степенью сжатия и рядом модернизаций устанавливается в УАЗ Hunter), снять большую мощность невозможно по конструктивным причинам.

Можно ли изменить степень сжатия? 

Увеличить степень сжатия можно, уменьшив объем камеры сгорания, но при модернизации уже имеющегося двигателя инженерам приходится постоянно искать компромисс между эффективностью и безопасностью. Дело в том, что, увеличение степени сжатия ведет к понижению детонационного порога. Если увеличить степень сжатия слишком сильно, можно столкнуться с тем, что имеющимися средствами предотвратить возникновение детонации не получится. Иными словами, порой разработать (или поставить от другого, более мощного автомобиля) новый двигатель легче, чем модернизировать старый.

Для современных двигателей характерна высокая степен сжатия. В подавляющем большинстве случаев в них используется бензин с октановым числом не ниже 95 или даже 98

Один из вариантов изменения степени сжатия, доступный частным тюнерам – фрезеровка головки блока цилиндров. После «укорачивания» ГБЦ объем камеры сгорания уменьшается. Степень сжатия в этом случае увеличится. Есть и обратная сторона такой манипуляции (кстати, официально ее называют форсированием) уменьшится общий объем горючей смеси, сгорающей в цилиндре за один цикл.

Степень сжатия или компрессия?

Степень сжатия часто путают с понятием «компрессия». Это не одно и то же. Компрессией называют максимальное давление в цилиндре при движении поршня от нижней мертвой точки к верхней. Компрессия измеряется в атмосферах, а степень сжатия имеет вид математического отношения, например, 10:1 (десять к одному).

Преждевременное воспламенение и детонация

Смесь, поступающая в камеру сгорания, должна не взрываться, а гореть, причем, равномерно, и на протяжении всего отрезка времени, пока поршень движется вниз. При этом условии энергия расходуется максимально эффективно, а детали поршневой группы изнашиваются равномерно и не перегреваются. Сложность заключается в том, что скорость горения смеси обычно гораздо быстрее скорости движения поршня.

В связи с этим и возникает основная проблема, встающая на пути тех, кто задался целью увеличить степень сжатия. При увеличении давления смесь самопроизвольно возгорается. Это явление называется преждевременным воспламенением. Более того, возгорание смеси происходит, когда поршень еще только завершает фазу сжатия. В этом случае энергия сгорающего топлива создает дополнительное сопротивление и растрачивается на выполнение бесполезного действия.

Вторая проблема: выделение чрезмерного количества энергии. Проще говоря – взрыв. Явление это в теории двигателестроения называется детонацей и имеет крайне негативные последствия.

Таким образом, увеличение степени сжатия может сыграть с владельцем двигателя злую шутку. Чтобы избежать неприятных последствий, стоит ознакомиться с таким понятием, как октановое число.

Что такое октановое число и на что оно влияет?

Бензин, который используется для работы ДВС, отличается стойкостью к детонации и самовоспламенению. Для обозначения уровня этой стойкости вводится понятие «октановое число».

Детонация возникает только в камере сгорания бензинового двигателя. Сжигание дизельного топлива требует большей степени сжатия, и воспламеняется оно «само собой» разогреваясь под воздействием давления и соприкасаясь с раскаленными металлическими деталями. Казалось бы, все условия для возникновения созданы, но благодаря некоторым особенностям дизельного двигателя он полностью защищен от этого вредного явления.

Важный факт – октановое число бензина не влияет на количество энергии, которое выделяет топливо при сгорании. Иными словами, думать, что заливая в двигатель бензин с более высоким октановым числом, вы повышаете его мощность, ошибочно. Все очень просто: при высоком значении степени сжатия необходимо использовать топливо с большим октановым числом.

Последствия использования топлива с несоответствующим октановым числом 

Стоит обратить внимание, что при несоответствии используемого топлива требованиям завода-изготовителя, могут возникнуть следующие проблемы:

— При использовании топлива с большим октановым числом возможно прогорание выпускных клапанов. Происходит это потому, что бензин с большим октановым числом горит с меньшей температурой и медленнее. Соответственно, при его использовании, на фазе выпуска вместо отработанных газов через выпускные клапана вылетает горящая смесь.

— При использовании топлива с высоким октановым числом на свечах возможно образование нагара. Причины все те же: скорость горения может не совпадать с циклами хода поршня.

— При использовании топлива с низким октановым числом блок управления двигателем (или октан-корректор распределителя) не сможет установить угол опережения зажигания, исключающий детонацию. 

Альтернативный способ изменения степени сжатия

В современной практике разработки двигателей активно применяется альтернативный способ динамического изменения степени сжатия – установка турбонагнетателя. Он помогает увеличить давление в камере сгорания, не изменяя при этом ее физического объема. Принцип работы нагнетателя заключается в том, что в камеру сгорания под давлением поступает больше воздуха за единицу времени.

Турбина с изменяемой геометрией

В результате степень сжатия меняется постоянно, реагируя на увеличение и уменьшение нагрузки на двигатель. Этот процесс происходит под контролем электроники, которая оперативно изменяет условия воспламенения топливо-воздушной смеси. В результате всех перечисленных выше негативных факторов, связанных с изменением давления в камере сгорания, удается избежать.

В Объединенных Арабских Эмиратах крайней популярностью пользуются гонки на дизельных внедорожниках. Для увеличения степени сжатия и мощности используются турбины максимальной производительности

Поклонники тюнинга восприняли применение турбонагнетателей как более гибкий и управляемый способ увеличения мощности двигателя. Можно сказать, что приобретение турбо-кита (набора деталей, предназначенных для установки турбонаддува на конкретный двигатель), гораздо более распространена по сравнению с форсированием. Нагнетатели разных типов успешно используются и при необходимости увеличить эффективность работы дизельного двигателя.

Что называется степенью сжатия и рабочим объемом цилиндра и двигателя

На чтение 13 мин. Обновлено

Компрессия и степень сжатия двигателя. Что это такое?

Компрессия — это максимальное давление воздуха в камере сгорания в конце такта сжатия.Степень сжатия двигателя — это отношение полного объема цилиндра к объему камеры сгорания.

На форсированном моторе, в зависимости от конечной задачи, степень сжатия может серьезно варьироваться, достигая величин в 11 — 11.5 .

Все это направлено на снятие максимальной мощности с мотора конкретного объема. Чем выше степень сжатия — тем выше удельная мощность. Правда при этом неизбежно снизится ресурс и резко возрастает риск проблем с мотором при заправке некачественным топливом. Одна заправка сомнительным топливом может быстро кончить «зажатый» мотор.

Так что при форсировании мотор сэкономить на качестве бензина не удастся.Поэтому, при тюнинге двигателя степень сжатия увеличивается не очень значительно, обычно что бы перейти на марку бензина, следующую за уже используемой по октановому числу. В принципе, косвенно, о величине степени сжатия можно судить по марке используемого бензина — на АИ-80 можно ездить при степени сжатия равной 9.0 , на АИ-92 — до 10.0 (при условии, что бензин соответствует заявленным характеристикам ).Поднятие степени сжатия — сложный процесс, требующий точных расчетов и очень высокой квалификации моториста. Поэтому самостоятельно этим заниматься крайне не рекомендуется.
Компрессия

Как уже было сказано выше компрессия это давление в цилиндре. Именно поэтому компрессия зависит от степени сжатия (величина давления в меньшем объеме всегда будет больше, т.е. при увеличении степень сжатия компрессия растет). По величине компрессии можно предварительно судить о состоянии двигателя. При этом важно правильно провести процедуру замера компрессии. Для этого необходимо: двигатель прогрет, АКБ полностью заряжена, дроссель открыт, воздушный фильтр снят, все свечи выкручены. В таком режиме полностью заряженная АКБ позволит стартеру раскрутить двигатель до 200 об/мин. Компрессия во всех цилиндрах должна быть ровной.

При снижении уровня компрессии необходимо выяснить причину падения. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 гр. моторного масла. Процедуру замера повторяют. Если показания манометра выросли — причина падения в поршневых кольцах, если остались на прежнем уровне — в клапанах.

Источник

ЧТО ТАКОЕ СТЕПЕНЬ СЖАТИЯ И КОМПРЕССИЯ ДВИГАТЕЛЯ?

Добрый день, сегодня мы узнаем, что из себя представляют автомобильные показатели двигателя внутреннего сгорания, такие как степень сжатия и компрессия силовой установки, а также чем они отличаются друг от друга. Кроме того, дадим определение понятиям компрессии и степени сжатия, расскажем про основные особенности данных показателей двигателя, а также установим, почему так важны значения этих параметров для того или иного мотора транспортного средства. В заключении мы поговорим, как влияют конечные значения компрессии силовой установки на установление возможных неисправностей двигателя, а также почему степень сжатия напрямую влияет на параметр мощности мотора автомобиля.

Для того, чтобы понять для чего нужны показатели компрессии и степени сжатия двигателя внутреннего сгорания, а также чем они отличаются друг от друга, необходимо знать их определения, осознавать важность каждого параметра, который напрямую или косвенно влияет на долговечность функционирования силовой установки транспортного средства. Данные вопросы мы и обсудим в нашем рассказе, чтобы получить исчерпывающее представление о степени сжатия и компрессии двигателя, а также почему не нужно путать эти, в какой то мере схожие показатели измерения работы мотора. Кроме того, рассмотрим часто задаваемый вопрос многими автолюбителями: “Чем отличаются параметры степени сжатия и компрессии двигателя друг от друга, а также какой показатель наиболее важен?”.

1 . Степень сжатия. Понятие и особенности автомобильного показателя

Степенью сжатия силовой установки называется отношение объема рабочей области цилиндра к объему камеры сгорания топливно-воздушной смеси. На бензиновом двигателе, в зависимости от определенной задачи, показатель степени сжатия может находится в разном диапазоне величин от 7 до 11 пунктов. Что касается дизельных силовых установок, то в связи с определенными конструкторскими особенностями устройства, их степень сжатия значительно превышает бензиновые и составляет в среднем от 13 до 19 пунктов.

На сегодняшний день степень или показатель сжатия двигателя указывается почти на всех современных транспортных средствах. На основании этого параметра производитель в документации и еще, как правило, на лючке бензобака к тому или иному автомобилю указывает рекомендованное для заправки топливо, например, если транспортное средство оснащено бензиновым мотором, будет указание на марку бензина АИ-92 или АИ-95.

Для того, чтобы более детально представить, как и где создается степень сжатия в двигателе автомобиля, нужно первым делом себе представить блок цилиндров и поршни, которые в нем ходят. Дело в том, что у каждого поршня есть в блоке цилиндров, так сказать свои “мертвые точки“. Такой точкой называется верхняя плоскость блока, когда топливо сжато до предела и ждет момента для воспламенения. Нижняя точка – это та плоскость, где поршень опускается вниз, а пространство заполняется новой порцией топливной смеси или наоборот уже заполнено расширившимися от воспламенения газами.

В том случае, когда поршень располагается в верхней части блока, то есть в “верхней мертвой точке“, то над ним остается определенный объем, в котором и находится сжатая под определенным давлением топливно-воздушная смесь. Это пространство или область называется камерой сгорания смеси. Когда поршень опускается в нижнюю область блока цилиндров, так сказать к “нижней мертвой точке“, то к пространству камеры сгорания еще добавляется объем расположенный над поршнем. Поэтому довольно просто зная вышеописанные теоретические основы работы поршня в блоке цилиндров определить во сколько может сжиматься топливно-воздушная смесь нашего двигателя при движении узла мотора из нижней “мертвой точки” в верхнюю. Справочно отметим, что при измерении этого показателя, переменные значения отображаются, как объемные величины, поделенные друг на друга, то есть V2 (объем) / V1 (объем).

Таким образом, при помощи обычного деления объема V2 (объем над поршнем) на V1 (объем под поршнем) мы получим показатель, который укажет нам во сколько раз сжимается топливно-воздушная смесь, при движении поршня из нижней мертвой точки блока цилиндров в верхнюю. Ниже на изображении мы постарались наглядно продемонстрировать наши расчеты степени сжатия ( Нажмите на изображение для увеличения ).

Как правило, авто производители данные характеристики указывает в документации к транспортному средству. Поэтому зачастую этот параметр высчитывать самостоятельно не требуется, для его нахождения нужно всего то открыть инструкцию на свой автомобиль.

В большинстве случаев степень сжатия указывается в диапазоне от 9 до 14 пунктов. Данный показатель нам скажет о том, что топливно-воздушная смесь, которая вошла в камеру сгорания при движении поршня в блоке цилиндров из “верхней мертвой точки” в нижнюю точку, на такте впуска, сожмется в 9, 10, … или 14 раз, от первоначального состояния (объема), а после этого воспламенится свечой зажигания.

2 . Компрессия двигателя. Понятие и особенности показателя

Компрессией называется максимальное давление воздуха в камере сгорания в самом конце такта сжатия топливно-воздушной смеси. Другими словами компрессия – это определенный уровень давления в области цилиндра, которое так или иначе зависит от степени сжатия смеси в нем. Справочно заметим, что показатель давления в малом объеме всегда будет больше, так как при увеличении степени сжатия, уровень компрессии вырастает. Уровень компрессии косвенно или предварительно указывает на состояние силовой установки автомобиля. Поэтому так важно правильно производить процедуру замера компрессии в моторе.

Заметим, что чем выше показатель компрессии на шкале специального манометра при замере, тем большую мощность способна развивать силовая установка автомобиля. Довольно часто автовладельцы задаются вопросом почему так получается? Все довольно просто и лежит на поверхности. Дело в том, что повышение уровня компрессии способствует оптимальному сжатию топлива в камерах цилиндров, так как его воспламенение может происходить куда более эффективно, чем с низким показателем. Кроме того, высокая компрессия предоставляет большой толчок поршню. Таким образом происходит прямая зависимость частоты вращения коленчатого вала и мощности силовой установки.

Но стоит заметить, что постоянно повышать компрессию не в коем случае нельзя, так как топливно-воздушная смесь, как правило, это бензин может сильно перегреться и самопроизвольно воспламениться, что как следствие выльется в детонацию. А это уже может привести к губительным и разрушительным последствиям для внутренних узлов, а также деталей двигателя. Как говорится этот процесс уж точно не продлит срок службы силовой установки. Вот поэтому сегодня на рынке новых автомобилей можно все чаще встретить машины оборудованные специальными двигателями, да и на заправках можно сейчас часто видеть высокооктановые марки бензина, которые образуют высокую компрессию.

Как правило, большинство автомобильных производителей указывают средний показатель компрессии. Например, если при измерении, наш показатель компрессии отличается даже на пару пунктов от заводского, то стоит задуматься, так как почти в 90 процентах случаях это может означать, что с нашим двигателем возникли серьезные проблемы. В этом случае, необходимо начинать диагностику неисправностей деталей силовой установки с клапанов, маслосъемных колпачков и заканчивая компрессионными кольцами, которые расположены на поршнях и так далее по цепочке.

3 . Отличительные особенности степени сжатия от компрессии двигателя

Для того, чтобы понять, в чем же различие степени сжатия от компрессии двигателя, давайте немного вспомним ранее рассказанные нами задачи, которые выполняются одним и вторым показателем. И так, степень сжатия – это в первую очередь коэффициент, который рассчитывается при помощи объемов, а компрессия наоборот измеряется специальным прибором под названием компрессионный манометр.

Если рассматривать различия показателей с практической точки зрения, то компрессия двигателя будет незначительно больше, чем степень сжатия. К примеру, при показателе степени сжатия в 9 пунктов , компрессия будет находится в диапазоне от 10,5 до 11,5 пунктов .

Многие сейчас могут задать вопрос: “Почему так разнятся итоговые показатели этих индикаторов?” Дело в том, что при измерении компрессии силовой установки от давления может разогреваться топливно-воздушная смесь и следовательно происходит повышение ее температуры. В принципе, в какой то мере показатели степени сжатия и компрессии можно было бы приравнять, в том случае, если бы процесс проходил в изотермическом, а также герметично закрытом корпусе, который бы исключал любое воздействие температуры, как снаружи, так и внутри. Однако в связи с тем, что в реальности обеспечить полную герметичность узлов не реально, то итоговые величины будут всегда отличатся.

В заключении отметим, что для бензиновых силовых установок, чем больше показатель степени сжатия, тем будет выше удельная мощность двигателя. Однако, если чрезмерно повысить степень сжатия мотора, то это может значительно снизить срок службы его узлов и при этом возрастет риск наступления внепланового капитального ремонта двигателя при заправке “разбавленным” топливом. При снижении компрессии двигателя, самое главное нужно немедленно установить причину этого понижения. Зачастую причиной низкой компрессии становятся проблемы с поршневыми кольцами или клапанным механизмом. Чтобы наверняка установить неисправность, специалисты по обслуживанию и ремонту транспортных средств при помощи обычного шприца вводят примерно около 20 грамм моторного масла в “подозрительные” цилиндры. Затем процедуру повторяют. В том случае, если после этих манипуляций показания компрессометра выросли, то причиной падения являются поршневые кольца, а если они остались на прежних местах, то проблема в клапанах.

Источник

Степень сжатия: Знаете ли вы, что это означает и как это влияет на двигатель?

Степень сжатия является одной из основных характеристик поршневого двигателя внутреннего сгорания, которая указывает соотношение объема цилиндра между поршнем в нижней части и поршнем в верхней мертвой точке.

Таким образом, степень сжатия представляет собой отношение общего рабочего объема цилиндра к объему пространства сжатия, другими словами, отношение между объемом смеси, всасываемой в цилиндр, и объемом смеси, сжатой в цилиндре.

Расчет степени сжатия для линейного поршневого двигателя:

tk — степень сжатия

ВК — сжатие пространства / объема

Поршень движется цилиндрическим образом возвратно-поступательно, причем наиболее удаленное положение его движения от коленчатого вала называется верхней мертвой точкой, а наименее удаленное положение его движения от коленчатого вала называется нижней мертвой точкой. Пространство между нижней и верхней мертвой точкой называется объемом смещения. Смещение зависит от диаметра отверстия цилиндра и хода поршня. Пространство, которое остается в цилиндре, когда поршень находится в верхней мертвой точке, называется пространством сжатия.

Расчет степени сжатия для роторно-поршневого двигателя:

В этих двигателях степень сжатия определяется как соотношение наибольшего и наименьшего объема рабочего пространства при скорости поршня.

tk — степень сжатия

V1 — самый большой объем рабочего пространства

V2 — наименьший объем рабочей области

Влияние степени сжатия на двигатель:

В обычном поршневом двигателе внутреннего сгорания степень сжатия постоянна и всегда является компромиссом между различными режимами движения. Однако существуют также двигатели, которые могут непрерывно изменять степень сжатия в зависимости от нагрузки. Таким образом, такой двигатель может работать при высокой степени сжатия при низкой нагрузке и, в свою очередь, при низкой степени сжатия при высокой нагрузке. При высоких нагрузках желательно, чтобы степень сжатия была низкой, чтобы предотвратить детонацию. При низкой нагрузке целесообразно быть выше для лучшей эффективности двигателя.

Чем больше степень сжатия, тем больше сжатие смеси до воспламенения. Степень сжатия принципиально влияет на:

— достижимая эффективность двигателя внутреннего сгорания и, следовательно, его мощность и крутящий момент

Увеличивая степень сжатия, есть и недостатки, такие как:

— особенно в случае двигателей с принудительным зажиганием, может произойти преждевременное воспламенение топлива (детонационное сгорание)

— компоненты двигателя со временем изнашиваются больше, чем при меньшей степени сжатия, поэтому необходимо, чтобы такой двигатель был оснащен более долговечными компонентами, которые, однако, являются более дорогими (керамические и титановые детали)

Измерение давлений сжатия:

Измерение давления сжатия цилиндра — это метод получения точной информации о состоянии двигателя. Давление сжатия измеряется компрессиометром. Перед измерением давления сжатия двигатель должен быть доведен до рабочей температуры, чтобы определить зазор между поршнем и цилиндром. Компрессиометр ввинчивается в головку цилиндров вместо свечи зажигания. Впоследствии двигатель запускается стартером с полностью открытой дроссельной заслонкой (дроссельная заслонка полностью нажата). Давление сжатия указано на руке компрессиометра, который фиксирует самое высокое достигнутое давление.

Давление сжатия — это максимально достижимое давление в конце такта сжатия двигателя, когда смесь еще не горит. Размер давления сжатия зависит от степени сжатия, частоты вращения двигателя, уровня заполнения цилиндров и герметичности камеры сгорания. Все эти параметры, кроме герметичности камеры сгорания, являются фиксированными и задаются конструкцией двигателя. Таким образом, если измерение показывает, что какой-либо из цилиндров не соответствует спецификациям производителя, это указывает на утечку в камере сгорания. Также очень важно, чтобы давление сжатия всех цилиндров было одинаковым.

Что вызывает более низкие давления сжатия:

— Изношенное или разрушенное поршневое кольцо

— изношенный цилиндр двигателя

— повреждена или треснутая головка цилиндра

— повреждена прокладка головки блока цилиндров

— повреждена пружина клапана

— Изношенное седло клапана

Если камеры сгорания исправны, максимальная разница давлений сжатия на отдельных цилиндрах составляет до 1 бара (0,1 МПа). Давление сжатия составляет от 1,0 до 1,2 МПа для бензиновых двигателей и от 3,0 до 3,5 МПа для дизельных двигателей.

Коэффициент сжатия двигателя, нормальные значения:

Чтобы предотвратить детонационное сгорание (преждевременное самовоспламенение топлива), степень сжатия не должна превышать 10: 1 для двигателей с принудительным зажиганием. Однако двигатели, оснащенные датчиком детонационного сгорания, электронным блоком управления и другими устройствами, могут достигать степени сжатия до 14: 1.

Для бензиновых двигателей с турбонаддувом степень сжатия составляет около 8,5: 1, поскольку часть сжатия рабочего тела выполняется в турбонагнетателе.

Двигатели с воспламенением от сжатия имеют степень сжатия 20: 1 или выше, поскольку они работают по принципу, что впрыскиваемое топливо воспламеняется от тепла сжатия. По этой причине степень сжатия для двигателей с воспламенением от сжатия должна быть выше, чем для двигателей с воспламенением от сжатия. Степень сжатия двигателя с воспламенением от сжатия ограничена нагрузкой от давления в цилиндре двигателя.

Источник

Что называется степенью сжатия двигателя?

Степень сжатия двигателя — что это такое

Отношение полного объема цилиндра к объему камеры сгорания называется
степенью сжатия — Е.

(Степень сжатия двигателя Lada Niva 4×4 — 9.3. (см. здесь) )

Всё коротко и ясно. Но вот достаточно ли? Конструкция силовой установки — это только способ или система, которая тепловую энергию сгоревшего топлива превращает в механическую энергию вращающихся частей двигателя. Понятия «сжатие”, «расширение», «рабочее тело» обязывают ещё рассматривать физико-химические процессы, происходящие в цилиндрах двигателя. А эти процессы невозможны без температуры, которая, в свою очередь, задаётся степенью сжатия. Эффективность использования расширяющихся газов зависит от степени расширения. И вот, при рассмотрении этих процессов в самом общем виде можно и нужно кое-что уяснить. Всё по порядку.

Степень сжатия является одной из характеристик двигателя. Она показывает, во сколько раз уменьшается объем рабочей смеси или воздуха при перемещении поршня из НМТ в ВМТ. По этой характеристике можно определить вид топлива, применяемый в двигателе; устаревшая модель двигателя или совершенная; это дизельный двигатель с раздельными камерами сгорания или дизельный двигатель с непосредственным впрыском.

Повышение степени сжатия позволяет увеличить мощность двигателя и улучшить его экономичность. Возможность увеличения степени сжатия определяется главным образом свойствами топлив, токсичностью отработанных газов и нагрузкой на детали двигателя; для бензиновых автомобильных двигателей Е= 6,5 -14, а для дизеля Е = 15-24.

В дизельных двигателях с увеличением степени сжатия Е повышаются температура и давление воздуха в момент начала впрыска. В результате этого задержки воспламенения уменьшаются, снижается скорость нарастания давления, и работа двигателя становится более мягкой. Однако при больших Е (вследствие более высоких давлений в цилиндре) необходимо увеличивать массу деталей кривошипно-шатунного механизма для повышения прочности. Это приводит к возрастанию механических потерь. Нужно помнить о том, что в результате сгорания топливовоздушной смеси объём цилиндра заполняется смесью азота, углекислого газа и водяных паров, и что при высокой температуре (свыше 2000°С) в камере сгорания происходит диссоциация воды на водород и кислород, а углекислого газа — на окись углерода и кислород. На это затрачивается значительное количество теплоты — рост температуры рабочего тела тормозится.

Увеличение степени сжатия в бензиновых двигателях ограничено в связи с возможностью возникновения детонации. Детонационное сгорание, продолжающееся некоторое время, может привести к повреждению двигателя.

Степень сжатия — характеристика двигателя, заданная конструктором. Проверять её нет необходимости, и только при ремонте двигателя нужно строго выполнять технические условия сборки конкретного двигателя.

Является ли степень сжатия величиной постоянной? Или степень сжатия — величина переменная?

Если допустить, что степень сжатия — величина постоянная, то мы получим две другие постоянные величины — температуру и давление. Но такого произойти не может. Нельзя рассматривать работу двигателя, принимая во внимание только его конструкцию.

Для того чтобы появились температура и давление, нужно что-то сжимать (степень сжатия). Это что-то -воздух или топливовоздушная смесь (рабочее тело).

Нагрузка двигателя регулируется путём дросселирования воздуха, что является непременным условием сохранения примерно постоянного состава топливовоздушной смеси в бензиновом двигателе. В дизельном двигателе нагрузка регулируется изменением количества топлива, подаваемого в камеру сгорания.

Другими словами, мы управляем мощностью двигателя путём изменения количества рабочего тела в его цилиндрах.

На современных автомобилях применяются электронные системы управления, способные быстро и точно рассчитать состав и количество рабочего тела, своевременно и в нужном количестве подать его в цилиндры двигателя с учётом многих факторов, влияющих на работу силовой установки в целом.

Вспомним некоторые режимы работы двигателя — холостой ход, частичная нагрузка и максимальная нагрузка. Для каждого из этих режимов работы двигателя необходимо определённое количество рабочего тела в соответствии с положением педали подачи топлива.

Для режима холостого хода необходимо минимальное количество рабочего тела, для режима максимальной нагрузки — максимальное.

Если заполнить максимальным количеством рабочего тела объём между поршнем, находящимся в НМТ, и головкой блока (максимальная нагрузка), а затем переместить поршень в ВМТ, то рабочее тело сожмётся до какой-то плотности. После проведённых расчётов мы получим реальную степень сжатия рабочего тела. Эта реальная степень сжатия не может быть выше (для атмосферных двигателей) степени сжатия, предусмотренной при конструировании конкретного двигателя.

Это обусловлено рядом факторов, влияющих на количество свежего заряда, поступившего в цилиндр двигателя, — гидравлического сопротивления впускной системы, наличие в цилиндре остаточных газов, подогревом заряда от стенок впускной системы и пр.

Если частично заполнить рабочим телом тот же объём между поршнем, находящимся в НМТ, и головкой блока (холостой ход), а затем переместить поршень в ВМТ, то рабочее тело сожмётся до меньшей плотности. После проведённых расчётов мы получим реальную степень сжатия рабочего тела для режима холостого хода. Проводя подобные расчёты для каждого положения педали подачи топлива, мы можем рассчитать реальную степень сжатия в цилиндрах в каждый из моментов работы двигателя.

Верхний предел степени сжатия ограничен конструктивными особенностями двигателя (прочностью), свойствами топлива и т.д.

Нижний предел степени сжатия ограничен способностью топлива к воспламенению. На изменение реальной степени сжатия, в основном, влияет «насосная» характеристика цилиндров (исправная цилиндропоршневая группа -больше рабочего тела, неисправная — меньше).

Реальную степень сжатия рассчитывать не надо. Достаточно иметь возможность проверить компрессию в цилиндрах двигателя, сравнить результаты измерения с техническими данными производителя конкретного двигателя. Также необходимо проверить герметичность (производитель указывает допустимые нормы потерь — некоторые называют это проверкой на «утечки») камеры сгорания цилиндра. Если полученные данные соответствуют характеристикам, указанным производителем этого двигателя, то с реальной степенью сжатия все в порядке.

Чем выше давление (компрессия) в цилиндрах двигателя и лучше герметичность камеры сгорания -тем выше реальная степень сжатия, температура рабочего тела, и тем лучше условия для воспламенения топлива.

Любая электронная система управления двигателем учитывает изменение реальной степени сжатия и реагирует на её изменение путём своевременной коррекции состава топливовоздушной смеси и изменением времени подвода тепла.

Для двигателей с различными системами наддува количество рабочего тела в его цилиндрах будет большим, и реальная степень сжатия, соответственно, выше. Большими являются при этом температурные и механические нагрузки. Двигатели с системами наддува отличаются от атмосферных двигателей большей мощностью и конструктивно.

На рисунке 1 (а) показано поле реальных степеней сжатия, полученное путём измерения давлений конца сжатия в бензиновом двигателе с геометрической степенью сжатия Е = 8,5. Верхняя граничная кривая показывает реальную степень сжатия при полностью открытой дроссельной заслонке в зависимости от частоты вращения двигателя п. Ниже этой кривой показано всё поле реальных степеней сжатия при различных открытиях дроссельной заслонки.

На рисунке 1(6) показано поле реальных степеней сжатия двигателя с геометрической степенью сжатия Е = 12,5

Реальная степень сжатия зависит от технического состояния цилиндров двигателя, а также устройств, призванных изменять в этих цилиндрах количество рабочего тела (различные системы наддува).

С геометрической степенью сжатия всё понятно. С реальной степенью сжатия, я надеюсь, тоже всё будет в порядке. Во всяком случае, я старался.

На этом можно было бы и заканчивать, но есть ещё кое-что. На это «кое-что» мы иногда не обращаем внимание. Точнее, мы знаем об особенностях газообмена, но забываем о них, когда речь идёт об определении «степень сжатия».

Рис. 2. Индикаторная диаграмма четырёхтактного дизельного двигателя без наддува в координатах Р — V: а) — цикл; б) — процесс газообмена

Если внимательно посмотреть на индикаторную диаграмму (рис. 2) четырёхтактного дизельного двигателя без наддува (да и бензинового тоже), то мы увидим, что при впуске впускной клапан закрывается после того, как поршень уже начал движение от НМТ к ВМТ и даже прошёл какое-то расстояние (точка 2). То есть процесс сжатия начался несколько позже. Нечто подобное происходит и в такте расширения — выпускной клапан открывается раньше, чем поршень дошел до НМТ (точка 4).

То есть фактически степени сжатия и расширения отличаются от заданных по характеристике параметров (отношение объёмов двух геометрических фигур). И у нас есть основание назвать такие степени сжатия и расширения фактическими. А степени сжатия и расширения, соответствующие характеристике рассматриваемого двигателя — геометрическими.

Поршневой двигатель с простым кривошипношатунным механизмом имеет равные между собой геометрические степень сжатия и степень расширения.

На протяжении длительного времени (практически с момента появления двигателя внутреннего сгорания) создатели двигателей стремились максимально использовать давление расширяющихся газов. С этой целью создавались сложные системы кривошипов, способные повысить степень расширения. Но такие двигатели имели низкий механический КПД и были неработоспособны при высоких частотах вращения.

Различных степеней сжатия и расширения можно частично добиться регулированием моментов открытия и закрытия клапанов.

Для диагностов очень важно, на мой взгляд, понимание того, что сказано выше. Проблема диагностирования и ремонта двигателей с изменяемыми фазами газораспределения не рассматривалась нами на Слётах диагностов. Это говорит о том, что существующую проблему пока ещё не решали. А может быть это только моя проблема?

Мне кажется, в самый раз сейчас вспомнить пятитактный цикл Аткинсона/Мил-лера. Представьте себе двигатель, у которого геометрическая степень сжатия — 13 (для двигателя ОТТО это достаточно высокая степень сжатия), объём — 1.51, впускной клапан которого закрывается не 36 градусов после НМТ по углу поворота коленчатого вала, а 81 градус. Естественно, часть рабочего тела будет вытеснена во впускной коллектор. Вот вам и пятый цикл — вытеснение. Если допустить, что вытеснено 20% рабочего тела, то фактическая степень сжатия этого двигателя будет 10,6. Рабочий объём такого двигателя, если брать во внимание только фактическую степень сжатия, будет близок к двигателю объёмом 1.21. А фактическая степень расширения будет соответствовать нашему двигателю объёмом 1.51. Расход топлива, экологические показатели, мощность, крутящий момент. Интересно? Мне тоже интересно. Но это не тема сегодняшнего разговора.

Я взял этот пример из Интернета и не ручаюсь за точность всех данных, но он наглядно показывает суть цикла.

По циклу Аткинсона/Миллера на сегодняшний день работают двигатели TOYOTA Prius, 1,51 1NZ-FXE, 2,26l FORD Escap Hibrid.

Таким образом, необходимо различать:

А. Степень сжатия как одна из технических характеристик двигателя (геометрическая), она неизменна.

B. Степень сжатия фактическая — также является технической характеристикой двигателя, характеризуется фазами газораспределения, она неизменна.

В двигателях с регулируемыми фазами газораспределения степени сжатия и расширения также являются характеристикой двигателя, и их следует считать фактическими.

C. Степень сжатия реальная, меняющаяся в зависимости от:

— количества поступившего в цилиндры двигателя рабочего тела;

— частоты вращения коленчатого вала;

— технического состояния цилиндропоршневой группы двигателя и т.д.

Двигатели с изменяемой степенью сжатия: от Saab до Infiniti

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Будем разбираться, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней. Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23. Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии. Для малых нагрузок, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально. Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании — опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Конструкция системы Variable Compression у мотора Infiniti VC-T: а — поршень, b — шатун, с — траверса, d — коленвал, е — электродвигатель, f — промежуточный вал, g — тяга.

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.

Зрим в корень: сказки про компрессию двигателя

Компрессия – это вульгаризм. Правильно – давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива – для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт.

По мнению многих продвинутых автомобилистов, компрессия для мотора чуть ли не всё! Но так ли это?

Компрессия и степень сжатия – одно и то же: сказка первая

Нет, не так! Компрессия – это давление в цилиндре, степень сжатия – безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия – это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия – это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии – нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.

«Компрессия» – то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.

1 no copyright

Поднял компрессию – увеличил мощность: сказка вторая

Не совсем так. Компрессию можно поднять двумя способами – увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд.

Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором – на 9%. Здорово!

А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, – на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2-3%, причем в зоне малых и средних оборотов. А на высоких – никакого эффекта.

Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик – и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, – стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше.

Способ второй – уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два.

Сделали. Для нового мотора – всё нормально, для всех цилиндров компрессия 13,2. 13,4 бар. Для испорченного кольцами с большими зазорами – 10,8. 11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку.

Компрессия резко выросла, а мощность – нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее.

2 no copyright

Нет компрессии – сразу на капиталку: сказка третья

Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно?

Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Но это – тема отдельной статьи.

Чем выше компрессия, тем лучше: сказка четвертая

Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.

Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.

Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя – базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.

3 no copyright

И совсем не сказка.

Так на что же влияет компрессия? На многое! Главное – на пусковые свойства мотора, особенно при низких температурах.

В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодном пуске только теоретически должно испаряться по пути в цилиндр. А реально – попадает туда в виде негорючих жидких капель.

Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается.

Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю.

Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой – наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» – дело в целом бесперспективное.

Разложим по полочкам — Компрессия, Степень сжатия, Давление конца такта сжатия

Судя по комментариям, от которых у меня поначалу прилично бомбануло, у людей в голове полный технический хаос. И, несмотря на то, что абсолютное большинство из них это устраивает, я все-таки продолжу писать для тех немногих, кто все же чему-то хочет научиться.

Итак. Начнем, пожалуй, с простейших базовых вещей, таких как компрессия, степень сжатия и давление в ВМТ.

Эти три понятия люди почему то постоянно путают и часто я вижу ситуацию когда мужики сравнивают показания своего компрессометра, снятые на холодном моторе с подсаженным АКБ и закрытой дроссельной с графой «степень сжатия» в мануале к своей машине. И, представьте себе, даже умудряются сделать какие то далеко идущие выводы.

Компрессия — максимально достигаемое давление в цилиндре. Измеряется на прогретом двигателе с полностью открытой дроссельной заслонкой, всеми вывернутыми свечами и полностью заряженным аккумулятором. В идеале — аккумулятор должен быть подключен к пускозарядному устройству, находящемуся в режиме поддержки. Единица измерения — атмосферы, бары, PSI либо любые другие единицы измерения давления. Так как давление именно максимально достижимое, то перед измерением нужно создать все условия для его достижения — прогреть двигатель для минимизации утечек через поршневые кольца и максимально открыть дроссельную заслонку для обеспечения полного наполнения цилиндра. Так как если у вас воздух будет уходить через кольца то давление уже не будет максимальным, на которое способен мотор. Точно также и с открытым дросселем — если заслонкой перекрыть поток воздуха в цилиндр, то поршню нечего будет сжимать и, соответственно, опять не будет максимально достижимым.

Степень сжатия. Исключительно геометрическая величина. Не имеет единицы измерения. Обозначает отношение объема цилиндра с поршнем в нижней мертвой точке к объему цилиндра с поршнем в верхней мертвой точке. Иными словами — это отношение полного объема цилиндра к объему камеры сгорания. Еще проще — степень сжатия показывает во сколько раз сжимается горючая смесь в цилиндре.

Давление в ВМТ такта сжатия — измеряется компрессометром без ниппеля на заведенном моторе, либо при помощи датчика давления и мотортестера. Измеряется в любых единицах измерения давления и напрямую зависит от наполнения цилиндра. То есть от того насколько сильно открыта дроссельная заслонка. Для диагностики представляет интерес анализ этого параметра только на холостом ходе.

С терминологией вроде разобрались. Теперь перейдем к тому, что со всем этим багажом знаний и цифр делать.

Компрессия. Испокон веков для ее измерения применяется простейший прибор — компрессометр.

Для диагноста наибольшее значение имеет не столько абсолютное значение компрессии, которым так любят меряться соседи по гаражам, сколько динамика его нарастания и разница значений между цилиндрами испытываемого мотора.

Почему не очень интересно абсолютное давление?

Одна из причин — это то что несмотря на то, что компрессией принято называть максимально достигаемое давление в цилиндре, при классическом способе измерения на стартерной прокрутке оно таковым не является. Если завести двигатель со вкрученным компрессометром и резко полностью открыть дроссель, то намерянные «максимальные» 10-12 бар при стартерной прокрутке внезапно превратятся в 15-18, а иногда и больше бар. Я видел и разорванные давлением компрессометры, которые забыли выкрутить и завели мотор. Ни о каком воспламенении в цилиндре речь не идет — свечей то выкручены.

Почему так происходит? Вроде все то же самое, мотор крутится, дроссель открыт а показания иногда и в два раза отличаются. Все дело в том что если в цилиндре есть гипотетическое отверстие сечением 1кв.мм, то при заданном перепаде давлений между цилиндром и атмосферой за единицу времени может пройти четко определенное количество воздуха. Это принцип работы жиклера во всем известном карбюраторе. Если мы уменьшаем время существования перепада давлений (увеличиваем обороты двигателя) то времени становится меньше, соответственно и воздуха из цилиндра через эту неплотность уйдет меньше, а результирующее давление увеличится.

Именно по этой причине (ну есть еще несколько, описанных в предыдущих статьях) «подсевшие» двигатели отвратительно работают на холостом ходе и малых оборотах, но на «тапке в пол» после того как раскрутятся, все еще неплохо едут.

Вторая причина — моторное масло, а точнее его количество на стенка цилиндра. При износе колец логично предположить что компрессия упадет. Но это не так до определенного предела.

Дело в том, что изношенные кольца оставляют больше масла на стенке цилиндра, которое, за счет своей вязкости и скоротечности протекающих процессов, выполняет роль прекрасного уплотнителя. Мотор будет пожирать масло, дыметь-коптить, но при том иметь очень неплохую динамику. Опять таки до определенных пределов.

Существует даже методика определения виновника потери компрессии. Обычно подозревают цлиндро-поршневую группу, прокладку ГБЦ либо клапанную группу. Так вот, для того чтобы быстро исключить цилиндропоршневую группу достаточно в подозреваемый цилиндр налить через свечное отверстие несколько миллилитров моторного масла. Помните о том, что масло несжимаемо, то есть ведрами его туда лить не рекомендуется, иначе неизбежен гидроудар.

Так вот, если после добавления масла компрессия увеличивается — это практически стопроцентный приговор цилиндропоршневой группе.

С быстрой диагностикой клапанной группы без некоторого специализированного оборудования могут возникнуть проблемы.

Таким образом мы видим, что компрессия — сильно неоднозначный параметр. Как и любой параметр — его важно не только правильно измерить, но еще и правильно интерпретировать.

Давление ВМТ такта сжатия.

Анализ этого параметра и его динамики в последнее время набирает заслуженную популярность в связи с появлением у диагностов мотортестеров со специализированными датчиками.

Что может дать такой анализ? Очень много для диагноста, а для клиента — подробный осмотр мотора за очень небольшое время, и, что важно, наглядно. По времени это занимает — выкрутить свечу, закрутить датчик, 30 секунд замер ну и обратные операции. Примем условно — 5 минут с запасом, а вы теперь оцените сколько информации можно получить о моторе за это время: оценка наличия подсосов во впускном тракте, реальный угол опережения зажигания, пневматические потери в цилиндре (те самые утечки), корректность установки распредвалов, противодавление выхлопных газов (пора катализатор вырезать или еще нет). И это все за пять минут. Вот до чего техника дошла. И, как и в любой другой сфере — техники мало, нужно уметь интерпретировать полученные графики, что требует знаний конструкции двигателя и сути и взаимосвязей протекающих в нем процессов.

Именно для того чтобы вы понимали что происходит в вашем моторе я и пишу эти статьи, начиная от элементарных базовых понятий, до более глубоких исследований реальных моторов в будущем.

переменная степень сжатия по рецепту… НАМИ! — Авторевю

Будет ли серийный кроссовер Infiniti QX50 нового поколения похож на концепт-кар QX Sport Inspiration? Теперь это не столь важно: свое место в энциклопедиях Infiniti займет как первый автомобиль, оснащенный серийным двигателем с переменной степенью сжатия. Спроектированным по рецепту… НАМИ!

Таким концепт-кар Infiniti QX Sport Inspiration был показан этой весной на автосалоне в Пекине, серийный QX50 унаследует многие его черты

На обычную рядную «четверку» мотор 2.0 VC-T (Variable Compression Turbo) похож лишь «до пояса», а ниже у него хитроумный рычажный механизм. Шатун каждого цилиндра соединен с коленвалом не напрямую, а через подвижное коромысло — траверсу, которая своим противоположным концом связана с тягой электроактуатора. Перемещение этой тяги меняет наклон траверсы и, соответственно, расстояние между поршнем и шатунной шейкой коленвала, варьируя положение верхней мертвой точки (ВМТ).

Что это дает? Чем выше поднимается поршень, тем меньше объем камеры сгорания над ним. Топливовоздушная смесь сжимается сильнее, а сгорая и расширяясь, совершает бо́льшую работу. Соотношение между объемом камеры сгорания и полным объемом цилиндра как раз и есть степень сжатия. Чем она выше, тем больше теоретически достижимая эффективность сгорания топ­лива. Однако попутно растет и риск возникновения взрывного сгорания, то есть детонации, — особенно при высоких нагрузках. Именно поэтому применение наддува заставляет не повышать, а наоборот, понижать степень сжатия.

Новый турбомотор 2.0 VC-T при крайнем верхнем положении траверсы способен достигать очень высокой степени сжатия 14,0:1 — как у атмосферных «четверок» Skyactiv компании Mazda. Но если маздовские моторы так работают во всех режимах, то двигатель Nissan — только на малых оборотах при небольших нагрузках. При их увеличении механизм переходит в промежуточные положения, понижая степень сжатия, а на высоких оборотах или под полным дросселем автоматика сдвигает ВМТ вниз — и степень сжатия падает до минимума: 8,0:1.

Мотор 2.0 VC-T ­немного крупнее и тяжелее обычных турбочетверок, но существенно компакт­нее двигателей V6, которые он должен заменить

Интересно, что двигатель по неофициальной информации выдает примерно 270 л.с. и 390 Нм крутящего момента — то есть форсирован на уровне обычных двухлитровых турбомоторов «заряженных» машин. Куда важнее, что агрегат 2.0 VC-T сулит сокращение расхода топлива на 27% по сравнению с атмосферной «шестеркой» Nissan 3.5 серии VQ, — которую, судя по всему, и призван заменить. А еще мотористы компании Nissan уверяют, что такие двигатели с изменяемой степенью сжатия станут альтернативой дизелям: ведь при схожей экономичности они требуют менее сложных систем очистки выхлопа и легче впишутся в строгие экологические нормативы.

Почему же раньше японцев никто не довел такие двигатели до серийного воплощения на легковушках? Ведь впервые эту идею еще в 20-х годах прошлого века предложил британский инженер Гарри Рикардо. Полвека назад в Америке выпускали «переменный» танковый дизель Continental AVCR-1100, а в конце 90-х аналогичные исследования вели Daimler, Volvo, Audi, Porsche, Honda, Ford, Suzuki, Peugeot и Citroen, Lotus, российский институт НАМИ, немецкая компания FEV…

Но за это время не появилось даже единого мнения, какой механизм считать наиболее эффективным. Вариант с раздвижными поршнями (как на дизеле AVCR-1100) грозит сложнос­тями со смазкой и не позволяет точно контролировать степень сжатия. Телескопичес­кие шатуны или щеки коленвала снижают надежность. Вспомогательные поршни, которые открывают дополнительные полости в стенках камеры сгорания, варьируя ее объем, ставят под угрозу герметичность. Эксцент­рики в нижних или верхних головках шатунов осложняют индивидуальное управление цилиндрами, а смещение коленвала относительно всего блока цилиндров требует еще и «переходников» в трансмиссии.

В ниссановском двигателе траверса (а) вращается вместе с коленвалом, а дополнительная система рычагов (б) с приводом от электроактуатора (в) контролирует ее наклон. Когда необходим переход на высокую степень сжатия, актуатор поворачивается по часовой стрелке, меняя положение эксцентрикового вала, который в свою очередь опускает правое плечо траверсы, а та своим противоположным плечом смещает поршень (г) и шатун вверх. При переходе на низкую степень сжатия механизм работает в обратной последовательности — и ВМТ уходит вниз

Ну а Saab 16 лет назад даже приглашал журналистов на тесты компрессорной «пятерки» 1.6 SVC (АР №21, 2000) с наклонным моноблоком, который смещался относительно коленвала. Мотор получился темпераментным (225 л.с.), но шумным и капризным на низах. А главное — дорогим и сложным. Поэтому до конвейера дело тоже не дошло.

Под конец 2000-х надежды подавал еще и французский двигатель ­MCE-5 для автомобилей Peugeot и Citroen: в нем поршень с «шатуном» были монолитны и толкали кривошип через зубчатую передачу и коромысло, положение которого корректировал сервопривод. Но все достоинства этого механизма нивелировала невозможность унифицировать такой мотор с традиционными двигателями.

А схему с траверсой и управляющей тягой, которую собирается применить Nissan, в конце 80-х запатентовали в… советском институте НАМИ! Самый же ранний патент компании Nissan датирован 2001 годом — и описывает очень похожий механизм, хотя и переосмысленный: с иной геометрией расположения элементов и нижним креплением управляющего рычага.

В саабовском двигателе SVC эксцент­риковый вал приподнимал или опускал опоры одной из сторон моноблока, в который были объединены блок цилиндров и его головка. Объем камеры сгорания менялся, но попутно менялось и положение верхней части двигателя под капотом, что требовало доработки впускной и выпускной систем. Интересно, что Saab тоже предлагал изменять степень сжатия в диапазоне от 8,0:1 до 14,0:1, однако при самой высокой степени мотор работал как атмосферник: муфта отключала привод компрессора

Кстати, еще раньше на работы ­НАМИ обратил внимание концерн Daimler: в 2002—2003 годах из России в Штутгарт были отправлены три «траверсных» мотора на основе мерседесовского дизеля OM611 (2,15 л) и бензиновой двухлитровой «четверки» М111. Российский механизм позволял менять степень сжатия в пределах от 7,5:1 до 14,0:1, но очень скоро Daimler и НАМИ обнаружили, что выгода от него весьма эфемерна: эффективность повышалась на 20% при переходе от минимальной степени сжатия к обычной (10,0:1), а дальнейшее повышение до 14,0:1 давало всего 3,5% выигрыша.

Почему же Nissan с оптимизмом смот­рит на серийную перспективу? Несмотря на сложность нового кривошипно-шатунного механизма с возросшими потерями на трение, на прибавку лишних десяти килограммов и на ограничения по унификации, в производство двигатели 2.0 VC-T должны пойти в конце 2017 года. Возможно, потому, что надежда на гибриды не оправдалась: в Америке за этот год продано всего 2,5 тысячи гибридомобилей Nissan и Infiniti. Делать ставку на дизели после скандала с концерном Volkswagen тоже не вариант. А «переменный» мотор поможет не только отказаться от закупки двухлитровых турбочетверок у концерна Daimler, но и прибавит козырей по части имиджевой рекламы. Ведь таких агрегатов действительно не делает никто в мире!

Кстати, мотор с переменной степенью сжатия как нельзя лучше подходит для ездового цикла по измерению расхода топлива. И это тоже козырь. 

Памятка артиллеристу — журнал За рулем

ДЕТОНАЦИЯ

Пришедшее из латыни красивое слово «детонация» (по-нашему — взрыв) охватывает множество явлений, без которых человечество и сегодня помаленьку воевало бы разве что холодным оружием. А мы, просвещенные, вон как продвинулись… Любой взрыв, даже мирный, в основе своей разрушительный процесс. Едва появились двигатели внутреннего сгорания, инженеры тут же столкнулись с печальным фактом: в некоторых случаях вместо обычного сгорания в цилиндрах происходят аномальные явления: он работает с резкими, высокого тона металлическими стуками, теряет мощность, перегревается. Такое отклонение от нормы назвали детонацией — ниже вы убедитесь, что неспроста.

ИЛЛЮЗИЯМ ВОПРЕКИ

Кто не встречал красочных описаний того, как в цилиндре от искры «взрывается» рабочая смесь! Не верьте любителям красного словца — при нормальной работе мотора никаких взрывов нет.

Когда сгорание идет «как по писаному» (в учебниках для студентов), давление газов на поршень меняется плавно, мягко — это показано зеленой кривой на рис. 1. Пламя от искры свечи разбегается своеобразным фронтом, постепенно захватывая весь объем камеры сгорания. Скорость движения фронта пламени в современных двигателях при интенсивной турбулизации (завихрении) рабочей смеси — до 50–80 м/с.

У спокойного сгорания свои достоинства: оно хорошо поддается расчету, с ним легче оптимизировать передачу энергии газов поршням, шатунам, коленвалу, трансмиссии, исключив перегрузку деталей, нарушение их смазки, быстрый износ, поломку, опасные колебания и т. д. 

«Жесткость» процесса (отношение скорости нарастания давления к углу поворота коленвала) обычно не выше 1,5–2 бар/градус. На графике (рис. 1) об этом можно судить по наклону кривых к горизонтали.

Практически весь заряд в камере сгорания должен сгореть прежде, чем откроется выпускной клапан, а от того, как соотносится этот процесс с углом поворота коленвала, зависят мощность, крутящий момент, экономичность двигателя, поле температур и т. д. Поэтому искра между электродами свечи должна появиться несколько раньше, чем поршень достигнет верхней мертвой точки, — это называют опережением зажигания (см. рис. 1). Оно не может быть одинаковым для совершенно различных режимов работы двигателя и должно изменяться в широких пределах. Оптимальный угол опережения зажигания устанавливает автоматика — от простейшей механической до современной электронной.

А теперь об аномальном процессе — детонации. Для острастки начнем с последствий. Они довольно многообразны, но больше всего достается поршням. Примеры — на фото. Механические и тепловые нагрузки, хотя и действуют локально, огромные. Кромки поршней нередко оплавляются, перемычки между кольцами ломаются, достается и кольцам. Детонация повреждает и другие детали: поршневые пальцы, шатунные вкладыши и т. д. 

Одна из причин беды — недостаточная детонационная стойкость горючего. Например, бензин АИ-80 (А-76) даже прежним моторам ВАЗа со степенью сжатия всего 8,5 противопоказан. Вы это, конечно, знаете — и на АЗС зальете АИ-92. Для моторов с еще большей степенью сжатия (9,8–10,5) нужен АИ-95. Но кто гарантирует, что вас не надули? Порой в бензобак попадает тот еще коктейль!

Как мы уже отметили, смесь, воспламенившись от искры, сгорает не мгновенно. Фронт пламени постепенно приближается к дальнему углу камеры сгорания (зона 2 на рис. 2), и хотя там еще ничего не горит, давление и температура за счет «поджатия» уже сгоревшей частью заряда становятся выше, что ускоряет ход окислительных реакций. Если топливо не обладает достаточной детонационной стойкостью, в сжатой смеси образуются неустойчивые химические соединения, способные самовоспламениться от малейшего дополнительного «толчка». Но концентрация этих соединений по объему зоны 2 неодинакова: в точке, где они наименее устойчивы, происходит первый локальный взрыв, вокруг которого с огромной скоростью (до 2500 м/с) разбежится ударная волна, скачком поднимающая давление и температуру. Пробегая через другие части заряда, близкие к самовоспламенению, ударная волна легко «поджигает» их, рождая новые волны. За фронтом каждой ударной волны, как за локомотивом, движется детонационная волна, но процесс сгорания не мгновенен, после прохождения волн смесь какое-то время догорает. Тем не менее скорость детонационного сгорания в десятки раз больше обычного (его часто так и называют — «быстрым»).

Кстати, «частокол» на красной кривой (см. рис. 1) — это лишь результат реакции датчика давления на ударные волны и отражения их от стенок. Высокие значения давления действуют локально, а среднее эффективное давление в камере меньше, чем при нормальном сгорании. Результат примерно такой, как при очень резких ударах ювелирным молоточком по головке блока и поршню — следы останутся, а сдвинуть с места массивные детали трудно. Вот эти стуки ударных волн и слышны при детонации. При работе с высокой нагрузкой для некоторых двигателей допускается кратковременная (одна-две секунды) детонация. Длительная же приводит к такому перегреву поверхностей, образующих камеру сгорания, что поршень начинает оплавляться. Также вследствие перегрева может начаться самовоспламенение смеси до появления искры — так называемое калильное зажигание, еще больше подхлестывающее детонацию. В выхлопных газах вы заметите черно-зеленый дым (вылетают частицы металла) — двигателю конец! В лучшем случае его ждет очень дорогостоящий ремонт.

Детонационная стойкость бензина обозначена в его октановом числе. В то же время вероятность появления детонации зависит от конструкции двигателя, так что рекомендации завода-изготовителя по части применяемого топлива игнорировать не стоит. Например, для двигателя ЗМЗ-24-01 («Волга») со степенью сжатия 6,7 оптимальным оказывается бензин АИ-80. Но для двигателя 24Д со степенью сжатия 8,2 он уже неприемлем. Необходим, как минимум, АИ-92.

Но и обратная замена недопустима! При низкой степени сжатия сгорание высокооктанового топлива затягивается, это ведет к перегреву выпускных клапанов и даже их обгоранию. Щедрость здесь неуместна — мотору 24–01 бензины с октановым числом 91 и выше только во вред.

ПОМОГИ МОТОРУ

Как быть, если после заправки в пути началась сильная детонация, заменить дрянной бензин нечем, а доехать нужно?

Вспомним, что еще провоцирует детонацию. Во-первых, увеличенная нагрузка на двигатель: чем сильнее открыт дроссель, тем лучше наполнение цилиндров, больше масса смеси, сжатой в камере сгорания, выше ее давление и температура. Отсюда повышенный риск детонации. К тому же система питания устроена так (ЗР, 2004, № 2), что при больших нагрузках несколько обогащает смесь для получения максимума крутящего момента или мощности — такая горит быстрее и жарче, тоже способствуя детонации.

Каждому следует знать об особенностях двигателя. Неопытный водитель «Жигулей» штурмует подъемы «внатяг» и, даже заслышав стуки, не сбавляет газ. Это верный способ вызвать сильную детонацию и на хорошем бензине: у нее появляется больше времени для развития. Сделаем наоборот: прикроем дроссель, а обороты повысим, перейдя на пониженную передачу.

Но это верно, только если исправен центробежный регулятор распределителя зажигания, иначе детонация возможна и на повышенных оборотах! У моторов переднеприводных ВАЗов с высокой степенью сжатия (9,8–10,5) это бывает и при максимальной мощности — в реве мотора не каждый выделит посторонние стуки. Если услышал — сбавь нагрузку, мощность. Иначе говоря, поезжай медленней.

Следующий фактор — угол опережения зажигания. Уменьшив его, сдвинем максимум давления (синяя кривая на рис. 1) правее, не давая чрезмерно вырасти вблизи ВМТ. Часть мощности потеряем, но побережем двигатель! Электронные системы современных автомобилей по сигналу датчика детонации сами корректируют УОЗ. Естественно, пока исправны. И — в ограниченных пределах. Так, на VAZ 2110 многие сознательно используют АИ-92 вместо АИ-95. Но от опытов с АИ-80 лучше воздержаться.

А вот прием необычный, проверенный «бывалым» на 1,5-литровом моторе VAZ 21083: сместить зубчатый ремень относительно шкива распредвала на один зуб в сторону запаздывания газораспределения. Наполнение цилиндров ухудшается — и детонации нет.

Что еще ей способствует? Конечно, повышенная температура в камере сгорания. А она зависит от теплоотвода: немного перегрелся мотор — и уже отвечает звоном на открытие дросселя. Вывод: пора привести в порядок систему охлаждения.

Вероятность детонации выше, когда на поверхностях, образующих камеру сгорания, много нагара; он тоже ухудшает теплоотвод и несколько повышает степень сжатия. Обычный источник нагара — дешевые масла с высокой зольностью, а порой и бензин туманного происхождения. Надежно избавиться от нагара, не разобрав двигатель, трудно — выходит, ездить на высококачественном масле и бензине зачастую дешевле!

Степень сжатия | Tractor & Construction Plant Wiki

Информацию о степени сжатия при сжатии данных см. В Википедии: степень сжатия данных.

«Степень сжатия» двигателя внутреннего сгорания или двигателя внешнего сгорания — это величина, которая представляет собой отношение объема его камеры сгорания от наибольшей емкости к наименьшей. Это фундаментальная спецификация для многих распространенных двигателей внутреннего сгорания.

В поршневом двигателе это соотношение между объемом цилиндра и камеры сгорания, когда поршень находится в нижней части своего хода, и объемом камеры сгорания, когда поршень находится в верхней части своего хода. [1]

Изобразите цилиндр и его камеру сгорания с поршнем в нижней части его хода, содержащего 1000 см3 воздуха (900 см3 в цилиндре и 100 см3 в камере сгорания). Когда поршень переместился в верхнюю часть своего хода внутри цилиндра, а оставшийся объем внутри головки или камеры сгорания был уменьшен до 100 см3, тогда степень сжатия будет пропорционально описана как 1000: 100 или с частичным уменьшением. , степень сжатия 10: 1.

Желательна высокая степень сжатия, поскольку она позволяет двигателю извлекать больше механической энергии из заданной массы топливовоздушной смеси из-за его более высокого теплового КПД. Это происходит потому, что двигатели внутреннего сгорания являются тепловыми двигателями, и более высокий КПД создается, поскольку более высокая степень сжатия позволяет достичь той же температуры сгорания с меньшим количеством топлива, обеспечивая при этом более длительный цикл расширения, создавая большую выходную механическую мощность и снижая температуру выхлопных газов.

Однако при более высоких степенях сжатия бензиновые двигатели подвержены детонации, если используется топливо с более низким октановым числом, также известное как детонация. Это может снизить эффективность или повредить двигатель, если отсутствуют датчики детонации, замедляющие синхронизацию. Однако датчики детонации были требованием спецификации OBD-II, используемой в автомобилях 1996 модельного года и новее.

Дизельные двигатели, с другой стороны, работают по принципу воспламенения от сжатия, поэтому топливо, которое сопротивляется самовоспламенению, вызовет позднее воспламенение, что также приведет к детонации в двигателе.

Коэффициент рассчитывается по следующей формуле:

, где
= отверстие цилиндра (диаметр)
= длина хода поршня
= объем зазора. Это объем камеры сгорания (включая прокладку головки). Это минимальный объем пространства в конце такта сжатия, то есть когда поршень достигает верхней мертвой точки (ВМТ). Из-за сложной формы этого пространства его обычно измеряют напрямую, а не рассчитывают.

Типичные степени сжатия [править | править источник]

Бензиновый (бензиновый) двигатель [править | править источник]

Из-за детонации двигателя степень сжатия в бензиновом или бензиновом двигателе обычно не намного превышает 10: 1, хотя некоторые серийные автомобильные двигатели, построенные для высокопроизводительных двигателей в период с 1955 по 1972 год, имели такие же высокие степени сжатия. как 13,0: 1, что может безопасно работать на доступном в то время высокооктановом этилированном бензине.

Техника, используемая для предотвращения возникновения детонации, — это двигатель с сильным «завихрением», который заставляет всасываемый заряд принимать очень быстрое круговое вращение в цилиндре во время сжатия, что обеспечивает более быстрое и полное сгорание.В последнее время, с добавлением датчиков изменения фаз газораспределения и детонации для задержки опережения зажигания, стало возможным производить бензиновые двигатели со степенью сжатия более 11: 1, которые могут использовать топливо 87 (MON + RON) / 2 (октановое число).

В двигателях с датчиком «пинг» или «детонация» и электронным блоком управления CR может достигать 13: 1 (BMW K1200S 2005 года). В 1981 году Jaguar выпустил головку блока цилиндров, которая допускала сжатие до 14: 1; но довольствовался 12,5: 1 в серийных автомобилях. Конструкция головки блока цилиндров была известна как головка «May Fireball»; его разработал швейцарский инженер Майкл Мэй.

Mazda в 2012 году выпускает новые бензиновые двигатели под торговой маркой SkyActiv со степенью сжатия 14: 1, которые будут использоваться во всех автомобилях Mazda к 2015 году. [2] [3] [4]

Бензин / бензиновый двигатель с наддувом [редактировать | править источник]

В бензиновых двигателях с турбонаддувом или наддувом CR обычно изготавливается с соотношением 10,5: 1 или ниже. Это происходит из-за того, что турбокомпрессор / нагнетатель уже значительно сжал топливно-воздушную смесь перед тем, как она попадает в цилиндры.

Бензин / бензиновый двигатель для гонок [править | править источник]

Двигатели для гонок на мотоциклах могут использовать степень сжатия до 14: 1, и нередко встречаются мотоциклы с коэффициентом сжатия более 12,0: 1, рассчитанные на топливо с октановым числом 86 или 87. Двигатели F1 приближаются к соотношению 17: 1 (что очень важно для максимизации объемной / топливной эффективности при 18000 об / мин).

Двигатели на этаноле и метаноле [править | править источник]

Этанол и метанол могут иметь значительно более высокие степени сжатия, чем бензин.Гоночные двигатели, работающие на метаноле и этаноле, часто имеют коэффициент CR 14,5-16: 1.

Газовый двигатель [править | править источник]

В двигателях, работающих исключительно на СНГ или СПГ, CR может быть выше из-за более высокого октанового числа этих топлив.

Дизельный двигатель [править | править источник]

В дизельном двигателе с самовоспламенением электрическая свеча зажигания отсутствует; теплота сжатия повышает температуру смеси до точки самовоспламенения. CR обычно превышает 14: 1, а соотношение более 22: 1 является обычным явлением.Соответствующая степень сжатия зависит от конструкции головки блока цилиндров. Обычно это значение составляет от 14: 1 до 16: 1 для двигателей с прямым впрыском и от 18: 1 до 23: 1 для двигателей с непрямым впрыском.

Диагностика и диагностика [править | править источник]

Измерение давления сжатия двигателя с помощью манометра, подключенного к отверстию свечи зажигания, дает представление о состоянии и качестве двигателя. Однако формулы для расчета степени сжатия на основе давления в цилиндре не существует.

Если дана номинальная степень сжатия двигателя, давление в цилиндре перед воспламенением можно оценить с помощью следующего соотношения:

где — давление в цилиндре в нижней мертвой точке, которое обычно составляет 1 атм, — это степень сжатия, а — удельная теплоемкость рабочей жидкости, которая составляет около 1,4 для воздуха и 1,3 для метановоздушной смеси. смесь.

Например, если двигатель, работающий на бензине, имеет степень сжатия 10: 1, давление в цилиндре в верхней мертвой точке равно

Однако эта цифра также будет зависеть от кулачка (т.е.е. клапана) ГРМ. Как правило, давление в цилиндре для обычных автомобильных конструкций должно составлять не менее 10 бар или, по приблизительной оценке в фунтах на квадратный дюйм (psi), в 15-20 раз больше степени сжатия, или в этом случае от 150 до 200 psi, в зависимости от кулачок синхронизации. Специально построенные гоночные двигатели, стационарные двигатели и т. Д. Будут давать цифры за пределами этого диапазона.

Факторы, включающие позднее закрытие впускного клапана (относительно, говоря, для профилей распределительных валов, выходящих за пределы типичного диапазона серийных автомобилей, но не обязательно в области двигателей соревнований), могут дать обманчиво заниженное значение в этом тесте.Чрезмерный зазор в шатуне в сочетании с чрезвычайно высокой производительностью масляного насоса (редко, но не невозможно) может привести к образованию достаточного количества масла, чтобы покрыть стенки цилиндра достаточным количеством масла, чтобы облегчить разумное уплотнение поршневого кольца, искусственно давая обманчиво высокий показатель на двигателях с нарушенным кольцевым уплотнением.

Это действительно может быть использовано для некоторого небольшого преимущества. Если испытание на сжатие дает низкое значение и было установлено, что это не связано с закрытием впускного клапана / характеристиками распределительного вала, то можно различить причину, связанную с проблемами уплотнения клапана / седла и кольцевым уплотнением, путем впрыскивания моторного масла в искру. отверстие плунжера в количестве, достаточном для распределения по днищу поршня и окружности контакта верхнего кольца и, таким образом, к упомянутому уплотнению.Если вскоре после этого будет проведено второе испытание на сжатие и новое показание будет намного выше, проблематичным будет кольцевое уплотнение, тогда как если наблюдаемое испытательное давление на сжатие останется низким, это будет уплотнение клапана (или, реже, прокладка головки, или прорыв поршня, или более редкое повреждение стенки цилиндра).

Если существует значительная (более 10%) разница между цилиндрами, это может указывать на то, что клапаны или прокладки головки цилиндров протекают, поршневые кольца изношены или что блок треснул.

Если есть подозрение на проблему, то более подробный тест с использованием тестера утечки может определить местонахождение утечки.

Двигатели с переменной степенью сжатия (VCR) [править | править источник]

Поскольку диаметр отверстия цилиндра, длина хода поршня и объем камеры сгорания почти всегда постоянны, степень сжатия для данного двигателя почти всегда постоянна, пока износ двигателя не сказывается.

Единственным исключением является экспериментальный двигатель Saab Variable Compression Engine (SVC).В этом двигателе, разработанном Saab Automobile, используется технология, которая динамически изменяет объем камеры сгорания (V c ), что с помощью приведенного выше уравнения изменяет степень сжатия (CR).

Цикл двигателя Аткинсона был одной из первых попыток переменного сжатия. Поскольку степень сжатия — это соотношение между динамическим и статическим объемами камеры сгорания, метод цикла Аткинсона по увеличению длины рабочего хода по сравнению с тактом впуска в конечном итоге изменил степень сжатия на разных этапах цикла.

Расчетная степень сжатия, как указано выше, предполагает, что цилиндр герметизирован в нижней части хода, и что сжатый объем является фактическим объемом.

Однако: закрытие впускного клапана (герметизация цилиндра) всегда происходит после НМТ, что может привести к тому, что часть всасываемого заряда будет сжиматься назад из цилиндра поднимающимся поршнем на очень низких скоростях; сжимается только процент хода после закрытия впускного клапана. Настройка и продувка впускного отверстия могут позволить большей массе заряда (при давлении выше атмосферного) задерживаться в цилиндре, чем можно было бы предположить по статическому объему (эта «скорректированная» степень сжатия обычно называется « динамической степенью сжатия »). .

Это соотношение выше при более консервативном (т.е. раньше, вскоре после НМТ) времени впускных кулачков и ниже при более радикальном (т.е. позже, намного позже НМТ) времени впускных кулачков, но всегда ниже, чем статическое или «номинальное» коэффициент сжатия.

Фактическое положение поршня можно определить тригонометрическим методом, используя длину хода и длину шатуна (измеренную между центрами). Абсолютное давление в цилиндре является результатом показателя степени динамического сжатия.Этот показатель степени представляет собой политропное значение для отношения переменной теплоты воздуха и подобных газов при существующих температурах. Это компенсирует повышение температуры, вызванное сжатием, а также потерю тепла в цилиндре. В идеальных (адиабатических) условиях показатель степени будет 1,4, но используется более низкое значение, обычно от 1,2 до 1,3, поскольку количество потерянного тепла будет варьироваться между двигателями в зависимости от конструкции, размера и используемых материалов, но дает полезные результаты для в целях сравнения. Например, если степень статического сжатия составляет 10: 1, а степень динамического сжатия — 7.1,3 × атмосферное давление, или 13,7 бар. (× 14,7 фунтов на квадратный дюйм на уровне моря = 201,8 фунтов на квадратный дюйм. Давление, показанное на манометре, будет абсолютным давлением за вычетом атмосферного давления, или 187,1 фунтов на квадратный дюйм.)

Две поправки на динамическую степень сжатия влияют на давление в цилиндре в противоположных направлениях, но не в одинаковой степени. Двигатель с высокой статической степенью сжатия и поздним закрытием впускного клапана будет иметь DCR, аналогичный двигателю с более низким уровнем сжатия, но более ранним закрытием впускного клапана.

Кроме того, давление в цилиндре, развиваемое при работающем двигателе, будет выше, чем показанное при испытании на сжатие, по нескольким причинам.

  • Гораздо более высокая скорость поршня при работающем двигателе по сравнению с проворачиванием коленчатого вала позволяет меньше времени для выхода давления через поршневые кольца в картер.
  • работающий двигатель покрывает стенки цилиндра гораздо большим количеством масла, чем двигатель, который запускается на низких оборотах, что способствует уплотнению.
  • более высокая температура цилиндра создает более высокое давление при работе по сравнению со статическим тестом, даже если тест выполняется с двигателем, температура которого близка к рабочей.
  • Работающий двигатель не прекращает забирать воздух и топливо в цилиндр, когда поршень достигает НМТ; Смесь, которая устремляется в цилиндр во время движения вниз, развивает импульс и продолжается некоторое время после прекращения вакуума (в том же отношении, что быстрое открытие двери создает сквозняк, который продолжается после прекращения движения двери). Это называется уборкой мусора. Настройка впуска, конструкция головки блока цилиндров, фазы газораспределения и настройка выхлопа определяют, насколько эффективно двигатель работает.

Степень сжатия в зависимости от общей степени давления [править | править источник]

Степень сжатия и общая степень сжатия взаимосвязаны следующим образом:

Степень сжатия 2: 1 3: 1 5: 1 10: 1 15: 1 20: 1 25: 1 35: 1
Степень сжатия 2,64: 1 4,66: 1 9,52: 1 25.12: 1 44,31: 1 66.29: 1 90.60: 1 145,11: 1

Причина этой разницы в том, что степень сжатия определяется через уменьшение объема:

,

, а степень сжатия определяется как увеличение давления:

.

При вычислении степени сжатия мы предполагаем, что происходит адиабатическое сжатие (т.е. что к сжимаемому газу не поступает тепловая энергия, и что любое повышение температуры происходит исключительно из-за сжатия).Мы также предполагаем, что воздух — это идеальный газ. С этими двумя допущениями мы можем определить взаимосвязь между изменением объема и изменением давления следующим образом:

где — отношение удельной теплоты для воздуха (приблизительно 1,4). Значения в таблице выше получены с использованием этой формулы. Обратите внимание, что в действительности соотношение удельных теплоемкостей изменяется с температурой и что будут происходить значительные отклонения от адиабатического поведения.


{[wikipedia}}

Автозапчасть | В чем разница между степенью сжатия в бензиновых и дизельных двигателях?

Каждый двигатель имеет определенную степень сжатия .Однако дизельные и бензиновые двигатели существенно различаются по степени сжатия. Первым шагом к осознанию этих различий является понимание степени сжатия .

Что такое степень сжатия?

Степень сжатия — это отношение объема цилиндра, когда поршень находится в НМТ, к объему, когда поршень находится в ВМТ. Именно это соотношение определяет степень сжатия топливовоздушной смеси перед воспламенением.

Степень сжатия в двигателях обычно составляет от 8: 1 до 10: 1.Возможно, вы слышали, что более высокая степень сжатия, например, 12: 1 или 14: 1, дает много преимуществ, включая большую мощность и большую топливную экономичность. Тем не менее, более высокая степень сжатия также может представлять значительные риски, такие как детонация. Как вы думаете, что обеспечивает более высокую степень сжатия — бензиновый двигатель или дизель?

Степень сжатия в бензиновых двигателях

Бензиновые двигатели имеют искровое зажигание и работают на летучих топливах, таких как бензин. Здесь воздушно-топливная смесь достигается после сжатия.В карбюраторе смешиваются воздух и топливо, и после сжатия смесь воспламеняется с помощью электрической искры.

Бензиновые двигатели работают на основе цикла Отто, который включает два изохорных и два изоэнтропических процесса. Вот фазы процесса сгорания в бензиновых двигателях:

  1. Впуск
  2. Компрессия
  3. Зажигание
  4. Выпуск

Какая степень сжатия у бензиновых двигателей?

Степень сжатия в бензиновых двигателях за последние два десятилетия всегда составляла от 8: 1 до 12: 1.Однако в истории производства автомобилей были случаи, когда автопроизводители превышали это соотношение. Некоторые из этих случаев включают:

  • степень сжатия 13: 1 в автомобилях, выпущенных с 1955 по 1972 год; Эти автомобили были построены для работы на высокооктановом этилированном бензине, который допускал более высокую степень сжатия.
  • Степень сжатия 14: 1 в некоторых моделях двигателей Mazda SkyActiv 2012 года выпуска; в этих двигателях улучшена очистка выхлопных газов, что позволяет реализовать это соотношение с использованием неэтилированного бензина.Благодаря продувке поддерживается низкий уровень температуры в цилиндре перед тактом впуска.
  • Степень сжатия 14: 1 в 2-дверном спортивном автомобиле Ferrari 458 Speciale

Причина, по которой не рекомендуется иметь высокую степень сжатия в двигателях, использующих низкооктановое топливо, заключается в том, что высокий CR может вызвать детонацию. Это также известно как преждевременное зажигание или детонация, когда топливо самовоспламеняется и приводит к неконтролируемому сгоранию.

Детонация снижает эффективность сгорания и может вызвать серьезные повреждения, если не установлены датчики детонации для регулировки времени.

Степень сжатия в дизельных двигателях

Создание дизельного двигателя приписывают Рудольфу Дизелю, в честь которого был назван этот тип двигателя. На изобретение вдохновила неэффективность бензиновых и паровых двигателей того времени. Вот четыре фазы, участвующие в цикле сгорания в дизельных двигателях:

  1. Впуск
  2. Компрессия
  3. Сгорание
  4. Выпуск

Почему у дизельных двигателей более высокая степень сжатия?

Дизельные двигатели имеют на более высокую степень сжатия , чем их бензиновые аналоги, и не требуют свечей зажигания для зажигания.Вместо этого топливо вводится в камеру сгорания, где воздух сжимается до высокой температуры. Это вызывает самовозгорание впрыскиваемого топлива.

Это означает, что сжатие должно быть достаточно высоким, чтобы повысить температуру воздуха в цилиндре до точки, при которой он воспламеняет топливо. По этой причине дизельные двигатели также называют двигателями с воспламенением от сжатия.

Воздух сжимается адиабатическим сжатием. Дизельные двигатели сжимают только воздух, но не топливо.

Какая средняя степень сжатия у дизельного двигателя?

Дизельные двигатели с прямым впрыском имеют степень сжатия в диапазоне от 14: 1 до 23: 1. Дизельные двигатели с косвенным впрыском имеют степень сжатия от 18: 1 до 23: 1. В отличие от бензиновых двигателей, которые используют цикл Отто, дизельные двигатели работают по дизельному циклу (воспламенение от сжатия).

Дизельный цикл также состоит из 4 процессов: 2 изоэнтропических процессов, процесс постоянного объема и процесс постоянного давления.

Топливо с высокой устойчивостью к самовоспламенению может вызвать позднее воспламенение. Это может привести к детонации двигателя. Хотя дизельные двигатели имеют более высокую пиковую температуру сгорания по сравнению с бензиновыми, они выделяют меньше тепла из-за большего расширения.

Мы надеемся, что это простое руководство помогло вам больше узнать о степени сжатия как в дизельных, так и в бензиновых двигателях. Вы можете прочитать нашу статью «Что такое степень сжатия в автомобильных двигателях», чтобы получить некоторую справочную информацию по этой теме.

Будьте в курсе, регулярно подписываясь на статьи нашего блога.

Сэм О.

Теория степени сжатия и ее расчет в Powersports

Покупаете ли вы поршни для мотоцикла, квадроцикла или UTV, вы, скорее всего, увидите варианты с разными степенями сжатия . При разработке поршней для различных степеней сжатия учитывается множество факторов. Здесь мы рассмотрим, как рассчитывается степень сжатия и как она может повлиять на ваш двигатель и требования к топливу для гонок.

Формула проста — сжатие создает мощность, и иногда теория «чем больше, тем лучше» имеет свои достоинства. Но прежде чем мы начнем слепо оценивать степени сжатия, лучше узнать больше о том, как этого добиться. Степень сжатия для любого двигателя или отдельного цилиндра определяется как соотношение между рабочим объемом цилиндра с поршнем в нижней мертвой точке (НМТ) и объемом с поршнем в верхней мертвой точке (ВМТ). Если, например, отношение объема НМТ в 13 раз больше, чем объем в ВМТ, то степень сжатия составляет 13: 1.

Степень сжатия — это соотношение между рабочим объемом цилиндра с поршнем в нижней мертвой точке и рабочим объемом цилиндра с поршнем в верхней мертвой точке.

Степень сжатия играет важную роль в создании мощности, поскольку именно сжатие топливовоздушной смеси улучшает процесс сгорания и создает мощность. Конечно, более высокая степень сжатия также предъявляет более высокие требования к октановому числу топлива, поэтому важно помнить об этом. В качестве примера мы возьмем одноцилиндровые двигатели для внедорожников.Степень сжатия серийных двигателей для внедорожников с годами увеличилась до нынешних диапазонов от 12,5: 1 до 13,5: 1, при этом они все еще способны сжигать бензин премиум-класса с октановым числом 91/93. Это достигается за счет улучшенной конструкции камеры сгорания, а также превосходного управления соотношением воздух-топливо за счет электронного впрыска топлива (EFI).

Как рассчитывается степень сжатия?

Было бы неплохо проверить, как рассчитывается сжатие. Это вопрос разбивки на серии небольших участков, для которых необходимо рассчитать их индивидуальные объемы.Затем эти меньшие объемы можно сложить вместе, чтобы получить общий очищенный объем. Например, площадь верхней части поршня в ВМТ должна учитывать индивидуальные объемы камеры, верхнюю часть поршня (конструкцию головки), прокладку головки и высоту поршня над или под декой поршня. цилиндр.

Щелкните здесь, чтобы узнать, как рассчитать сжатие и смещение для автомобильных двигателей.

Объем цилиндра

Расчет объема цилиндра с помощью Pi x радиус в квадрате x ход дает вам только объем цилиндра.На фото — одноцилиндровый мотоцикл 250F.

Нашим первым шагом является определение объема цилиндра на основании диаметра и хода. Если вы помните из школьной геометрии, объем цилиндра = Pi x радиус в квадрате x высота (в данном случае, ход). Диаметр цилиндра 77 мм и ход поршня 53,6 мм создают цилиндр объемом 249 куб. См. Это просто цилиндр.

Далее нам нужно узнать объем камеры сгорания. Проще всего это измерить с помощью градуированного цилиндра или бюретки.Большинство бюреток имеют градуировку в миллилитрах, а один миллилитр равен одному кубическому сантиметру (куб.см), так что пусть вас это не сбивает. Объем камеры напрямую влияет на степень сжатия, поэтому его измерение важно для точности. Квадратная крышка из плексигласа, запечатанная консистентной смазкой, с просверленным в ней небольшим отверстием, позволяющим заполнить камеру медицинским спиртом, смешанным с небольшим количеством пищевого красителя, хорошо работает в качестве измерительной жидкости.

В приведенном ниже примере мы используем головку блока цилиндров автомобиля, но тот же процесс можно проделать для одно- или многоцилиндровых двигателей мотоциклов.

Уплотнение крышки из оргстекла над камерой сгорания консистентной смазкой позволит вам заполнить камеру сгорания медицинским спиртом. Вы можете использовать электронный измерительный инструмент (показанный здесь), чтобы определить объем жидкости, или вы можете рассчитать вручную с помощью градуированного цилиндра (показанного ниже). Убедитесь, что камера сгорания заполнена полностью, без пузырьков воздуха, чтобы получить точное измерение.

Объем поршня

Также необходимо измерить объем поршня.Это важно, поскольку поршень редко бывает идеально плоским. Если бы это было так, номер объема поршня был бы по существу 0 или таким, который не прибавлял бы и не вычитал из степени сжатия. Однако большинство верхних частей поршней содержат комбинацию предохранительных клапанов, тарелку или куполообразную конфигурацию, которые составляют заданный объем. Допустим, этот поршень имеет небольшой купол, но также включает предохранительный клапан поршневого клапана. Для достижения точной степени сжатия необходимо рассчитать общий объем купола поршня.Этот объем должен быть у производителя поршня, когда он вам понадобится. JE Pistons фиксирует эту информацию для каждой конструкции поршня.

Имейте в виду, что даже незначительные изменения могут иметь прямое влияние на сжатие. Например, увеличение диаметра отверстия всего на 2 мм — например, с 96 до 98 мм — без каких-либо других изменений в поршне, приведет к увеличению степени сжатия 13,58: 1 до 14,05: 1 просто потому, что площадь поршня теперь равна больше.

Объем купола также учитывает так называемый объем щели, или крошечный объем, находящийся между верхним краем поршня над контактной площадкой кольца и стенкой цилиндра.Это измерение наиболее важно выполнить, если поршень был модифицирован для добавления дополнительного зазора сброса клапана или если были выполнены другие модификации в верхней части поршня.

Этот объем очень минимален, но это то, что JE принимает во внимание при вычислении сжатия, чтобы обеспечить высокую точность.

Объем щели — это небольшой промежуток между верхним, внешним краем поршня (над верхним кольцом) и цилиндром. Вы можете увидеть это небольшое пространство на картинке выше.

Прокладка головки

Толщина прокладки головки также влияет на сжатие, так как это также создает объем, который необходимо включить в расчет. Толстая прокладка головки существенно увеличивает объем камеры, а более тонкая — уменьшает его. Расчет объема такой же, как у цилиндра, только очень короткий. Чаще всего внутренний диаметр прокладки круглый, поэтому вычислить объем довольно просто: объем = Pi x радиус в квадрате x высота.

Высота платформы

Также необходимо учитывать высоту платформы.Если поршень в ВМТ находится ниже уровня цилиндра, этот объем добавляется к объему камеры сгорания, уменьшая степень сжатия. Если верхняя часть поршня превышает верхнюю часть цилиндра на заданную величину, этот объем необходимо вычесть из объема камеры сгорания, что увеличит степень сжатия. Это положение поршня также напрямую влияет на зазор между поршнем и головкой, поэтому внимательно следите за ним, чтобы не выходить за пределы спецификации.

Высота деки означает положение поршня по отношению к верхней части цилиндра (деки) в ВМТ.В изображенном здесь поршне / цилиндре купол поршня находится над декой, когда поршень находится в ВМТ, поэтому этот объем купола поршня необходимо вычесть из объема камеры сгорания. Таким образом поршни с высокой степенью сжатия, такие как этот, достигают более высоких степеней сжатия.

После того, как все эти размеры определены, мы можем выполнить простую математику деления объема цилиндра с поршнем в нижней части его хода на объем цилиндра с поршнем в верхней части его хода.Мы включили всю математическую формулу здесь, внизу этой страницы, но она слишком длинная и сложная, и на самом деле нет причин проходить все это, если вам не нравятся длинные вычисления! Более простой вариант — использовать один из многих бесплатных онлайн-калькуляторов степени сжатия.

Использование программы расчета степени сжатия сэкономит много времени и избавит от ненужных хлопот при выполнении вычислений вручную. Эти цифры приведены только для примера.

Нам нравится версия, предлагаемая в Performance Trends (Performancetrends.com), так как он прост в использовании и может быть загружен бесплатно. Вводимые данные в этой программе можно даже изменить с английского на метрические, если вы предпочитаете, а вводимые данные настолько просты, что вы можете попробовать десятки различных комбинаций, чтобы удовлетворить свое любопытство.

Важно отметить, что, хотя сжатие действительно играет важную роль в повышении мощности, добавление сжатия не является чисто линейным предложением. Общепринятая мера для добавления сжатия состоит в том, что одна полная точка сжатия может добавить от 3 до 4 процентов мощности.Итак, если двигатель развивает мощность 50 лошадиных сил, и мы добавляем полную точку сжатия (например, от 11 до 12: 1), это потенциально может увеличить мощность до 51,5 лошадиных сил. Однако с текущими коэффициентами сжатия гоночных двигателей уже на уровне 13: 1, добавление полной точки сжатия не обязательно может добавить полные три процента, поскольку закон убывающей отдачи играет роль с коэффициентами, близкими к 14: 1 или выше. Положительный прирост все равно будет, но он, скорее всего, не будет таким большим, как прирост, например, от 9: 1 до 10: 1.

На фотографии показаны 3 поршня JE с разной степенью сжатия для одного и того же двигателя YXZ1000. CR включают 9,5: 1 (уменьшение сжатия для турбо-приложений), 11,5: 1 (стандартное сжатие) и 12,5: 1 (высокое сжатие). Обратите внимание, что максимальная компрессия имеет самые высокие характеристики купола, занимая больше объема камеры сгорания. Поршень 9,5: 1 — наоборот. Другой пример — поршни CRF450R JE 2017-18 годов выпуска. Стандартный поршень сжатия 13,5: 1 (справа) имеет очень плоский купол, не занимающий лишнего объема в камере сгорания.Поршень 14,5: 1 (слева) имеет более высокий купол для уменьшения объема камеры сгорания, когда поршень находится в ВМТ.

Щелкните здесь, чтобы узнать больше о наших поршнях серии Pro.

Следует ли мне использовать гоночный газ?

Поскольку большинство новых двигателей мотоциклов теперь имеют статическую степень сжатия 13: 1, эти двигатели используют очень точно настроенные комбинации, позволяющие им работать на бензиновом насосе с октановым числом от 91 до 93. Часто задают вопрос: принесет ли гоночный бензин пользу?Есть несколько факторов, влияющих на гоночный бензин, которые выходят далеко за рамки простого увеличения октанового числа. Многие гонщики считают, что добавление октанового числа также добавит мощности. Хотя это может быть правдой, ответы бывает трудно расшифровать.

Октан сам по себе не является функцией топлива, которое увеличивает мощность. Октан добавляется в топливо для предотвращения детонации. Если двигатель страдает от детонации или детонации из-за использования бензина более низкого качества, добавление октанового числа восстановит эту мощность. И наоборот, добавление топлива с более высоким октановым числом в двигатель, не имеющий проблем с детонацией, не приведет к дополнительной мощности.Более распространенная ситуация заключается в том, что добавление октанового числа сверх требований двигателя обычно приводит к менее эффективному процессу сгорания, который не увеличивает мощность. В определенных ситуациях использование слишком большого октанового числа может привести к небольшой потере мощности! Вот где теория «больше — лучше» не проходит проверку.

Как и любая другая система в гоночном двигателе, правильная комбинация компонентов и топлива может привести к увеличению мощности. Например, гоночный бензин часто смешивают с оксигенатами, которые приводят к обеднению / изменению стехиометрического (или химически правильного) отношения воздух-топливо.Часто за увеличение мощности отвечают именно эти добавки, а не октановое число. Эксперименты с топливом с различным процентным содержанием оксигенатов могут сильно повлиять на фактическое соотношение воздух-топливо. Это входит в сложную историю о стехиометрическом соотношении воздух-топливо, которая выходит за рамки этой истории, но это важный вопрос, о котором нужно знать, прежде чем пытаться индивидуально смешивать гоночный бензин.

Сжатие может быть простым способом повысить мощность, но вам нужно быть в курсе, когда дело доходит до выбора правильных частей.Пропуск чисел через программу степени сжатия, вероятно, самый простой способ убедиться, что числа не выходят из-под контроля.

Пример расчета коэффициента сжатия

Сжатие и расширение

Термодинамика — раздел физики который имеет дело с энергией и работой системы. Термодинамика имеет дело только с крупномасштабной реакцией системы, которую мы можем наблюдайте и измеряйте в экспериментах.Как и братья Райт, мы больше всех интересуется термодинамикой из-за той роли, которую она играет в конструкция двигателя.

На этом слайде мы выводим два важных уравнения, которые связывают давление и температура газа до объема, который газ занимает в течение компрессионные и силовые удары двигателя внутреннего сгорания. В левом верхнем углу рисунка мы показываем компьютерный рисунок одного цилиндр двигателя Wright 1903.Движение серого поршня внутри синего цилиндр поворачивает красную часть коленчатый вал что превращает пропеллеры для создания тяги. По мере движения поршня в цилиндре объем топливовоздушной газовой смеси внутри цилиндра изменен. Это изменение объема приводит к изменению давление и температура газа, определяющие, насколько работай поршень может поставить. При движении поршня будем считать, что тепло не передается в цилиндр.В дальнейшем мы будем игнорировать любые трение между поршнем и цилиндром и предположим, что нет потери энергии любого вида. (На самом деле есть небольшие убытки, и мы учитывать потери с помощью «коэффициента эффективности», применяемого к результату. получаем без потерь.)

Мы начинаем наш вывод с определения значения фактора, который мы будем нужно позже. Из определений коэффициенты удельной теплоемкости, удельная теплоемкость при постоянном давлении сП минус удельная теплоемкость при постоянном объеме cv равна газовая постоянная R:

cp — cv = R

и мы определяем отношение удельной теплоемкости как число, которое мы позвонит «гамма»

гамма = cp / cv

Если мы разделим первое уравнение на cp и воспользуемся определением «гамма» мы получаем:

R / cp = 1 — (1 / гамма) = (гамма — 1) / гамма

Теперь воспользуемся полученным уравнением для энтропия газа:

s2 — s1 = cp ln (T2 / T1) — R ln (p2 / p1)

где числа 1 и 2 обозначают состояния в начале и конце процесс сжатия, с — энтропия, T — температура, p — давление, а «ln» обозначает натуральный логарифм. (гамма)

Величина (v1 / v2) — это отношение объема в состоянии 1 и состоянии 2 и называется степенью сжатия .Для v2 меньше, чем v1 , давление p2 больше, чем п1 . С помощью этого уравнения мы можем определить изменение давления для данной степени сжатия. И используя предыдущий уравнение мы знаем и изменение температуры. Значение степени сжатия является функцией дизайна отверстие и ход поршня.


Деятельность:

Навигация..


Возрождение пути Райта
Руководство по воздухоплаванию для новичков
Домашняя страница НАСА
http://www.nasa.gov

Наука о степенях сжатия для высокопроизводительных двигателей

Степень сжатия двигателя имеет большое значение. Вы никогда не увидите гоночный двигатель с низкой степенью сжатия, если он не будет произвольно ограничен каким-либо ограничением класса. Более высокая степень сжатия увеличивает мощность гоночных и уличных двигателей.Все помнят анемичные 1970-е с низкой компрессией, и никто не хочет их повторять. Когда производители оригинального оборудования получили больший контроль над топливом и искрой с помощью EFI и электронного управления двигателем, степень сжатия снова выросла, потому что автопроизводители знают, что это дает больше мощности и дает более высокую топливную экономичность. Более высокая степень сжатия — основная причина, по которой дизельные двигатели неизменно обеспечивают лучшую экономию топлива, чем бензиновые.


Этот технический совет взят из полной книги PERFORMANCE AUTOMOTIVE ENGINE MATH.Подробное руководство по этой теме вы можете найти по этой ссылке:
УЗНАТЬ БОЛЬШЕ ОБ ЭТОЙ КНИГЕ

ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ: Пожалуйста, не стесняйтесь поделиться этой статьей на Facebook, на форумах или в любых клубах, в которых вы участвуете. Вы можете скопировать и вставить эту ссылку, чтобы поделиться: https://musclecardiy.com/performance/science -двигатели-коэффициенты сжатия /


Высокопроизводительные приложения должны тщательно учитывать степени сжатия, независимо от того, являются ли они без наддува или сильно нагнетаются за счет наддува.Нам нужна максимальная мощность и эффективность, которые мы можем получить, но плохая комбинация деталей может чрезмерно повлиять на допуск двигателя к октановому числу топлива с потенциально катастрофическими результатами.


Конфигурация верхней части поршня является одним из многих факторов, влияющих на степень сжатия двигателя и допуск на октановое число топлива.

Очень важно знать или прогнозировать степень сжатия с высокой степенью уверенности, чтобы можно было сделать правильный выбор топлива. Теперь, когда у нас есть низко- и среднеоктановый бензин, высокооктановый этанол E85 и гоночное топливо, как никогда важно, чтобы степень сжатия соответствовала предполагаемому применению и топливу, которое будет сжигаться.В случае новых сборок двигателя, подходящее сочетание компонентов может быть адаптировано для достижения целевой степени сжатия, которая является благоприятной для октанового числа или, в некоторых случаях, санкционированной органом.

Двигатели с ограничением по октановому числу

всегда подвержены риску смертельного повреждения. Вот почему в 80-х годах в двигателях появились датчики детонации, которые сигнализировали бортовому компьютеру о замедлении подачи искры при обнаружении начала детонации. Сегодня у нас есть роскошные средства управления двигателем, которые позволяют нам работать с более высокими степенями сжатия, но мы все равно должны рассчитывать их в соответствии с конкретными требованиями.

Степень сжатия — эффективное средство ограничения мощности в некоторых гоночных сериях. Он также используется для снижения стоимости многих гоночных площадок. Обычно это влияет на выбор поршня и головки блока цилиндров, где конкретная головка блока цилиндров также может быть указана уполномоченным органом. Когда размер головки цилиндра и камеры диктуется, конфигурация поршня, высота деки и толщина прокладки должны быть изменены, чтобы соответствовать требованиям степени сжатия. Короткие треки часто применяют правило 9: 1, в то время как двигатели NASCAR ограничены до 12: 1.Безлимитные дрэг-рейсинги и двигатели Bonneville часто превышают 14: 1, в то время как дрэг-рейсеры стандартного класса ограничены исходной заводской степенью сжатия их конкретного автомобиля.

Пределы степени сжатия

могут быть полезны до некоторой степени, поскольку они обычно диктуют наличие поршней с плоским верхом, которые способствуют эффективному сгоранию при сохранении желаемого гашения, способствуя турбулентности заряда и поддерживая качество смеси. Часто указываются заэвтектические поршни, хотя в некоторых сериях допускается поковка.Без более высоких степеней сжатия, конечно, меньше отдачи, но, учитывая конкретные параметры, опытные производители двигателей настраивают участвующие компоненты, чтобы наилучшим образом соответствовать любой фиксированной степени сжатия, особенно с прицелом на увеличение эффективной степени сжатия за счет соответствующей синхронизации распределительного вала и эффективной настройки впускных клапанов. .

Факторы, влияющие на степень сжатия

Быстро назовите десять или более вещей, которые влияют или зависят от степени сжатия.Если не можете, примите во внимание следующее:

  • Октановое число топлива
  • Качество топливной смеси (размер капли)
  • Объем цилиндра
  • Объем камеры сгорания
  • Высота деки
  • Толщина сжатой прокладки
  • Форма прокладки
  • Зазор между поршнем и головкой
  • Зона закалки
  • Купол или объем купола
  • Объем посуды
  • Опережение зажигания
  • Клапан разгрузки объема
  • Объем щели
  • Фаска отверстия

Формула для расчета степени сжатия довольно проста.Мы поработаем с некоторыми примерами через мгновение, но сначала давайте исследуем влияние элементов в нашем списке, особенно тех, которые находятся под нашим контролем во время процесса сборки двигателя. Конечно, толерантность к октановому числу топлива является первоочередной задачей, поэтому нам нужно знать, какое топливо мы будем использовать. Качество смеси этого топлива в значительной степени определяется температурой воздуха, топливной смесью и компонентами всасывания, которые дозируют топливо, поступающее в двигатель. К ним относятся карбюратор или топливные форсунки, впускной коллектор, головки цилиндров и клапаны.Даже синхронизация фаз газораспределения может влиять на динамическое сжатие или давление в цилиндре. Это все, что мы можем контролировать, как и элементы в нашем списке, все они находятся прямо внутри цилиндра, оказывая свое влияние на степень сжатия. Рассмотрим основную формулу.

Степень сжатия (CR) = (V1 + V2) ÷ V2
Где:
V1 = объем цилиндра
V2 = объем камеры сгорания


Калькулятор коэффициента сжатия Performance Trends — это надежный инструмент, который объединяет все измеренные и рассчитанные компоненты формулы степени сжатия для обеспечения точных расчетов степени сжатия.

Циферблатный индикатор с мостовой стойкой используется для измерения высоты настила. Поместите циферблатный индикатор на поверхность деки и обнулите циферблат. Затем поверните поршень до ВМТ и измерьте разницу до верха поршня. Измерьте по оси поршневого пальца, чтобы получить среднюю высоту деки.

Большинство прокладок головки имеют многослойную конструкцию, и все лучшие из них обеспечивают заявленную толщину и объем в сжатом состоянии. Если объем вашей прокладки неизвестен, вы все равно можете измерить его, как указано в сопроводительном тексте.

На практике V2 фактически называют объемом зазора или объемом сжатия, потому что он включает в себя все элементы из нашего списка и фактически представляет собой общее пространство сгорания над поршнем. Это пространство, в которое вжимается объем цилиндра при сжатии. Я назову это объемом сжатия для нашего обсуждения. Таким образом, формула фактически устанавливает соотношение между общим объемом цилиндра с поршнем в нижней части его хода к объему цилиндра с поршнем в верхней части его хода.Каждый пункт в нашем списке в той или иной степени изменяет значение V2, и это оказывает сильное влияние на фактическую рабочую степень сжатия.

Высота платформы

Существует два типа высоты колоды: положительная и отрицательная. На большинстве двигателей поршень останавливается немного ниже поверхности деки блока, когда он находится в ВМТ, иногда 0,020 дюйма или более. Это называется положительной высотой деки, потому что блочная дека все еще находится выше верхней части поршня. Каким бы малым оно ни было, это расстояние дает дополнительный объем пространству сгорания V2 над поршнем.Этот объем необходимо рассчитать и добавить к V2. В некоторых случаях поршень немного выступает из отверстия. Это называется отрицательной высотой деки, и ее объем необходимо вычесть из V2, потому что он вычитает объем из пространства сгорания.

Толщина сжатой прокладки

Объем прокладки головки также увеличивает объем сжатия. Это определяется толщиной сжатой прокладки, диаметром отверстия прокладки и формой прокладки. Многие прокладки головки блока цилиндров немного больше диаметра отверстия цилиндра и часто имеют неправильную форму.Высота деки и толщина прокладки также влияют на зазор между поршнем и головкой, который необходимо учитывать, особенно при высоких оборотах. Стальные шатуны на самом деле не растягиваются, поэтому вы можете поднести этот поршень вплотную к головке блока цилиндров (без каких-либо последствий для улучшения закалки). Закалка — это место, где плоская верхняя часть поршня поднимается очень близко к головке, что имеет тенденцию заставлять или разбрызгивать заряд в сторону свечи зажигания с высокой турбулентностью камеры для улучшения горения.

Алюминиевые шатуны обладают некоторой степенью эластичности, поэтому для них требуется увеличенный зазор между поршнем и головкой, чтобы избежать физического контакта и последующего повреждения при высоких оборотах двигателя.


Куполообразные поршни повышают степень сжатия за счет смещения объема в пространстве сгорания над днищем поршня, но мелкие камеры сгорания являются современной тенденцией для повышения степени сжатия. За счет устранения или уменьшения купола эффективность сгорания повышается, поскольку купол не блокирует ядро ​​пламени, которое возникает у свечи зажигания.

Плоские верхние части являются наиболее распространенной конфигурацией поршней. В некоторой степени они упрощают расчет степени сжатия, но вам все равно придется иметь дело с предохранительными клапанами.Они способствуют превосходному сгоранию с хорошими характеристиками закалки и турбулентности.

Дизельные поршни предназначены для уменьшения степени сжатия за счет увеличения объема сжатия над поршнем. Многие из них не имеют предохранительных клапанов, потому что тарелка уже достаточно глубока. Вы можете использовать опубликованный объем тарелки для расчетов степени сжатия или куб поршня, чтобы проверить его.

Эти требования могут повлиять на ваш выбор толщины прокладки и, следовательно, степени сжатия.Часто вам приходится жонглировать комбинацией, чтобы получить то, что вы хотите. Предварительный расчет поможет вам сделать правильный выбор.

Объем купола и тарелка

Объем Если поршень имеет приподнятый купол для увеличения сжатия, объем купола должен учитываться при расчете степени сжатия. Объем купола необходимо вычесть из V2, так как это уменьшает объем сжатия. Объем блюда добавлен к V2, так как он добавляет объем. И пока вы рассчитываете объемы купола и тарелки, вы также должны учитывать объем любых сбросов клапана в верхней части поршня.

И если вы действительно хотите выбрать гниды, вы можете включить объем щели над верхним поршневым кольцом и объем фаски в верхней части отверстия цилиндра. Хотя они бесконечно малы, они все же вносят вклад в общий объем V2 в уравнении. Объем щели — это крошечное пространство между поршнем и стенкой цилиндра над верхним кольцом. Обычно это всего лишь несколько тысячных долей дюйма, но оно все равно умножается на длину окружности отверстия и имеет объемное значение. И если отверстие цилиндра также имеет большую фаску для облегчения установки поршня, это также увеличивает объем пространства сгорания.Сумасшедший, да?


Это сравнение куполообразного поршня и выпуклого поршня показывает, как купол выступает в камеру сгорания для увеличения сжатия за счет уменьшения объема камеры, в то время как выпуклый поршень увеличивает объем пространства сгорания для уменьшения степени сжатия.

Определите объем камеры сгорания, заполнив камеру водой или спиртом с помощью градуированной бюретки, откалиброванной в кубических сантиметрах (кубических сантиметрах). Затяните свечу зажигания в камере с обоими установленными клапанами.Затем используйте легкую смазку для уплотнения поверхности деки. Поместите пластиковую пластину CC над камерой и поместите головку так, чтобы отверстие для заполнения находилось в самой высокой точке. Заполните камеру и снимите показания бюретки. Разделите на 16,4, чтобы преобразовать в кубические дюймы.

Некоторые из этих томов в большинстве случаев несущественны, но вы должны знать о них, чтобы решить, включать ли их в свои расчеты. Если вы создаете высокопроизводительный движок, вам придется постоянно измерять и изменять многие из этих объемов во время предварительной сборки макетов.Правильный зазор между быстро движущимися частями очень важен и неумолим, поэтому вы должны сначала установить их. Понимание их влияния на степень сжатия поможет вам соответствующим образом рассмотреть ваши изменения и выбор деталей.

В поисках V2

Степень сжатия — вещь непростая, особенно если разбить ее на все факторы, влияющие на нее. Тем не менее, это управляемо, и на это можно взглянуть по-разному. Хотя это в первую очередь учебник по математике двигателя, все же важно понимать все факторы и то, как они влияют на работу двигателя.Степень сжатия — это просто мера того, насколько сильно поступающий заряд сжимается до того, как свеча зажигания воспламенит его. Он создается за счет объединенного объема цилиндра и объема сжатия, когда поршень достигает ВМТ. В действительности он регулируется рабочим объемом цилиндра и любой комбинацией различных объемов пространства сгорания, составляющих объем сжатия V2. Поскольку именно здесь находятся все переменные, именно здесь вы должны сконцентрировать свои усилия для достижения желаемой степени сжатия.

Чтобы увидеть, насколько сильно влияют эти факторы, давайте сравним базовую формулу с той же формулой, в которой учтены все факторы. Как обсуждалось ранее, различные способствующие факторы являются либо суммирующими, либо вычитающими из общего объема сжатия. Камера сгорания — это первостепенная ценность. Все остальные объемы либо добавляются к нему, либо вычитаются из него до работы с основным уравнением.

CR = V1 + V2 ÷ V2

Это сравнение куполообразного поршня и выпуклого поршня показывает, как купол выступает в камеру сгорания для увеличения сжатия за счет уменьшения объема камеры, в то время как выпуклый поршень увеличивает объем камеры сгорания для уменьшения степени сжатия.Определите объем камеры сгорания, заполнив камеру водой или спиртом из градуированной бюретки, калиброванной в кубических сантиметрах (кубических сантиметрах). Затяните свечу зажигания в камере с обоими установленными клапанами. Затем используйте легкую смазку для уплотнения поверхности деки. Поместите пластиковую пластину CC над камерой и поместите головку так, чтобы отверстие для заполнения находилось в самой высокой точке. Заполните камеру и снимите показания бюретки. Разделите на 16,4, чтобы преобразовать в кубические дюймы.

Обратите внимание, что V1 является постоянным, но V2 может в значительной степени изменяться, когда вы начинаете складывать и вычитать различные значения, которые влияют на него.В простой формуле V2 называется объемом камеры, но мы знаем, что на самом деле это объем сжатия, потому что он включает в себя другие факторы. Если сложить все остальные факторы, получится очень длинное уравнение. Вы можете разбить его, вычислив абсолютное значение V2, прежде чем вводить его в уравнение. Это требует точных измерений, хотя на практике опубликованные значения объема прокладки, объема купола и тарелки, а также объемов сброса клапана часто заменяются. Объем щели и объем фаски обычно игнорируются, потому что они очень малы.Следующий список называется стеком V2.

Чтобы найти абсолютное значение V2, начните с измеренного объема камеры с кубическими сантиметрами, преобразованными в кубические дюймы, затем:

добавить объем деки (или вычесть, если дека отрицательный)
добавить сжатый объем прокладки
добавить объем тарелки (или вычесть, если купол)
вычесть объем купола (или добавить, если тарелка)
добавить объем сброса клапана
добавить объем щели (при желании)
добавить объем фаски (при желании)

Это просто, но несколько утомительно для измерения и расчета, поэтому многие производители двигателей предпочитают измерять все сразу, сравнивая цилиндр с поршнем в нем.Я объясню, как это сделать чуть позже, но сначала давайте обсудим, как определить все отдельные тома, составляющие V2.

Объем деки

Рассчитайте объем деки, как если бы это был очень короткий цилиндр. Положительное или отрицательное измерение настила представляет собой размер высоты в формуле, в которой используется константа смещения 0,7854.

Пример: для положительной высоты деки 0,020 дюйма на 4-дюймовом отверстии

42 х 0.020 x 0,7854 = 0,251328 ci

Он будет добавлен в стек V2, поскольку увеличивает объем сжатия. Если бы размер деки был отрицательным (поршень над декой), результат вычли бы из стопки V2, потому что это уменьшает объем сжатия. Интересным фактом является то, что все малоблочные Chevys имеют двигатели с положительной декой, но все новые двигатели Gen III имеют отрицательную деку.


Объем камеры

Объем камеры сгорания измеряется непосредственно путем измерения камеры градуированной бюреткой.Обратите внимание, что размер камеры в кубических сантиметрах необходимо преобразовать в кубические дюймы. Разделите на 16,4, чтобы произвести преобразование. Это будет ваш базовый объем для расчета степени сжатия. Все остальные соответствующие объемы либо добавляются, либо вычитаются из объема камеры для определения объема сжатия.


Чтобы смазать цилиндр, смажьте стенку цилиндра легкой смазкой или маслом, чтобы закрыть правый зазор. Вращайте двигатель, пока верхняя часть поршня не войдет в отверстие достаточно глубоко, чтобы очистить купол.Измерьте глубину с помощью шкального индикатора и вычислите пустой объем, используя формулу объема цилиндра. Затем скопируйте цилиндр, чтобы узнать, какой объем смещается куполом. Вычтите это значение из объема сжатия.

Объем прокладки

В большинстве случаев объем прокладки публикуется производителем прокладки, и можно безопасно добавить (+) к стеку V2. Когда опубликованное число недоступно, строители часто ошибаются, вычисляя объем на основе идеального круга (точно так же, как объем высоты колоды).Проблема в том, что диаметр отверстия прокладки часто больше диаметра отверстия цилиндра и часто имеет неправильную форму. Если он идеально круглый, вы можете рассчитать его по формуле объема цилиндра с соответствующим диаметром и толщиной в сжатом состоянии.

Если форма неправильная, вы можете подделать ее или использовать метод ленты и ленты, чтобы найти истинную длину окружности отверстия под прокладку, а затем рассматривать ее как идеальный круг для расчета. Приклейте прокладку скотчем к плоской поверхности и с помощью небольших кусочков ленты закрепите тонкую ленту по периметру отверстия под прокладку.Достигнув начальной точки, осторожно обрежьте веревку и измерьте ее длину.


Это пример прокладки головки неправильной формы и диаметром, превышающим диаметр отверстия. Обычно такая бровь находится рядом с обоими клапанами. Это должно быть включено в ваш расчет степени сжатия. Вы можете натянуть периметр нерегулярной прокладки и использовать длину струны для вычисления объема прокладки на основе измеренной толщины (см. Текст).

Используя формулу длины окружности круга, вы можете найти соответствующий диаметр, который будет использоваться при расчете объема прокладки.Предположим, у вас 4-дюймовое отверстие цилиндра, а отверстие для прокладки заметно больше с неправильной D-образной формой вокруг клапанов (что типично для многих прокладок головки). Вы аккуратно натягиваете периметр и получаете длину 131⁄16 дюйма. Преобразуйте в десятичные числа, и у вас будет 13,0625 дюймов. Теперь подставьте это измерение в формулу.

Окружность = 2 π r или C = π d
Где:
r = радиус
d = диаметр
d = C ÷ π
13,0625 ÷ 3,14 = 4,16 дюйма

Это ваш истинный диаметр отверстия прокладки, и теперь его можно вставить в формулу объема прокладки:

Истинный объем прокладки = 4.162 x толщина прокладки x 0,7854

Объем тарелки

Тома

Dish обычно публикуются, поэтому вы можете подключить их прямо к стеку V2. Но предположим, что ваш блок уже пару раз был декорирован, и он немного короче, чем обычно, поэтому поршень имеет отрицательную деку на некоторую величину, которая больше, чем вам удобнее для зазора между поршнем и головкой.

Большинство поршней допускают некоторую стружку деки поршня (до 0.100 дюймов или даже больше во многих случаях), поэтому вы решаете обрезать их, чтобы достичь нулевой деки (поршень заподлицо с поверхностью блочной деки). Это легко сделать с помощью поршней с плоской вершиной и выпуклой формы; С куполообразными поршнями дело обстоит немного сложнее (редко).

Если ваш поршень выпуклый, и вы уменьшили его на некоторую величину, вы можете скопировать тарелку и добавить новый объем в свой стек V2. Или вы можете использовать формулу объема цилиндра для вычисления разницы, если у вас есть точные измерения глубины и диаметра.На практике это никогда не бывает легко, потому что блюдо не всегда идеально круглое и часто имеет D-образную форму и изогнутую снизу.

Объем купола Объемы купола также публикуются производителями поршней. Они довольно точны, так что вы можете безопасно вычесть этот объем из своего стека V2, если вы не изменили купол, подогнав его к форме камеры, вырезав более глубокие клапаны сброса или вырезав паз для свечи зажигания. Иногда во время сборки макета вы обнаруживаете небольшое пятно, где купол поршня соприкасается с крышей камеры во время вращения.Эти пятна обычно вырезаются для достижения минимального зазора, что изменяет объем купола, что затем требует его измерения. Морозо продает простой инструмент для измерения объемов купола, и он пригодится в этой ситуации. Помните, что объем купола вычитается из окончательного стека V2.


Предохранительные клапаны

Предохранительные клапаны достаточно легко смонтировать на поршне с плоским верхом, и большинство производителей уже публикуют объемы для всех своих поршней.Здесь, опять же, вам нужно только измерить, если вы значительно снизили срез предохранителей, чтобы получить адекватный зазор между поршнем и клапаном. Независимо от объема, это добавочное значение для вашего стека V2.


Объем щелей

Объемы щелей минимальны и не часто учитываются при расчетах степени сжатия, но некоторые строители находят причины для этого. Некоторые просто помешаны на деталях. Давно известно, что объемы щелей влияют на выбросы, потому что они служат укрытием для небольших количеств топливной смеси, которые не совсем участвуют в процессе сгорания.Это в основном важно для химиков и инженеров по горению, но если вы хотите включить это, вот как.

CV = (d1 — d2) x c x r
Где:
d1 = диаметр отверстия
d2 = диаметр поршня на поверхности верхнего кольца
c = окружность отверстия
r = глубина верхнего кольца от деки поршня

Итак, с отверстием 4,00 дюйма, зазором поршня до стенки 0,010 дюйма над верхним кольцом и кольцом 0,125 дюйма вниз по отверстию мы вычисляем:

CV = (4,00 — 3,990) x 12,56 x 0,125 = 0,0157 ci

12.56 — это длина окружности отверстия, полученная умножением диаметра отверстия на пи. Если вы хотите быть точным, добавьте результат вашего окончательного расчета в стек V2.


Объем фаски

Большинство механиков делают фаску в верхней части отверстия, чтобы помочь направить кольца в отверстие во время сборки. Иногда это довольно много, поэтому вы можете включить его в свои расчеты. Фаски обычно составляют от 40 до 60 градусов, и даже при таких небольших размерах вы можете рассматривать их как квадраты или прямоугольники, если смотреть на них с торца.Используйте ту же формулу, что и для объема щели, но начните с большего внешнего размера, где начинается фаска (см. Рис. 1, стр. 35)

Если он примерно на 0,060 больше диаметра цилиндра:

CV = [(4,060 — 4,000) x 12,748 x 0,060] ÷ 2 = 0,022 ci

Обратите внимание, что размер «c» изменился, потому что теперь у нас есть внешний диаметр 4,06 дюйма (4,06 x 3,14 = 12,748). Глубина составляет всего 0,060 дюйма, и нам нужно разделить результат на 2, чтобы завершить формулу для площади треугольника и, следовательно, объема при добавлении длины.


Совокупный объем щели и фаски — это пространство между стенкой цилиндра и поршнем над верхним поршневым кольцом. Здесь это показано темной заштрихованной областью над кольцом.

Большая фаска в верхней части отверстия также в некоторой степени способствует увеличению объема сжатия, но этого недостаточно, чтобы беспокоить большинство строителей. Если объем сжатия определяется путем смещения цилиндра, в измерение включаются объем щели и объем фаски.

Результат — больше, чем объем щели, но все еще ничего существенного, поэтому большинство производителей двигателей исключают объем щели и объем фаски из своих расчетов. Если вы их используете, помните, что они являются аддитивными и поэтому добавляются в ваш стек V2. Объем щели и объем камеры частично занимают одно и то же пространство, но их удобнее рассчитывать по отдельности.

Теперь давайте рассмотрим наш стек V2 с вычисленными значениями, основанными на следующих измерениях:

V1
Диаметр цилиндра / ход поршня, 4.00 x 3,00 дюйма ……………… 37,699 куб. Дюйм
V2 Объем камеры, 64 куб. См ………………………… 3,902 куб. Дюйм
Высота деки, 0,020 плюс …………………… 0,251 куб. Дюйм
V2 + Толщина прокладки, 0,015 (опубликовано) ……… .0,194 ci
V2 + Плоский верх (или тарелка / купол) …………………………… 0,000 (плоский) ±
Разгрузка клапана, 4 см3 (опубликовано) …… …………… .0,243 ci
V2 + Объем щели, рассчитанный …………………… 0,015 ci
V2 + Объем фаски, рассчитанный ………………… .0,022 ci
V2 + Итого 4,627 ci = V2
V1 + V2 ÷ V2 = CR
(37,699 + 4,627) ÷ 4,627 = 9.14 CR

Достаточно, но, возможно, немного мало для уличных выступлений. Если вы обнуляете блок и убираете высоту деки из V2, вы можете поднять степень сжатия до 9,61: 1, что почти идеально для уличного двигателя. Это небольшое изменение показывает, насколько сильно все небольшие объемы, составляющие V2, влияют на окончательную степень сжатия.

Коэффициент смещения

Концепция степени вытеснения не часто используется, но ее следует понимать, потому что она иногда может помочь нам оценить объем измельчения камеры сгорания, который позволит достичь желаемой степени сжатия.Как мы видели, степень сжатия — это объединенный объем рабочего объема цилиндра и объема сжатия, деленный на объем сжатия (см. Врезку, стр. 37). Рабочий объем — это просто рабочий объем цилиндра, деленный на объем сжатия:

Степень сжатия = V1 + V2 ÷ V2

Коэффициент рабочего объема = V1 ÷ V2

Обратите внимание, что степень сжатия всегда на 1 больше степени вытеснения. Изменяя формулу степени сжатия, мы можем рассчитать новый объем сжатия V2, который даст желаемую степень сжатия.

Новый V2 = V1 ÷ коэффициент смещения
Теперь мы можем вывести формулу для фрезерования головки блока цилиндров:
Mill Cut = [(новый коэффициент смещения — старый коэффициент смещения) ÷ (новый коэффициент смещения x старый коэффициент смещения)] x ход

Напомним, что ранее мы рассчитали степень сжатия 9,14: 1 для диаметра отверстия 4,00 дюйма и хода поршня 3 дюйма. Поскольку степень вытеснения всегда на 1 меньше степени сжатия, мы используем 8,14 для степени вытеснения в нашей формуле. Мы уже видели, что устранение 0.Высота деки 020 дюймов увеличила сжатие до 9,61: 1. Теперь давайте посмотрим, что дает уменьшение объема сгорания. Поскольку мы хотим поднять степень сжатия до 9,61: 1, наш коэффициент смещения равен 8,61.

Фрезерование = [(8,61 — 8,14) ÷ (8,61 x 8,14)] x 3 = 0,0201 дюйма

Это почти то же самое, что и высота колоды, которую мы исключили в наших предыдущих расчетах, но правильно ли это? Не совсем. При удалении размера высоты деки мы учли весь диаметр отверстия цилиндра.Но D-образная камера сгорания на нашем малоблочном Chevy составляет лишь половину диаметра канала ствола. Мы должны сделать более глубокий разрез, чтобы получить тот же результат. В этом случае около 0,040 дюйма дает нам желаемый результат. Мы должны вдвое сократить разрез, потому что мы имеем дело только с половиной площади. Это относительно простые процедуры, но вы должны тщательно обдумать их, чтобы избежать дорогостоящих ошибок.

Сжатие коленчатого вала

Компрессию при проворачивании коленчатого вала часто путают со степенью сжатия.В то время как степень сжатия — это соотношение объемов внутри цилиндра, сжатие при запуске — это фактически измеренное давление в цилиндре, измеренное в отверстии для свечи зажигания, когда двигатель заводится с открытыми дроссельными заслонками. Во время этой операции провод катушки снимается, чтобы предотвратить срабатывание других цилиндров. Сжатие при запуске — это пиковое давление, достигаемое в цилиндре во время запуска. Более высокие степени сжатия могут повлиять на сжатие коленчатого вала, но они не связаны.

Сжатие при проворачивании коленчатого вала используется как индикатор состояния двигателя, а также отношения точек открытия и закрытия впускных и выпускных клапанов.В зависимости от состояния поршневых колец и клапанов исправный двигатель обычно имеет сжатие при запуске от 150 до 180 фунтов на квадратный дюйм. Двигатель с хорошими характеристиками может легко иметь сжатие при запуске более 200 фунтов на квадратный дюйм. Некоторые из них немного выше, а некоторые намного ниже. Важно, чтобы показания всех цилиндров во время теста на сжатие были одинаковыми. Низкое значение любого цилиндра обычно указывает на негерметичность клапанов или поршневых колец. Большие распредвалы с большим перекрытием клапанов также могут повлиять на сжатие коленчатого вала, но не слишком сильно.Пока все цилиндры соответствуют в пределах 5 или 10 фунтов на квадратный дюйм, у вас, вероятно, есть исправный двигатель. Недорогие манометры есть в любом магазине автозапчастей.

Написано Джоном Бэктелом и опубликовано с разрешения CarTechBooks

ПОЛУЧИТЕ СДЕЛКУ НА КНИГУ!

Если вам понравилась эта статья, вам понравится вся книга. Нажмите кнопку ниже, и мы отправим вам эксклюзивное предложение на эту книгу.

#TechTip: Степень сжатия

«Степень сжатия» — это термин, который часто используют, когда вы говорите о характеристиках двигателя, но что он означает на самом деле?

По большей части, когда люди говорят о степени сжатия двигателя, они имеют в виду так называемую статическую степень сжатия , которую гораздо проще вычислить, чем степень динамического сжатия .

Проще говоря, степень статического сжатия (обычно называемая степенью сжатия) составляет отношение максимального объема к минимальному объему в цилиндре при движении поршня (объем, когда поршень полностью вниз по сравнению с тем, когда он полностью вверх).

Что означает степень сжатия?

CR в основном сообщают вам, насколько сильно сжимается топливно-воздушная смесь в цилиндре.Таким образом, если у вас есть 10 единиц объема, когда цилиндр находится в нижней части своего хода, и 1 единица, когда цилиндр находится в верхней части своего хода, сжатие будет рассматриваться как 10: 1. Для двигателей без наддува более высокая степень сжатия, как правило, означает более высокие показатели мощности.

Каковы последствия более высокой степени сжатия?

Чем выше степень сжатия, тем выше вероятность предвзрывания (также известного как гудение).Предварительная детонация происходит, когда воздушно-топливная смесь воспламеняется из-за чрезмерного давления (а не из-за искры). Это имеет смысл, поскольку большее сжатие = большее давление = большая вероятность взрыва. Для борьбы со звоном часто используется топливо с более высоким октановым числом. Чем выше октановое число топлива, тем оно устойчивее к преддетонации.

Также важно отметить, что тепло играет роль в пинге. Чем выше температура, тем больше вероятность взрыва. Поскольку алюминий лучше отводит тепло, чем чугун, двигатели с алюминиевыми головками часто могут работать с более высокими степенями сжатия, чем их чугунные аналоги, без звона.

Зачем вам нужна более низкая степень сжатия?

Более низкая степень сжатия удобна для двигателей, которые используют принудительную индукцию, или двигателей, которые хотят использовать топливо с более низким октановым числом. Например, вы можете обнаружить, что конструкции с очень высокой мощностью, в которых используются турбокомпрессоры или нагнетатели, на самом деле имеют очень низкую степень статического сжатия.Более низкая компрессия в основном использовалась в американских автомобилях 70-х и 80-х годов в результате попыток сокращения выбросов.

Как изменить степень сжатия:

Степень сжатия можно изменить, заменив такие компоненты двигателя, как поршни и головки.Когда поршни имеют больший рельеф (или тарелку), они приводят к более низким степеням сжатия, чем поршни, которые являются плоскими или куполообразными, которые обычно имеют повышенные степени сжатия.

Головки

— еще один популярный вариант для изменения степени сжатия. Головки с меньшими камерами сгорания увеличивают степень сжатия, а головки с большими камерами приводят к более низкому сжатию.

Дизельные двигатели

— Инженеры-преподаватели.com

Дизельный двигатель похож на бензиновый двигатель, используемый в большинстве автомобилей. Оба двигателя являются двигателями внутреннего сгорания, то есть сжигают топливно-воздушную смесь в цилиндрах. Оба являются поршневыми двигателями, приводимыми в движение поршнями, перемещающимися в двух направлениях в поперечном направлении. Большинство их частей похожи. Хотя дизельный двигатель и бензиновый двигатель работают с одинаковыми компонентами, дизельный двигатель, по сравнению с бензиновым двигателем равной мощности, тяжелее из-за более прочных и тяжелых материалов, используемых для противодействия большим динамическим силам от более высокого давления сгорания, присутствующего в дизельном топливе. двигатель.

Более высокое давление сгорания является результатом более высокой степени сжатия, используемой в дизельных двигателях. Степень сжатия — это мера того, насколько двигатель сжимает газы в цилиндре двигателя. В бензиновом двигателе степень сжатия (которая контролирует температуру сжатия) ограничена воздушно-топливной смесью, поступающей в цилиндры. Более низкая температура воспламенения бензина приведет к его воспламенению (горению) при степени сжатия менее 10: 1. У среднего автомобиля степень сжатия 7: 1.В дизельном двигателе обычно используются степени сжатия от 14: 1 до 24: 1. Возможны более высокие степени сжатия, потому что сжимается только воздух, а затем впрыскивается топливо. Это один из факторов, который позволяет дизельному двигателю быть таким эффективным. Степень сжатия будет обсуждаться более подробно позже в этом модуле.

Еще одно различие между бензиновым двигателем и дизельным двигателем заключается в способе управления частотой вращения двигателя. В любом двигателе скорость (или мощность) напрямую зависит от количества топлива, сожженного в цилиндрах.Бензиновые двигатели имеют автоматическое ограничение скорости из-за метода, который двигатель использует для управления количеством воздуха, поступающего в двигатель. Частота вращения двигателя косвенно регулируется дроссельной заслонкой в ​​карбюраторе. Дроссельная заслонка в карбюраторе ограничивает количество воздуха, поступающего в двигатель. В карбюраторе скорость воздушного потока определяет количество бензина, которое будет смешано с воздухом. Ограничение количества воздуха, поступающего в двигатель, ограничивает количество топлива, поступающего в двигатель, и, следовательно, ограничивает скорость двигателя.Ограничивая количество воздуха, поступающего в двигатель, добавление большего количества топлива не увеличивает частоту вращения двигателя сверх точки, в которой топливо сжигает 100% доступного воздуха (кислорода).

Дизельные двигатели не имеют автоматического ограничения скорости, поскольку количество воздуха (кислорода), поступающего в двигатель, всегда является максимальным. Следовательно, частота вращения двигателя ограничивается исключительно количеством топлива, впрыскиваемого в цилиндры двигателя. Следовательно, в двигателе всегда имеется достаточно кислорода для сгорания, и двигатель будет пытаться разогнаться, чтобы соответствовать новой скорости впрыска топлива.Из-за этого ручное управление подачей топлива невозможно, поскольку эти двигатели в ненагруженном состоянии могут ускоряться со скоростью более 2000 оборотов в секунду. Дизельным двигателям требуется ограничитель скорости, обычно называемый регулятором, для контроля количества топлива, впрыскиваемого в двигатель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *