Что такое двс в автомобиле: Что такое ДВС в автомобиле, расшифровка кратко

Содержание

Что такое ДВС в автомобиле, расшифровка кратко

Что такое ДВС в автомобиле, расшифровка кратко

 

По дорогам мира перемещаются миллионы автомобилей, автобусов и грузовиков. Такое развитие транспорта было бы невозможным без ДВС – главной движущей силы всех современных машин. Расшифровка аббревиатуры ДВС несложная – двигатель внутреннего сгорания.

Что такое ДВС в автомобиле, что в нем горит и почему внутри – поясняем кратко. Паровой котел – это двигатель внешнего сгорания: дрова, уголь или мазут горят, подогревая воду, которая превращается в пар, который толкает поршни. Получается длинный и неэффективный цикл. Принципиальное отличие ДВС в том, что топливо сгорает внутри цилиндров, передавая энергию непосредственно поршням и валу, эффективность преобразования существенно выше. Кроме этого ДВС занимают немного места, мало весят, экономичны, работают на разнообразных видах топлива.

 

Краткое содержание статьи

1. Типы ДВС;

2. Как устроен ДВС автомобиля;

3. Как работает ДВС, описание, анимация;

4. Ремонт ДВС, стоимость.

 

 

1. Типы ДВС, бензин и дизель

 

По принципу воспламенения топлива двигатели делятся на несколько типов: искровые и дизельные. В первых топливо воспламеняется от искры, в цилиндрах вторых дизель зажигается от сжатия топливной смести. Бензиновые моторы имеют меньший КПД, по этому дизельные моторы экономичнее. Дизельные моторы дороже в обслуживание и ремонте, так как сложнее в устройстве.

 

2. Как устроен ДВС автомобиля

 

Приведем на примере современного двигателя внутреннего сгорания, опишем как устроен ДВС автомобиля.

ДВС состоит из следующих модулей:

  • Система подачи топлива;
  • Головка блока цилиндров;
  • Блок цилиндров с поршневой группой;
  • Газораспределительный механизм;
  • Коленчатый вал.

 

3. Как работает ДВС, описание и анимация

 

Главный принцип работы ДВС – расширение объема газов в замкнутом пространстве цилиндра от тепла, возникающего в результате сгорания топлива.

Чтобы двигатель работал непрерывно, реализуется цикл, состоящий из:

  1. Поступления топливной смеси в цилиндр, Поджога и сгорания смеси;
  2. Рабочего хода поршня;
  3. Выпуска газов.

Импульс, полученный от сгоревшего топлива, толкает поршень, коленчатый вал поворачивается. Так энергия преобразуется в движение. Выше мы описали как работает ДВС, прикрепляем анимацию. 

 

4. Ремонт ДВС в автомобиле, стоимость

Из чего состоит, и что такое ДВС в автомобиле мы разобрались, теперь немного расскажем о ремонте ДВС. Так как ДВС является сложным инженерным устройство и состоит из множества систем, которые должны слаженно работать, выход из строя или обшивка одной системы двигателя ведет к неровной работе системы в целом или к полной остановке мотора — поломке. Например, вышла из строя форсунка распыления топливной смеси в одном цилиндре, следовательно, в одном цилиндре нет детонации и что происходит с мотором в целом?

Мотор или как его еще называют ДВС, теряет мощность, и, если мотор 4 цилиндровый будет работать с рывками и провалами. С большой вероятностью будет давать сильную вибрацию на кузов, из-за ассиметричного зажигания. На помощь приходит диагностика и ремонт ДВС, автомобиль подключают к компьютеру и считывают ошибки по работе мотора. По набору ошибок, мастера поймут в чем причина поломки и поменяют форсунку.

 

Стоимость ремонта ДВС в автомобиле варьируется от модификации самого мотора и вида неисправности. Бывает, такое, что сама машины дешевая, а ремонт мотора дорогой, из-за неудобного расположения различных узлов. Бывает наоборот. Лучше всего не запускать проблемы по ДВС до ремонта. Нужно вовремя вменять масло, фильтры. Ели появляется как-либо проблема, нужно сразу вытиснять в чем причина и решать вопрос, пока мелкая проблема не переросла в полномасштабный ремонт.

 

 

Устройство ДВС автомобиля

Наверное, уже всем известно, что ДВС автомобиля называют сердцем автомобиля. В современном мире без автомобиля никуда, поэтому следует изучить принцип работы двигателя автомобиля и изучить устройство автомобиля.

Общее устройство ДВС предполагает наличие поршня, который является деталью кривошипно-шатунного механизма автомобиля. Поршень ДВС выливается в форме стакана и состоит из следующих частей: днище, головка поршня, направляющая часть поршня (юбка), канавки для компрессионных и маслосъемных колец. Поршневые кольца ДВС обеспечивают герметичность во время движения поршня в цилиндре, что необходимо для исключения попадания масла в камеру сгорания и газов в картер двигателя. Поршневые кольца представляют собой уплотнители. Бывают компрессионные поршневые кольца и маслосъемные поршневые кольца

. Компрессионные поршневые кольца ДВС обеспечивают высокую степень сжатия при работе двигателя.

Когда из топливной системы подается топливная смесь, поршень двигается вверх-вниз. Когда поршень поднимается вверх, то горючая смесь сжимается, после чего начинает работать система зажигания — свеча зажигания подает искру и горючая смесь воспламеняется (карбюраторные и инжекторные ДВС). В дизельных ДВС происходит самовоспламенение от высокой степени сжатия.

После сгорания горючей смеси выделяется огромное количества газов, которые воздействуют на поршень, толкая его вниз, и передавая усилие через шатун коленчатому валу, тем самым раскручивая его.

Как работает ДВС

Принцип работы ДВС заключается в преобразовании кинетической энергии в механическую работу (преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала).

Как возвратно-поступательно движение поршня-шатуна преобразуется во вращательное движение коленчатого вала?

Поршень крепится к шатуну с помощью поршневого пальца, который располагается внутри юбки поршня и фиксируется стопорными кольцами. Для стопорных колец в юбке поршня имеются специальные канавки.

Коленчатый вал ДВС вращается на подшипниках скользящего типа в картере ДВС.

Крутящий момент коленчатого вала ДВС через трансмиссию (сцепление, коробка передач, карданная передача, главная передача, дифференциал, полуоси) передается на ведущие колеса автомобиля.

Volkswagen откажется от производства авто с ДВС в Европе к 2035 году

2021-06-27T03:42:01+03:00

2021-06-27T03:42:01+03:00

2021-06-27T03:42:01+03:00

2021

https://1prime.ru/auto/20210627/834043487.html

Volkswagen откажется от производства авто с ДВС в Европе к 2035 году

Авто

Новости

ru-RU

https://1prime.ru/docs/terms/terms_of_use.html

https://россиясегодня.рф

Немецкий автомобильный концерн Volkswagen планирует отказаться от производства автомобилей с двигателями внутреннего сгорания в Европе к 2035 году, заявил член правления концерна… ПРАЙМ, 27.06.2021

новости, бизнес, авто

https://1prime.ru/images/83329/40/833294061.jpg

1920

1440

true

https://1prime.ru/images/83329/40/833294061. jpg

https://1prime.ru/images/83329/40/833294060.jpg

1920

1080

true

https://1prime.ru/images/83329/40/833294060.jpg

https://1prime.ru/images/83329/40/833294058.jpg

1920

1920

true

https://1prime.ru/images/83329/40/833294058.jpg

https://1prime.ru/gas/20210627/834043448.html

Агентство экономической информации ПРАЙМ

7 495 645-37-00

ФГУП МИА «Россия сегодня»

https://россиясегодня.рф/awards/

Агентство экономической информации ПРАЙМ

7 495 645-37-00

ФГУП МИА «Россия сегодня»

https://россиясегодня.рф/awards/

Агентство экономической информации ПРАЙМ

7 495 645-37-00

ФГУП МИА «Россия сегодня»

https://россиясегодня.рф/awards/

Агентство экономической информации ПРАЙМ

7 495 645-37-00

ФГУП МИА «Россия сегодня»

https://россиясегодня.рф/awards/

Агентство экономической информации ПРАЙМ

7 495 645-37-00

ФГУП МИА «Россия сегодня»

https://россиясегодня. рф/awards/

МОСКВА, 27 июн — ПРАЙМ. Немецкий автомобильный концерн Volkswagen планирует отказаться от производства автомобилей с двигателями внутреннего сгорания в Европе к 2035 году, заявил член правления концерна Клаус Цельмер.

Газ в Европе рекордно подорожал

«В Европе мы выйдем из бизнеса с автомобилями с двигателями внутреннего сгорания в период с 2033 по 2035 год, в США и Китае — чуть позже», — сказал Цельмер в интервью изданию Münchner Merkur.

По словам Цельмера, в Южной Америке и Африке отказ от производства автомобилей с ДВС займет больше времени из-за «отсутствия политических и инфраструктурных условий».

Немецкий автопроизводитель Audi ранее сообщил, что рассчитывает перестать выпускать автомобили с двигателями внутреннего сгорания к 2033 году.

Термодинамика ДВС и гистерезис термостата

Сесть за написание статьи по термостату автомобиля меня заставил случай. На интернет-форуме завязался спор о влиянии термостата на скорость прогрева инжекторного двигателя. Каждый из спорящих приводил свои доказательства. Поскольку аргументация каждого, действительно, была убедительна, но и в то же время противоположна, то я решил самостоятельно разобраться в данной теме.

Открыл старый учебник по термодинамике и вот, что я там вычитал. Термодинамика – наука об основных способах преобразования внутренней энергии тел для совершения механической работы. Определение очень подходило к обсуждаемой автомобильной тематике. Читаем дальше о так называемом постулате Клаузиуса: «процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких-либо других изменений в системе». Из прочитанного постулата делаем для себя существенный вывод: энергия передается от горячего тела к холодному.

Теперь разберемся, откуда, собственно, берется энергия в автомобиле для его перемещения в пространстве. Конечно, это энергия сгорания бензина.

Двигатели внутреннего сгорания (ДВС) переводят химическую энергию топлива в тепловую энергию, а затем с помощью кривошипно-шатунного механизма в механическую работу. При этом 1 литр бензина при сгорании выделяет около 9,5 кВт*ч тепловой энергии.

У современного ДВС к.п.д. достаточно низкий – до 30%, поэтому основная (70%) часть тепловой энергии, которая не была преобразована в механическую должна быть рассеяна и отведена от ДВС. Зачем её отводить от ДВС тоже ясно, т.к. двигатель работает эффективно достаточно в узком температурном диапазоне от +80 до +115 °С, который называется рабочей температурой. И если лишнюю энергию не отводить от двигателя, то он перегреется. Также не нужно забывать о том, что если скорость отвода тепловой энергии будет большой, то температура мотора упадет ниже указанных цифр, что скажется на эффективности выработки механической энергии, проще сказать, автомобиль начнет «тупить», а КПД падать.

Как раз для регулирования скорости отвода «лишней» тепловой энергии и нужен термостат. Но при этом необходимо помнить, что это не единственный вариант и отведение тепловой энергии происходит тремя путями, а их процентное соотношение между собой колеблется в зависимости от оборотов двигателя (см. диаграмму):

1) через конвекцию и тепловое излучение, 2) через систему отвода выхлопных газов и 3) через систему охлаждения двигателя, где как раз и нужен пресловутый термостат для регулирования объема охлаждающей жидкости.

Теперь остановимся немного на значении стабильного рабочего температурного режима ДВС (Н5.). Я уже отметил, что его диапазон достаточно узок (80–115 °С). Но здесь также нужно понимать, что бывают разные условия движения, которым соответствуют разные температурные значения. Для экономного стиля и небольшой загрузки машины оптимальной будет температура 95–115 °С. Для эксплуатации с максимальной нагрузкой нужна температура поменьше – около 85–95 °С. Для экологичного вождения, когда процент NOх в выхлопе минимален, нужна и минимальная температура – примерно 80–85 °С.

По приведенной классификации терморежимов ДВС в журнале «АБС» за январь 2012 г. эти режимы обозначаются как Н5.3., Н5.2. и Н5.1. соответственно. У разных производителей двигателей приведенные значения, естественно, будут несколько отличаться.

Теперь, понимая, что оптимальная температура ДВС зависит от условий вождения и что она находится в очень узком диапазоне температур, перейдем к вопросу регуляции и поддержания необходимой температуры. Исходя из приведенной диаграммы, мы видим, что регулировать её можно только двумя способами: регуляцией через систему охлаждения и путем рассеивания конвекцией и излучением. Для первого варианта хорошо подходит термостат, для второго же необходима регулируемая теплоизоляция моторного отсека.

Остановимся на первом варианте – термостате и его свойствах, что собственно и являлось предметом спора на автомобильном форуме. Приводить устройство термостата не буду, т.к. основная масса читателей знает его нехитрое устройство. Остановлюсь лишь на некоторых общепринятых заблуждениях и опровергну их.

1. Термостат не ускоряет прогрев двигателя.

Я категорически против распространенного утверждения, что термостат ускоряет прогрев двигателя, ибо термостат не может быть источником энергии, он всего навсего отводит лишнюю тепловую энергию. График прогрева ДВС движется по определенной кривой (красная линия), причем темп роста температуры в первой половине графика выше, чем во второй. Это как раз говорит о том, что в первой части не работает отвод тепла через конвекцию и излучение, а во второй части он усиливается. Средняя же скорость (линия тренда) – это прямая, расположенная под определенным ß-углом, который показывает рост температуры во времени и зависит только от технологических особенностей двигателя (теплоемкости) и количества сгоревшего топлива. Отличия для разных двигателей незначительны, т.к. даже на ХХ ЭБУ у многих машин готовит одинаковую смесь. Для конкретного двигателя ß-угла есть константа. Термостат же включается в термодинамический процесс только при достижении температуры его открытия: как правило, это от +87 до +93 °С.

При его открытии резко усиливается теплопотеря двигателя, которая прекращается в момент его закрытия, т.е. фактически термостат замедляет и ограничивает дальнейший перегрев двигателя, отводя от ДВС лишнюю тепловую энергию! Я имел, конечно ввиду, только часть энергии, которая рассеивается через ОЖ. Про другие (выхлоп, конвекция и изучение) – отдельная история!

2. Термоизоляция моторного отсека в т.ч. термоодеялом не ускоряет прогрев двигателя.

Мои друзья спорили о термоизоляции. Один говорил, что термоизоляция моторного отсека (МО) влияет на скорость прогрева двигателя. Другой говорил, что не влияет. Я решил провести эксперимент. Утеплил моторный отсек и поставил жалюзи. В мороз в –25 °С поехал на работу и фиксировал температуру двигателя и МО. Жалюзи были плотно закрыты. На следующий день при той же температуре открыл капот и жалюзи и снова поехал на работу. Также записывал температуру двигателя и моторного отсека. Потом нарисовал графики.

Единственное, в данном вопросе нужно сначала определиться с термином прогрев. Если мы считаем, что прогрев это нагревание до температуры +50 °С ОЖ, то теплоизоляция однозначно не влияет на скорость прогрева. Если всё-таки мы считаем, что прогрев идет до максимальной температуры ОЖ, то выводы следующие:

1. От –25 °С до +50 °С скорость прогрева одинакова и утепление на нее не влияет.

2. От +50 °С до +70 °С скорость прогрева чуть больше с утеплением.

3. От +70 °С до +100 °С скорость прогрева больше с утеплением.

Строго говоря, любая теплоизоляция моторного отсека (в т.ч. теплоодеяло) хорошо работает не в фазе нагрева ДВС, а в фазе остывания, когда она удлиняет остывание МО и двигателя в т.ч. И происходит это благодаря «перекрытию» канала рассеивания тепла конвекцией и излучением.

3. Выбитые цифры на корпусе термостата ни о чем не повествуют

На графике представлены температурные кривые открытия (сплошные) и закрытия (пунктирные) трех разных новых термостатов, на корпусах которых были выбиты цифры температуры в +92 °С. При этой заявленной температуре они должны были открываться, но на практике ни один термостат не соответствовал указанным значениям (+82,+84,+89 °С). Для написания этой статьи было проверено 10 новых различных термостатов, и только один открылся точно при достижении указанной температуры!

4. Термостаты со временем теряют свои свойства.

Многие автолюбители уверены в том, что рабочий термостат не изменяет своих свойств со временем. К сожалению, это не соответствует действительности, т.к. со временем изменяются свойства наполнителя (воска) и различных присадок, и на перемещающемся штоке клапана появляются наложения из антифриза, препятствующие свободному его перемещению.

5. Главным и единственным критерием определения работоспособности термостата является «петля» гистерезиса.

Идеальный термостат должен работать примерно так, как изображено на данном графике:

1. Точка открытия А должна точно соответствовать маркировке (температуре открытия).

2. Точка В соответствует максимальной амплитуде открытия и должна быть стабильна во временя эксплуатации.

3. Гистерезис (разница в открытии и закрытии при заданной температуре) должен быть минимальным, т. е петля должна выглядеть на графике «тощей», а не «толстой».

4. Со временем эксплуатации авто ß-угол не должен изменяться.

5. Отрезок А-С (начало открытия и момент полного закрытия) хорошего термостата минимален и не увеличивается со временем службы.

6. Значение точки С (полное закрытие) также должно быть нанесено на корпус термостата.

Ну, а теперь домашнее задание. Какой из новых термостатов разных производителей (V или W) с одинаковым клеймом в +92 °С Вы выберете для своей машины из представленных на графике? И можно ли выбирать термостат для своей машины только на основании выбитых цифирь или нужно обратиться за истиной все-таки к «гистерезису»?

Как говорит мой учитель, специалист по термодинамическим процессам профессор Твердислов В.А. из МГУ, все фундаментальные исследования в основных областях наук (физика, химия и т.п.) закончены, нужно только это помнить и не возвращаться в своих заблуждениях в ХIХ и ХХ века. А для этого достаточно купить кастрюльку и градусник.

  • Юрий Богданов

А я говорю — не дыми!

Германия хочет не просто отказаться от производства машин с двигателем внутреннего сгорания, но и распространить этот запрет на все страны Евросоюза. Правда, не завтра, а к 2030 году, но темпы развития мирового автопрома говорят об одном — машинам в их классическом понимании, которое было принято в XX веке, осталось не так уж и долго жить. В то же время России вряд ли стоит встраиваться в эту автоколонну, считают эксперты.

Инициатива, по данным немецкого журнала Der Spiegel, обсуждалась в собрании представителей федеральных земель Германии. Что же это получается: не пройдет и пятнадцати лет, как в Европу нельзя будет путешествовать на своей машине, если у нее из-под заднего бампера торчит выхлопная труба?

Все не так страшно. Пока речь идет только о производстве. Хотя идея пересадить водителей на электромобили и машины с водородными двигателями чуть раньше обсуждалась, например, в таких странах, как Норвегия и Нидерланды. Причем в первой стране решили, что это будет возможно уже в 2025 году. То есть Германия — далеко не первая ласточка.

Хотя в самой стране инициатива вызвала довольно неоднозначную реакцию. Ассоциация автомобильной промышленности (VDA), например, объявила, что реализация идеи требует развития технологий, которых пока нет. Однако власти, похоже, действительно считают, что 15 лет это тот рубеж, по достижении которого автопарк Европы будет почти полностью электрическим. Федеральный министр окружающей среды Барбара Хендрикс так прямо и заявила: «В 2030 году средний новый автомобиль должен быть в состоянии действовать без выбросов».

России больше подходят не электромобили, а машины на газомоторном топливе

Определенный задел для этого уже есть. По состоянию на середину 2016 года в ТОП-6 европейских стран — лидеров электромобильного рынка зарегистрировано 502 311 электрокаров. Больше всего инновационных машин, как бы это ни казалось странным, в холодной стране Норвегии, по дорогам которой бегают около 105 тысяч машин на электротяге. Немного отстают Нидерланды, где зарегистрировано около 92,6 тысячи штук, и Франция с показателем 89,6 тысячи электромобилей.

Россия пока только в начале пути. По данным аналитического агентства «Автостат» у нас всего 647 автомобилей, представленных 6 моделями. Из них наибольшая доля (36,6 процента) приходится на модель Mitsubishi i-MiEV, которой «от розетки до розетки» бегает 237 единиц. А на втором месте с долей в 23,5 процента — Tesla Model S (152 штуки).

2030 год, действительно, может быть рубежом, на котором произойдет переформатирование мирового автомобильного рынка с точки зрения технологий, считает автомобильный эксперт Игорь Моржаретто.

«Экологией, безусловно, надо заниматься, но при этом надо понимать, что на электромобилях свет клином не сошелся и вполне возможно, что через 15 лет будут востребованы совсем другие двигатели, чем те, о которых столько копий ломается сегодня. Вполне возможно, это будет следующая генерация моторов на бензине или солярке, тем более что их КПД еще далеко не исчерпан», — предполагает эксперт.

А в России в первую очередь надо развивать транспорт на газомоторном топливе, уверен Игорь Моржаретто. «Это и выгодно, и подходит для наших условий. Кроме того, такой подход в стране, где сконцентрированы самые большие в мире запасы природного газа, наиболее оправдан. И для этого уже есть определенная инфраструктура», — резюмирует эксперт «Российской газеты».

Что такое ДВС в автомобиле, расшифровка кратко

Что такое ДВС в автомобиле, расшифровка кратко

По дорогам мира перемещаются миллионы автомобилей, автобусов и грузовиков. Такое развитие транспорта было бы невозможным без ДВС – главной движущей силы всех современных машин. Расшифровка аббревиатуры ДВС несложная – двигатель внутреннего сгорания.

Что такое ДВС в автомобиле, что в нем горит и почему внутри – поясняем кратко. Паровой котел – это двигатель внешнего сгорания: дрова, уголь или мазут горят, подогревая воду, которая превращается в пар, который толкает поршни. Получается длинный и неэффективный цикл. Принципиальное отличие ДВС в том, что топливо сгорает внутри цилиндров, передавая энергию непосредственно поршням и валу, эффективность преобразования существенно выше. Кроме этого ДВС занимают немного места, мало весят, экономичны, работают на разнообразных видах топлива.

Краткое содержание статьи

2. Как устроен ДВС автомобиля;

3. Как работает ДВС, описание, анимация;

4. Ремонт ДВС, стоимость.

1. Типы ДВС, бензин и дизель

По принципу воспламенения топлива двигатели делятся на несколько типов: искровые и дизельные. В первых топливо воспламеняется от искры, в цилиндрах вторых дизель зажигается от сжатия топливной смести. Бензиновые моторы имеют меньший КПД, по этому дизельные моторы экономичнее. Дизельные моторы дороже в обслуживание и ремонте, так как сложнее в устройстве.

2. Как устроен ДВС автомобиля

Приведем на примере современного двигателя внутреннего сгорания, опишем как устроен ДВС автомобиля.

ДВС состоит из следующих модулей:

  • Система подачи топлива;
  • Головка блока цилиндров;
  • Блок цилиндров с поршневой группой;
  • Газораспределительный механизм;
  • Коленчатый вал.

3. Как работает ДВС, описание и анимация

Главный принцип работы ДВС – расширение объема газов в замкнутом пространстве цилиндра от тепла, возникающего в результате сгорания топлива.

Чтобы двигатель работал непрерывно, реализуется цикл, состоящий из:

  1. Поступления топливной смеси в цилиндр, Поджога и сгорания смеси;
  2. Рабочего хода поршня;
  3. Выпуска газов.

Импульс, полученный от сгоревшего топлива, толкает поршень, коленчатый вал поворачивается. Так энергия преобразуется в движение. Выше мы описали как работает ДВС, прикрепляем анимацию.

4. Ремонт ДВС в автомобиле, стоимость

Из чего состоит, и что такое ДВС в автомобиле мы разобрались, теперь немного расскажем о ремонте ДВС. Так как ДВС является сложным инженерным устройство и состоит из множества систем, которые должны слаженно работать, выход из строя или обшивка одной системы двигателя ведет к неровной работе системы в целом или к полной остановке мотора — поломке. Например, вышла из строя форсунка распыления топливной смеси в одном цилиндре, следовательно, в одном цилиндре нет детонации и что происходит с мотором в целом?

Мотор или как его еще называют ДВС, теряет мощность, и, если мотор 4 цилиндровый будет работать с рывками и провалами. С большой вероятностью будет давать сильную вибрацию на кузов, из-за ассиметричного зажигания. На помощь приходит диагностика и ремонт ДВС, автомобиль подключают к компьютеру и считывают ошибки по работе мотора. По набору ошибок, мастера поймут в чем причина поломки и поменяют форсунку.

Стоимость ремонта ДВС в автомобиле варьируется от модификации самого мотора и вида неисправности. Бывает, такое, что сама машины дешевая, а ремонт мотора дорогой, из-за неудобного расположения различных узлов. Бывает наоборот. Лучше всего не запускать проблемы по ДВС до ремонта. Нужно вовремя вменять масло, фильтры. Ели появляется как-либо проблема, нужно сразу вытиснять в чем причина и решать вопрос, пока мелкая проблема не переросла в полномасштабный ремонт.

Двигатель внутреннего сгорания – это такой тип мотора, у которого топливо воспламеняется в рабочей камере внутри, а не в дополнительных внешних носителях. ДВС преобразует давление от сгорания топлива в механическую работу.

Из истории

Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.

В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.

Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.

Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.

Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.

В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.

Виды двигателей

  • Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
  • Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
  • В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
  • Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
  • Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
  • Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.

Принцип работы

В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.

Как работает двигатель внутреннего сгорания:

  1. Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
  2. После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
  3. В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
  4. Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.

Устройство ДВС

Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.

Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).

Порядок работы

  • При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
  • Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.

Конструкция ДВС

Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.

Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.

Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.

Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.

Принцип работы кривошипно-шатунного механизма в двигателях внутреннего сгорания заключается в преобразовании движений поршня в движения коленвала.

Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.

В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.

Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Тип топлива

Следует помнить и об октановом числе топлива, которое используют двигатели внутреннего сгорания разных типов.

Чем выше октановое число топлива – тем больше степень сжатия, что приводит к увеличению коэффициента полезного действия двигателя внутреннего сгорания.

Но существуют и такие двигатели, для которых увеличение октанового числа выше положенного заводом изготовителем, приведет к преждевременной поломке. Это может произойти путем прогорания поршней, разрушения колец, закопченности камер сгорания.

Заводом предусмотрено свое минимальное и максимальное октановое число, которое требует двигатель внутреннего сгорания.

Тюнинг

Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.

Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.

Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.

Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.

Определение и общие особенности работы ДВС

Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

Классификация двигателей внутреннего сгорания

В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
  • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;

Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.

Устройство двигателя внутреннего сгорания

Корпус двигателя объединяет в единый организм:

  • блок цилиндров, внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
  • кривошипно-шатунный механизм, который передаёт энергию движения на коленчатый вал;
  • газораспределительный механизм, который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
  • система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси;
  • система удаления продуктов горения (выхлопных газов).

Четырёхтактный двигатель внутреннего сгорания в разрезе

При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.

Принципы работы ДВС

— Принцип работы двухтактного двигателя

Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.

В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.

В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.

При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.

В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.

— Принцип работы четырёхтактного двигателя

Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.

Процесс работы двигателя внутреннего сгорания

Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:

  • Такт первый, впуск. Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
  • Такт второй, сжатие. При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2—1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
  • Такт третий, расширение. Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
  • Такт четвёртый, выпуск. Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.

Вспомогательные системы двигателя внутреннего сгорания

— Система зажигания

Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры, воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:

  • Источник питания. Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
  • Включатель, или замок зажигания. Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
  • Накопитель энергии. Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
  • Распределитель зажигания (трамблёр). Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.

Система зажигания ДВС

— Впускная система

Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:

  • Воздухозаборник. Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
  • Воздушный фильтр. Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
  • Дроссельная заслонка. Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
  • Впускной коллектор. Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.
  • Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
  • Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
  • Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
  • Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
  • Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
  • Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.

Схема топливной системы ДВС

— Система смазки

Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла; удаление продуктов нагара и износа; защита металла от коррозии. Система смазки ДВС включает в себя:

  • Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
  • Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
  • Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
  • Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.

— Выхлопная система

Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):

  • Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
  • Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
  • Резонатор, или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
  • Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
  • Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.

Выхлопная система ДВС

— Система охлаждения

Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

  • Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
  • Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
  • Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
  • Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.

Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.

В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.

Источник http://vigodnozap.ru/chto-takoe-dvs-v-avtomobile/
Источник Источник http://dvigatels.ru/uhod/dvigatel-vnutrennego-sgoraniya.html
Источник http://tractorreview.ru/dvigateli/ustroystvo/dvigatel-vnutrennego-sgoraniya-ustroystvo-i-printsip-rabotyi.html

Туманные перспективы или ближайшее будущее – эксперты об отказе России от авто с ДВС

Несколько стран Европы заявили об отказе в ближайшие десятилетия от автомобилей с дизельными и бензиновыми двигателями. Ведущий аналитик «Открытие Брокер» Андрей Кочетков считает слишком оптимистичными такие планы. Однако есть и другие мнения. Своей позицией эксперты поделились с NewsNN.

Власти Дании намерены запретить продажу автомобилей на бензине и дизеле с 2030 года, а гибридных автомобилей – с 2035 года. К этому времени страна перейдет на электромобили для защиты воздуха от загрязнений. Однако премьер-министр страны Ларс Лекке Расмуссен заявил, что достичь намеченной цели будет сложно.

Дания следует примеру Великобритании и Франции, которые тоже заявили об отказе от продаж таких машин с 2040 года. Аналогичный запрет готова ввести Германия с 2030 года.

Кочетков назвал планы об отказе от авто с двигателей внутреннего сгорания (ДВС) к 2030 «чрезмерно оптимистичными, так как промышленность может не успеть с предложением необходимого модельного ряда». Кроме того, утверждает эксперт, резкое увеличение электротранспорта приведет к росту нагрузки на электросети и электростанции. Но к этому энергетическая система Европы может быть не готова.

Перспективы отказа от автомобилей с ДВС в России Кочетков видит туманными. «Во всяком случае, в ближайшие 10-15 лет подобное сложно представить. Российская инфраструктура пока не готова обеспечить одновременную зарядку миллионов электромобилей в городах и быстрое обслуживание на магистральных дорогах», – заявил специалист и добавил, что, вероятно, более широко будет использоваться транспорт на газовой тяги и гибридные модели.

Однако, по мнению Кочеткова, все же Россия имеет намного больше возможностей, чем Европа. В качестве примера он привел солнечную генерацию в южных районах и генерацию на основе ветра в зонах устойчивых ветров в северных районах. Эксперт утверждает, что только один Кольский полуостров может обеспечить установочные мощности генерации ветра до 200 ГВт.

Ведущий аналитик уверен, что планы по переходу на электротягу в Европе могут быть пересмотрены. Он отмечает, что запрет на продажу не означает запрет на эксплуатацию. И все же автомобили с ДВС будут доминировать.

Председатель комитета по экологии и природопользованию, член комитета по транспорту и дорожному хозяйству Законодательного собрания Нижегородской области Владислав Атмахов видит более оптимистичным путь ухода России от бензина и дизеля.

«Мое четкое мнение – страна будет двигаться в этом направлении», – заявил он, однако поставил под сомнение экологичность электротранспорта. И все же депутат уверен, что Россия уже сейчас может сделать серьезный шаг: «Надо повсеместно и постоянно переходить на газовое топливо. Природный газ у нас находится в огромном количестве. Мы одна из самых богатых стран по запасам газа. И поэтому кому как не нам переходить на данный вид топлива».

Председатель постоянной комиссии думы Нижнего Новгорода по транспорту и связи Алексей Гойхман считает, что в России удобнее использовать автомобили на дизельном топливе и бензине.

«Россия – страна, богатая нефтью. Я думаю, что наше будущее – все-таки стандартный двигатель – ДВС. Хотя может быть это экологически неправильно», – сказал депутат, но допустил возможность, что уже через 3-4 года россияне начнут пересаживаться на электротранспорт.

Нашли опечатку в тексте? Выделите её и нажмите ctrl+enter

Двигатель внутреннего сгорания — обзор

1 ВВЕДЕНИЕ

Топливная эффективность двигателя внутреннего сгорания может быть увеличена за счет снижения механических потерь, вызванных, главным образом, трением. Использование соответствующих масел снижает трение, увеличивает топливную экономичность и в то же время поддерживает низкий износ. Существует два подхода, с помощью которых можно достичь снижения трения в двигателях внутреннего сгорания: за счет уменьшения вязкости масла, что приводит к снижению трения в режиме смазки жидкой пленкой, и за счет использования присадок, снижающих трение, которые минимизируют трение в смешанной / граничной смазке. режим при контакте неровностей поверхности [1].

Очень важным классом присадок, снижающих трение, широко используемых в составах картерных масел, являются молибденосодержащие соединения, такие как диалкилдитиокарбамат молибдена (MoDTC). Общее количество присадок в масле может составлять от 5 до 25% [2], а эффективность MoDTC в снижении трения сильно зависит от синергетических или антагонистических эффектов с другими присадками, особенно с диалкилдитиофосфатом цинка (ZDDP) [3– 5]. Присадка ZDDP, помимо антиоксидантных свойств, как известно, очень эффективна для защиты поверхностей от износа в условиях граничной смазки; свойства, которые делают его незаменимым ингредиентом в подавляющем большинстве текущих составов масел [6].Таким образом, понимание взаимодействия ZDDP и MoDTC в трибологических характеристиках, являющихся двумя ключевыми компонентами масел, имеет важное значение для достижения оптимальных характеристик. Предыдущая работа [7] также указала на необходимость усовершенствования математических моделей смазки клапанного механизма, чтобы повысить их чувствительность к характеристикам состава масла. Такие улучшения станут возможными только за счет лучшего понимания образования трибопленки, структуры, химических и морфологических свойств и их соотнесения с приработкой систем клапанного механизма.

MoDTC зарегистрировано для уменьшения трения за счет образования пленки, содержащей MoS 2 , на металлических поверхностях [8–12]. Было замечено, что трение уменьшилось через определенное время, определяемое как фаза индукции, после чего трение упало с высоких значений примерно 0,12 до уменьшенных значений порядка 0,05. Ямамото и Гондо [9, 13, 14] в своей работе с использованием рентгеновской фотоэлектронной спектроскопии (XPS) предположили, что для образования MoS 2 необходимо предварительное формирование слоя MoO 3 .Было видно, что образование M0S 2 из MoDTC происходит в результате контакта твердое тело-твердое тело [15]. Образование MoO 3 перед любым падением трения предполагает, что произойдет увеличение шероховатости, которое может способствовать образованию M0S2, что указывает на физический эффект MoO 3 на образование M0S 2 . Хотя в нескольких работах [9, 11, 15] было показано, что только MoDTC эффективен в снижении трения, есть сообщения, которые показывают, что MoDTC может быть эффективным в снижении трения только в присутствии добавки ZDDP [3–5].Sogawa et al. [16] показал, что присутствие ZDDP способствует образованию M0S 2 из MoDTC. Они обнаружили, что при использовании модельного масла, содержащего как ZDDP, так и MoDTC, около 40% S из ZDDP было использовано для образования трибопленки M0S 2 в рубце износа, но точный механизм не был исследован. С другой стороны, Martin et al. [17] предложил реакцию отщепления M0O3 фосфатом цинка, генерируемым из ZDDP, в соответствии с принципом жестких и мягких кислот и оснований (HSAB).Устранение M0O 3 считалось причиной того, что система ZDDP / MoDTC более эффективна в снижении трения, чем один MoDTC — химический эффект ZDDP на снижение трения MoDTC. Однако топографический анализ трибопленок ZDDP подтвердил высокую шероховатость этой пленки [18, 19], что свидетельствует о влиянии ZDDP на образование M0S 2 , имеющего физическую природу .

Хотя указание на виды, образующиеся при использовании добавки MoDTC, можно получить из анализа работы, проделанной несколькими группами, последовательность реакций, с помощью которых MoDTC образует M0S 2 , еще не установлена ​​и не доказана экспериментально.Кроме того, влияние ZDDP на механизм образования M0S 2 от MoDTC до сих пор полностью не изучено. В данной статье представлена ​​полная характеристика с точки зрения химических и топографических свойств трибопленок, образовавшихся до падения трения, и обсуждаются условия, благоприятные для образования M0S 2 и, следовательно, снижения трения. Процедура испытания, включающая замену масла одной модели на другую, использовалась для того, чтобы понять, имеют ли взаимодействия ZDDP / MoDTC физическую природу или химическую или их комбинацию.

Сравнение электромобилей с аккумуляторными батареями и автомобилей с двигателем внутреннего сгорания

Комплексная оценка в США

Электромобили с аккумуляторной батареей (BEV) не потребляют бензин и не производят выбросов углекислого газа из выхлопных труб, что делает возможным экологически устойчивое вождение в пределах досягаемости среднего потребителя.Однако остается вопрос: «Действительно ли BEV обладают экологическим преимуществом в отношении потенциала глобального потепления и вторичного воздействия на окружающую среду — и если да, то какой ценой?»

Чтобы ответить на этот вопрос, Артур Д. Литтл провел общий анализ экономической стоимости жизненного цикла и воздействия на окружающую среду электромобилей с литиево-ионными аккумуляторами (BEV) по сравнению с автомобилями с двигателями внутреннего сгорания (ICEV), чтобы лучше понять BEV и их преобразующий потенциал. В этом исследовании моделируется относительное влияние новых BEV и ICEV в Соединенных Штатах за последний полный календарный год, за который имеются данные, 2015 г., и прогнозируется влияние BEV и ICEV на экономику и окружающую среду на протяжении всего предполагаемого двадцатилетнего срока службы для легковой автомобиль США.Учитывая, что это быстро развивающийся рынок, в нашем исследовании также прогнозируются экономические и экологические последствия, которые новые BEV и ICEV будут иметь в 2025 году, с учетом ожидаемых значительных изменений в технологии аккумуляторов, модельном ряду транспортных средств и стандартах экономии топлива.

Чтобы определить истинные затраты и воздействие на окружающую среду от BEV, мы провели всесторонний количественный анализ, исключая любые государственные стимулы или субсидии. В нашем исследовании был изучен каждый этап жизненного цикла автомобиля, от НИОКР и производства, включая поиск сырья до владения и утилизации по окончании срока службы.Мы оценили воздействие, связанное с каждым компонентом транспортного средства, от новых технологий и химического состава, задействованных в производстве аккумуляторов, до потребностей в энергии (например, бензин и электричество, от колодца до колес), необходимых для питания транспортного средства. Мы построили модели, которые рассчитывают совокупную стоимость владения (TCO) за 2015 г., потенциал глобального потепления (GWP) и вторичные воздействия на окружающую среду (например, потенциал токсичности для человека, характеризующийся потерянными годами жизни с поправкой на инвалидность) для BEV и ICEV.Мы также прогнозируем развитие технологий BEV и ICEV в ближайшее десятилетие, и мы использовали эту информацию для моделирования совокупной стоимости владения, GWP и вторичного воздействия на окружающую среду на 2025 год для BEV и ICEV.

Согласно нашему исследованию, экологическая и экономическая реальность электромобилей намного сложнее, чем они обещали. С экономической точки зрения BEV обладают рядом явных преимуществ. Во-первых, стоимость электроэнергии, связанная с эксплуатацией BEV на расстоянии в одну милю, значительно ниже, чем стоимость бензина, необходимая для эксплуатации сопоставимого ICEV на том же расстоянии.Во-вторых, обслуживание BEV обходится дешевле благодаря относительной элегантности и простоте системы аккумулятор-электродвигатель по сравнению с частым обслуживанием, необходимым для работы системы внутреннего сгорания. В-третьих, технология автомобильных аккумуляторов быстро развивалась с тех пор, как на рынке появилось текущее поколение BEV, при этом цена за киловатт-час (кВтч) литий-ионных аккумуляторных батарей снизилась с 1126 долларов в 2010 году до всего 300 долларов в 2015 году (см. Приложение E-1). ).

Согласно нашему исследованию, экологическая и экономическая реальность электромобилей намного сложнее, чем они обещали.С экономической точки зрения BEV обладают рядом явных преимуществ. Во-первых, стоимость электроэнергии, связанная с эксплуатацией BEV на расстоянии в одну милю, значительно ниже, чем стоимость бензина, необходимая для эксплуатации сопоставимого ICEV на том же расстоянии. Во-вторых, обслуживание BEV обходится дешевле благодаря относительной элегантности и простоте системы аккумулятор-электродвигатель по сравнению с частым обслуживанием, необходимым для работы системы внутреннего сгорания. В-третьих, технология автомобильных аккумуляторов быстро развивалась с тех пор, как на рынке появилось текущее поколение BEV, при этом цена за киловатт-час (кВтч) литий-ионных аккумуляторных батарей снизилась с 1126 долларов в 2010 году до всего 300 долларов в 2015 году (см. Приложение E-1). ).

Рисунок 1.
Общая стоимость владения в течение 20-летнего срока службы ICEV 2015 года по сравнению с эквивалентным BEV

Электромобили с аккумуляторной батареей и автомобили с двигателем внутреннего сгорания

Рисунок 2.
Выбросы парниковых газов в течение 20-летнего срока службы для ICEV 2015 года по сравнению с эквивалентным BEV

являются значительным препятствием для более широкого внедрения BEV и могут объяснить, почему их проникновение на рынок до сих пор ограничено.

С экологической точки зрения картина еще сложнее. BEV в 2015 году достигают цели по сокращению выбросов парниковых газов по сравнению с сопоставимыми ICEV, если рассматривать их на протяжении всего срока службы транспортного средства, но это маскирует повышенное воздействие на здоровье человека по сравнению с ICEV и множество других побочных воздействий на окружающую среду (см. Рисунки 2 и 3). . В то время как большинство воздействий на окружающую среду, создаваемых ICEV, локализовано на сгорании бензина в двигателе транспортного средства, производственный процесс для BEV создает гораздо более широкие

Рисунок 3.
дней воздействия на жизнь (смерть или инвалидность) для компактного пассажирского ICEV 2015 года по сравнению с эквивалентным BEV за 20 лет владения

разбросанных и разрушительных воздействий на окружающую среду, компенсирующих значительную часть их общего преимущества в отношении выбросам парниковых газов.

В частности, использование тяжелых металлов в производстве литий-ионных аккумуляторных батарей для BEV в сочетании с загрязнением, создаваемым энергосистемой США (например,г. хвосты угольных электростанций) для эксплуатационной части жизненного цикла BEV создают примерно в три раза больше токсичности для человека по сравнению с ICEV (см. рисунок 3). Принимая во внимание расхождение в том, где распределяются воздействия на окружающую среду, можно с уверенностью сказать, что потребитель, который выбирает BEV вместо ICEV, смещает экологию

Рисунок 4.
Сравнение исследования ADL с данными Союза обеспокоенных ученых и национального сообщества Результаты Бюро экономических исследований

влияние владения автомобилем.Как подробно описано в недавней серии расследований, опубликованных газетой Washington Post, большая часть кобальта и графита, поступающих в цепочку поставок литий-ионных батарей, поступает из плохо регулируемых и сильно загрязняющих шахт в Конго1 и Китае2. Вкладывая местный вклад в выбросы парниковых газов, они создают более рассеянный набор воздействий на окружающую среду, распространяющихся по всему миру, последствия которых в значительной степени несут сельские и часто неблагополучные общины вблизи шахт, откуда поставщики BEV получают сырье для производства аккумуляторных батарей.

В рамках нашего исследования Артур Д. Литтл также представляет результаты двух других широко цитируемых отчетов о влиянии BEV на окружающую среду по сравнению с ICEV — «Более чистые автомобили от колыбели до могилы: как электромобили побеждают бензиновые автомобили по выбросам из-за глобального потепления. , »3 из Союза обеспокоенных ученых (UCS) и« Экологические преимущества от вождения электромобилей? »4 из Национального бюро экономических исследований (NBER). Оба этих отчета исследуют воздействие BEV и ICEV на окружающую среду, и оба отчета описывают последствия для политики, вытекающие из их выводов.Однако UCS и NBER приходят к совершенно разным выводам. Мы представляем их различные результаты, чтобы сформировать более широкую дискуссию и поместить наше исследование в рамки более широкой дискуссии об истинном воздействии BEV и ICEV на окружающую среду в США (см. Рисунок 4).

Прогнозирование технологических тенденций для новых BEV и ICEV в 2025 году, Артур. Моделирование Д. Литтла показывает, что хотя разница в совокупной стоимости владения между BEV и ICEV значительно снизится по сравнению с 2015 годом, ICEV по-прежнему будут иметь экономическое преимущество в диапазоне от 5 800 до 11 100 долларов (текущая стоимость) по сравнению с BEV.С экологической точки зрения различия в потенциале глобального потепления и в потенциале токсичности для человека увеличатся в 2025 году по сравнению с 2015 годом: BEV будут производить еще более низкие уровни парниковых газов по сравнению с ICEV, но они будут генерировать примерно в пять раз больше антропогенных газов. потенциал токсичности по сравнению с ICEV из-за использования более крупных аккумуляторных блоков. В сочетании с большим финансовым бременем, которое BEV возлагает на потребителя, сложная экологическая реальность BEV будет по-прежнему создавать проблемы для потребителя, ориентированного на устойчивое развитие, при выборе между автомобилем BEV или ICEV.

Краткая история двигателя внутреннего сгорания — _ памятует

18 апреля 2019 г.

Можно было ходить пешком, верхом на лошади или путешествовать в экипаже — после изобретения колеса возможности для путешествий по суше стали недоступны человечеству. развивалась 4000 лет. Это не изменилось до появления новаторов и изобретателей в конце 19 века. После того, как железная дорога позволила перевозить большое количество людей и товаров в отличном стиле, именно двигатель внутреннего сгорания коренным образом изменил индивидуальную мобильность.Наша краткая история двигателя внутреннего сгорания связана с рассказом о том, как он был изобретен, как он стал использоваться в первых автомобилях и что было сделано для снижения рисков, связанных с этой инновацией в области высокоскоростной мобильной связи.

Однажды в августе 1888 года жители Вислоха, Брухзаля и Дурлаха имели все основания для удивления: трехколесная повозка, напоминавшая нечто среднее между конной повозкой и велосипедом, катилась по улицам их городов. . За исключением того, что лошадей поблизости не было.И трое пассажиров, женщина и двое молодых людей, похоже, не крутили педали. Транспортное средство, по-видимому, двигалось на собственном ходу, управляемом рукояткой, которую женщина держала. Женщину звали Берта Бенц, подростками — ее сыновья Ричард и Ойген, а транспортным средством — запатентованный Бенц автомобиль № 3.

Карл Бенц, муж Берты, запатентовал первую версию автомобиля еще в 1886 году и представил автомобиль широкой публике в июле того же года во время тест-драйва в Мангейме.«Нет никаких сомнений в том, что у этого моторизованного велосипеда скоро появится множество друзей», — было эйфорическое заявление Neue Badische Landeszeitung 4 июня 1886 года. , а экономический успех оказался недостижимым. Чтобы оживить упавшее настроение мужа и убедить современников в практичности нового транспортного средства, Берта Бенц решила провести тщательный тест-драйв, хотя и не предупредив своего колеблющегося мужа заранее.Утром она и ее сыновья выехали на 104-километровую дорогу из Мангейма в свой родной город Пфорцхайм, куда они благополучно доехали через 12 часов 57 минут.

Эта поездка считается первой поездкой на дальние расстояния в истории автомобилестроения и по сей день отмечается как «Маршрут памяти Берты Бенц». Насколько велико было в то время рекламное воздействие, все еще остается предметом споров среди исследователей. Одно можно сказать наверняка: после этого запатентованный автомобиль Benz начал свой медленный, но верный путь в гору к коммерческому успеху.К 1893 году было продано 69 автомобилей, в основном в США, Англии и особенно во Франции, где благодаря хорошим дорогам первые автолюбители не были так сильно потрясены. На рубеже веков компания Benz & Cie. Уже поставила 1709 экземпляров своих автомобилей. Количество сотрудников превысило 430 человек, что в десять раз больше.

Действительно ли двигатель внутреннего сгорания отойдет на задний план по сравнению с электромобилями?

Достижение приемлемого уровня инфраструктуры будет играть ключевую роль в конечном итоге для общественности… [+] прием электромобилей. В настоящее время сеть нагнетателей Tesla предлагает лучшие общенациональные зарядные устройства. (Фото Smith Collection / Gado / Getty Images)

Getty Images

Если верить действиям мировых автопроизводителей, двигатель внутреннего сгорания, который приводил в действие автомобили более века, может устареть в течение нескольких десятилетий. Но переход на электромобили (EV), который поначалу материализовался медленно, теперь ускоряется в глобальном масштабе из-за более строгих правительственных норм по выбросам, падающих затрат, все более позитивного отношения общества к растущему количеству вариантов выбора электромобилей и общественного мнения. об изменении климата.

California заявила на этой неделе, что планирует к 2035 году постепенно отказаться от продаж обычных новых автомобилей с бензиновым двигателем в пользу автомобилей с нулевым уровнем выбросов, которые работают на электричестве. Исполнительный указ губернатора Гэвина Ньюсома, несомненно, столкнется с огромной судебной тяжбой и, по правде говоря, может сильно зависеть от результатов выборов и формы Верховного суда.

Остальной мир далеко впереди: по крайней мере 15 стран, включая Францию, Великобританию, Нидерланды и Бельгию, уже запрещают новые бензиновые автомобили, а другие страны принимают строгую политику для ускорения внедрения электромобилей в период с 2030 по 2035 год.«Европа и Китай осознали тот факт, что двигатель внутреннего сгорания не работает», — говорит Арндт Эллингхорст, автомобильный аналитик Bernstein Research. «Теперь похоже, что США просыпаются».

Автопроизводители уже борются за позиции, инвестируя около 200 миллиардов долларов в технологии электромобилей в течение следующих пяти лет, по данным консалтинговой фирмы AlixPartners. Хотя запуск некоторых новых серийных электромобилей был отложен в этом году из-за пандемии коронавируса, к концу 2021 года на рынке появится более двух десятков электромобилей.К ним относятся Ford Mustang E и Rivian R1T, Tesla Cybertruck, Model Y и Roadster. Между тем General Motors обязалась выпустить 20 новых электромобилей к 2023 году, включая модели от Chevrolet, Cadillac, GMC и Buick.

Европейцы также активно участвуют в разработке таких моделей, как Audi e-Tron, BMW i4 и iX3, Polestar 2, Volvo XC40 Recharge, Porsche Taycan, Macan EV и Mini Cooper SE. В течение следующих шести месяцев японцы начнут продавать Honda e, внедорожник Nissan Ariya, автомобиль для заправки топливом Toyota Mirai и Mazda MX-30, первый электрический внедорожник компании.

В 2019 году объем продаж электромобилей во всем мире превысил 2,1 миллиона единиц, что на 40% больше, чем годом ранее. На электромобили приходилось 2,6% мировых продаж автомобилей и около 1% мирового парка автомобилей в 2019 году.

«Мы должны реально поверить в то, что примерно в 2035 году начнется серьезная дискуссия о запрете двигателей внутреннего сгорания, и не только в Калифорнии», — говорит генеральный директор Volvo Cars Хокан Самуэльссон. Изменение климата никуда не денется, и устранение выбросов от легковых и грузовых автомобилей имеет решающее значение в усилиях по снижению выбросов CO2.

Градостроители стремятся перестроить города вокруг людей, а не автомобилей, вкладывая средства в пешеходные районы вместо пригородных автострад и используя электрические технологии. В январе этого года Toyota объявила о планах построить «Woven City», прототип города недалеко от горы Фудзи, который будет представлять собой полностью подключенную экосистему, работающую на водородных топливных элементах и ​​обслуживаемую электромобилями, роботами и дронами. Напротив, Porsche работает над новыми видами транспорта, которые будут сосредоточены на электромобилях в сочетании с интеллектуальными системами управления движением, чтобы избежать заторов на городских дорогах.

Пока этого не произойдет, люди будут продолжать водить машину, — предупреждает сотрудник Брукингса Ади Томер. «Метрополитен Америка на данный момент увяз в вождении, поэтому мы должны немедленно электрифицировать автопарк», — добавляет он.

В США сегодня электрические машины составляют менее 2% автомобилей, а в Калифорнии — лишь 6%. Даже если все остальные штаты последуют примеру Калифорнии к 2035 году, пройдут десятилетия, прежде чем все бензиновые автомобили исчезнут с американских дорог.

Один аналитик считает, что к 2040 году продажи электромобилей вырастут до 58% от продаж новых автомобилей во всем мире, но по-прежнему только 31% от всех автомобилей на дорогах.Тем не менее, инвесторы полны энергии. Акции компаний, производящих электромобили и возобновляемые источники энергии, стремительно растут, даже если они еще не производили никаких транспортных средств. Акции малоизвестного SPI Energy, например, взлетели на 4000% недавно после того, как компания объявила о выходе на рынок электромобилей.

Однако даже с многомиллиардными инвестициями и изменяющимся общественным восприятием электромобилей, существуют серьезные препятствия, которые необходимо преодолеть, прежде чем электромобили станут доступными и удобными для всех.К ним относятся недорогие батареи и электромобили по разумной цене, стабильные поставки кобальта и других минералов для создания огромного количества требуемых литий-ионных аккумуляторов, больший радиус действия и более доступная и быстрая инфраструктура для зарядки.

Как будто бросая вызов автомобильной промышленности, предлагая надежные решения для этих вопросов, Tesla на прошлой неделе изложила дорожную карту для более дешевых аккумуляторов с более высокой плотностью энергии и поставила цель вывести на рынок электромобиль стоимостью 25000 долларов в течение следующих трех лет, автомобиль, который может похвастаться дальностью более 300 миль.Теперь это может просто изменить отрасль.

Двигатель есть мотор?

Что такое мотор?

Чтобы понять, что такое мотор, нужно понять, как работают электромобили. У электромобилей есть батарея, которая является источником энергии, которая приводит в движение автомобиль, а энергия проходит через контроллер, который регулирует напряжение, которое отправляется на ваши двигатели. Двигатели приводят в движение колеса и двигают ваш автомобиль вперед.

Что такое двигатель?

В автомобиле с двигателем внутреннего сгорания у вас есть топливный бак, который передает энергию вашему двигателю.Двигатель передает мощность на трансмиссию, а затем на колеса. Двигатель обычно проходит более сложный процесс, чтобы добраться до колес, чем электродвигатели, но для системы внутреннего сгорания не требуются двигатели или контроллер, поэтому вы можете сэкономить на нем много веса.

Электродвигатель и двигатель внутреннего сгорания

При сравнении электродвигателя и двигателя внутреннего сгорания, двигатель внутреннего сгорания имеет более высокую плотность энергии, что означает, что он производит более высокий выход энергии на плотность топлива.Двигатель внутреннего сгорания также требует меньше времени для дозаправки, чем электродвигатель. На заправке дозаправка занимает всего около 5 минут. Несмотря на все эти преимущества, у двигателя внутреннего сгорания есть и недостатки. Он выделяет токсичные выбросы, такие как углекислый газ, который вреден для окружающей среды. Кроме того, двигатели внутреннего сгорания менее эффективны по сравнению с электродвигателями, что означает, что они потребляют больше энергии для привода транспортного средства.

Сказав это, у использования электродвигателей есть много преимуществ.Электродвигатели не выделяют выхлопных газов, потому что они не выделяют выхлопных газов. Так что они очень экологичны. Электродвигатели также обладают мгновенным крутящим моментом. Это означает, что ваш автомобиль может набрать скорость, как только вы нажмете на педаль газа.

ДВИГАТЕЛЬ

ДВИГАТЕЛЬ

Тип транспортного средства

Бензиновый легковой Электромобиль

Источник энергии

Двигатель производит сгорание и перемещает поршни.Вращательное движение поршней передается трансмиссии, а затем преобразуется в энергию для привода колес.

Источником питания электродвигателя является аккумуляторная батарея. Энергия проходит через регулятор, а затем в двигатель, который вращает колеса.

Преимущества

а. Более высокая плотность энергии

г. Меньше времени заправки

а. Нет выбросов углерода

г.Моментальный крутящий момент

Недостатки

а. Выбросы

г. Менее эффективный

а. Менее проверенная технология

г. Более длительное время зарядки

Контроль за загрязнением воздуха автотранспортными средствами

Доступна информация о Мировом соглашении VW и о том, как прокомментировать разработку Плана смягчения последствий для бенефициаров и инвестиций в транспортные средства с нулевым уровнем выбросов.

Легковые автомобили, грузовики, автобусы, внедорожники и самолеты считаются мобильными источниками загрязнения воздуха. Чтобы уменьшить загрязнение воздуха из этих значительных источников, как того требует федеральный закон о чистом воздухе 1990 г., DEC:

Как загрязнение двигателя вредит окружающей среде и здоровью

Окись углерода, оксиды азота и углеводороды выделяются при сгорании топлива в двигателе внутреннего сгорания. Они также могут выделяться, когда выхлопные трубы автомобиля выбрасывают воздух и остатки топлива. Пары бензина также выходят в атмосферу при заправке и при испарении топлива из двигателей и топливных систем в результате эксплуатации автомобиля или жаркой погоды.

Загрязняющие вещества в выбросах двигателей от транспортных средств или газонного оборудования вызывают повреждение ткани легких и могут вызывать и усугублять респираторные заболевания, такие как астма. Загрязнение от автотранспорта также способствует образованию кислотных дождей. Загрязнение также выделяет парниковые газы, вызывающие изменение климата.

Дизельные двигатели

долговечны и эффективны. Однако, поскольку они потребляют дизельное топливо, сложную смесь компонентов нефти, они производят некоторые загрязнители. Небольшое количество топлива выходит из двигателя несгоревшим.Эти углеводороды, переносимые по воздуху, могут образовывать более крупные частицы в атмосфере при контакте с переносимой по воздуху пылью и другими частицами.

В отличие от бензиновых двигателей, которые могут не получать достаточно воздуха в цилиндр для сгорания, дизельные двигатели работают с избытком воздуха, поэтому выбросы окиси углерода очень низкие, хотя их можно измерить. Окись углерода — это бесцветный газ без запаха, который соединяется с кровью и ограничивает ее способность переносить кислород. Поскольку двигатели потребляют топливо и воздух и выделяют тепло в процессе сгорания, азот из воздуха может превращаться в оксиды азота, которые представляют собой красновато-коричневые газы, раздражающие легкие и глаза.

Выбросы загрязняющих веществ непосредственно от транспортных средств — не единственная причина для беспокойства. В теплые солнечные дни углеводороды реагируют с оксидами азота с образованием вторичного загрязнителя — озона. Во многих городских районах автомобили вносят наибольший вклад в приземный озон, который является обычным компонентом смога. Озон вызывает кашель, хрипы и одышку. Он также может вызвать необратимое повреждение легких, что делает его причиной серьезных проблем со здоровьем.

Автомобили с нулевым уровнем выбросов (ZEV)

ZEV включают электромобили на аккумуляторных батареях, гибридные электромобили с подзарядкой от сети и электромобили на водородных топливных элементах.Эти технологии могут использоваться в легковых, грузовых и транзитных автобусах. Федеральный закон о чистом воздухе позволяет Нью-Йорку принять стандарты Калифорнии для транспортных средств с нулевым уровнем выбросов (ZEV).

Нью-Йорк и семь других штатов объединились в инициативе по вводу в эксплуатацию 3,3 миллиона ZEV к 2025 году. Меморандум о взаимопонимании описывает шаги, которые эти штаты предпримут для повышения осведомленности потребителей и повышения спроса на ZEV. Многогосударственный план действий по автомобилям с нулевым уровнем выбросов на 2018-2021 годы (покидает веб-сайт DEC) описывает следующие шаги, которые эти государства предпримут для повышения осведомленности потребителей и спроса на ZEV.

Снижение загрязнения от транспортных средств

Надлежащее обслуживание систем контроля выбросов легковых и грузовых автомобилей не только ограничивает вредные выбросы. Это также может улучшить топливную экономичность и производительность автомобиля. Это может даже продлить срок службы автомобиля. Забота о хранении и обращении с бензином и другими растворителями также снижает потери от испарения в атмосферу.

Программы технического осмотра и обслуживания автотранспортных средств (I / M) находятся в ведении DEC и Департамента автотранспортных средств штата Нью-Йорк.Программы I / M требуют ежегодных проверок выбросов и, при необходимости, требуют ремонта неисправных систем выбросов. Программа технического осмотра транспортных средств штата Нью-Йорк (NYVIP) является важным компонентом плана реализации штата Нью-Йорк по обеспечению соответствия национальным стандартам качества окружающего воздуха по озону.

Подробнее о контроле за загрязнением воздуха автотранспортными средствами:

  • VW Settlement Information — Нью-Йорк рассчитывает получить финансирование от VW Settlement для поддержки сокращения выбросов NOx, основной причины смога и загрязнения воздуха.
  • Программа грантов штата Нью-Йорк на чистое дизельное топливо — финансирование доступно для приемлемых решений по сокращению выбросов дизельных двигателей, начиная от проверенных технологий контроля выбросов и снижения холостого хода до сертифицированных замен двигателей и автомобилей.
  • Каталитические преобразователи — Департамент утвердил требования Калифорнии к каталитическим нейтрализаторам: a) запрет на установку использованных каталитических нейтрализаторов; и б) стандарты для новых преобразователей вторичного рынка.
  • Легкие автомобили с низким и нулевым уровнем выбросов — программа LEV штата Нью-Йорк смоделирована на основе программы California CAL-LEV
  • Средние и тяжелые автомобили с нулевым выбросом вредных веществ — 14 июля 2020 года губернатор Куомо вместе с губернаторами 14 штатов и мэром Вашингтона Д.C. подписала совместный меморандум о взаимопонимании, обязуясь совместно работать над продвижением и ускорением рынка электромобилей средней и большой грузоподъемности.
  • Закон о холостом ходу для тяжелых транспортных средств — Закон штата Нью-Йорк об охране окружающей среды запрещает тяжелым транспортным средствам, включая грузовики с дизельным двигателем и автобусы, работать на холостом ходу более пяти минут за раз.
  • Программа осмотра / технического обслуживания дизельных транспортных средств большой грузоподъемности — Департамент разработал правила для реализации программы проверки выбросов и технического обслуживания дизельных транспортных средств большой грузоподъемности (HDDV).
  • Часть 248 Требования к годовой отчетности и исключения — Регулируемые организации, такие как государственные агентства и власти, должны сообщать обо всех своих дизельных транспортных средствах большой грузоподъемности (даже тех, которые освобождены от требований BART) как в годовом отчете, так и в формах инвентаризации транспортных средств, можно получить в DEC.
  • Факты и советы по загрязнению автомобильным транспортом. Во многих городских районах автотранспортные средства являются самым крупным источником озона, основного компонента смога.
  • Резюме исследования воздушных ресурсов — исследовательские документы по воздушным ресурсам для технической аудитории

Двигатели внутреннего сгорания | IFPEN

Двигатель внутреннего сгорания автомобиля обычно включает несколько камер сгорания .Каждый из них ограничен головкой блока цилиндров, цилиндром и поршнем.

Архитектура двигателя также шарнирно закреплена вокруг системы коленчатого вала , что позволяет преобразовывать возвратно-поступательное движение (движение поршня) во вращательное движение (вращение коленчатого вала).


Во время каждого цикла сжигание топливной смеси (воздушно-топливной смеси) в камере приводит к увеличению давления газа, который приводит в движение поршень и систему коленчатого вала. Поскольку коленчатый вал соединен с механическими компонентами трансмиссии (коробки передач, приводные валы и т. Д.)), его движение приводит в движение колеса автомобиля.

Коробка передач позволяет адаптировать скорость вращения колеса к скорости вращения двигателя.

Мощность двигателя зависит, прежде всего, от количества энергии, вырабатываемой при сгорании, а следовательно, от количества топливной смеси, присутствующей в камере сгорания. Таким образом, он напрямую связан с объемом камеры (единичный рабочий объем), количеством камер или цилиндров в двигателе (общий объем) и количеством впрыскиваемого топлива.

Почему «4-х тактный»?

Термин относится к тому факту, что для преобразования химической энергии, содержащейся в топливе, в механическую энергию требуется 4 отдельных хода. . Каждый ход соответствует половине оборота коленчатого вала (одно движение поршня вверх или вниз). Такты 1 и 4 предназначены для передачи газа (прием свежего газа и выбрасываемых выхлопных газов), а такты 2 и 3 необходимы для подготовки к сгоранию с последующим сгоранием и его преобразованием в механическую энергию.

Для двигателя с искровым зажиганием и непрямым впрыском топлива 4 такта являются следующими:

  • 1 st ход : Впуск (заполнение цилиндра)
    Поршень опускается и втягивает топливовоздушную смесь.
  • 2 nd ход : Сжатие
    Поршень снова поднимается, сжимая топливовоздушную смесь. Для воспламенения смеси образуется искра.
  • 3 ряд ход : Горение — Расширение
    Этот ход соответствует развитию горения и расширению сгоревших газов: поршень сжимается, и химическая энергия преобразуется в механическую энергию.
  • 4 -й ход : Выхлоп (Сгоревшие газы выходят из цилиндра)
    Поршень снова поднимается и удаляет сгоревшие газы.

Для дизельного двигателя с воспламенением от сжатия и прямым впрыском 4 такта работают одинаково, с двумя отличиями:

  • Чистый воздух всасывается и сжимается во время тактов 1 и 2 , затем топливо вводится непосредственно в цилиндр (путем впрыска) в конце сжатия.
  • Смесь воспламеняется самопроизвольно , без искры, из-за высокой температуры воздуха в результате его сжатия.

Цетановое число / октановое число

Цетановое число указывает на способность дизельного топлива самовоспламеняться.

Октановое число указывает на способность бензина противостоять самовоспламенению и предотвращать неконтролируемое возгорание из-за электрической искры (ненормальное горение, детонация).

Что такое горение?

Теоретически для полного сгорания 1 г обычного топлива (бензина или дизельного топлива) требуется около 14,6 г воздуха. Эта идеальная смесь называется стехиометрической.

Бензиновые двигатели с косвенным впрыском топлива в основном работают на стехиометрической смеси . После введения в двигатель гомогенной смеси воздуха и бензина сгорание (воспламенение смеси) инициируется искрой (искровое зажигание).Горение вызывает распространение фронта пламени, который проходит через камеру.

Современные бензиновые двигатели с прямым впрыском : воздух поступает через впускное отверстие, а топливо, как в дизельном двигателе, поступает непосредственно в камеру сгорания, что позволяет более точно управлять впрыском. Вместо топливовоздушной смеси двигатель работает на так называемом стратифицированном заряде. Горение по-прежнему инициируется искрой (искровое зажигание).

Дизельные двигатели работают с избытком воздуха .Дизель впрыскивается под давлением в предварительно сжатую воздушную массу. Возгорание инициируется самовоспламенением (воспламенение от сжатия). Сгорание называют расслоенным или неоднородным, поскольку оно происходит как в богатой топливом (расположенной рядом с соплом форсунки), так и в бедной (рядом со стенкой цилиндра) зонах.

Топливо

В Европе используются бензиновые или дизельные двигатели с искровым зажиганием. Бензин и дизельное топливо являются двумя основными конечными продуктами, получаемыми в результате переработки сырой нефти, и их состав меняется в зависимости от требований к двигателям и, что более важно, экологических норм, связанных с качеством воздуха и сокращением выбросов парниковых газов.

Биотопливо можно смешивать непосредственно с бензином и дизельным топливом в различных пропорциях без необходимости адаптации двигателей, тем самым извлекая выгоду из существующих распределительных сетей. Во Франции дизельное топливо B7, продаваемое на заправке, обычно содержит до 7% (по объему) биотоплива и бензина E10 до 10%.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *