Устройство и принцип действия теплового двигателя: Принцип действия теплового двигателя — termodinamikaVM.ru

Содержание

Принцип действия теплового двигателя — termodinamikaVM.ru

Тепловой двигатель – устройство преобразующее внутреннюю энергию топлива в механическую энергию. Основные части теплового двигателя: нагреватель, рабочее тело и холодильник. Чтобы получить полезную работу, необходимо сделать работу сжатия газа меньше работы расширения. Для этого нужно, чтобы каждому объёму при сжатии соответствовало меньшее давление, чем при расширении. Поэтому газ перед сжатием должен быть охлажден.
Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.
Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T1 температурой нагревателя.’

Рассмотрим это на примере идеальной тепловой машины.

Любая тепловая машина состоит из трех частей: теплоотдатчика, рабочего тела и теплоприемника. Теплоотдатчик имеет температуру Т1 и отдает некоторое количество теплоты Q1 рабочему телу. Рабочее тело (газ, пар, нагретая жидкость) совершает работу. Причем, не вся теплота Q1 превращается в работу, а только некоторая ее часть

А = Q1 – Q2 (4.8)

Другая часть теплоты Q2 передается телу с более низкой температурой (Т2) – теплоприемнику. Таким образом, сущность работы тепловой машины заключается не только в получении теплоты Q1 от теплоотдатчика и совершении работы А, но и передаче некоторого количества теплоты Q2теплоприемнику, температура которого ниже чем температура теплоотдатчика (Т1 > Т2). Вечный двигатель второго рода состоит из первых двух частей, то есть, теплота Q1 полностью переходит в работу А, а это невозможно. Там, где нет перепада температур (Т1 = Т2), невозможно превратить теплоту в работу.

Чтобы получить математическое выражение второго начала термодинамики, рассматривают действие идеальной тепловой машины. Идеальной называют машину, которая работает без трения и потерь тепла. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно.

Цикл Карно состоит из четырех последовательно совершаемых процессов: изотермического расширения, адиабатического расширения, изотермического сжатия, адиабатического сжатия газа. Все процессы проводят обратимо, в результате чего газ возвращается в исходное положение.

В результате математических преобразований получают

(Q1 – Q2)/Q1 = (Т1 – Т2)/Т1 (4.9)

или h = А/Q1; h = (Т1 – Т2)/Т1 (4.10)

где h – коэффициент полезного действия (КПД) тепловой машины.

Роторно-поршневого двигателя.

Установленный на валу ротор жестко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестерней. Ротор с зубчатым колесом как бы обкатывается вокруг шестерни. Его грани при этом скользят по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре.

Такая конструкция позволяет осуществить 4-тактный цикл без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: r: R = 2: 3, которые устанавливают на автомобилях, лодках и т.п. Масса и габариты двигателя Ванкеля в 2-3 раза меньше соответствующих им по мощности двигателей внутреннего сгорания обычной схемы.

Дизельного двигателя.

Воздух сначала поступает в цилиндр, сжимается и нагревается до высокой температуры. В раскаленный воздух с помощью форсунки впрыскивается самовоспламеняющееся и быстро сгорающее топливо, за счет чего мотор и начинает работать. Для таких двигателей необходимо специальное дизельное топливо. Из уроков физики все мы знаем, что тепловая энергия может преобразовываться в механическую. Именно это и происходит, когда в цилиндре двигателя сгорает топливо. Тепло, превращаясь в механическую работу, начинает двигать поршень, который в цилиндре двигается возвратно-поступательно. Коленчатый вал, связанный с поршнем при помощи шатуна, вращается.

Во время работы, поршень то приближается, то удаляется от коленчатого вала. Когда эти две детали сближаются, то в цилиндр поступает горючая смесь. При движении цилиндра в обратную сторону, в нем увеличивается давление. Сжатая горючая смесь в этот момент готова к сгоранию, едва стоит вспыхнуть искре, как смесь легко воспламеняется и выделяет газы, которые нужны для того, чтобы привести мотор в движение. Цилиндр соединен с трубопроводом, через который из двигателя выбрасываются отработанные газы.

Одно движение поршня к коленчатому валу или обратно называется ходом. Если за четыре хода поршня вал сделает два оборота вокруг своей оси, значит, закончился так называемый рабочий цикл. Двигатель, рабочий цикл которого совершается за два оборота коленчатого вала, называется четырехкратным. Существуют также и двукратные двигатели. Рабочий цикл у них совершается за два хода поршня и за один оборот коленчатого вала. В автомобильных моторах такие двигатели практически не применяются, зато их широко используют для мотоциклов.

Чем сильнее будет давление на поршень при сгорании горючей смеси, тем больше мощность двигателя. Поэтому выгодно увеличивать степень сжатия в двигателе. В этом случае из той же порции топлива получается больше полезной работы. Многие автолюбители пытаются самостоятельно отрегулировать двигатель так, чтобы расходовать меньше топлива, но при этом не терять мощности. Но увлекаться этим не следует, поскольку при сильном увеличении степени сжатия горючая смесь сгорает слишком быстро (этот процесс называется детонация), что вызывает неустойчивую работу двигателя. При этом в работающем двигателе слышен стук, мощность значительно снижается, а из глушителя идет черный дым.

дизельных и карбираторных — доклад

Наша сегодняшняя встреча посвящена тепловым двигателям. Именно они приводят в движение большинство видов транспорта, позволяют получать электроэнергию, несущую нам тепло, свет и комфорт. Как устроены и каков принцип действия тепловых машин?

Понятие и виды тепловых двигателей

Тепловые двигатели — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

Осуществляется это следующим образом: расширяющийся газ давит либо на поршень, вызывая его перемещение, либо на лопасти турбины, сообщая ей вращение.

Взаимодействие газа (пара) с поршнем имеет место в паровых машинах, карбюраторных и дизельных двигателях (ДВС).

Примером действия газа, создающим вращение является работа авиационных турбореактивный двигателей.

Структурная схема работы теплового двигателя

Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.

В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.

Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.

О паровых двигателях

Хронология этого изобретения ведёт свой отсчёт от эпохи Архимеда, придумавшего пушку, стрелявшую с помощью пара. Затем следует череда славных имён, предлагавших свои проекты. Наиболее эффективный вариант устройства принадлежит русскому изобретателю Ивану Ползунову. В отличие от своих предшественников он предложил непрерывный ход рабочего вала за счёт использования попеременной работы 2-х цилиндров.

Сгорание топлива и образование пара у паровых машин происходит вне рабочей камеры. Поэтому их называют двигателями внешнего сгорания.

По такому же принципу образуется рабочее тело в паровых и газовых турбинах. Их далеким прообразом явился шар, вращаемый паром. Автором этого механизма был учёный Герон, творивший свои машины и приборы, в древней Александрии.

О двигателях внутреннего сгорания

В конце XIX века немецким конструктором Августом Отто была предложена конструкция ДВС с карбюратором, где приготавливается топливовоздушная смесь.

Остановимся более подробно на его работе. Каждый цикл работы состоит из 4-х тактов: впуска, сжатия, рабочего хода и выпуска.

Во время первого такта горючая смесь впрыскивается в цилиндр и сжимается поршнем. Когда компрессия достигает максимума, срабатывает система электроподжига (искра от свечи). В результате этого микровзрыва температура в камере сгорания достигает 16 000 — 18 000 градусов. Образующиеся газы давят на поршень, толкают его, проворачивая соединенный с поршнем коленчатый вал. Это и есть рабочий ход, приводящий автомобиль в движение.

А охладившиеся газы через выпускной клапан выбрасываются в атмосферу. Пытаясь улучшить эффективность работы устройства, разработчики увеличивали степень сжатия горючей смеси, но тогда она самовоспламенялась «досрочно».

Немецкий инженер Дизель нашел интересный выход из этого затруднения…

В цилиндрах дизеля за счёт движения поршня сжимается чистый воздух. Это позволило в несколько раз увеличить степень сжатия. Температура в камере сгорания достигает 900 град. В конце такта сжатия туда впрыскивается солярка. Её мелкие капли, смешавшись со столь разогретым воздухом, самовоспламеняются. Образующиеся газы, расширяясь, давят на поршень, осуществляя рабочий ход.

Итак, дизельные двигатели отличаются от карбюраторных:

  • По роду используемого топлива. Карбюраторные двигатели — бензиновые. Дизельные — потребляют исключительно солярку.
  • Дизель на 15–20 % экономичнее карбюраторных двигателей за счёт большей степени сжатия, но его обслуживание дороже, чем у его соперника — бензинового двигателя.
  • В числе минусов дизеля — в холодные российские зимы солярка загустевает, нужен её подогрев.
  • Последние исследования американских учёных показали, что выбросы от дизельных двигателей по составу менее вредны, чем от их бензиновых аналогов.

Многолетняя конкуренция между двумя видами ДВС завершилась распределением сферы их использования. Дизельные двигатели как более мощные устанавливаются на морском транспорте, на тракторах и автомобилях большой грузоподъёмности, а карбюраторные — на автомобили малой и средней грузоподъемности, на моторные лодки, мотоциклы и т. д.

Коэффициент полезного действия (КПД)

Эффективность эксплуатации любого механизма определяется его КПД. Паровой двигатель, выпускающий отработанный пар в атмосферу, имеет весьма низкий КПД от 1 до 8%, бензиновые двигатели до 30%, обычный дизельный двигатель до 40%. Безусловно, во все времена инженерная мысль не останавливалась и искала пути повышения КПД.

Талантливый французский инженер Сади Карно разработал теорию работы идеального теплового двигателя.

Его рассуждения были следующими: чтобы обеспечить повторяемость циклов, необходимо, чтобы расширение рабочего вещества при нагревании сменялось его сжатием до первоначального состояния. Этот процесс может совершаться только за счёт работы внешних сил. Причём работа этих сил должна быть меньше полезной работы самого рабочего тела. Для этого следует понизить его давление путём охлаждения в холодильнике. Тогда график всего цикла будет иметь вид замкнутого контура, он то и стал называться циклом Карно. Максимальный КПД идеального двигателя вычисляется по формуле:

Где η сам коэффициент полезного действия, T1 и T2 абсолютные температуры нагревателя и холодильника. Они вычисляются по формуле T= t+273, где t температура по Цельсию. Из формулы видно, что для увеличения КПД необходимо увеличить температуру нагревателя, что ограничено жаропрочностью материала, или понизить температуру холодильника. Максимальный КПД будет при Т= 0К, что также технически неосуществимо.

Реальный коэффициент всегда меньше КПД идеального теплового двигателя. Сравнивая реальный коэффициент с идеальным, можно определить резервы для совершенствования имеющегося двигателя.

Работая в этом направлении, конструкторы снабдили бензиновые двигатели последнего поколения инжекторными системами подачи топлива (впрыскивателями). Это позволяет с помощью электроники добиться его полного сгорания и соответственно увеличить КПД.

Изыскиваются пути уменьшения трения соприкасающихся деталей двигателя, а также улучшения качества используемого топлива.

Прежде природа угрожала человеку, а теперь человек угрожает природе

Со следствиями неразумной деятельности человека приходится сталкиваться уже нынешнему поколению. И значительный вклад в нарушение хрупкого равновесия природы вносит огромный объём тепловых двигателей, используемых на транспорте, в сельском хозяйстве, а также паровых турбин электростанций.

Это вредное воздействие проявляется в колоссальных выбросах и повышении содержания углекислого газа в атмосфере. Процесс сгорания топлива сопровождается потреблением атмосферного кислорода в таких масштабах, что это превышает его выработку всей земной растительностью.

Значительная часть тепла от двигателей рассеивается в окружающей среде. Этот процесс, усугубляемый парниковым эффектом, приводит к повышению среднегодовой температуры на Земле. А глобальное потепление чревато катастрофическими последствиями для всей цивилизации.

Чтобы ситуация не усугублялась, необходима эффективная очистка, отработанных газов, переход на новые экологические стандарты, предъявляющие более жёсткие требования к содержанию вредных веществ в выхлопных газах.

Очень важно использовать только качественное топливо. Хорошие перспективы ожидаются от использования в качестве горючего водорода, поскольку при его сгорании вместо вредных выбросов образуется вода.

В недалеком будущем значительная часть автомобилей, работающих на бензине, будет заменена электромобилями.

Только общими усилиями мы можем сохранить этот удивительный мир, которым природа одарила нашу планету.

Автор: Драчёва Светлана Семёновна


Если это сообщение тебе пригодилось, буда рада видеть тебя в группе ВКонтакте. А ещё — спасибо, если ты нажмёшь на одну из кнопочек «лайков»:

Вы можете оставить комментарий к докладу.

Принцип действия тепловых двигателей. КПД

В восьмом классе мы уже затрагивали тему тепловых двигателей. Напомним, что тепловым двигателем называется устройство, в котором внутренняя энергия топлива преобразуется в механическую энергию.

Для примера рассмотрим газ, находящийся в цилиндре под поршнем. Очевидно, что для того, чтобы привести поршень в движение, необходима разность давления по обе стороны поршня. В тепловых двигателях эта разность достигается путем повышения температуры газа. Нагретый газ обладает достаточно большой внутренней энергией и, расширяясь, совершает работу.

Однако, по мере расширения газ охлаждается, теряя свою внутреннюю энергию. Конечно, для нормальной работы двигателя необходима цикличность. То есть, после совершения работы, газ необходимо перевести в первоначальное состояние.

Итак, принципиальная схема работы теплового двигателя такова: от нагревателя рабочему телу (то есть газу) передается некоторое количество теплоты.

Под этим подразумевается сжигание топлива, в результате которого температура газа повышается на сотни градусов. Внутренняя энергия газа увеличивается и, за счет неё он совершает работу до тех пор, пока не охладится до температуры холодильника (роль холодильника, как правило, выполняет окружающая среда). Очевидно, что газ не может потерять всю свою внутреннюю энергию (если только не охладится до абсолютного нуля). Поэтому, некоторое количество теплоты будет передано холодильнику.

Важными характеристиками теплового двигателя являются следующие величины: количество теплоты, полученное от нагревателя, температура нагревателя (то есть температура образовавшегося газа), температура холодильника, количество теплоты, переданное холодильнику и полезная работа. Полезная работа определяется как разность между количеством теплоты, полученным от нагревателя и количеством теплоты, отданном холодильнику:

Конечно же, любой двигатель характеризуется такой величиной как коэффициент полезного действия. Для теплового двигателя коэффициент полезного действия равен отношению совершенной двигателем работы к количеству теплоты, полученному от нагревателя:

Если мы подставим в это уравнение выражение для полезной работы, то убедимся, что КПД теплового двигателя не может быть больше единицы (то есть не может превышать 100%):

Для наглядности мы можем изобразить графически работу теплового двигателя.

Законы термодинамики позволяют вычислить максимальный возможный КПД для данного теплового двигателя. Впервые это сделал ученый и инженер Сади Карно. Карно справедливо рассудил, что максимальный КПД будет у идеализированной тепловой машины. В этой тепловой машине рабочим телом был идеальный газ, а цикл состоял из двух изотерм и двух адиабат:

Таким образом, цикл Карно описывает максимальную возможную работу газа с минимальными потерями энергии. Итак, максимальный возможный КПД данной тепловой машины определяется отношением разности температуры нагревателя и температуры холодильника к температуре нагревателя:

Необходимо отметить, что в данном уравнении следует использовать абсолютную температурную шкалу. Как видно из формулы, и этот КПД не может быть больше единицы, если только температура холодильника не равна абсолютному нулю. Исходя из всего выше перечисленного, мы можем заключить следующее: КПД любого теплового двигателя не может превышать КПД идеального теплового двигателя.

Примеры решения задач.

Задача 1. Температура холодильника равна 20 ℃. Какова должна быть температура нагревателя, чтобы стало возможным достичь значения КПД теплового двигателя, равное 85%?

Задача 2. Двигатель внутреннего сгорания совершил полезную работу, равную 45 МДж. Если КПД этого двигателя составляет 55%, то, сколько литров бензина было израсходовано на совершение данной работы? Плотность бензина равна 710  кг/м𝟑.

Принцип работы теплового двигателя

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего те­ла (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.

Таким образом, основными элементами любого теплового двигателя являются:

1) рабочее тело (газ или пар), совершающее работу;

2) нагреватель, сообщающий энергию рабочему телу;

3) холодильник, поглощающий часть энергии от рабочего те­ла.

 

Тепловые двигатели: принцип действия, устройство, схема

Рассмотрим тепловые двигатели, принцип действия этих механизмов. В земной коре и мировом океане запасы внутренней энергии можно считать неограниченными. Для того чтобы решать практические задачи, ее явно недостаточно. Устройство и принцип действия теплового двигателя необходимо знать для того, чтобы приводить в движение токарные станки, транспортные средства. Человек нуждается в таких устройствах, которые могут совершать полезную работу.

Тепловые двигатели, принцип действия которых мы рассмотрим, являются основными на нашей планете. Именно в них происходит превращение внутренней энергии в механический вид.

Особенности теплового двигателя

Каков принцип действия теплового двигателя? Кратко его можно представить на простом опыте. Если в пробирку налить воду, закрыть пробкой, довести до кипения, она вылетит. Причина выскакивания пробки заключается в совершении паром внутренней работы. Процесс сопровождается превращением внутренней энергии пара в кинетическую величину для пробки. Тепловые двигатели, принцип действия которых аналогичен описанному эксперименту, отличаются строением. Вместо пробирки используется металлический цилиндр. Пробка заменена поршнем, плотно прилегающим к стенкам, перемещающимся вдоль цилиндра.

Алгоритм действия

Тепловыми машинами называют механизмы, где наблюдается превращение внутренней энергии топлива в механический вид.

Для совершения двигателем полезной работы, должна быть создана разность давлений с обеих сторон поршня либо лопастей мощной турбины. Для достижения такой разности давлений происходит повышение температуры рабочего тела на тысячи градусов в сравнении с ее средним показателем в окружающей среде. Происходит подобное повышение температуры в процессе сгорания топлива.

Изменения температур

У всех современных тепловых машин выделяют рабочее тело. Им принято называть газ, совершающий в процессе расширения полезную работу. Начальную температуру, обозначаемую Т1, он приобретает в паровом котле машины или турбины. Называют этот показатель температурой нагревателя. В процессе совершения работы происходит постепенная потеря газом энергии. Это приводит к неизбежному охлаждению рабочего тела до некоторого показателя Т2. Значение температуры должно быть ниже показателя окружающей среды, иначе давление газа будет иметь меньший показатель, чем атмосферное давление, и работа двигателем не будет совершена.

Показатель Т2 называют температурой холодильника. В его качестве выступает атмосфера либо специальное устройство, необходимое для конденсации и охлаждения отработанного пара.

Некоторые факты

Итак, тепловые двигатели, принцип действия которых основывается на расширении рабочего тела, не способны отдавать для совершения работы всю внутреннюю энергию. В любом случае часть тепла будет передаваться атмосфере (холодильнику) вместе с отработанным паром либо выхлопными газами турбин или двигателей внутреннего сгорания.

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Схема его понятна и проста, доступна даже ученикам средней школы. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Изобретение тепловой машины

Первым изобретателем машины, использующей тепло, стал Сади Карно. Он разработал идеальную машину, в которой рабочим телом выступал идеальный газ. Кроме того, ученому удалось определить показатель КПД для такого устройства, используя значения температуры холодильника и нагревателя.

Карно удалось определить зависимость между реальной тепловой машиной, функционирующей на основе нагревателя, и холодильником, в качестве которого выступает воздух или конденсатор. Благодаря математической формуле, предложенной Карно для его первой идеальной тепловой машины, определяется максимальное значение КПД. Между температурой нагревателя и холодильника существует прямая связь.

Для того чтобы машина полноценно функционировала, значение температуры не должно быть меньше ее показателя в окружающем воздухе. При желании можно повышать температуру нагревателя, не забывая о том, что у каждого твердого тела есть определенная жаропрочность. По мере нагревания оно теряет свою упругость, а при достижении температуры плавления просто плавится.

Благодаря инновациям, которые достигнуты в современной инженерной промышленности, происходит постепенное повышение КПД теплового двигателя. Например, снижается трение между его отдельными частями, устраняются потери, возникающие из-за неполного сгорания топлива.

Двигатель внутреннего сгорания

Он представляет собой тепловую машину, где в виде рабочего тела применяют высокотемпературные газы, получаемые в процессе сгорания разного вида топлива внутри камеры. Выделяют четыре такта в работе автомобильного двигателя. Среди составных его частей назовем впускной и выпускной клапаны, камеру сгорания, поршень, цилиндр, свечу, шатун, а также маховик.

На первом этапе наблюдается плавное передвижение клапана вниз, процесс происходит благодаря заполнению камеры рабочей смесью. В конце первого такта впускной клапан закрывается. Далее поршень передвигается вверх, при этом происходит сжатие рабочей смеси. Появление искры в свече приводит к воспламенению горючей смеси. Давление, которое оказывают пары воздуха и бензина на поршень, приводят к его самопроизвольному движению вниз, поэтому такт называют «рабочим ходом». В движение приводится коленчатый вал. На четвертом этапе открывается выпускной клапан, происходит выталкивание в атмосферу отработанных газов.

Принципы действия тепловых машин

 

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Как работают тепловые двигатели

Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ. Он с усилием давит на лопатки турбины или на поршень, приводя их в движение. Самые простые примеры тепловых двигателей – это паровые машины, а также карбюраторные и дизельные двигатели внутреннего сгорания.

Инструкция

  1. Поршневые тепловые двигатели имеют в своем составе один или несколько цилиндров, внутри которых находится поршень. В объеме цилиндра происходит расширение горячего газа. При этом поршень под воздействием газа перемещается и совершает механическую работу. Такой тепловой двигатель преобразует возвратно-поступательное движение поршневой системы во вращение вала. Для этой цели двигатель оснащается кривошипно-шатунным механизмом.
  2. К тепловым двигателям внешнего сгорания относятся паровые машины, в которых рабочее тело разогревается в момент сжигания топлива за пределами двигателя. Нагретый газ или пар под сильным давлением и при высокой температуре подается в цилиндр. Поршень при этом перемещается, а газ постепенно охлаждается, после чего давление в системе становится почти равным атмосферному.
  3. Отработавший свое газ выводится из цилиндра, в который немедленно подается очередная порция. Для возврата поршня в начальное положение применяют маховики, которые крепят на вал кривошипа. Подобные тепловые двигатели могут обеспечивать одинарное или двойное действие. В двигателях с двойным действием на один оборот вала приходится две стадии рабочего хода поршня, в установках одинарного действия поршень совершает за то же время один ход.
  4. Отличие двигателей внутреннего сгорания от описанных выше систем состоит в том, что горячий газ здесь получается при сжигании топливно-воздушной смеси непосредственно в цилиндре, а не вне его. Подвод очередной порции горючего и выведение отработанных газов производится через систему клапанов. Они позволяют подавать горючее в строго ограниченном количестве и в нужное время.
  5. Источник тепла в двигателях внутреннего сгорания – химическая энергия топливной смеси. Для данного типа теплового двигателя не нужен котел или нагреватель внешнего типа. В качестве рабочего тела здесь выступают самые разные горючие вещества, из которых самым распространенным являются бензин или дизельное топливо. К недостаткам двигателей внутреннего сгорания можно отнести их высокую чувствительность к качеству топливной смеси.
  6. Двигатели внутреннего сгорания по своей конструкции могут быть двух- и четырехтактными. Устройства первого вида проще в конструкции и не так массивны, но при одинаковой мощности требуют значительно больше топлива, чем четырехтактные. Двигатели, работа которых построена на двух тактах, чаще всего применяют в небольших мотоциклах или газонокосилках. Более серьезные машины оснащают тепловыми двигателями четырехтактного типа.

Видео по теме

//www.youtube.com/embed/wfZuvZiU4Qk

Как устроены и как работают тепловые двигатели

Наша сегодняшняя встреча посвящена тепловым двигателям. Именно они приводят в движение большинство видов транспорта, позволяют получать электроэнергию, несущую нам тепло, свет и комфорт. Как устроены и каков принцип действия тепловых машин?

Понятие и виды тепловых двигателей

Тепловые двигатели — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

Осуществляется это следующим образом: расширяющийся газ давит либо на поршень, вызывая его перемещение, либо на лопасти турбины, сообщая ей вращение.

Взаимодействие газа (пара) с поршнем имеет место в паровых машинах, карбюраторных и дизельных двигателях (ДВС).

Примером действия газа, создающим вращение является работа авиационных турбореактивный двигателей.

Структурная схема работы теплового двигателя

Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.

В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.

Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 7 чел.
Средний рейтинг: 4.7 из 5.

Принцип работы кпд теплового двигателя: описание, характеристики

Автор Почемучка На чтение 22 мин. Просмотров 45

Согласно второму началу термодинамики, тепловой двига­тель может непрерывно совершать периодически повторяющу­юся механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего те­ла (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно второму началу термодинамики, тепловой двига­тель может непрерывно совершать периодически повторяющу­юся механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего те­ла (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.

Таким образом, основными элементами любого теплового двигателя являются:

1) рабочее тело (газ или пар), совершающее работу;

2) нагреватель, сообщающий энергию рабочему телу;

3) холодильник, поглощающий часть энергии от рабочего те­ла.

Для наглядности мы можем изобразить графически работу теплового двигателя.

Урок 57. Физика 10 класс

Конспект урока «Принцип действия тепловых двигателей. КПД»

В восьмом классе мы уже затрагивали тему тепловых двигателей. Напомним, что тепловым двигателем называется устройство, в котором внутренняя энергия топлива преобразуется в механическую энергию.

Для примера рассмотрим газ, находящийся в цилиндре под поршнем. Очевидно, что для того, чтобы привести поршень в движение, необходима разность давления по обе стороны поршня. В тепловых двигателях эта разность достигается путем повышения температуры газа. Нагретый газ обладает достаточно большой внутренней энергией и, расширяясь, совершает работу.

Однако, по мере расширения газ охлаждается, теряя свою внутреннюю энергию. Конечно, для нормальной работы двигателя необходима цикличность. То есть, после совершения работы, газ необходимо перевести в первоначальное состояние.

Итак, принципиальная схема работы теплового двигателя такова: от нагревателя рабочему телу (то есть газу) передается некоторое количество теплоты.

Под этим подразумевается сжигание топлива, в результате которого температура газа повышается на сотни градусов. Внутренняя энергия газа увеличивается и, за счет неё он совершает работу до тех пор, пока не охладится до температуры холодильника (роль холодильника, как правило, выполняет окружающая среда). Очевидно, что газ не может потерять всю свою внутреннюю энергию (если только не охладится до абсолютного нуля). Поэтому, некоторое количество теплоты будет передано холодильнику.

Важными характеристиками теплового двигателя являются следующие величины: количество теплоты, полученное от нагревателя, температура нагревателя (то есть температура образовавшегося газа), температура холодильника, количество теплоты, переданное холодильнику и полезная работа. Полезная работа определяется как разность между количеством теплоты, полученным от нагревателя и количеством теплоты, отданном холодильнику:

Конечно же, любой двигатель характеризуется такой величиной как коэффициент полезного действия. Для теплового двигателя коэффициент полезного действия равен отношению совершенной двигателем работы к количеству теплоты, полученному от нагревателя:

Если мы подставим в это уравнение выражение для полезной работы, то убедимся, что КПД теплового двигателя не может быть больше единицы (то есть не может превышать 100%):

Для наглядности мы можем изобразить графически работу теплового двигателя.

Законы термодинамики позволяют вычислить максимальный возможный КПД для данного теплового двигателя. Впервые это сделал ученый и инженер Сади Карно. Карно справедливо рассудил, что максимальный КПД будет у идеализированной тепловой машины. В этой тепловой машине рабочим телом был идеальный газ, а цикл состоял из двух изотерм и двух адиабат:

Таким образом, цикл Карно описывает максимальную возможную работу газа с минимальными потерями энергии. Итак, максимальный возможный КПД данной тепловой машины определяется отношением разности температуры нагревателя и температуры холодильника к температуре нагревателя:

Необходимо отметить, что в данном уравнении следует использовать абсолютную температурную шкалу. Как видно из формулы, и этот КПД не может быть больше единицы, если только температура холодильника не равна абсолютному нулю. Исходя из всего выше перечисленного, мы можем заключить следующее: КПД любого теплового двигателя не может превышать КПД идеального теплового двигателя.

Примеры решения задач.

Задача 1. Температура холодильника равна 20 ℃. Какова должна быть температура нагревателя, чтобы стало возможным достичь значения КПД теплового двигателя, равное 85%?

Задача 2. Двигатель внутреннего сгорания совершил полезную работу, равную 45 МДж. Если КПД этого двигателя составляет 55%, то, сколько литров бензина было израсходовано на совершение данной работы? Плотность бензина равна 710 кг/м 𝟑 .

Цель урока: Разъяснить принцип действия теплового двигателя.

Разделы: Физика

Класс: 10

Тип урока: Урок изучения нового материала.

Цель урока: Разъяснить принцип действия теплового двигателя.

Образовательные: познакомить учащихся с видами тепловых двигателей, развивать умение определять КПД тепловых двигателей, раскрыть роль и значение ТД в современной цивилизации; обобщить и расширить знания учащихся по экологическим проблемам.

Развивающие: развивать внимание и речь, совершенствовать навыки работы с презентацией.

Воспитательные: воспитывать у учащихся чувство ответственности перед последующими поколениями, в связи с чем, рассмотреть вопрос о влиянии тепловых двигателей на окружающую среду.

Оборудование: компьютеры для учащихся, компьютер учителя, мультимедийный проектор, тесты (в Excel), Физика 7-11 Библиотека электронных наглядных пособий. “Кирилл и Мефодий”.

Ход урока

1. Оргмомент

2. Организация внимания учащихся

Тема нашего урока: “Тепловые двигатели”. (Слайд 1)

Сегодня мы вспомним виды тепловых двигателей, рассмотрим условия их эффективной работы, поговорим о проблемах связанных с их массовым применением. (Слайд 2)

3. Актуализация опорных знаний

Прежде чем перейти к изучению нового материала предлагаю проверить как вы к этому готовы.

– Дайте формулировку первого закона термодинамики. (Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количество теплоты, переданное системе. U=A+Q)

– Может ли газ нагреться или охладиться без теплообмена с окружающей средой? Как это происходит? (При адиабатических процессах.) (Слайд 3)

– Напишите первый закон термодинамики в следующих случаях: а) теплообмен между телами в калориметре; б) нагрев воды на спиртовке; в) нагрев тела при ударе. (а) А=0, Q=0, U=0; б) А=0, U= Q; в) Q=0, U=А)

– На рисунке изображен цикл, совершаемый идеальным газом определенной массы. Изобразить этот цикл на графиках р(Т) и Т(р). На каких участках цикла газ выделяет теплоту и на каких – поглощает?

(На участках 3-4 и 2-3 газ выделяет некоторое количество теплоты, а на участках 1-2 и 4-1 теплота поглощается газом.) (Слайд 4)

4. Изучение нового материала

Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу. (Слайд 5)

Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Тепловой двигатель – устройство, превращающее внутреннею энергию топлива в механическую энергию. (Слайд 6)

Рассмотрим устройство и принцип работы теплового двигателя. Тепловая машина работает циклично.

Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника. (Слайд 7)

КПД замкнутого цикла (Слайд 8)

Q1 – количество теплоты полученное от нагревания Q1>Q2

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели.

Вспомните, что такое термодинамическая система и какими параметрами характеризуется её состояние.

Сформулируйте первый и второй законы термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели.

Принцип действия тепловых двигателей. Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.

Роль холодильника. По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2, которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника. Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Все без ис­клю­че­ния теп­ло­вые дви­га­те­ли функ­ци­о­наль­но де­лят­ся на три со­став­ля­ю­щие (см. рис. 2):

Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве.

Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника. Газ или пар, который является рабочим телом, получает от нагревателя некоторое количество теплоты. Рабочее тело, нагреваясь, расширяется и совершает работу за счёт своей внутренней энергии. Часть энергии передаётся атмосфере — холодильнику — вместе с отработанным паром или выхлопными газами.

Очень важно знать, какую часть энергии, выделяемой топливом, тепловой двигатель превращает в полезную работу. Чем больше эта часть энергии, тем двигатель экономичнее.

Для характеристики экономичности различных двигателей введено понятие коэффициента полезного действия двигателя — КПД.

Отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.

Коэффициент полезного действия обозначают η (греч. буква «эта»).

КПД теплового двигателя определяют по формуле

где Ап — полезная работа, Q1 — количество теплоты, полученное от нагревателя, Q2 — количество теплоты, отданное холодильнику, Q1 — Q2 — количество теплоты, которое пошло на совершение работы. КПД выражается в процентах.

Например, двигатель из всей энергии, выделившейся при сгорании топлива, расходует на совершение полезной работы только одну четвёртую часть. Тогда коэффициент полезного действия двигателя равен ¼, или 25% .

КПД двигателя обычно выражают в процентах. Он всегда меньше единицы, т. е. меньше 100% . Например, КПД двигателей внутреннего сгорания 20—40%, паровых турбин — немногим выше 30%.

Домашняя работа

Задание 1. Ответить на вопросы.

  1. Какие тепловые двигатели называют паровыми турбинами?
  2. В чём отличие в устройстве турбин и поршневых машин?
  3. Из каких частей состоит паровая турбина и как она работает?
  4. Почему в тепловых двигателях только часть энергии топлива превращается в механическую энергию?
  5. Что называют КПД теплового двигателя?
  6. Почему КПД двигателя не может быть не только больше 100%, но и равен 100%?

ИНТЕРЕСНО

1. Мощные механизмы приводят в движение не паровыми поршневыми машинами, а паровыми турбинами. Ведь поршневые машины при той же мощности имеют большие размеры и вес и меньший кпд. В ряде случаев это технически неудобно и экономически невыгодно.

2. Чтобы поднять КПД парового двигателя стенки парового котла лучше делать из железа или меди.
Эти металлы улучшат теплопроводность котла и этим поднимут его КПД. Кстати, слой накипи ухудшает теплопроводность котла и приводит к появлению на нем трещин и, в конце концов, к порче котла, поэтому-то так необходимо очищать котел от накипи.

К занятию прикреплен файл «Изобретение и распространение паровых турбин.». Вы можете скачать файл в любое удобное для вас время.

Образовательный сайт для студентов и школьников

Принцип действия и КПД тепловых двигателей

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно второму началу термодинамики тепловой двигатель может непрерывно совершать периодически повторяющуюся механическую работу за счёт охлаждения окружающих тел, если он не только получает теплоту от более горячего тела (нагревателя), но при этом отдаёт теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идёт не всё количество теплоты, полученное от нагревателя, а только часть её.

Выбор двух изотермических и двух адиабатических процессов был обусловлен тем, что работа газа при изотермическом расширении совершается за счёт внутренней энергии нагревателя, а при адиабатном процессе — за счёт внутренней энергии расширяющегося газа. В этом цикле исключён контакт тел с разной температурой, следовательно, исключена теплопередача без совершения работы.

Рис. 79

(2.26)

Суть формулы (2.26) выражена в доказанной С. Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

Эта лекция взята со страницы лекций по всем темам предмета физика:

Возможно эти страницы вам будут полезны:

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

[email protected]

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

На участках 2 и 4 процесс происходит быстро, поэтому его можно считать адиабатическим. Подвод тепла происходит на участке 3 (выделение внутренней энергии топлива).

2. КПД тепловой машины.

.

Для того чтобы эта работа была положительной, и нужен холодильник. При наличии холодильника газ перед сжатием или в процессе сжатия охлаждается, и потому процесс совершения им работы при сжатии протекает в среднем при меньшем давлении, чем при расширении. Из-за этого и, следовательно, .

В процессе действия теплового двигателя его рабочее тело периодически получает от нагревателя количество теплоты , совершает работу A и передает холодильнику количество теплоты . Отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя, называется коэффициентом полезного действия тепловой машины:

.

.

Т.к. , то у любого теплового двигателя .

5 Блок – схема теплового двигателя Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника

1 Тепловые двигатели. КПД тепловых двигателей. Блохина Светлана Николаевна

2 Машины, преобразующие внутреннюю энергию топлива в механическую, называются тепловыми двигателями.

3 Виды тепловых двигателей

4 Паровые двигатели 1698 г. – англичанин Т. Севери 1763 г. – русский И. И. Ползунов 1774 г. англичанин Дж. Уатт 1707 г. – француз Д. Папен Двигатель внутреннего сгорания 1860 г.- француз Ленуар 1876 г. – немец Н. Отто Паровая турбина 1889 г. – швед К. Лаваль

5 Блок – схема теплового двигателя Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника

6 КПД теплового двигателя η = A ; Q η = Q н – Q х = 1 — Q х ; Q н Q н Для идеального двигателя (цикл Карно) η = Т н — Т х = 1 — Т х Т н Т н

7 η не зависит от Q, p, V, m топлива. η является функцией только двух температур

8 Использование тепловых двигателей Паровые турбины на ТЭС, АЭС; Все виды транспорта; Речные и морские суда; В сельском хозяйстве; В строительной и оборонной промышленности.

9 Охрана природы Сооружения, препятствующие выбросу в атмосферу вредных веществ; Увеличение эффективности использования энергии; Замена ДВС электродвигателями.

· Применение тепловых двигателей

Конспект урока физики

для 10 класса учителя МОУ СОШ №14 Лужновой Г.В.

Тема урока: Тепловые двигатели.

1. ввести понятие о тепловом двигателе и его устройстве;

2. показать взаимосвязь развития физики и техники на примере принципов действия тепловых двигателей;

3. раскрыть роль тепловых двигателей в современной цивилизации.

Приемы и методы

Актуализация знаний. Постановка проблемы.

Изучение нового материала.

История и теория тепловых двигателей, характеристики, применение и проблемы.

Лекция с демонстрацией компьютерной презентации.

Записи в тетрадях.

Совершенствование знаний и умений.

Запись в дневниках.

I Вопросы для организации фронтального повторения:

1. Допускает ли первый закон термодинамики теплообмен от менее нагретого тела к более нагретому?

Ответ: Первый закон не запрещает этого процесса, он требует лишь сохранения энергии.

2. Наблюдаются ли такие процессы в природе и технике?

Ответ: В природе – нет, в технике – да.

3. Какие параметры газа меняются при сжатии?

Ответ: Давление возрастает, объем уменьшается, температура увеличивается.

4. О чем говорит второй закон термодинамики? Можно ли его сформулировать так: без совершения работы тепло переходит лишь от более нагретого тела к менее нагретому, а не наоборот?

Мощный расцвет промышленности и транспорта в 19 веке был связан с изобретением и совершенствованием тепловых двигателей. Наша цивилизация – машинная цивилизация, причем большая часть машин – это тепловые машины разных видов. Принцип их работы основан на законах термодинамики. Без тепловых двигателей жизнь общества резко затормозилась бы. Не ездили бы машины, не летали бы самолеты, электроэнергия была бы в дефиците… вот почему так важно изучить работу тепловых двигателей.

На уроке мы рассмотрим следующие вопросы:

· Определение понятия «тепловой двигатель»

· Устройство тепловых двигателей

· Принцип действия тепловых двигателей

· Применение тепловых двигателей

Идея создания теплового двигателя состоит в превращении части внутренней энергии тела (топлива) в механическую энергию других тел. Таким образом возникает возможность совершения механической работы.

Тепловой двигатель — устройство, преобразующее внутреннюю энергию топлива в механическую.

1. В каком случае термодинамическая система совершает работу?

Ответ: При расширении.

2. В каких процессах работа совершается наиболее эффективно?

Ответ: В изотермическом и адиабатном.

Идея преобразования внутренней энергии топлива в механическую работу состоит в следующем: внутренняя энергия топлива при его сгорании преобразуется во внутреннюю энергию высокотемпературного газа и при расширении газа частично превращается в работу.

· ДВС – двигатель внутреннего сгорания ( слайд 5)

· Турбореактивный ( слайд 6)

· Ракетный ( слайд 7).

Разные двигатели устроены по-разному, но у всех есть общие элементы:

1. Объект, который совершает работу – это газ, его называют рабочим телом.

2. Элемент по преобразованию внутренней энергии топлива во внутреннюю энергию газа – нагреватель.

3. Не вся энергия превращается в работу, часть ее отдается холодильнику.

Как обеспечивается постоянная работа теплового двигателя? С теоретической точки зрения процесс должен быть круговым, т.е. система должна возвращаться в первоначальное состояние. Рассмотрим машины, которые выполняют работу в результате реализации круговых процессов – циклов.

Цикл работы ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход и выхлоп, поэтому такой двигатель называют четырехтактным.

Проблему преобразования теплоты в полезную работу впервые исследовал Сади Карно в 1824 г. В своей работе он дал ответ на вопросы, актуальные и сейчас. Существует ли предел улучшения работы теплового двигателя?

Важнейшей характеристикой теплового двигателя является КПД – коэффициент полезного действия – отношение энергии, которая пошла на работу, ко всей энергии, полученной от сгорания топлива: h =

Тепловой двигатель

Термодинамика возникла как наука с основной задачей – созданием наиболее эффективных тепловых машин.

Определение 1

Тепловая машина или тепловой двигатель – это периодически действующий двигатель, совершающий работу за счет получения теплоты.

Обычно совершение работы в тепловом двигателе производится газом при его расширении. Газ, находящийся в нем, получил название рабочего тела. Зачастую его заменяют на воздух или водяные пары. Расширение газа происходит по причине повышения его температуры и давления.

Определение 2

Устройство, от которого рабочее тело получает тепло Qn, называю нагревателем.

Это понимается как расширение от объема V1 к V2 V2>V1, затем сжатие до первоначального объема. Чтобы значение совершаемой работы за цикл было больше нуля, необходимо температуру и давление увеличить и сделать больше, чем при его сжатии. То есть при расширении телу сообщается определенное количество теплоты, а при сжатии отнимается. Значит, кроме нагревателя тепловой двигатель должен иметь холодильник, которому рабочее тело может отдавать тепло.

Рабочее тело совершает работу циклично. Очевидно, изменение внутренней энергии газа в двигателе равняется нулю. Если при расширении от нагревателя к рабочему телу передается теплота в количестве Qn, то при сжатии Q’ch теплота рабочего тела передается холодильнику по первому закону термодинамики, учитывая, что ∆U=0, то значение работы газа в круговом процессе запишется как:

A=Qn-Q’ch (1).

Отсюда теплота Q’ch≠0. Выгодность двигателя определяется по количеству выделенной и превращенной теплоты, полученной от нагревателя, в работу. Его эффективность характеризуется коэффициентом полезного действия (КПД), определяющимся как:

η=AQn (2).

Запись уравнения (2) при учитывании (1) примет вид:

η=Qn-Q’chQn (3), КПД всегда.

Определение 3

Машина, отбирающая от тела с меньшей температурой определенное количество теплоты Qch и отдающая его Q’n телу с наиболее высокой температурой с Q’n>Qch, получила название холодильной машины.

Данная машина должна совершить работу A’ в течение цикла. Эффективность холодильной машины определяется по холодильному коэффициенту, вычисляемому:

a=Q’nA’=Q’nQ’n-Qch (4).

КПД необратимого теплового двигателя всегда меньше, чем работающего по обратимому циклу.

КПД теплового двигателя

Французским инженером Саади Карно была установлена зависимость КПД теплового двигателя от температуры нагревателя Tn и холодильника Tch. Форма конструкции теплового двигателя и выбор рабочего тела не влияет на КПД идеальной тепловой машины:

ηmax=Tn-TchTn (5).

Любой реальный тепловой двигатель может обладать КПД η≤ηmax.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Принцип работы теплового двигателя

Идеальная машина, модель которой разработал Карно, работает по обратимому циклу, состоящему из двух изотерм (1-2, 4-3) и двух адиабат (2-3, 4-1), изображенная на рисунке 1. В качестве рабочего тела выбран идеальный газ. Прохождение адиабатного процесса происходит без подвода и отвода тепла.

Рисунок 1

Участок 1-2 характеризуется сообщением рабочему телу от нагревателя с температурой Tn количества тепла Qn. При изотермическом процессе запись примет вид:

Qn=Tn(S2-S1) (6), где S1, S2 являются энтропиями в соответствующих точках цикла из рисунка 1.

Видно, что участок 3-4 характеризуется отдачей тепла холодильнику с температурой Tch идеальным газом, причем количество теплоты равняется получению газом теплоты -Qch, тогда:

-Qch=Tch(S1-S2) (7).

Выражение, записанное в скобках в (7), указывает на приращение энтропии процесса 3-4.

Принцип действия тепловых двигателей КПД

Произведем подстановку (6), (7) в определение КПД теплового двигателя и получаем:

η=Tn(S2-S1)+Tch(S1-S2)Tn(S2-S1)=Tn-TchTn (8).

В выведенном выражении (8) не выполнялось предположений о свойствах рабочего тела и устройстве теплового двигателя.

По уравнению (8) видно, что для увеличения КПД следует повышать Tn и понижать Tch. Достижение значения абсолютного нуля невозможно, поэтому единственное решение для роста КПД – увеличение Tn.

Задача по созданию теплового двигателя, совершающего работу без холодильника, очень интересна. В физике она получила название вечного двигателя второго рода. Такая задача не находится в противоречии с первым законом термодинамики. Данная проблема считается неразрешимой, как и создание вечного двигателя первого рода. Этот опытный факт в термодинамике приняли в качестве постулата – второго начала термодинамики.

Пример 1

Рассчитать КПД теплового двигателя с температурой нагревания 100 °С и температурой холодильника, равной 0 °С. Считать тепловую машину идеальной.

Решение

Необходимо применение выражения для КПД теплового двигателя, которое записывается как:

η=Tn-TchTn.

Используя систему СИ, получим:

Tn+100 °C+273=373 (К).Tch=0 °C+273=273 (К).

Подставляем числовые значения и вычисляем:

η=373-273373=0,27=27%.

Ответ: КПД теплового двигателя равняется 27%.

Пример 2

Найти КПД цикла, представленного на рисунке 2, если в его пределах объем идеального газа проходит изменения n раз. Считать рабочим веществом газ с показателем адиабаты γ.

Рисунок 2

Решение

Основная формула для вычисления КПД, необходимая для решения данной задачи:

η=Qn-Q’nQn (2.1).

Получения тепла газом происходит во время процесса 1-2Q12=Qn:

Q12=∆U12+A12 (2.2), где A12=0 потому как является изохорным процессом. Отсюда следует:

Q12=∆U12=i2RT2-T1 (2.3).

Процесс, когда газ отдает тепло, обозначается как 3-4, считается изохорным -Q34=Q’ch. Формула примет вид:

Q34=∆U34=i2vRT4-T3 (2.4).

Адиабатные процессы проходят без подвода и отвода тепла.

Произведем подстановку полученных количеств теплоты в выражение для КПД, тогда:

η=i2vRT2-T1+i2vRT4-T3i2vRT2-T1=T2-T1+T4-T3T2-T1=1-T3-T4T2-T1 (2.5).

Следует применить уравнение для адиабаты процессу 2-3:

T2V1γ-1=T3V2γ-1→T2=T3V2γ-1V1γ-1=T3nγ-1 (2.6).

Используем выражение для адиабаты процесса 4-1:

T1V1γ-1=T3V2γ-1→T1=T4V2γ-1V1γ-1=T4nγ-1 (2.7).

Перейдем к нахождению разности температур T2-T1:

T2-T1=T3-T4nГ-1 (2.8).

Произведем подстановку из (2.8) в (2.5):

η=1-T3-T4T3-T4nγ-1=1-1nγ-1=1-n1-γ (2.9).

Ответ: КПД цикла равняется η=1-n1-Г.

Принцип действия тепловой машины. Коэффициент полезного действия тепловых машин

Принцип действия тепловой машины. Коэффициент полезного действия тепловых машин


Большая часть двигателей на Земле — это тепловые двигатели. Устройства, превращающие энергию топлива в механическую энергию, называются тепловыми двигателями. Любой тепловой двигатель (паровые и газовые турбины, двигатели внутреннего сгорания) состоит из трех основных элементов: рабочего тела (это газ), которое совершает работу в двигателе; нагревателя, от которого рабочее тело получает энергию, часть которой затем идет на совершение работы; холодильника, которым является атмосфера или специальные устройства.

Ни один тепловой двигатель не может работать при одинаковой температуре его рабочего тела и окружающей среды. Обязательно температура нагревателя больше температуры холодильника. При совершении работы тепловыми двигателями происходит передача теплоты от более горячих тел к более холодным. Рабочее тело двигателя получает количество теплоты QН от нагревателя, совершает работу A’ и передает холодильнику количество теплоты Q. В соответствии с законом сохранения энергии А’ QНQХ. В случае равенства речь идет об идеальном двигателе, в котором нет потерь энергии.

Отношение работы к энергии, которое получило рабочее тело от нагревателя, называют коэффициентом полезного действия (КПД):.

В процессе работы многочисленных тепловых машин возникают тепловые потери, которые в конечном счете приводят к повышению внутренней энергии атмосферы, т. е. к повышению ее температуры. Это может привести к таянию ледников и катастрофическому повышению уровня Мирового океана, а вместе с тем к глобальному изменению природных условий. При работе тепловых установок и двигателей в атмосферу выбрасываются вредные для человека, животных и растений оксиды азота, углерода и серы. С вредными последствиями работы тепловых машин можно бороться путем повышения КПД, их регулировки и создания новых двигателей, не выбрасывающих вредные вещества с отработанными газами.


Принцип теплового двигателя — исследование QS

Принцип теплового двигателя

Тепловой двигатель — это устройство, преобразующее тепло в работу. Он забирает тепло из резервуара, затем выполняет некоторую работу, например, перемещает поршень, поднимает вес и т. Д., И, наконец, отводит часть тепловой энергии в раковину. В каждом двигателе есть одно рабочее вещество. Например, пар — рабочее вещество в паровом двигателе, опять же бензин — рабочее вещество в бензиновом двигателе. Рабочее вещество получает тепло от высокотемпературного источника, и часть этого тепла преобразуется в работу, а остальное количество тепла сохраняется в радиаторе при низкой температуре.Это принцип работы теплового двигателя.

Это означает, что двигатель, с помощью которого тепловая энергия может быть преобразована в механическую, называется тепловым двигателем. Например, паровой двигатель, бензиновый двигатель, дизельный двигатель и т. Д. В общем, тепловой двигатель — это устройство, которое преобразует химическую энергию в тепловую или тепловую энергию, а затем в механическую энергию или в электрическую энергию.

Температура источника тепла, получаемого двигателем, должна быть выше температуры радиатора.Это означает, что двигатель получает тепло от источника с более высокой температурой, часть этого тепла преобразуется в работу, а остальное количество отбрасывается в радиатор при более низкой температуре, и двигатель возвращается в исходное состояние. Чтобы двигатель работал непрерывно, цикл должен быть изменен таким образом.

Согласно рисунку, рабочее тело получает количество тепла Q от источника при температуре T. Этот двигатель работает за счет части тепла в энергии в механическую энергию, и некоторое положение тепла отводится в радиатор и становится холодным, чтобы двигатель снова мог получать тепло от источника.Если количество тепла, отклоняемого в радиаторе, составляет Q 2 при температуре T 2 , количество тепла, используемое для преобразования в работу, составляет W = Q 1 — Q 2 . Двигатель, который может преобразовывать большую часть тепловой энергии в работу, имеет более высокий КПД. Бензиновый двигатель имеет более высокий КПД, чем паровой двигатель.

Использует

Это устройство обычно использует энергию, выделяемую в виде тепла, для выполнения работы, а затем отводит тепло, которое нельзя использовать для выполнения работы.Термодинамика — это изучение взаимосвязи между теплом и работой. Первый и второй закон термодинамики ограничивают работу теплового двигателя.

Типы

  • Двигатель внешнего сгорания — В этих тепловых двигателях топливо сгорает снаружи и вдали от главного двигателя, где возникают сила и движение. Паровая машина — это пример двигателя внешнего сгорания.
  • Двигатель внутреннего сгорания — В этих тепловых двигателях топливо горит внутри цилиндра.Автомобильный двигатель — это пример двигателя внутреннего сгорания.

Двигатели внутреннего сгорания, как правило, намного более эффективны, чем двигатели внешнего сгорания, потому что энергия не расходуется на передачу тепла от огня и котла в цилиндр; все происходит в одном месте.

Тепловой двигатель: определение, типы и примеры

Обновлено 28 декабря 2020 г.

Ли Джонсон

Тепловые двигатели окружают вас повсюду. От машины, которую вы едете, до холодильника, который охлаждает продукты, до систем отопления и охлаждения вашего дома, — все они работают на одних и тех же ключевых принципах.

Цель любого теплового двигателя — преобразовать тепловую энергию в полезную работу, и для этого можно использовать множество различных подходов. Одной из простейших форм теплового двигателя является двигатель Карно, названный в честь французского физика Николя Леонарда Сади Карно, построенный вокруг идеализированного четырехступенчатого процесса, который зависит от адиабатической и изотермической стадий.

Но двигатель Карно — всего лишь один пример теплового двигателя, и многие другие типы достигают той же основной цели. Изучение того, как работают тепловые двигатели и как вычислять эффективность тепловых двигателей, важно для любого, кто изучает термодинамику.

Что такое тепловой двигатель?

Тепловой двигатель — это термодинамическая система, преобразующая тепловую энергию в механическую. Хотя под этот общий заголовок попадает множество различных конструкций, несколько основных компонентов можно найти практически в любом тепловом двигателе.

Любой тепловой двигатель нуждается в тепловой ванне или высокотемпературном источнике тепла, которые могут принимать множество различных форм (например, ядерный реактор является источником тепла на атомной электростанции, но во многих случаях сжигаемое топливо используется в качестве источника тепла. источник тепла).Кроме того, должен быть резервуар с низкотемпературным холодом, а также сам двигатель, который обычно представляет собой газ, который расширяется при подаче тепла.

Двигатель поглощает тепло из горячего резервуара и расширяется, и именно этот процесс расширения воздействует на окружающую среду, обычно приводя его в пригодную для использования форму с помощью поршня. Затем система отдает тепловую энергию обратно в холодный резервуар и возвращается в исходное состояние. Затем процесс повторяется снова и снова циклически, чтобы непрерывно производить полезную работу.

Типы тепловых двигателей

Термодинамические циклы или циклы двигателя — это общий способ описания многих конкретных термодинамических систем, которые работают циклически, обычным для большинства тепловых двигателей. Простейшим примером теплового двигателя, работающего с термодинамическими циклами, является двигатель Карно или двигатель, работающий на основе цикла Карно. Это идеализированная форма теплового двигателя, в котором задействованы только обратимые процессы, в частности адиабатическое и изотермическое сжатие и расширение.

Все двигатели внутреннего сгорания работают по циклу Отто, который представляет собой еще один тип термодинамического цикла, в котором воспламенение топлива используется для работы с поршнем. На первом этапе поршень опускается, всасывая топливно-воздушную смесь в двигатель, которая затем адиабатически сжимается на второй ступени и воспламеняется на третьей.

Перед открытием выпускного клапана происходит быстрое повышение температуры и давления, которое воздействует на поршень за счет адиабатического расширения, что приводит к снижению давления.Наконец, поршень поднимается, чтобы удалить израсходованные газы и завершить цикл двигателя.

Другой тип теплового двигателя — двигатель Стирлинга, который содержит фиксированное количество газа, которое перемещается между двумя разными цилиндрами на разных стадиях технологического процесса. На первом этапе происходит нагрев газа для повышения температуры и создания высокого давления, которое перемещает поршень для обеспечения полезной работы.

Затем поршень снова поднимается вверх и толкает газ во второй цилиндр, где он охлаждается холодным резервуаром перед повторным сжатием, процесс, требующий меньше работы, чем был произведен на предыдущем этапе.Наконец, газ возвращается в исходную камеру, где цикл двигателя Стирлинга повторяется.

КПД тепловых двигателей

КПД теплового двигателя — это отношение полезной производимой работы к затраченной тепловой или тепловой энергии, и результатом всегда является значение от 0 до 1 без единиц измерения, поскольку и тепловая энергия, и тепловая энергия Объем работы измеряется в джоулях. Это означает, что если бы у вас был идеальный тепловой двигатель , он имел бы КПД 1 и преобразовывал бы всю тепловую энергию в полезную работу, а если бы ему удалось преобразовать половину ее, КПД был бы равен 0.5. В базовом виде формулу можно записать так:

\ text {Эффективность} = \ frac {\ text {Работа}} {\ text {Тепловая энергия}}

Конечно, тепловая машина не может имеют эффективность 1, потому что второй закон термодинамики гласит, что любая замкнутая система со временем будет увеличивать энтропию. Хотя есть точное математическое определение энтропии, которое вы можете использовать, чтобы понять это, самый простой способ подумать об этом — это то, что присущая любому процессу неэффективность приводит к некоторой потере энергии, обычно в форме отходящего тепла.Например, поршень двигателя, несомненно, будет иметь некоторое трение, работающее против его движения, что означает, что система будет терять энергию в процессе преобразования тепла в работу.

Теоретический максимальный КПД теплового двигателя называется КПД Карно. Уравнение для этого связывает температуру горячего резервуара T H и холодного резервуара T C с КПД ( η ) двигателя.

η = 1 — \ frac {T_C} {T_H}

Вы можете умножить результат на 100, если хотите выразить ответ в процентах.Важно помнить, что это теоретический максимум — маловероятно, что какой-либо реальный двигатель действительно приблизится к эффективности Карно на практике.

Важно отметить, что вы максимизируете эффективность тепловых двигателей, увеличивая разницу температур между горячим резервуаром и холодным резервуаром. Для автомобильного двигателя T H — это температура газов внутри двигателя при сгорании, а T C — это температура, при которой они выталкиваются из двигателя.

Примеры из реального мира — паровой двигатель

Паровой двигатель и паровые турбины — два наиболее известных примера теплового двигателя, и изобретение парового двигателя было важным историческим событием в индустриализации общества. Паровая машина работает очень похоже на другие тепловые машины, о которых говорилось выше: котел превращает воду в пар, который направляется в цилиндр, содержащий поршень, и высокое давление пара перемещает цилиндр.

Пар передает часть тепловой энергии цилиндру, охлаждая при этом, а затем, когда поршень полностью выталкивается, оставшийся пар выпускается из цилиндра. В этот момент поршень возвращается в исходное положение (иногда пар направляется на другую сторону поршня, чтобы он тоже мог его толкнуть), и термодинамический цикл начинается снова с большим количеством пара.

Эта относительно простая конструкция позволяет производить большой объем полезной работы из всего, что способно кипятить воду.Эффективность теплового двигателя с такой конструкцией зависит от разницы между температурой пара и окружающего воздуха. Паровоз использует работу, созданную в результате этого процесса, для поворота колес и движения поезда.

Паровая турбина работает очень похоже, за исключением того, что работа идет на вращение турбины, а не на перемещение поршня. Это особенно полезный способ выработки электроэнергии из-за вращательного движения, создаваемого паром.

Примеры из реальной жизни — Двигатель внутреннего сгорания

Двигатель внутреннего сгорания работает на основе цикла Отто, описанного выше, с искровым зажиганием, используемым для бензиновых двигателей, и воспламенением от сжатия, используемым для дизельных двигателей.Основное различие между ними заключается в способе воспламенения топливно-воздушной смеси, когда топливно-воздушная смесь сжимается, а затем физически воспламеняется в бензиновых двигателях, а топливо распыляется в сжатый воздух в дизельных двигателях, вызывая его воспламенение от температуры. .

Помимо этого, остальная часть цикла Отто завершается, как описано ранее: Топливо всасывается в двигатель (или просто воздух для дизельного топлива), сжимается, воспламеняется (искра для топлива и распыление топлива в горячий сжатый воздух). для дизельного топлива), который выполняет полезную работу с поршнем за счет адиабатического расширения, а затем выпускной клапан открывается, чтобы снизить давление, и поршень выталкивает отработанный газ.

Примеры из реального мира — тепловые насосы, кондиционеры и холодильники

Тепловые насосы, кондиционеры и холодильники тоже работают в форме теплового цикла, хотя у них другая цель — использовать работу для перемещения тепловой энергии. чем наоборот. Например, в цикле нагрева теплового насоса хладагент поглощает тепло из наружного воздуха из-за его более низкой температуры (поскольку тепло всегда течет от горячего к холодному), а затем проталкивается через компрессор для повышения его температуры. давление и, следовательно, его температура.

Этот более горячий воздух затем перемещается в конденсатор рядом с обогреваемым помещением, где тот же процесс передает тепло в помещение. Наконец, хладагент проходит через клапан, который понижает давление и, следовательно, температуру, и готов к следующему циклу нагрева.

В цикле охлаждения (как в кондиционере или холодильнике) процесс, по сути, идет в обратном порядке. Хладагент поглощает тепловую энергию из комнаты (или внутри холодильника), потому что он поддерживается при низкой температуре, а затем проталкивается через компрессор для повышения давления и температуры.

В этот момент он перемещается за пределы комнаты (или в заднюю часть холодильника), где тепловая энергия передается более холодному наружному воздуху (или окружающей комнате). Затем хладагент направляется через клапан для понижения давления и температуры, считая для другого цикла нагрева.

Поскольку цель этих процессов противоположна примерам двигателей, выражение для КПД теплового насоса или холодильника также отличается. Впрочем, по форме это вполне предсказуемо.Для отопления:

η = \ frac {Q_H} {W_ {in}}

η = \ frac {Q_C} {W_ {in}}

Где термины Q относятся к тепловой энергии, переданной в комната (с индексом H) и перемещенная из нее (с индексом C) и W в — это вход работы в систему в виде электричества. Опять же, это значение является безразмерным числом от 0 до 1, но вы можете умножить результат на 100, чтобы получить процентное значение, если хотите.

Пример из реального мира — электростанции или электростанции

Электростанции или электростанции — это просто еще одна форма теплового двигателя, независимо от того, производят ли они тепло с помощью ядерного реактора или сжигая топливо.Источник тепла используется для перемещения турбин и, таким образом, выполнения механической работы, часто с использованием пара из нагретой воды для вращения паровой турбины, которая вырабатывает электричество описанным выше способом. Точный тепловой цикл может варьироваться между электростанциями, но обычно используется цикл Ренкина.

Цикл Ренкина начинается с повышения температуры воды источником тепла, затем расширения водяного пара в турбине, за которым следует конденсация в конденсаторе (высвобождение отработанного тепла в процессе), прежде чем охлажденная вода поступает в насос.Насос увеличивает напор воды и подготавливает ее к дальнейшему нагреву.

12.4 Применение термодинамики: тепловые двигатели, тепловые насосы и холодильники

Тепловые двигатели, тепловые насосы и холодильники

В этом разделе мы исследуем, как работают тепловые двигатели, тепловые насосы и холодильники с точки зрения законов термодинамики.

Одна из самых важных вещей, которые мы можем сделать с теплом, — это использовать его для работы за нас. Тепловой двигатель делает именно это — он использует свойства термодинамики для преобразования тепла в работу.Бензиновые и дизельные двигатели, реактивные двигатели и паровые турбины, вырабатывающие электричество, — все это примеры тепловых двигателей.

На рис. 12.13 показан один из способов, которыми тепло передает энергию для выполнения работы. Сгорание топлива высвобождает химическую энергию, которая передает тепло по газу в цилиндре. Это увеличивает температуру газа, что, в свою очередь, увеличивает давление газа и, следовательно, силу, которую он оказывает на подвижный поршень. Газ действительно воздействует на внешний мир, поскольку эта сила перемещает поршень на некоторое расстояние.Таким образом, передача энергии газу в баллоне приводит к выполнению работы.

Рис. 12.13 (a) Передача тепла газу в баллоне увеличивает внутреннюю энергию газа, создавая более высокое давление и температуру. (b) Сила, действующая на подвижный цилиндр, действительно работает, когда газ расширяется. Давление и температура газа снижаются во время расширения, указывая на то, что внутренняя энергия газа уменьшилась по мере его работы. (c) Теплопередача энергии в окружающую среду дополнительно снижает давление в газе, так что поршень может более легко вернуться в исходное положение.

Чтобы повторить этот процесс, поршень необходимо вернуть в исходную точку. Тепло теперь передает энергию от газа к окружающей среде, так что давление газа снижается, и окружающая среда оказывает силу, толкающую поршень назад на некоторое расстояние.

Циклический процесс возвращает систему, например газ в баллоне, в исходное состояние в конце каждого цикла. Все тепловые двигатели используют циклические процессы.

Тепловые двигатели работают, используя часть энергии, передаваемую теплом от какого-либо источника.Как показано на рис. 12.14, тепло передает энергию QhQh от высокотемпературного объекта (или горячего резервуара), тогда как тепло передает неиспользованную энергию QcQc низкотемпературному объекту (или холодному резервуару), и работа, выполняемая объектом двигатель Вт . В физике резервуар определяется как бесконечно большая масса, которая может принимать или выводить неограниченное количество тепла в зависимости от потребностей системы. Температура горячего резервуара — Th, Th, а температура холодного резервуара — TcTc.

Рис. 12.14 (а) Тепло самопроизвольно передает энергию от горячего объекта к холодному, что согласуется со вторым законом термодинамики. (б) Тепловой двигатель, обозначенный здесь кружком, использует часть энергии, передаваемой теплом, для выполнения работы. Горячие и холодные предметы называются горячими и холодными резервуарами. Q h — тепло, выходящее из горячего резервуара, W — рабочая мощность, а Q c — неиспользованное тепло в холодный резервуар.

Как уже отмечалось, циклический процесс возвращает систему в исходное состояние в конце каждого цикла. Внутренняя энергия такой системы, U , одинакова в начале и в конце каждого цикла, то есть ΔU = 0ΔU = 0. Первый закон термодинамики гласит, что ΔU = Q − W, ΔU = Q − W, где Q — это чистая теплопередача во время цикла, а W чистая работа , выполненная системой. Чистая теплопередача — это энергия, передаваемая теплом из горячего резервуара за вычетом количества, которое передается в холодный резервуар (Q = Qh-QcQ = Qh-Qc).Поскольку нет изменения внутренней энергии для полного цикла (ΔU = 0ΔU = 0), мы имеем

, так что

Следовательно, чистая работа, выполненная системой, равна чистому теплу, поступающему в систему, или

для циклического процесса.

Поскольку горячий резервуар нагревается извне, а это энергоемкий процесс, важно, чтобы работа выполнялась как можно более эффективно. Фактически, мы хотим, чтобы Вт и равнялись QhQh, и чтобы не было тепла в окружающую среду (то есть Qc = 0Qc = 0).К сожалению, это невозможно. Согласно второму закону термодинамики, тепловые двигатели не могут иметь совершенного преобразования тепла в работу. Вспомните, что энтропия — это мера беспорядка в системе, а также количество энергии, недоступной для выполнения работы. Второй закон термодинамики требует, чтобы полная энтропия системы либо увеличивалась, либо оставалась постоянной в любом процессе. Следовательно, существует минимальное количество QhQh, которое нельзя использовать для работы. Количество тепла, отводимого в холодный резервуар, Qc, Qc, зависит от эффективности теплового двигателя.Чем меньше увеличение энтропии, ΔSΔS, тем меньше значение QcQc и тем больше тепловой энергии доступно для выполнения работы.

Тепловые насосы, кондиционеры и холодильники используют теплопередачу энергии от низких до высоких температур, что противоположно тому, что делают тепловые двигатели. Тепло передает энергию QcQc из холодного резервуара и передает энергию QhQh в горячий. Для этого требуется ввод работы, Вт, , которая производит передачу энергии за счет тепла. Таким образом, общая теплоотдача к горячему резервуару составляет

Назначение теплового насоса — передача энергии посредством тепла в теплую среду, например, в дом зимой.Большим преимуществом использования теплового насоса для поддержания тепла в вашем доме, а не просто сжигания топлива в камине или печи, является то, что тепловой насос подает Qh = Qc + WQh = Qc + W. Тепло QcQc поступает от наружного воздуха даже при температуре ниже нуля в помещение. Вы платите только за Вт, и получаете дополнительную теплоотдачу QcQc извне бесплатно. Во многих случаях в отапливаемое пространство передается как минимум вдвое больше энергии, чем используется для работы теплового насоса. Когда вы сжигаете топливо, чтобы согреться, вы платите за все.Недостатком теплового насоса является то, что входная работа (требуемая вторым законом термодинамики) иногда бывает дороже, чем просто сжигание топлива, особенно если работа обеспечивается за счет электроэнергии.

Основные компоненты теплового насоса показаны на рисунке 12.15. Используется рабочая жидкость, например хладагент. В наружных змеевиках (испарителе) тепло QcQc поступает в рабочую жидкость из холодного наружного воздуха, превращая ее в газ.

Рисунок 12.15 Простой тепловой насос состоит из четырех основных компонентов: (1) испаритель, (2) компрессор, (3) конденсатор и (4) расширительный клапан.В режиме отопления тепло передает QcQc рабочему телу в испарителе (1) от более холодного наружного воздуха, превращая его в газ. Компрессор с электрическим приводом (2) увеличивает температуру и давление газа и нагнетает его в змеевики конденсатора (3) внутри отапливаемого пространства. Поскольку температура газа выше, чем температура в комнате, тепло передает энергию от газа к комнате, когда газ конденсируется в жидкость. Затем рабочая жидкость охлаждается, поскольку она течет обратно через расширительный клапан (4) к змеевикам испарителя наружного блока.

Компрессор с электрическим приводом (рабочая мощность W ) повышает температуру и давление газа и нагнетает его в змеевики конденсатора, которые находятся внутри отапливаемого пространства. Поскольку температура газа выше, чем температура внутри комнаты, тепло передает энергию в комнату, и газ конденсируется в жидкость. Затем жидкость течет обратно через расширительный (понижающий давление) клапан. Жидкость, охлажденная за счет расширения, возвращается к змеевикам испарителя наружного блока для возобновления цикла.

О качестве теплового насоса судят по тому, сколько энергии передается теплом в теплое пространство (QhQh) по сравнению с тем, сколько требуется входной работы ( Вт, ).

Предупреждение о заблуждении

Помните, что холодильники и кондиционеры не создают холода. Они просто передают тепло изнутри наружу.

Вернитесь к закону идеального газа, законам термодинамики и энтропии. Используйте их, чтобы понять, как работают кондиционеры и холодильники.Это также даст вам возможность оценить свое понимание этих концепций. И в холодильниках, и в кондиционерах используются химические вещества, которые могут легко переходить из жидкой фазы в газообразную и обратно. Химическое вещество присутствует в замкнутом контуре трубопровода. Изначально он находится в газообразном состоянии. Компрессор сжимает частицы газа, являющиеся химическим веществом, ближе друг к другу, создавая высокое давление. Следуя закону идеального газа, с увеличением давления увеличивается и температура. Этот горячий плотный газ распространяется по небольшим трубкам или ребрам конденсатора, который расположен на внешней стороне кондиционера (и на задней стороне холодильника).Ребра контактируют с наружным воздухом, который холоднее сжатого химического вещества, и, следовательно, как показывает энтропия, тепло передает энергию от горячего конденсатора к относительно более холодному воздуху. В результате газ охлаждается и конденсируется в жидкость. Затем эта жидкость попадает в испаритель через крошечное узкое отверстие. По другую сторону отверстия газ расширяется (увеличивается энтропия), и его давление падает. Следовательно, согласно закону идеального газа, его температура также понижается.Вентилятор обдувает этот уже остывший испаритель в комнату или в холодильник (рис. 12.16).

Рисунок 12.16 Тепловые насосы, кондиционеры и холодильники — это тепловые двигатели, работающие в обратном направлении. Практически в каждом доме есть холодильник. Большинство людей не осознают, что они тоже делят свои дома с тепловым насосом.

Кондиционеры и холодильники предназначены для охлаждения веществ путем передачи энергии посредством тепла QcQc из прохладной среды в более теплую, где тепло QhQh отдается.В случае холодильника тепло отводится из внутренней части холодильника в окружающую комнату. Для кондиционера тепло передается на улицу из дома. Тепловые насосы также часто используются в реверсивном режиме для охлаждения помещений летом.

Как и в случае с тепловыми насосами, для передачи тепла от холода к теплу требуется вводимая работа. О качестве кондиционеров и холодильников судят по тому, сколько энергии отводится теплом QcQc из холодной окружающей среды, по сравнению с тем, сколько работы требуется, Вт .Таким образом, то, что считается преимуществом энергии в тепловом насосе, в холодильнике считается отработанным теплом.

Второй закон термодинамики

Второй закон

Второй закон термодинамики гласит, что передача тепла происходит самопроизвольно только от тел с более высокой температурой к телам с более низкой температурой.

Цели обучения

Сопоставьте концепцию необратимости между Первым и Вторым законами термодинамики

Основные выводы

Ключевые моменты
  • Многие термодинамические явления, разрешенные первым законом термодинамики, никогда не происходят в природе.
  • Многие процессы происходят спонтанно только в одном направлении, и второй закон термодинамики имеет дело с направлением, принимаемым спонтанными процессами.
  • Согласно второму закону термодинамики, для любого процесса невозможно иметь теплопередачу от более холодного объекта к более горячему как единственный результат.
Ключевые термины
  • энтропия : Мера того, насколько равномерно энергия (или какое-либо аналогичное свойство) распределяется в системе.
  • первый закон термодинамики : версия закона сохранения энергии, специально предназначенная для термодинамических систем.Обычно выражается как ΔU = Q − W.

Необратимость

Второй закон термодинамики касается направления, принимаемого спонтанными процессами. Многие процессы происходят спонтанно только в одном направлении, то есть они необратимы при заданном наборе условий. Хотя необратимость наблюдается в повседневной жизни — например, разбитое стекло не возвращается в исходное состояние — полная необратимость — это статистическое утверждение, которое нельзя увидеть в течение всей жизни Вселенной.Точнее, необратимый процесс — это процесс, зависящий от пути. Если процесс может идти только в одном направлении, то обратный путь принципиально отличается, и процесс не может быть обратимым.

Например, тепло включает передачу энергии от более высокой температуры к более низкой. Холодный объект, соприкасающийся с горячим, никогда не становится холоднее, передавая тепло горячему объекту и делая его более горячим. Кроме того, механическая энергия, такая как кинетическая энергия, может быть полностью преобразована в тепловую за счет трения, но обратное невозможно.Горячий неподвижный объект никогда самопроизвольно не остывает и не начинает двигаться. Еще один пример — расширение потока газа, введенного в один угол вакуумной камеры. Газ расширяется, заполняя камеру, но никогда не собирается в углу. Случайное движение молекул газа могло бы вернуть их всех в угол, но этого никогда не происходит.

Односторонняя обработка в природе : Примеры односторонних процессов в природе. (а) Теплообмен происходит самопроизвольно от горячего к холодному, а не от холодного к горячему.(б) Тормоза этого автомобиля преобразуют кинетическую энергию в теплоотдачу в окружающую среду. Обратный процесс невозможен. (c) Выброс газа, попадающего в эту вакуумную камеру, быстро расширяется, чтобы равномерно заполнить каждую часть камеры. Случайные движения молекул газа никогда не вернут их в угол.

Второй закон термодинамики

Тот факт, что определенные процессы никогда не происходят, предполагает, что существует закон, запрещающий их возникновение. Первый закон термодинамики позволяет им происходить — ни один из этих процессов не нарушает закон сохранения энергии.Закон, запрещающий эти процессы, называется вторым законом термодинамики. Мы увидим, что второй закон можно сформулировать разными способами, которые могут показаться разными, но на самом деле эти многие способы эквивалентны. Как и все законы природы, второй закон термодинамики дает представление о природе, и несколько его утверждений подразумевают, что он широко применим, фундаментально влияя на многие очевидно несопоставимые процессы. Уже знакомое направление теплопередачи от горячего к холодному лежит в основе нашей первой версии второго закона термодинамики.

Термодинамика и тепловые двигатели : Краткое введение в тепловые двигатели и термодинамические концепции, такие как двигатель Карно, для студентов.

Второй закон термодинамики (первое выражение): Передача тепла происходит спонтанно от тел с более высокой температурой к телам с более низкой температурой, но никогда самопроизвольно в обратном направлении.

Закон гласит, что ни один процесс не может иметь своим единственным результатом передачу тепла от холодильника к более горячему объекту.Позже мы выразим закон в других терминах, особенно в терминах энтропии.

Тепловые двигатели

В термодинамике тепловой двигатель — это система, которая выполняет преобразование тепла или тепловой энергии в механическую работу.

Цели обучения

Обоснуйте, почему КПД — один из важнейших параметров для любой тепловой машины

Основные выводы

Ключевые моменты
  • Циклический процесс возвращает систему, например газ в баллоне, в исходное состояние в конце каждого цикла.В большинстве тепловых двигателей, таких как поршневые двигатели и вращающиеся турбины, используются циклические процессы.
  • Второй закон термодинамики можно выразить следующим образом: ни в какой системе теплопередачи от резервуара невозможно полностью преобразовать работу в циклический процесс, в котором система возвращается в исходное состояние.
  • Эффективность теплового двигателя (Eff) определяется как чистая выходная мощность двигателя W, деленная на передачу тепла двигателю: [latex] \ text {Eff} = \ frac {\ text {W}} {\ text { Q} _ \ text {h}} = 1 — \ frac {\ text {Q} _ \ text {c}} {\ text {Q} _ \ text {h}} [/ latex], где Q c и Q h обозначает передачу тепла горячему (двигатель) и холодному (окружающая среда) резервуару.
Ключевые термины
  • тепловая энергия : Внутренняя энергия системы в термодинамическом равновесии, обусловленная ее температурой.
  • внутренняя энергия : сумма всей энергии, присутствующей в системе, включая кинетическую и потенциальную энергию; эквивалентно, энергия, необходимая для создания системы, за исключением энергии, необходимой для перемещения ее окружения.

В термодинамике тепловой двигатель — это система, которая выполняет преобразование тепла или тепловой энергии в механическую работу.Бензиновые и дизельные двигатели, реактивные двигатели и паровые турбины — все это тепловые двигатели, которые работают, используя часть теплопередачи от какого-либо источника. Передача тепла от горячего объекта (или горячего резервуара) обозначается Q h , в то время как передача тепла в холодный объект (или холодный резервуар) составляет Q c , а работа, выполняемая двигателем, равна W. для горячего и холодного резервуаров — T h и T c соответственно.

Теплопередача : (a) Теплопередача происходит самопроизвольно от горячего объекта к холодному в соответствии со вторым законом термодинамики.(б) Тепловой двигатель, представленный здесь кружком, использует часть теплопередачи для выполнения работы. Горячие и холодные предметы называются горячими и холодными резервуарами. Qh — теплоотдача из горячего резервуара, W — рабочая мощность, а Qc — теплоотдача в холодный резервуар.

Термодинамика и тепловые двигатели : Краткое введение в тепловые двигатели и термодинамические концепции, такие как двигатель Карно, для студентов.

Поскольку горячий резервуар нагревается извне, что требует больших затрат энергии, важно, чтобы работа выполнялась как можно более эффективно.Фактически, нам хотелось бы, чтобы W равнялась Q ч , и чтобы тепло не передавалось в окружающую среду (Q c = 0). К сожалению, это невозможно. Второй закон термодинамики (второе выражение) также утверждает относительно использования теплопередачи для выполнения работы: Невозможно ни в одной системе для теплопередачи от резервуара полностью преобразовать работу в циклический процесс, в котором система возвращается в его исходное состояние.

Циклический процесс возвращает систему, например газ в баллоне, в исходное состояние в конце каждого цикла.В большинстве тепловых двигателей, таких как поршневые двигатели и вращающиеся турбины, используются циклические процессы. Второй закон в его второй форме четко гласит, что такие двигатели не могут иметь совершенного преобразования теплопередачи в выполненную работу.

КПД

Циклический процесс возвращает систему в исходное состояние в конце каждого цикла. По определению, внутренняя энергия такой системы U одинакова в начале и в конце каждого цикла, то есть ΔU = 0. Первый закон термодинамики гласит, что ΔU = Q-W, где Q — чистая теплопередача во время цикла (Q = Q h -Q c ), а W — чистая работа, выполненная системой.Поскольку ΔU = 0 для полного цикла, имеем W = Q. Таким образом, чистая работа, выполняемая системой, равна чистому теплопередаче в систему, или

[латекс] \ text {W} = \ text {Q} _ \ text {h} — \ text {Q} _ \ text {c} [/ latex] (циклический процесс),

, как показано схематически на (b).

КПД — один из важнейших параметров любой тепловой машины. Проблема в том, что во всех процессах происходит значительная передача тепла Q c , теряемого в окружающую среду. При преобразовании энергии в работу мы всегда сталкиваемся с проблемой получить меньше, чем вкладываем.Мы определяем эффективность теплового двигателя ( Eff ) как его полезную мощность W, деленную на теплопередачу к двигателю Q h:

[латекс] \ text {Eff} = \ frac {\ text {W}} {\ text {Q} _ \ text {h}} [/ latex].

Поскольку W = Q h −Q c в циклическом процессе, мы также можем выразить это как

[латекс] \ text {Eff} = \ frac {\ text {Q} _ \ text {h} — \ text {Q} _ \ text {c}} {\ text {Q} _ \ text {h}} = 1 — \ frac {\ text {Q} _ \ text {c}} {\ text {Q} _ \ text {h}} [/ latex] (для циклического процесса),

, поясняющий, что эффективность 1, или 100%, возможна только при отсутствии передачи тепла в окружающую среду (Q c = 0).

Циклы Карно

Цикл Карно — это наиболее эффективный из возможных циклических процессов, в котором используются только обратимые процессы.

Цели обучения

Проанализируйте, почему двигатель Карно считается идеальным двигателем

Основные выводы

Ключевые моменты
  • Второй закон термодинамики показывает, что двигатель Карно, работающий между двумя заданными температурами, имеет максимально возможный КПД по сравнению с любым тепловым двигателем, работающим между этими двумя температурами.
  • Необратимые процессы связаны с диссипативными факторами, которые снижают эффективность двигателя. Очевидно, обратимые процессы лучше с точки зрения эффективности.
  • КПД Карно, максимально достижимый КПД теплового двигателя, задается как [латекс] \ text {Eff} _ \ text {c} = 1- \ frac {\ text {T} _ \ text {c}} {\ text { T} _ \ text {h}} [/ латекс].
Ключевые термины
  • второй закон термодинамики : Закон, гласящий, что энтропия изолированной системы никогда не уменьшается, потому что изолированные системы спонтанно эволюционируют к термодинамическому равновесию — состоянию максимальной энтропии.Равно как и вечные двигатели второго типа невозможны.
  • тепловой двигатель : любое устройство, преобразующее тепловую энергию в механическую работу.

Из второго закона термодинамики мы знаем, что тепловой двигатель не может быть на 100 процентов эффективным, так как всегда должна быть некоторая передача тепла Q c в окружающую среду. (См. Наш атом в разделе «Тепловые двигатели».) Насколько эффективна тогда тепловая машина? На этот вопрос теоретически ответил в 1824 году молодой французский инженер Сади Карно (1796-1832) в своем исследовании появившейся в то время технологии тепловых двигателей, имеющих решающее значение для промышленной революции.Он разработал теоретический цикл, который теперь называется циклом Карно, который является наиболее эффективным из возможных циклических процессов. Второй закон термодинамики можно переформулировать в терминах цикла Карно, и поэтому Карно фактически открыл этот фундаментальный закон. Любой тепловой двигатель, использующий цикл Карно, называется двигателем Карно.

Для цикла Карно критически важно то, что используются только обратимые процессы. Необратимые процессы связаны с диссипативными факторами, такими как трение и турбулентность.Это увеличивает теплоотдачу Q c в окружающую среду и снижает КПД двигателя. Очевидно, что обратимые процессы лучше.

Второй закон термодинамики (третья форма): Двигатель Карно, работающий между двумя заданными температурами, имеет максимально возможный КПД по сравнению с любым тепловым двигателем, работающим между этими двумя температурами. Кроме того, все двигатели, в которых используются только обратимые процессы, имеют одинаковую максимальную эффективность при работе между одинаковыми заданными температурами.

КПД

Цикл Карно состоит из двух изотермических и двух адиабатических процессов. Напомним, что и изотермические, и адиабатические процессы в принципе обратимы.

PV-диаграмма для цикла Карно : PV-диаграмма для цикла Карно, использующая только обратимые изотермические и адиабатические процессы. Передача тепла Qh в рабочее тело происходит на изотермическом пути AB, который происходит при постоянной температуре Th. Теплоотдача Qc происходит из рабочего тела на изотермическом пути CD, который происходит при постоянной температуре Tc.Выход сети W равен площади внутри пути ABCDA. Также показана схема двигателя Карно, работающего между горячим и холодным резервуарами при температурах Th и Tc.

Карно также определил эффективность идеального теплового двигателя, то есть двигателя Карно. Всегда верно, что эффективность циклической тепловой машины определяется следующим образом: [latex] \ text {Eff} = \ frac {\ text {Q} _ \ text {h} — \ text {Q} _ \ text {c }} {\ text {Q} _ \ text {h}} = 1- \ frac {\ text {Q} _ \ text {c}} {\ text {Q} _ \ text {h}} [/ latex] .

Карно обнаружил, что для идеального теплового двигателя отношение Q c / Q h равно отношению абсолютных температур тепловых резервуаров.То есть Q c / Q h = T c / T h для двигателя Карно, так что максимальная эффективность Карно Eff C определяется как [латекс] \ text {Eff } _ \ text {c} = 1- \ frac {\ text {T} _ \ text {c}} {\ text {T} _ \ text {h}} [/ latex], где T h и T c в кельвинах. (Вывод формулы немного выходит за рамки этого атома.) Никакая настоящая тепловая машина не может работать так же хорошо, как КПД Карно — фактический КПД около 0,7 от этого максимума обычно является лучшим, что может быть достигнуто.

Тепловые насосы и холодильники

Тепловой насос — это устройство, которое передает тепловую энергию от источника тепла к радиатору против перепада температур.

Цели обучения

Объясните, как компоненты теплового насоса вызывают передачу тепла от холодного резервуара к горячему резервуару

Основные выводы

Ключевые моменты
  • Тепловой насос предназначен для передачи тепла Qh в теплую среду, например в дом зимой.
  • Задача кондиционеров и холодильников заключается в том, чтобы передача тепла Qc происходила из прохладной окружающей среды, например, охлаждение комнаты или хранение продуктов при более низких температурах, чем температура окружающей среды.
  • Тепловой насос можно использовать как для обогрева, так и для охлаждения помещения. По сути, это кондиционер и обогреватель в одном устройстве. Это стало возможным за счет изменения направления потока хладагента и изменения направления полезной теплопередачи.
Ключевые термины
  • CFC : органическое соединение, которое обычно использовалось в качестве хладагента.Больше не используется из-за разрушения озонового слоя.

Тепловые насосы, кондиционеры и холодильники используют передачу тепла от холода к горячему. Передача тепла (Q c ) происходит из холодного резервуара в горячий. Для этого требуется рабочая мощность W, которая также преобразуется в теплопередачу. Таким образом, теплопередача к горячему резервуару составляет Q h = Q c + W. Задача теплового насоса заключается в передаче тепла Q h в теплую среду, например в дом зимой.Задача кондиционеров и холодильников заключается в том, чтобы передача тепла Q c происходила из прохладной окружающей среды, такой как охлаждение комнаты или хранение продуктов при более низких температурах, чем температура окружающей среды. На самом деле тепловой насос можно использовать как для обогрева, так и для охлаждения помещения. По сути, это кондиционер и обогреватель в одном устройстве. В этом разделе мы сконцентрируемся на его режиме нагрева.

Тепловые насосы

В основном тепловом насосе используется рабочая жидкость, например хладагент, не содержащий CFC.Основными компонентами теплового насоса являются конденсатор, расширительный клапан, испаритель и компрессор. В наружных змеевиках (испарителе) теплоотдача Q c происходит к рабочему телу от холодного наружного воздуха, превращая его в газ. Компрессор с электрическим приводом (рабочая мощность W) повышает температуру и давление газа и нагнетает его в змеевики конденсатора, которые находятся внутри отапливаемого пространства. Поскольку температура газа выше, чем температура внутри комнаты, происходит передача тепла в комнату, и газ конденсируется в жидкость.Затем жидкость течет обратно через редукционный клапан к змеевикам испарителя наружного блока, охлаждаясь за счет расширения. (В цикле охлаждения змеевики испарителя и конденсатора меняются ролями, и направление потока жидкости меняется на противоположное.)

Простой тепловой насос : Простой тепловой насос состоит из четырех основных компонентов: (1) конденсатор, (2) расширительный клапан, (3) испаритель и (4) компрессор.

Коэффициент полезного действия

О качестве теплового насоса судят по тому, сколько тепла Q h происходит в теплое пространство по сравнению с тем, сколько работы W требуется.Мы определяем КПД теплового насоса (COP л.с. ) равным

.

[латекс] \ text {COP} _ {\ text {hp}} = \ frac {\ text {Q} _ \ text {h}} {\ text {W}} [/ latex].

Поскольку КПД теплового двигателя составляет Eff = W / Q h , мы видим, что COP л.с. = 1/ Eff . Поскольку КПД любого теплового двигателя меньше 1, это означает, что COP л.с. всегда больше 1, то есть тепловой насос всегда имеет большую теплопередачу Q ч , чем вложенные в него работы.Еще один интересный момент заключается в том, что тепловые насосы лучше всего работают при небольших перепадах температур. КПД идеального двигателя (или двигателя Карно) составляет

.

[латекс] \ text {Eff} _ \ text {C} = 1 \ frac {\ text {T} _ \ text {c}} {\ text {T} _ \ text {h}} [/ latex];

таким образом, чем меньше разница температур, тем меньше КПД и больше КПД л.с. .

Кондиционеры и холодильники

Кондиционеры и холодильники предназначены для охлаждения чего-либо в теплой среде.Как и в случае с тепловыми насосами, для передачи тепла от холодного к горячему требуется дополнительная работа. О качестве кондиционеров и холодильников судят по тому, какая теплоотдача Q c происходит из холодной окружающей среды по сравнению с тем, сколько работы W требуется. То, что считается преимуществом теплового насоса, в холодильнике считается отходящим теплом. Таким образом, мы определяем коэффициент полезного действия (COP ref ) кондиционера или холодильника как

.

[латекс] \ text {COP} _ {\ text {ref}} = \ frac {\ text {Q} _ \ text {c}} {\ text {W}} [/ latex].

Поскольку Q h = Q c + W и COP л.с. = Q h / W, мы получаем, что

[латекс] \ text {COP} _ {\ text {ref}} = \ text {COP} _ {\ text {hp}} -1 [/ латекс].

Кроме того, из Q h > Q c мы видим, что кондиционер будет иметь более низкий коэффициент полезного действия, чем тепловой насос.

Применения термодинамики: тепловые насосы и холодильники

Цели обучения

К концу этого раздела вы сможете:

  • Опишите использование тепловых двигателей в тепловых насосах и холодильниках.
  • Продемонстрируйте, как тепловой насос работает для обогрева внутреннего пространства.
  • Объясните разницу между тепловыми насосами и холодильниками.
  • Рассчитайте коэффициент полезного действия теплового насоса.

Рис. 1. Практически в каждом доме есть холодильник. Большинство людей не осознают, что они тоже делят свои дома с тепловым насосом. (кредит: Id1337x, Wikimedia Commons)

Тепловые насосы, кондиционеры и холодильники используют передачу тепла от холода к горячему.Это тепловые двигатели, работающие задом наперед. Мы говорим «в обратном направлении», а не в обратном направлении, потому что, за исключением двигателей Карно, все тепловые двигатели, хотя они могут работать в обратном направлении, не могут быть полностью реверсированы. Передача тепла происходит из холодного резервуара Q c и в горячий. Для этого требуется потребляемая мощность Вт, , которая также преобразуется в теплопередачу. Таким образом, теплопередача к горячему резервуару составляет Q h = Q c + W . (Обратите внимание, что Q h , Q c и W положительны, их направления указаны на схемах, а не знаком.) Тепловой насос предназначен для передачи тепла Q h в теплую среду, например, в доме зимой. Задача кондиционеров и холодильников заключается в том, чтобы передача тепла происходила из прохладной окружающей среды, такой как охлаждение комнаты или хранение продуктов при более низких температурах, чем температура окружающей среды. (На самом деле тепловой насос можно использовать как для обогрева, так и для охлаждения помещения. По сути, это кондиционер и нагревательный элемент одновременно. В этом разделе мы сконцентрируемся на его режиме обогрева.)

Рис. 2. Тепловые насосы, кондиционеры и холодильники — это тепловые двигатели, работающие в обратном направлении. Показанный здесь основан на (реверсивном) двигателе Карно. (а) Принципиальная схема, показывающая передачу тепла из холодного резервуара в теплый резервуар с помощью теплового насоса. Направления W , Q h и Q c противоположны направлениям в тепловом двигателе. (b) диаграмма для цикла Карно, аналогичная показанной на рисунке 3, но в обратном порядке по пути ADCBA.Площадь внутри цикла отрицательная, что означает, что имеется сетевой ввод. Имеется передача тепла Q c в систему из холодного резервуара по пути DC и передача тепла Q h из системы в горячий резервуар по пути BA.

Тепловые насосы

Большим преимуществом использования теплового насоса для поддержания тепла в доме, а не просто сжигания топлива, является то, что тепловой насос подает Q h = Q c + W .Теплоотдача происходит от наружного воздуха даже при температуре ниже точки замерзания во внутреннее пространство. Вы платите только за Вт, и получаете дополнительную теплоотдачу Q c извне бесплатно; во многих случаях в отапливаемое пространство передается как минимум вдвое больше энергии, чем используется для работы теплового насоса. Когда вы сжигаете топливо, чтобы согреться, вы платите за все. Недостатком является то, что затраты на работу (требуемые вторым законом термодинамики) иногда дороже, чем простое сжигание топлива, особенно если работа выполняется за счет электроэнергии.

Основные компоненты теплового насоса в режиме нагрева показаны на рисунке 3. Используется рабочая жидкость, например хладагент, не содержащий CFC. В наружных змеевиках (испарителе) теплоотдача Q c происходит к рабочему телу из холодного наружного воздуха, превращая его в газ.

Рис. 3. Простой тепловой насос состоит из четырех основных компонентов: (1) конденсатор, (2) расширительный клапан, (3) испаритель и (4) компрессор. В режиме обогрева теплопередача Q c происходит к рабочему телу в испарителе (3) из более холодного наружного воздуха, превращая его в газ.Компрессор с электрическим приводом (4) увеличивает температуру и давление газа и нагнетает его в змеевики конденсатора (1) внутри отапливаемого пространства. Поскольку температура газа выше, чем температура в комнате, передача тепла от газа к комнате происходит, когда газ конденсируется в жидкость. Затем рабочая жидкость охлаждается, поскольку она течет обратно через расширительный клапан (2) к змеевикам испарителя наружного блока.

Компрессор с электрическим приводом (рабочая мощность W ) повышает температуру и давление газа и направляет его в змеевики конденсатора, которые находятся внутри отапливаемого пространства.Поскольку температура газа выше, чем температура внутри комнаты, происходит передача тепла в комнату, и газ конденсируется в жидкость. Затем жидкость течет обратно через редукционный клапан к змеевикам испарителя наружного блока, охлаждаясь за счет расширения. (В цикле охлаждения змеевики испарителя и конденсатора меняются ролями, и направление потока жидкости меняется на противоположное.)

О качестве теплового насоса судят по тому, сколько тепла Q h происходит в теплое пространство, по сравнению с тем, сколько требуется трудозатрат Вт .Исходя из соотношения того, что вы получаете к затраченным средствам, мы определяем коэффициент полезного действия теплового насоса ( COP л.с. ) как [латексный] COP _ {\ text {hp}} = \ frac {Q _ {\ text {h}}} {W} \\ [/ latex].

Поскольку эффективность теплового двигателя составляет [латекс] Eff = \ frac {W} {Q _ {\ text {h}}} \\ [/ latex], мы видим, что [латекс] COP _ {\ text {hp}} = \ frac {1} {Eff} \\ [/ latex], важный и интересный факт. Во-первых, поскольку КПД любого теплового двигателя меньше 1, это означает, что COP л.с. всегда больше 1, то есть тепловой насос всегда имеет большую теплопередачу Q ч , чем затраченные на него работы Это.Во-вторых, это означает, что тепловые насосы лучше всего работают при небольших перепадах температур. Эффективность идеального двигателя Карно составляет [латексный] Eff _ {\ text {C}} = 1- \ left (\ frac {T _ {\ text {c}}} {T _ {\ text {h}}} \ справа) \\ [/ латекс]; таким образом, чем меньше разница температур, тем меньше КПД и больше COP л.с. (потому что [латексный] COP _ {\ text {hp}} = \ frac {1} {Eff} \\ [/ latex] ). Другими словами, тепловые насосы не работают так хорошо в очень холодном климате, как в более умеренном.

Трение и другие необратимые процессы снижают эффективность теплового двигателя, но они приносят пользу работе теплового насоса. тепловой носос.

Рис. 4. Когда реальный тепловой двигатель работает в обратном направлении, часть запланированной работы ( W ) идет на теплопередачу, прежде чем она попадет в тепловую машину, тем самым снижая ее коэффициент полезного действия.На этом рисунке W ′ представляет часть W , которая идет в тепловой насос, в то время как оставшаяся часть W теряется в виде теплоты трения ( Q f ) в холодный резервуар. Если бы все W ушло в тепловой насос, то Q h было бы больше. В лучшем тепловом насосе используются адиабатические и изотермические процессы, поскольку теоретически не должно быть диссипативных процессов, снижающих передачу тепла к горячему резервуару.

Пример 1. Лучший [латексный] COP _ {\ text {hp}} \\ [/ latex] теплового насоса для домашнего использования

Тепловой насос, используемый для обогрева дома, должен использовать цикл, который производит рабочую жидкость при температурах выше, чем типичная температура в помещении, чтобы могла происходить передача тепла внутрь. Точно так же он должен производить рабочую жидкость при температурах ниже, чем температура наружного воздуха, чтобы передача тепла происходила извне. Следовательно, его горячие и холодные резервуарные температуры не могут быть слишком близкими, что ограничивает его COP л.с. .(См. Рис. 5.) Каков наилучший возможный коэффициент полезного действия для такого теплового насоса, если температура горячего резервуара составляет 45,0 ° C, а температура холодного резервуара —15,0 ° C?

Стратегия

Перевернутый двигатель Карно будет работать с максимальной производительностью в качестве теплового насоса. Как отмечалось выше, [latex] COP _ {\ text {hp}} = \ frac {1} {Eff} \\ [/ latex], поэтому нам нужно сначала рассчитать эффективность Карно, чтобы решить эту проблему.

Решение

Эффективность Карно по абсолютной температуре определяется по формуле:

[латекс] Eff _ {\ text {C}} = 1- \ frac {T _ {\ text {c}}} {T _ {\ text {h}}} \\ [/ latex].

Температура в кельвинах составляет T h = 318 K и T c = 258 K, так что

[латекс] Eff _ {\ text {C}} = 1- \ frac {258 \ text {K}} {318 \ text {K}} = 0,1887 \\ [/ latex].

Таким образом, из обсуждения выше,

[латекс] COP _ {\ text {hp}} = \ frac {1} {Eff} = \ frac {1} {0,1887} = 5,30 \\ [/ latex], или [латекс] COP _ {\ text {hp} } = \ frac {Q _ {\ text {h}}} {W} = \ frac {1} {0,1887} = 5,30 \\ [/ latex], так что Q h = 5,30 Вт.

Обсуждение

Это означает, что теплопередача тепловым насосом равна 5.В 30 раз больше, чем вложено в это дело. Это будет стоить в 5,30 раза больше, чем теплопередача, произведенная электрическим комнатным обогревателем, как и теплопередача этим тепловым насосом. Это не нарушение сохранения энергии. Холодный окружающий воздух обеспечивает 4,3 Дж на 1 Дж работы от электрической розетки.

Рис. 5. Передача тепла снаружи внутрь, а также работа, выполняемая для запуска насоса, происходит в тепловом насосе из приведенного выше примера. Обратите внимание, что холодная температура, создаваемая тепловым насосом, ниже, чем температура наружного воздуха, поэтому происходит передача тепла рабочей жидкости.Компрессор насоса создает температуру выше температуры в помещении для передачи тепла в дом.

Рис. 6. В жаркую погоду передача тепла происходит от воздуха внутри помещения к воздуху снаружи, охлаждая помещение. В прохладную погоду происходит передача тепла от воздуха снаружи к воздуху внутри, нагревая комнату. Это переключение достигается за счет изменения направления потока рабочей жидкости на противоположное.

Настоящие тепловые насосы работают не так хорошо, как идеальные в предыдущем примере; Их значения КС л.с. колеблются примерно от 2 до 4.Этот диапазон означает, что теплопередача Q h от тепловых насосов в 2-4 раза больше, чем работа, вложенная в них W . Однако их экономическая осуществимость все еще ограничена, поскольку W обычно вырабатывается за счет электроэнергии, стоимость которой на джоуль выше, чем передача тепла путем сжигания топлива, такого как природный газ. Кроме того, первоначальная стоимость теплового насоса выше, чем у многих печей, поэтому тепловой насос должен работать дольше, чтобы окупить его стоимость.Тепловые насосы, скорее всего, будут экономически лучше там, где зимние температуры мягкие, электричество относительно дешево, а другие виды топлива относительно дороги. Кроме того, поскольку они могут охлаждать и обогревать помещение, они имеют преимущества там, где также желательно охлаждение в летние месяцы. Таким образом, одни из лучших мест для тепловых насосов — теплый летний климат с прохладной зимой. На рис. 6 показан тепловой насос, называемый в некоторых странах «обратным циклом » или «охладителем сплит-системы » .

Кондиционеры и холодильники

Кондиционеры и холодильники предназначены для охлаждения чего-либо в теплой среде. Как и в случае с тепловыми насосами, для передачи тепла от холодного к горячему требуется дополнительная работа, а это дорого. О качестве кондиционеров и холодильников судят по тому, какая теплоотдача Q c происходит из холодной окружающей среды, по сравнению с тем, сколько требуется трудозатрат Вт . То, что считается преимуществом теплового насоса, в холодильнике считается отходящим теплом.Таким образом, мы определяем, что коэффициент полезного действия ( COP ref ) кондиционера или холодильника равен

.

[латекс] {COP} _ {\ text {ref}} = \ frac {Q _ {\ text {c}}} {W} \\ [/ latex].

Еще раз отмечая, что Q h = Q c + W , мы можем видеть, что кондиционер будет иметь более низкий коэффициент полезного действия, чем тепловой насос, потому что [латекс] {COP} _ { \ text {hp}} = \ frac {Q _ {\ text {h}}} {W} \\ [/ latex] и Q h больше, чем Q c .В задачах и упражнениях этого модуля вы покажете, что COP ref = COP л.с. — 1 для теплового двигателя, используемого либо в качестве кондиционера, либо в качестве теплового насоса, работающего между двумя одинаковыми температурами. Настоящие кондиционеры и холодильники обычно работают замечательно, имея значения COP ref в диапазоне от 2 до 6. Эти числа лучше, чем значения COP л.с. для упомянутых выше тепловых насосов, поскольку разница температур составляет меньше, но они меньше, чем у двигателей Карно, работающих между теми же двумя температурами.

Был разработан тип рейтинговой системы COP , называемый «рейтинг энергоэффективности» ( EER ). Этот рейтинг является примером того, что единицы, не относящиеся к системе СИ, по-прежнему используются и актуальны для потребителей. Чтобы упростить жизнь потребителю, Австралия, Канада, Новая Зеландия и США используют рейтинг Energy Star из 5 звезд — чем больше звездочек, тем более энергоэффективным является устройство. EER с выражены в смешанных единицах британских тепловых единиц (БТЕ) ​​в час нагрева или охлаждения, разделенных на потребляемую мощность в ваттах.Комнатные кондиционеры легко доступны с EER с диапазоном от 6 до 12. Хотя это не то же самое, что только что описанные COP , эти EER хороши для целей сравнения — чем больше EER , тем дешевле кондиционер должен работать (но тем выше, вероятно, будет его покупная цена).

EER кондиционера или холодильника можно выразить как

.

[латекс] \ displaystyle {EER} = \ frac {\ frac {Q _ {\ text {c}}} {t_1}} {\ frac {W} {t_2}} \\ [/ latex],

, где Q c — количество теплопередачи из холодной среды в британских тепловых единицах, t 1 — время в часах, W — потребляемая работа в джоулях и t 2 — время в секундах.

Стратегии решения проблем термодинамики

  1. Изучите ситуацию, чтобы определить, участвует ли тепло, работа или внутренняя энергия . Ищите любую систему, в которой основными методами передачи энергии являются тепло и работа. Тепловые двигатели, тепловые насосы, холодильники и кондиционеры являются примерами таких систем.
  2. Определите интересующую систему и нарисуйте помеченную диаграмму системы, показывающую поток энергии.
  3. Определите, что именно необходимо определить в проблеме (определите неизвестные) .Письменный список полезен. Максимальная эффективность означает, что задействован двигатель Карно. Эффективность — это не то же самое, что коэффициент полезного действия.
  4. Составьте список того, что дано или может быть выведено из проблемы, как указано (укажите известные). Обязательно отличите теплопередачу в системе от теплопередачи из системы, а также затраты на работу от результатов работы. Во многих ситуациях полезно определить тип процесса, например изотермический или адиабатический.
  5. Решите соответствующее уравнение для количества, которое необходимо определить (неизвестное).
  6. Подставьте известные величины вместе с их единицами измерения в соответствующее уравнение и получите численные решения с указанием единиц.
  7. Проверьте ответ, чтобы узнать, разумен ли он: имеет ли он смысл? Например, КПД всегда меньше 1, тогда как коэффициенты производительности больше 1.

Сводка раздела

  • Артефакт второго закона термодинамики — это способность обогревать внутреннее пространство с помощью теплового насоса.Тепловые насосы сжимают холодный окружающий воздух и при этом нагревают его до комнатной температуры без нарушения принципов консервации.
  • Чтобы рассчитать коэффициент полезного действия теплового насоса, используйте уравнение [latex] {\ text {COP}} _ {\ text {hp}} = \ frac {{Q} _ {\ text {h}}} {W} \\ [/ латекс].
  • Холодильник — тепловой насос; он забирает теплый окружающий воздух и расширяет его, чтобы охладить.

Концептуальные вопросы

  1. Объясните, почему тепловые насосы не работают в очень холодном климате так же хорошо, как в более мягком.То же самое и с холодильниками?
  2. В некоторых странах Северной Европы дома строятся без каких-либо систем отопления. Они очень хорошо изолированы и согреваются теплом тела жителей. Однако, когда жителей нет дома, в этих домах по-прежнему тепло. Какое возможное объяснение?
  3. Почему холодильники, кондиционеры и тепловые насосы работают наиболее рентабельно для циклов с небольшой разницей между T h и T c ? (Обратите внимание, что температура используемого цикла имеет решающее значение для его COP .)
  4. Менеджеры продуктовых магазинов утверждают, что летом общее потребление энергии меньше, если в магазине поддерживается низкая температура. Приведите аргументы в поддержку или опровержение этого утверждения, учитывая, что в магазине множество холодильников и морозильников.
  5. Можно ли охладить кухню, оставив дверцу холодильника открытой?

Задачи и упражнения

  1. Каков КПД идеального теплового насоса с теплопередачей при температуре холода −25?От 0ºC до горячей температуры 40,0ºC?
  2. Предположим, у вас есть идеальный холодильник, который охлаждает окружающую среду до –20,0ºC и передает тепло в другую среду при 50,0ºC. Каков его коэффициент полезного действия?
  3. Каков наилучший возможный коэффициент полезного действия гипотетического холодильника, который может производить жидкий азот при температуре –200ºC и имеет теплопередачу в окружающую среду при температуре 35,0ºC?
  4. В очень мягком зимнем климате тепловой насос передает тепло из окружающей среды на 5.От 00ºC до единицы при 35,0ºC. Каков наилучший возможный коэффициент полезного действия для этих температур? Ясно покажите, как вы следуете шагам, указанным в Стратегиях решения проблем термодинамики.
  5. (a) Каков наилучший коэффициент полезного действия теплового насоса с температурой горячего резервуара 50,0 ° C и температурой холодного резервуара -20,0 ° C? (b) Сколько тепла происходит в теплой среде, если в нее вложено 3,60 × 10 7 Дж работы (10,0 кВт · ч)? (c) Если стоимость этих работ составляет 10.0 центов / кВт · ч, как его стоимость по сравнению с прямой теплопередачей, достигаемой за счет сжигания природного газа по цене 85,0 центов за тепло? (Термины — это общепринятая единица измерения энергии для природного газа, равная 1,055 × 10 8 Дж.)
  6. (a) Каков наилучший коэффициент полезного действия холодильника, который охлаждает окружающую среду до –30,0ºC и передает тепло в другую среду при 45,0ºC? (б) Сколько работы в джоулях необходимо сделать для передачи тепла 4186 кДж из холодной среды? (c) Какова стоимость этого, если работа стоит 10.0 центов за 3,60 × 10 6 Дж (киловатт-час)? (d) Сколько кДж теплопередачи происходит в теплую среду? (e) Обсудите, какой тип холодильника может работать при этих температурах.
  7. Предположим, вы хотите эксплуатировать идеальный холодильник с температурой холода -10,0 ° C и хотите, чтобы он имел коэффициент полезного действия 7,00. Какова температура горячего резервуара у такого холодильника?
  8. Рассматривается идеальный тепловой насос для обогрева помещения с температурой 22 ° C.0ºC. Какова температура холодного резервуара, если коэффициент полезного действия насоса должен составлять 12,0?
  9. 4-тонный кондиционер удаляет 5,06 × 10 7 Дж (48 000 британских тепловых единиц) из холодной среды за 1 час. (a) Какая энергия в джоулях необходима для этого, если кондиционер имеет рейтинг энергоэффективности ( EER ) 12,0? (b) Какова стоимость этого, если работа стоит 10,0 центов за 3,60 × 10 6 Дж (один киловатт-час)? (c) Обсудите, насколько реалистична эта стоимость.Обратите внимание, что рейтинг энергоэффективности ( EER ) кондиционера или холодильника определяется как количество британских тепловых единиц теплопередачи из холодной среды в час, деленное на потребляемую мощность в ваттах.
  10. Покажите, что коэффициенты производительности холодильников и тепловых насосов связаны соотношением COP ref = COP л.с. — 1. Начнем с определений COP s и отношения сохранения энергии между Q h , Q c и W .

Глоссарий

тепловой насос: машина, передающая тепло от холода к горячему

КПД: для теплового насоса, это отношение теплопередачи на выходе (горячий резервуар) к произведенной работе; для холодильника или кондиционера это отношение теплоотдачи от холодного резервуара к произведенной работе

Избранные решения проблем и упражнения

1. 4.82

3.0,311

5. (а) 4,61; б) 1,66 × 10 8 Дж или 3,97 × 10 4 ккал; (c) Для передачи 1,66 × 10 8 Дж тепловой насос стоит 1 доллар США, природный газ — 1,34 доллара.

7. 27,6ºC

9. (а) 1,44 × 10 7 Дж; (б) 40 центов; (c) Эта стоимость кажется вполне реальной; там говорится, что работа кондиционера в течение всего дня будет стоить 9,59 долларов (если он будет работать непрерывно).

Тепловые двигатели

— обзор

3.15.6.1 Микро-тепловые двигатели

Тепловой двигатель можно определить как устройство, преобразующее тепловую энергию в работу.Тепловая энергия возникает из-за разницы температур, обеспечиваемой горячим и холодным резервуарами. Тепловой двигатель использует эту разницу в термодинамическом цикле. Следовательно, существует много типов циклов и тепловых двигателей, таких как цикл Брайтона (газотурбинный двигатель) и цикл Отто (поршневой двигатель с искровым зажиганием). Многие тепловые двигатели используют камеру сгорания в качестве источника горячего резервуара, и в последнее время были предприняты попытки миниатюризировать эти системы для портативных энергетических приложений.Камеры сгорания для тепловых двигателей должны будут обеспечивать систему газом с высокой энтальпией, а не терять тепло через конструкцию.

Цикл Брайтона, или газотурбинный двигатель, если он миниатюризирован, может использоваться как для портативной энергии путем интеграции генератора с системой, так и в качестве турбореактивного двигателя для небольшого самолета (Epstein et al. 1997, Groshenry 1995) . Для этого типа устройства требуется, чтобы микрокомпенсатор был интегрирован с вращающимся микромасштабным компрессором и турбиной.Эта камера сгорания должна будет принимать воздух под высоким давлением от компрессора и смешивать и сжигать топливо, в результате чего в турбину будет подаваться высокоэнтальпийная текучая среда для рабочего отвода. Важно отметить, что камера сгорания для этой системы должна обеспечивать этот высокоэнтальпийный газ с минимальными тепловыми потерями в конструкции. Пример конструкции микрогазовой турбины показан на рис. 27 .

Рис. 27. Схема базового микрогазотурбинного двигателя. (Источник: Spadaccini C M 2004 Системы сгорания для силовых МЭМС-приложений.Кандидат наук. thesis, Массачусетский технологический институт.)

Были протестированы и другие конфигурации микрокомпьютера для циклов Брайтона, помимо радиальной компоновки, показанной на рис. 27 . К ним относятся малогабаритные канистры с традиционной механической обработкой. В этих конструкциях эффективность сгорания более 99% была достигнута с водородным топливом в камере 3 размером 2 см и с метаном в камере 3 размером 15 см. Также было показано, что канистровые устройства имеют меньшие тепловые потери по сравнению с радиальной конструкцией аналогичного размера (Isomura et al. 2002, Takahashi et al. 2002).

Микромасштабные устройства цикла Отто также были исследованы. Ранние попытки внедрения этих систем обычно включали конструкцию со свободным поршнем с системой искрового зажигания на обоих концах цилиндра. Когда происходит воспламенение, горячие газы сгорания расширяются, перемещая поршень к другому концу цилиндра, что приводит к механической работе. Опять же, этот тип системы сгорания потребует, чтобы энтальпия сохранялась в газе и преобразовывалась в работу, а не терялась через структуру (Lee et al. 2002, Park et al. 2002).

Другой микротепловой двигатель с циклом Отто, который находится в стадии разработки, — это микроторный двигатель или микродвигатель Ванкеля. В этом типе устройства нет возвратно-поступательного компонента, а есть вращающийся набор из трех камер сгорания. Обычно ротор имеет треугольную форму и вращается в корпусе овальной формы, образуя три различных объема газа. Из-за геометрии ротора и корпуса объем каждой камеры изменяется при вращении ротора.Одна из этих камер будет иметь минимальный объем и сжатый газ. Затем в этот объем впрыскивается топливо и зажигается. Объем газа расширяется, вызывая вращение ротора. Подобно поршневому двигателю и газовой турбине, камера сгорания роторного двигателя обеспечивает высокоэнтальпийную жидкость для привода системы, при этом тепловые потери через структуру являются основным механизмом потерь (Fernandez-Pello et al. 2002).

Аппарат по тепловым двигателям и газу — TD-8572 — Продукция

Краткое описание продукта

Аппарат теплового двигателя и закона газа позволяет студентам проводить количественные эксперименты с законом идеального газа, одновременно исследуя работающий тепловой двигатель.Датчик вращательного движения и датчик давления можно добавить для построения графиков циклов теплового двигателя, определения фактической эффективности и многого другого!

Характеристики

  • Воздушная камера может быть погружена в горячую или холодную воду
  • Два порта для подключения трубки воздушной камеры или датчика низкого давления
  • Графитовый поршень со сверхнизким трением
  • Миллиметровая шкала измеряет смещение поршня
  • Стопорный винт фиксирует поршень для фиксированных объемов
  • Цилиндр из пирекса с прецизионным отверстием и защитным пластиковым экраном
  • Двухходовые запорные клапаны
  • Зажим штока для крепления к штокам или стойкам

Применения

  • Принцип Паскаля
  • Циклы теплового двигателя
  • Эксперимент по закону Чарльза
  • Эксперимент по комбинированному закону газа (Гей-Люссак)
  • Эксперимент с подъемным тепловым двигателем
  • Добавьте массу на платформу для рабочих экспериментов

Как это работает

Цикл теплового двигателя:

  1. Когда воздушная камера перемещается из бани с холодной водой в горячую, поршень поднимается, поднимая 200-граммовый груз для демонстрации работы.Масса удаляется, а воздушная камера возвращается в холодную ванну, замыкая изобарический / изотермический цикл.
  2. Цикл теплового двигателя строится в реальном времени с использованием графика зависимости давления от объема.
  3. Давление в баллоне измеряется датчиком давления. Объем измеряется путем отслеживания положения поршня с помощью датчика вращения или движения. Температуру горячей и холодной ванн регистрируют с помощью датчиков температуры.
  4. Учащиеся сравнивают площадь внутри цикла P-V с фактической работой, проделанной при поднятии груза, чтобы определить, насколько эффективность их теплового двигателя сравнивается с теоретическим максимумом.

Что входит в комплект

  • 1x тепловой двигатель
  • 1x воздушная камера
  • 1x резиновая пробка с отверстием
  • 1x трубка с быстроразъемными соединениями
  • 1x запорный клапан
  • 1x 200 г Масса

Технические характеристики продукта

Диаметр поршня 32,5 мм
Максимальное смещение поршня ≈10 см

Требуется программное обеспечение

Для этого продукта требуется программное обеспечение PASCO для сбора и анализа данных.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *