Принцип работы турбонаддува дизельного двигателя: Система турбонаддува — принцип работы турбины, устройство турбокомпрессора автомобиля

Содержание

Система турбонаддува — принцип работы турбины, устройство турбокомпрессора автомобиля

Мощность двигателя автомобиля напрямую зависит от того, какое количество топлива и какой объем воздуха поступают в двигатель. Чтобы повысить мощность двигателя, логично увеличить количество этих компонентов. 

Просто увеличить количество топлива недостаточно, если при этом не увеличить объем воздуха, необходимого для максимально полного сгорания топлива. Использование турбокомпрессора дает возможность доставить больший объем воздуха в цилиндры, предварительно сжав его.

Принцип работы турбины двигателя таков: в цилиндры под давлением отработанных газов подается сжатый воздух, который вращает крыльчатку. Компрессор, расположенный на одном валу с крыльчаткой, нагнетает давление в цилиндр.

Турбонаддув от выхлопных газов – наиболее эффективная система увеличения мощности двигателя. Использование турбонаддува не увеличивает объем цилиндров и не влияет на частоту вращения коленвала.

Таким образом, помимо увеличения мощности, турбонаддув позволяет рационально расходовать топливо и уменьшить токсичность отработанных газов благодаря тому, что топливо сгорает полностью. 

Устройство турбокомпрессора автомобиля

Система турбонаддува используется не только в дизельных, но и в бензиновых двигателях.

Система турбонадува состоит из следующих элементов:

  • Турбокомпрессора;
  • Интеркулера;
  • Перепускного клапана;
  • Регулировочного клапана;
  • Выпускного коллектора.

 

Принцип работы турбины дизельного двигателя

Работа дизельной турбины также основана на использовании энергии выхлопных газов. 

В общих чертах принцип работы турбины дизеля выглядит так.

От выпускного коллектора выхлопные газы направляются в приемный патрубок турбины, после попадают на крыльчатку, принуждая ее двигаться.  С крыльчаткой на одном валу расположен компрессор, который нагнетает давление в цилиндрах.

Основное отличие турбокомпрессорных агрегатов от атмосферных дизелей в том, что  здесь в цилиндры воздух подается принудительно и под высоким давлением. Поэтому на цилиндр попадает значительно большее количество воздуха. В сочетании с большим объемом подающегося топлива мы получаем прирост мощности порядка 25%. При этом пропорции воздушно-топливной смеси остаются неизменными.

Чтобы еще больше увеличить объем поступающего в цилиндры воздуха, используется интеркулер – устройство, предназначенное для охлаждения атмосферного воздуха перед подачей его в двигатель. Это позволяет за один цикл подать в цилиндр еще больше воздуха, так как, холодный, он занимает меньше места.

Технология турбонаддува используется в случаях, когда необходимо увеличить мощность мотора и при этом оставить неизменными его размеры и габариты.

Более наглядно схема работы турбины показана в этом видео:

 

 

 

Принцип работы дизельной турбины несколько отличается от работы турбины на бензиновом двигателе. В чем отличие? Давайте рассмотрим подробнее.

 

Отличие работы турбины бензинового двигателя

Основное отличие турбин бензинового двигателя от турбин дизельного в том, что последние раскручиваются с помощью выхлопных газов, температура которых достигает 850 градусов.  А турбина бензинового двигателя раскручивается с помощью газов, имеющих температуру от 1000 градусов. Имея одинаковый принцип работы, бензиновая турбина изготовлена из более жароустойчивых сплавов, нежели турбина дизельная.

Само строение бензиновой турбины также имеет некоторые отличия, в частности угол входа, крутка лопаток и т.д. По этой причине не стоит использовать дизельные турбины для наддува бензинового двигателя, впрочем, как и наоборот (подробнее в статье).

 

 

 Вернутся к списку «Статьи и новости»

Принцип работы турбины на дизельном двигателе

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась  на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

В Советском Союзе разработка и внедрение в «серию» турбированных двигателей была связана, прежде всего, с развитием производства тяжёлых промышленных и сельскохозяйственных тракторов – «ЧТЗ», «Кировец»; суперсамосвалов «БелАЗ» и т.п. мощной техники.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Устройство системы турбонаддува

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь за конкретную единицу времени. Результат – существенное увеличение мощности мотора, без необходимости наращивания объёма его цилиндров.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Как работает турбина дизельного двигателя

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Интеркулер – это не что иное, как радиатор для охлаждения наддувочного воздуха. Кроме снижения детонации, он снижает температуру воздуха ещё и для того, чтоб не снижать его плотность. А это неизбежно во время процесса нагрева от сжатия, и от этого эффективность всей системы в значительной степени падает.

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

Применение турбонаддува в мировом машиностроении

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Вот это «улитка»!

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

 

 

Узнайте, как устроен принцип работы дизельной турбины!

Узнайте, как устроен принцип работы дизельной турбины!

Турбокомпрессор — это компрессор, или воздушный насос, который приводится в работу от турбины. Турбина вращается за счет использования энергии потока отработанных газов. Частота вращения турбокомпрессора дизельного двигателя находится в пределах от 1 000 до 130 000 об/мин (это значит, что лопатки турбины разгоняются почти до линейной скорости звука).

Турбина непосредственно соединяется с компрессором жесткой осью. Компрессор засасывает через воздушный фильтр свежий воздух, сжимает его и затем под давлением подает во впускной коллектор двигателя.
Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, а это повышает мощность двигателя.

Теоретически существует равновесие мощностей между турбиной и компрессором турбокомпрессора. Чем большую энергию имеют отработанные газы, тем быстрее будет вращаться турбина.
Как следствие, компрессор тоже будет вращаться быстрее.


1. Всасываемый воздух
2. Ротор компрессора
3. Сжатый воздух
4. Вход отработавших газы
5. Ротор турбины
6. Выход отработавших газов

Турбина

Турбина состоит из корпуса и ротора Отработанные газы из выпускного коллектора двигателя попадают в приемный патрубок турбокомпрессора. Проходя по сужающемуся внутреннему каналу корпуса турбины, они ускоряются, и минуя «улитку» направляются к ротору турбины, который приводят во вращение.

Скорость вращения турбины определяется размером и формой канала в ее корпусе.

Корпусы турбин значительно различаются в зависимости от сферы применения. Корпус турбины двигателя грузовика может быть разделен на два параллельных канала, поэтому на ротор воздействуют два потока отработанных газов.

В турбокомпрессоры с большим объемом часто устанавливают дополнительное кольцо с направляющими лопатками. Оно облегчает создание постоянного потока отработанных газов на роторе турбины и делает возможным регулировку потока.

Корпус турбины и ротор отливаются из сплава с высокой термостойкостью.

На оси жестко крепится ротор турбины. Материал оси отличается от материала, используемого для ротора турбины.
Сборка этого соединения осуществляется следующим способом:

  • Ось и ротор, вращающиеся в противоположных направлениях на очень большой скорости, прижимают друг к другу.
  • Выделяющееся при трении тепло сплавляет их друг с другом, образуя неразъемное соединение.
  • Ось в месте соединения пустотелая. Эта пустота затрудняет передачу тепла от ротора турбины к ее оси. На оси со стороны турбины имеется углубление, в котором располагается уплотнительное кольцо.
  • Рабочая поверхность радиальных подшипников упрочняется и полируется.
  • На более тонкий конец оси устанавливается ротор компрессора; там имеется резьба, на которую навинчивается предохранительная гайка для закрепления ротора.
  • После того, как ось изготовлена, она должна быть отбалансирована с максимально возможной точностью, прежде чем она будет установлена в корпус.
  • Компрессор

    Компрессор состоит из корпуса и ротора
    Размеры компрессора определяются количеством воздуха, требуемого для двигателя, и скоростью вращения турбины. Ротор компрессора жестко закреплен на оси турбины и, следовательно, вращается с той же скоростью, что и ротор турбины.

    Лопатки ротора компрессора, изготавливаемые из алюминия, имеют такую форму, что воздух засасывается через центр ротора. Всасываемый таким образом воздух направляется к периферии ротора и при помощи лопаток отбрасывается на стенку корпуса компрессора.
    Благодаря этому воздух сжимается и через впускной коллектор попадает в двигатель.
    Корпус компрессора также изготовлен из алюминия.

    Корпус подшипников

    Смазка турбокомпрессора производится от системы смазки двигателя:

  • Корпус оси образует центральную часть турбокомпрессора, расположенную между турбиной и компрессором
  • Ось вращается в подшипниках скольжения
  • Моторное масло по каналам проходит между корпусом и подшипниками, а также между подшипниками и осью
  • Примечание: В настоящее время появились конструкции, в которых подшипник неподвижен, а ось вращается в масляной ванне. В таких конструкциях масло не только служит для смазки оси, но и охлаждает подшипники с корпусом.

    Для уплотнения турбокомпрессора с двух сторон устанавливаются маслоотражательные прокладки и уплотнительные кольца. Но, несмотря на то, что эти кольца помогают избежать утечек масла, они в действительности не являются уплотнительными прокладками. Их нужно рассматривать как элемент, затрудняющий утечку воздуха и газов между турбиной, компрессором и корпусом оси.

    В обычном режиме работы турбокомпрессора давление в турбине и компрессоре больше давления в корпусе оси.
    Часть газов из турбины и часть воздуха, сжатого в компрессоре, попадают в корпус оси и вместе с моторным маслом по сливному маслопроводу проходят в масляный картер двигателя.

    Все масляные уплотнения динамического типа, т.е. работают на принципе разности давлений:

  • Уплотнительное кольцо вращается с той же скоростью, что и ось. Благодаря имеющимся в нем трем отверстиям создается противодавление маслу
  • Внутренняя часть корпуса оси на уровне кольца имеет сложную герметическую форму для предотвращения просачивания масла к компрессору
  • У нас новая услуга!

    Независимая экспертиза и дефектовка вышедших из строя турбокомпрессоров

    Подробности по телефону: 8-912-895-44-41

    что это такое? Принцип работы турбонаддува

    Турбонаддув предстваляет собой устройство которое подаёт воздух в рабочие цилиндры под давлением используя энергию отработанных газов.

    В настоящее время наиболее рационально использовать именно турбонаддув если перед вами стоит цель увеличить мощность двигателя без увеличения его объёма и количества оборотов коленвала. Также турбонаддув увеличивает экологические показатели двигателя за счёт более полного сгорания топлива.

    Системы турбонаддува могут применяться как на бензиновых, так и на дизельных двигателях. Наибольшую эффективность имеет турбонаддув на «дизеле», т.к. коленвал имеет невысокую скорость вращения и двигатель имеет высокую степень сжатия. Сложность применения турбонаддува на бензиновых двигателях является возможность появления детонации при резком увеличении количества оборотов коленвала, а также с более высокой температурой отработанных газов что приводит к нагреву турбонаддува.

    Видео — изготовление турбокомпрессора

    Турбонаддув в большинстве случаев состоит из:
    1.    Воздухозаборника
    2.    Воздушный фильтр
    3.    Дроссельная заслонка
    4.    Турбокомпрессор
    5.    Впускной коллектор
    6.    Соединительные трубки и напорные шланги
    7.    Управляющие элементы

    Многие элементы турбокомпрессора являются типовыми деталями ( элементами) впускной системы.  Также турбонаддув имеет интеркулер и турбокомпрессор. Турбокомпрессор, его часто называют турбонагнетатель, является основным элементом турбонаддува. Он повышает давление воздуха во впускной системе.

    В состав турбокомпрессора входят следующие детали:
    1.    Турбинное колесо
    2.    Корпус турбины
    3.    Компрессорное колесо
    4.    Корпус компрессора
    5.    Вал ротора
    6.    Корпус подшипников

    Турбинное колесо принимает на себя всю энергию отработанных газов. Она вращается в корпусе, который имеет специальную форму. Всё это изготавливает из жаропрочных материалов.

    Компрессорное колесо всасывает воздух, затем его сжимает и нагнетает в цилиндры. Оно также вращается в специальном корпусе.

    Турбинное и компрессорное колесо закрепляется на валу ротора, вал опирается на подшипники скольжения. Подшипники плавающего типа, т.е. имеются зазоры между корпусом и валом. Смазывание подшипников происходит моторным маслом из системы смазывания двигателя. Масло подаётся по специальным каналам в корпусе подшипников.

    В некоторых бензиновых двигателях в дополнение к смазке применяют и жидкостное охлаждение турбонагнетателей. В таком случае корпус турбонагнетатель подключён к двухконтурной системе охлаждения двигателя.

    Регулятор давления наддува является основным элементом управления турбонаддува . Регулятор давления представляет собой перепускной клапан, который ограничивает энергию отработанных газов. Часть их отработанных газов направляет в обход турбинного колеса. Это и обеспечивает оптимальное давление. Клапан может иметь пневмо- либо электро- привод. Срабатывание клапана производится путём подачи сигнала датчика давления системой управления двигателем.

    После компрессора может стоять предохранительный клапан. Он предохраняет систему от скачков давления если вдруг дроссельная заслонка закроется. Избыточное давление стравливается в атмосферу булл-офф клапаном или пускается на вход компрессора байпас-клапаном.

    Принцип работы турбокомпрессора

    Выхлопные газы вращают турбинное колесо, а оно с помощью вала ротора крутит компрессорное колесо. Оно сжимает воздух и подаёт его в систему. Затем воздух поступает в интеркулер где охлаждается, а затем поступает в цилиндры. Минусом такой конструкции является то, что при малых оборотах коленвала энергии отработанных газов недостаточно чтобы вращать турбину.

    Турбонаддув имеет следующие негативные особенности:
    1.    Задерживается увеличение мощности при резком нажатии на газ, её ещё называют турбоямой.
    2.    Давление наддува резко увеличивается при преодолении турбоямы.

    Избежать турбоямы можно избежать следующим образом: применить турбонаддув с изменяемой геометрией, использовать 2 параллельных или последовательных турбокомпрессора, использовать комбинированный турбонаддув.

    Турбина с изменяемой геометрией оптимизирует поток отработанных газов за счёт изменения площади входного канала. Широкое применение получили в турбинах дизельных двигателей.

    Система с двумя параллельными турбинами (twin-turbo) — наибольшее применение получила на мощных V- образных двигателях. Работа основана на том что 2 турбины имеют меньшую инерционность, чем одна большая.

    Две последовательные турбины (bi-turbo) — принцип работы основан на использовании различных турбин на разных оборотах двигателя. Некоторые производители в целях ещё большого увеличения мощности устанавливают 3, а то и 4 турбины. Очень часть Bi-turbo можно увидеть на автомобилях Ауди, например на Audi Allroad c бензиновым двигателем объемом 2700 см3.

    Комбинированный турбонаддув (twincharger)- сочетает в себе механический наддув и турбонаддув. На низких оборотах работает нагнетатель с механическим приводом. По мере роста оборотов подключается турбонаддув, а механический нагнетатель отключается, такую систему имеет двигатель «Фольксванген» TSI.

    • < Назад
    • Вперёд >

    Дизельный двигатель с турбонаддувом

    История создания дизельных двигателей с турбонаддувом

    Турбокомпрессоры применялись для повышения мощности двигателей внутреннего сгорания еще на этапе развития этого вида технологий. Запатентованный американцем Альфредом Бюхи в 1911 году турбокомпрессор на заре своего развития сыграл значительную роль в военной авиации – турбированные бензиновые двигатели ставились на истребители и бомбардировщики для повышения их высотности. Свое применение в автомобильном дизелестироении технология нашла относительно недавно. Первым серийным автомобилем с турбированным дизелем был появившийся в 1978 г. Mercedes-Benz 300 SD, а в 1981 г. за ним последовал VW Turbodiesel.

    Устройство и принцип работы дизельного двигателя с турбонаддувом

    Принцип работы турбированного дизельного двигателя основан на использовании энергии выхлопных газов. Покинув цилиндр, отработавшие газы попадают на крыльчатку турбины, вращая ее и закрепленную с ней на одном валу турбину компрессора, встроенного в систему подачи воздуха в цилиндры.

    Таким образом, в отличие от атмосферных дизелей, в турбокомпрессорных агрегатах воздух в цилиндры подается принудительно под более высоким давлением. В итоге объем воздуха, попадающего в цилиндр за один цикл, возрастает. В сочетании с увеличением объема сгорающего топлива (пропорции топливно-воздушной смеси остаются неизменными) это дает прирост мощности до 25%.

    Для еще большего повышения объема поступающего в цилиндры воздуха дополнительно применяют интеркулер – специальное устройство, охлаждающее атмосферный воздух перед нагнетанием в двигатель. Из школьного курса физики известно, что холодный воздух занимает меньше места, чем теплый. Таким образом, при охлаждении можно «затолкать» в цилиндр больше воздуха за цикл.

    В результате у турбодизеля меньше удельный эффективный расход топлива (в граммах на киловатт-час) и выше объемная мощность (количество лошадиных сил на литр объема двигателя). Все это обеспечивает возможность существенно подрастить суммарную мощность мотора без значительного увеличения его габаритов и числа оборотов.

    Плюсы и минусы дизельного двигателя с турбонаддувом

    Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр. Также в работе двигателей с турбинами низкого давления может присутствовать эффект «турбоямы», выражающийся в заметном «проседании» на низких и средних оборотах двигателя.

    Турбированные моторы менее экономичны, чем атмосферные дизели, потребляя на 20 – 50% больше топлива при том же объеме. Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя, а турбированные дизели еще менее ремонтопригодны, чем их атмосферные братья.

    Да и вообще, наличие технически сложного турбокомпрессора, нуждающегося в дополнительных устройствах стабилизации давления, аварийного его сброса и так далее делает силовую установку автомобиля более замысловатой, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.

    Современные технологии усовершенствования дизельных двигателей

    Значительную популярность сегодня приобрела система повышения эффективности и гибкости режимов дизеля под названием «Common-Rail». Если в традиционном дизельном двигателе каждая секция насоса высокого давления подает топливо в отдельный топливопровод, замкнутый на одну форсунку. Даже несмотря на изрядную толщину стенок топливопроводов при подаче в них жидкости под давлением в 1500-2000 атмосфер они незначительно, но «раздуваются». В результате попадающая в цилиндр порция топлива отличается от расчетной. «Довесок», сгорая, увеличивает расход горючего, повышает дымность и снижает полноту сгорания топливно-воздушной смеси.

    Удачное инженерное решение этой проблемы разработали одновременно сразу несколько автопроизводителей. В новой системе топливный насос высокого давления подает горючее в общий трубопровод — топливную рампу, которая, помимо прочего, играет роль ресивера, то есть стабилизатора давления в контуре. В рампе все время присутствует постоянный объем топлива, находящегося не под пульсирующим давлением, а под постоянным.

    К тому же, развитие интеллектуальных технологий позволило оснастить форсунки электронными системами открытия (в традиционных дизелях регулировка циклов впрыска происходит гидромеханическим способом при повышении давления в трубопроводе). Электронный блок, управляющий работой форсунок, учитывает информацию о положении педали акселератора, давлении в рампе, температурном режиме двигателя, его нагрузке и т.д. На основе этих данных рассчитывается размер порции топлива и момент его подачи.

    Еще одно новшество, появившееся благодаря развитию автомобильной электроники – двухэтапная подача топлива в камеру сгорания. Сначала впрыскивается «разгонная» (около миллиграмма) порция. При сгорании она дополнительно к эффекту сжатия повышает температуру в камере, и основная доза, впрыскиваемая следом, сгорает более плавно, также плавно наращивая давление в цилиндре. В результате двигатель работает мягче и менее шумно, а расход топлива сокращается примерно на 20% при одновременном возрастании крутящего момента на малых оборотах на 25%. Что немаловажно — уменьшается содержание в выхлопе сажи.

    Среди новых разработок, призванных улучшить экологические характеристики дизелей одновременно с оптимизацией их экономичности, наиболее перспективной считается система BlueTec, разработанная специалистами концерна Daimler AG. Основная ее составляющая – инновационная методика каталитической нейтрализации выхлопных газов.

    Каталитические нейтрализаторы современных автомобилей работают за счет керамических или металлических «сот», покрытых слоем химически активных веществ — катализаторов. Катализаторы окисляют или восстанавливают токсичные соединения CO, CH и NOx до углекислого газа, простого азота и воды.

    Однако особенности дизельного топлива, а также процессов образования и сгорания топливно-воздушной смеси в дизеле таковы, что выхлоп содержит не только вредные химические компоненты, но большое количество сажи. Причем если начать уменьшать долю сажи возрастает содержание NOx, и наоборот. Таким образом, для комплексной очистки дизельного выхлопа нужна многокомпонентная химико-механическая система, усложняющая конструкцию автомобиля и, как следствие, снижающая рентабельность производства.

    Технология BlueTec построена на сочетании традиционных и новых решений. Сначала отработавшие газы проходят имеющийся на большинстве дизельных автомашин противосажевый фильтр и катализатор, «истребляющий» соединения углерода. Далее в выпускной тракт впрыскивается активный реагент AdВlue на основе мочевины (раствора аммиака в воде). Получившаяся смесь попадает в специальный нейтрализатор избирательного действия (SCR), в котором аммиак из AdBlue под влиянием катализа при температуре 250–300°С вступает в химическую реакцию с окислами азота, «разбирая» их на азот и воду. Здесь же «дожигаются» остальные вредные компоненты.

    При очевидных плюсах BlueTec имеет не менее очевидные минусы. Хранение запаса компонента AdВlue требует отдельной емкости. Сама система осложняется за счет присутствия дополнительных узлов и магистралей. К тому же, система еще более прихотлива к качеству топлива и может работать только на солярке с минимальным содержанием серы.

    Еще одна весьма актуальная для России проблема — раствор AdВlue замерзает при минус 11,5 градусов. Поэтому инженеры BlueTec сейчас активно работают над совершенствованием систем без использования мочевины. Сегодня проходят опробование и доработку комплексы из противосажевого фильтра, платинового каталитического нейтрализатора и двух SCR-катализаторов, «заряженных» исключительно на борьбу с оксидами азота. В настоящее время система позволяет обеспечить содержание NOx в выхлопе дизелей примерно на уровне Евро-5.

    Автомобильные турбины и турбокомпрессоры – принцип работы


    ПРИНЦИП РАБОТЫ


    Для получения более четкого представления о принципе работы турбокомпрессора, необходимо ознакомиться с системой функционирования двигателя внутреннего сгорания. На сегодняшний день, большинство дизельных легковых и грузовых автомобилей оснащаются 4-х тактными поршневыми двигателями, работа контролируется при помощи впускных и выпускных клапанов. Каждый рабочий цикл состоит из 4 тактов при 2 полных оборотах коленвала.

    • Впуск – при движении поршня вниз, воздух (в дизельном двигателе) или смесь топлива и воздуха (в бензиновом двигателе) проходит через открытый впускной клапан.
    • Компрессия – происходит сжатие горючей массы.
    • Расширение – смесь воздуха и топлива воспламеняется при помощи свечей (бензиновый двигатель), дизельное топливо впрыскивается под давлением и воспламенение происходит произвольно.
    • Выпуск – при движении поршня вверх, выпускаются выхлопные газы.

    Данные принципы работы предоставляют следующие пути увеличения эффективности работы двигателя:
    1. Увеличение объема
    2. Увеличение скорости работы двигателя
    3. Турбокомпрессия

    Увеличение объема

    Увеличение объема обеспечивает увеличение мощности двигателя, так как увеличение камеры сгорания позволяет нагнетание большего объема воздуха и большее колличество сжигаемого топлива. Увеличение объема может быть достигнуто путем увеличения колличества цилиндров или увеличения объема каждого цилиндра. В целом, увеличения объема приводит к увеличению массы двигателя. Этот способ не обеспечивает значительных преимушеств по уровню выбросов и потреблению топлива.

    Увеличение скорости работы двигателя

    Другим способом увеличения мощности двигателя является увеличение скорости работы двигателя. Увеличение скорости проводится путем увеличения колличества ходов поршня на единицу времени. Однако, по техническим причинам этот способ имеет жесткие ограничения. Увеличение скорости работы двигателя приводит к увеличению потерь при накачивании и других операциях, что вызывает падение эффективности работы.

    Турбокомпрессия

    При применении двух первых способов, двигатель обеспечивается только собственным нагнетанием. Воздух для сгорания проходит прямо в цилиндр во время впускного такта. При использовании турбокомпрессора, воздух, поступающий в камеру сгорания предварительно сжимается. В двигатель поступает тот же объем воздуха, однако, более высокое давление обеспечивает прохождение большего колличества воздушной массы, что позволяет увеличить объем сжигаемого топлива. Таким образом, при использовании турбокомпрессора, мощность двигателя увеличивается по отношению к его объему и колличеству потребляемого топлива. 

    Охлаждение нагнетаемого воздуха.

    В ходе компрессии, нагнетаемый воздух нагревается до 180 С. При охлаждении, плотность воздуха увеличивается,что позволяет увеличить объем нагнетаемого воздуха.
    Охлаждение нагнетаемого воздуха является одной из немногих мер по увеличению мощности двигателей внутреннего сгорания, которые положительно влияют на уровень потребления топлива и уровень выброса вредных веществ. Снижение температуры входящего воздуха обеспечивает снижение температуры сгорания и, таким образом, снижение колличества вырабатываемого NO (x). Увеличение плотности воздуха снижает расход топлива и уровень загрязнения окружающей среды.

    Существуют два типа турбокомпрессии – механическая турбокомпрессия и компрессия выхлопных газов.

    Механическая турбокомпрессия

    При механической турбокомпрессии, воздух сжимается при помощи компрессора, приводимого от двигателя. Однако, часть получаемого увеличения мощности уходит на привод компрессора. В зависимости от размера двигателя, мощность, необходимая для привода компрессора составляет от 10 до 15% от общей выработки двигателя. Таким образом, при сравнении с обычным двигателем такой же мощности, двигатель с механической турбокомпрессией имеет повышенный расход топлива.

    Турбокомпрессия выхлопных газов

    При использовании компрессии выхлопных газов, энергия газа, которая не используется в обычных условиях, направлена на привод турбины. Компрессор находится на одном валу с турбиной и обеспечивает забор, сжатие и подачу воздуха в камеру сгорания. В этом случае механичекие соединения с двигателем отсутствуют.

    Преимущества турбокомпрессии выхлопных газов.

    • По сравнению с обычным двигателем такой же мощности, турбодвигатель имеет меньший расход топлива, так как часть энергии выхлопных газов способствует увеличению мощности двигателя. Меньший объем двигателя сокращает термические и др. потери.
    • Турбодвигатель имеет значительно лучшее соотношение веса к мощности, т.е. Kw / кг.
    • Необходимая площадь двигательного отсека турбодвигателя меньше, чем у обычного двигателя.
    • При использовании турбодвигателя, возможно дальнейшее улучшение характеристик крутящего момента для поддержания мощности, близкой к максимальной при очень низкой скорости двигателя, что позволяет избежать частого переключения скоростей при езде в гористой местности.
    • Турбодвигатели имеют значительно лучшие характеристики работы в условиях высокогорья. В условиях пониженного давления обычный двигатель теряет значительную часть мощности. В противоположность, рабочие характеристики турбодвигателя улучшаются вследствие увеличения разницы между постоянным давлением вверх по соединениям турбины и пониженным внешним давлением у входа турбины. Низкая плотность воздуха у входа компенсируется, обеспечивая почти нулевую потерю мощности.
    • Так как турбодвигатель имеет меньшие размеры, а соответственно и площадь шумовыделяющей поверхности, его шумовые характеристики лучше, чем у обычных двигателей. В данном случае, турбокомпрессор действует как добавочный глушитель.

     

    ЧЕТЫРЕ ОСНОВНЫХ ПРИЧИНЫ ОТКАЗА ТУРБИНЫ

    Вышла из строя турбина? Такое случается, и не обязательно что это проблемы неисправности узлов самой турбины. Практика показывает, что существует ряд причин, по которым турбина выходит из строя и кроются они во внешних факторах. Давайте рассмотрим и обсудим причины выхода турбины  из строя.

    ОДНА ИЗ ПРИЧИН ВЫХОДА ИЗ СТРОЯ ТУРБИНЫ — ЭТО ЗАГРЯЗНЕНИЕ МАСЛА

    Бывает такое, что масло загрязняется мелкими частицами. Для глаза эти частицы настолько малы настолько, что мы их не видим. Они полируют поверхности подшипников и скругляют тем самым их внешние кромки, что приводит к тому что подшипник на стороне компрессора изнашивается по наружному диаметру.

    Более крупные частицы, соответственно могут нанести повреждение более масштабное, царапины и задиры. Как правило, внутренняя поверхность подшипника повреждается в меньшей степени, она как и вал так и центральный корпус подшипников, изготовливается из более крепких материалов.

    Еще одной проблемой износа подшипника является химическое воздействие на масло. Признаки выхода из строя похожи на недостаток необходимого количества смазки. Такое происходит из-за разбавления моторного масла топливом. Следовательно, смазывающие свойства масла ухудшаются.

    ВТОРАЯ ИЗ ПРИЧИН ВЫХОДА ТУРБИНЫ — НЕДОСТАТОЧНАЯ СМАЗКА.

    Бывает, что количество масла, которое подаётся к турбине может уменьшаться. Такое случается, например, когда материал прокладки немного перекрывает канал впуска или отверстие во фланце выпуска. Нехватка смазочного материала визуально проявляется сменой цвета поверхностей вала. Так же причиной плохой смазки турбины может быть – масляный насос, который не создаёт должного давления в системе. В последнее время участились случаи, когда «залипал» клапан в болте крепления трубки подвода масла. А из-за полного отсутствия смазочного материала, повреждение происходит очень быстро!

    ТРЕТЬЯ ИЗ ПРИЧИН ВЫХОДА ТУРБИНЫ — ЭТО ИСКЛЮЧИТЕЛЬНЫЕ УСЛОВИЯ ЕЁ РАБОТЫ

    Эффект «апельсиновой корки» на задней стороне появляется в следствии преувеличения допустимых оборотов. В этом случае происходит перегрев поверхностей. Смазочный материал возгорается и происходит коксование и в последствии нагар. Эти признаки перекручивания турбины явно скажутся на её работоспособности в последствии.

    Так же усиленная эксплуатация турбины может проявляется и в виде отрывания частей крыльчатки турбинного колеса. Визуально будет похоже на попадание посторонних предметов. Еще это может выглядеть в виде трещин на колесе турбины, оно даже может разрушится из- за излишнего перекручивания.

    Цикл разрушения этого колеса напоминает арифметическую прогрессию, чем больше эксплуатация с трещинами, тем быстрее выходит из строя турбина. Ведь её эксплуатация с разрушенным колесом не возможна.

    ЧЕТВЕРТАЯ ПРИЧИНА ВЫХОДА КРОЕТСЯ В ПОВРЕЖДЕНИИ ПОСТОРОННИМИ ПРЕДМЕТАМИ

    Тут рассматривается 2 варианта повреждения. Повреждение жестким предметом и повреждение мягким предметом. Соль, песок эрозируют и вызывают коррозию. Твердые предметы попадая в отверстие патрубка и продвигаясь к входу в компрессор, могут вызвать повреждения.

    А такие предметы как части робы или ветошь (бумажные салфетки) и пр, это мягкие предметы. Они могут оказать такое воздействие на лопатки, что те могут загнуться назад, в некоторых случаях происходит даже отрыв кусков, т,к, метал имеет свойство уставать, при работе с посторонними мягкими предметами.

    Проникнувший в турбину жесткий предмет разрушает входные кромки лопаток крыльчатки. Даже незначительные частицы ржавчины из коллектора выпуска  могут вызвать большие повреждения компонентов, так как те вращаются с огромной скоростью.

     

     

    Предназначение турбонаддува, его устройство и как он работает

    Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала.

    Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.

    Применение турбонаддува

    Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.

    Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.

    Устройство

    Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.

    Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.

    Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.

    Его устройство выглядит следующим образом:

    Устройство турбонагнетателя:
    1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.

    Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.

    Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.

    Как работает турбонаддув

    Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.

    Принцип работы турбонаддува

    Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.

    Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.

    О отрицательных особенностях турбонаддува

    Конструкция системы турбонаддува обуславливает некоторые отрицательные особенности, возникающие при её работе.

    Одна из них – эффект «турбоямы» (turbolag): при резком нажатии на педаль акселератора увеличение мощности двигателя происходит с задержкой. Причина этого в инерционности системы: нужно определённое время для увеличения давления в наддуве, если на газ нажали резко. Избежать этой ситуацию становится возможным, либо применяя турбину с изменяемой геометрией, либо используя два турбокомпрессора, работающих параллельно или последовательно (bi-turbo или twin-turbo), либо задействовав комбинированный наддув.

    Второй неприятный момент – это «турбоподхват»: вслед за преодолением «турбоямы» происходит резкое увеличение давления в наддуве.

    Турбина с изменяемой геометрией или VNT турбина, способна оптимизировать движение потока отработавших газов, меняя размер входного канала. Наиболее распространены такие турбины в серийных системах турбонаддува дизельных двигателей известных автопроизводителей (например, TDI у Volkswagen).

    Турбонаддув с двумя параллельно работающими турбокомпрессорами находит большее применение для мощных V-образных двигателей. При этом на каждый ряд цилиндров двигателя работает свой турбокомпрессор. Выигрыш получается за счёт распределения инерции с одной большой турбины на две маленькие.

    В случае установки двух турбин в последовательном режиме выигрыш производительности достигается путём работы разных турбокомпрессоров для разных значений оборотов двигателя. Изредка встречаются случаи установки трёх турбокомпрессоров последовательно (triple-turbo, например, у BMW), ещё реже – четырёх (quad-turbo у Bugatti).

    При комбинированном наддуве (twincharger) совместно используется турбонаддув и механический наддув. Сжатие воздуха при низких оборотах коленчатого вала происходит с помощью механического нагнетателя. С увеличением оборотов в работу включается турбокомпрессор, а при достижении их определённой частоты работа механического нагнетателя прекращается (например, TSI у Volkswagen).

    Видео — как работает турбина:

    Применение турбонаддува особенно эффективно для дизельных двигателей мощных грузовиков: расход топлива увеличивается ненамного, зато мощность двигателя и крутящий момент заметно повышаются.

    Турбокомпрессоры, наиболее мощные в пропорции к мощности двигателя, применяются для дизелей тепловозов. По абсолютному же значению, самые мощные турбокомпрессоры устанавливаются в судовые двигатели (до десятков тысяч киловатт).

    Загрузка…

    Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

    Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры? Реклама

    Идеального изобретения не бывает: всегда можно сделать что-нибудь лучше, дешевле, более эффективный или более экологически чистый. Возьмите внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приводимый в действие жидкостью, может сбить вас с дороги или ускорить небо во много раз быстрее, чем вы могли бы путешествовать иначе.Но это всегда можно построить двигатель, который будет работать быстрее, дальше или потреблять меньше топливо. Один из способов улучшить двигатель — использовать турбокомпрессор —a пара вентиляторов, которые используют отработанную мощность выхлопа из задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше «энергии», чем в противном случае. получать. Мы все слышали о турбинах, но как именно они работают? Давайте присмотритесь!

    Фото: в типичном автомобильном турбокомпрессоре используется пара таких улиток вентиляторов.Тот, который вы видите здесь, — это Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делкора любезно предоставлено ВМС США.

    Что такое турбокомпрессор?

    Фото: два вида безмасляного турбокомпрессора, разработанного НАСА. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).

    Вы когда-нибудь видели, как мимо вас проносятся машины, из выхлопной трубы которых струится сажа? Очевидно, выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше очевидно, что они при этом тратят энергию впустую.Выхлоп смесь горячих газов, откачиваемых на скорости, и вся энергия в ней содержит — тепло и движение (кинетическая энергия) — исчезает бесполезно в атмосферу. Было бы здорово, если бы двигатель Могли бы как-то использовать эту бесполезную энергию, чтобы машина ехала быстрее? Именно это и делает турбокомпрессор.

    Автомобильные двигатели получают энергию за счет сжигания топлива в прочных металлических канистрах, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, вращая валы и шестерни, которые вращают колеса автомобиля.Когда поршень возвращается внутрь, он нагнетает отработанный воздух. и топливная смесь выходит из цилиндра в качестве выхлопа. Количество мощности Производительность автомобиля напрямую зависит от того, насколько быстро он сжигает топливо. В у вас больше цилиндров и чем они больше, тем больше топлива машина может гореть каждую секунду и (по крайней мере теоретически) тем быстрее можешь идти.

    Один из способов ускорить движение автомобиля — это добавить больше цилиндров. Вот почему супер-быстрые спорткары обычно имеют восемь и двенадцать цилиндров вместо четырех или шести цилиндры в обычном семейном автомобиле.Другой вариант — использовать турбонагнетатель, который каждую секунду нагнетает в цилиндры больше воздуха, они могут сжигать топливо быстрее. Турбокомпрессор — это простой, относительно дешевый, дополнительный немного обвеса, который может получить больше мощности от того же двигателя!

    Рекламные ссылки

    Как работает турбокомпрессор?

    Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбонагнетателя автомобиля. А реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выдувает горячий воздух из спины.В виде горячий воздух уходит, он с ревом проносится мимо турбины (что-то вроде очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который нагнетает воздух в двигатель, чтобы заставить топливо гореть должным образом. Турбокомпрессор на автомобиле применяет очень принцип аналогичен поршневому двигателю. Он использует выхлопные газы для водить турбину. Это вращает воздушный компрессор, который выталкивает дополнительный воздух. (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать «больше энергии в секунду»).Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбокомпрессор, но вместо того, чтобы приводиться в движение выхлопными газами с помощью турбины, он приводится в действие вращающимся коленчатым валом автомобиля. Обычно это недостаток: там, где турбокомпрессор питается от отходов энергии выхлопных газов, нагнетатель фактически крадет энергию от собственного источника энергии автомобиля (коленчатого вала), что обычно бесполезно.

    Фото: Суть турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу.Когда один поворачивается, другой тоже поворачивается. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

    Как на практике работает турбонаддув? Турбокомпрессор — это два маленьких вентилятора (также называемых крыльчатками). или газовые насосы), сидящие на одном металлическом валу, так что оба вращаются все вместе. Один из этих вентиляторов, называемый турбиной , находится в выхлопная струя из цилиндров. Когда цилиндры выдувают горячий газ лопасти вентилятора, они вращаются, и вал, к которому они присоединены (технически называемый вращающийся узел центральной ступицы или CHRA) также вращается.Второй вентилятор называется , компрессор и, поскольку он сидит на том же валу, что и турбина, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, так что, вращаясь, он втягивает воздух в автомобиль и нагнетает его в цилиндры.

    Теперь здесь небольшая проблема. Если сжать газ, он станет горячее (вот почему велосипедный насос нагревается, когда вы начинаете накачивать шины). Горячее воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше эффективны для сжигания топлива, поэтому было бы намного лучше, если бы воздух, поступающий из компрессора, был охлажден перед входом цилиндры.Для его охлаждения мощность компрессора проходит через над теплообменником, который удаляет дополнительное тепло и направляет его в другое место.

    Как работает турбокомпрессор — подробнее

    Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который нагнетает воздух в двигатель. Для простоты мы показываем только один цилиндр. Итак, вкратце, как все это работает:

    1. Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
    2. Вентилятор компрессора помогает всасывать воздух.
    3. Компрессор сжимает и нагревает поступающий воздух и снова его выдувает.
    4. Горячий сжатый воздух от компрессора проходит через теплообменник, который охлаждает его.
    5. Охлажденный сжатый воздух поступает в воздухозаборник цилиндра. Дополнительный кислород помогает сжигать топливо в цилиндре быстрее.
    6. Поскольку цилиндр сжигает больше топлива, он быстрее вырабатывает энергию и может передавать больше мощности на колеса через поршень, валы и шестерни.
    7. Отработанный газ из цилиндра выходит через выхлопное отверстие.
    8. Горячие выхлопные газы, обдувающие турбинный вентилятор, заставляют его вращаться с высокой скоростью.
    9. Вращающаяся турбина установлена ​​на том же валу, что и компрессор (показан здесь бледно-оранжевой линией). Итак, когда вращается турбина, вращается и компрессор.
    10. Выхлопные газы покидают автомобиль, расходуя меньше энергии, чем в противном случае.

    На практике компоненты можно было соединить примерно так.Турбина (красная справа) забирает отработанный воздух через впускное отверстие, приводя в действие компрессор (синий, слева), который забирает чистый наружный воздух и нагнетает его в двигатель. Эта конкретная конструкция имеет электрическую систему охлаждения (зеленую) между турбиной и компрессором.

    Иллюстрация: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдано 24 мая 2011 г.Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

    Откуда берется дополнительная мощность?

    Турбокомпрессоры дают автомобилю больше мощности, но эта дополнительная мощность не поступать непосредственно из отработанного выхлопного газа — и это иногда сбивает людей с толку. С турбонагнетателем мы используем часть энергии выхлопных газов для приведения в действие компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо — вот где дополнительная мощность автомобиля происходит от. Все выхлопные газы приводят в действие турбокомпрессор и, поскольку турбокомпрессор не подключен к коленчатому валу или колесам автомобиля, он не напрямую, каким-либо образом увеличивает мощность автомобиля.Это просто включение один и тот же двигатель для более быстрого сжигания топлива, что делает его более мощным.

    Сколько дополнительной мощности вы можете получить?

    Если турбокомпрессор дает двигателю большую мощность, более крупный и лучший турбокомпрессор даст это даже больше мощности. Теоретически вы можете продолжать улучшать свой турбокомпрессор. чтобы сделать ваш двигатель все более мощным, но в конечном итоге вы достигнете предела. Цилиндры такие большие, и топлива они могут сжечь ровно столько, сколько нужно. Через впускное отверстие определенного размера вы можете втолкнуть в них столько воздуха, сколько выхлопных газов, что ограничивает энергию, которую вы можете использовать для приведения в действие турбокомпрессора.Другими словами, в игру вступают и другие ограничивающие факторы, которые необходимо учитывать. аккаунт тоже; нельзя просто турбонаддувом проложить себе путь до бесконечности!

    Преимущества и недостатки турбокомпрессоров

    Фото: Типичный автомобильный турбокомпрессор. Вы можете четко видеть два вентилятора / нагнетателя (один над другим) и их вход / выход. Фото любезно предоставлено Армией США.

    Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и более или менее на любых вид транспортного средства (автомобиль, грузовик, корабль или автобус).Основное преимущество использования турбокомпрессора заключается в том, что вы получаете большую выходную мощность. для двигателя того же размера (каждый ход поршня в каждом цилиндре генерирует большую мощность, чем в противном случае). Тем не менее, большая мощность означает больше энергии, выход в секунду, и закон сохранения энергии говорит нам, что вы должны вкладывать больше энергии, поэтому вы должны сжигать, соответственно, больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него.Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, производящий такую ​​же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении. Производители теперь часто могут обойтись без установки гораздо меньшего двигателя на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндрового двигателя с турбонаддувом вместо V6). И именно здесь автомобили с турбонаддувом получают свое преимущество: при хорошей работе они могут сэкономить до 10 процентов вашего топлива.Поскольку они сжигают топливо с большим количеством кислорода, они, как правило, сжигают его более тщательно и чисто, вызывая меньшее загрязнение воздуха.

    « Большинство отраслевых экспертов ожидают, что к 2027 году более половины автомобилей, проданных в США, будут оснащены одним двигателем.

    The New York Times, 2018

    Большая мощность при том же размере двигателя — это замечательно, так почему же не все двигатели имеют турбонаддув? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как утверждали производители (стремящиеся воспользоваться любым маркетинговым преимуществом над своими конкурентами).Одно исследование 2013 года, проведенное Consumer Reports, показало, что небольшие двигатели с турбонаддувом дают значительно худшую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и пришел к выводу: «Не принимайте экологические хвастовства двигателей с турбонаддувом за чистую монету. Есть более эффективные способы экономить топливо, в том числе гибриды, дизели и другие передовые технологии ». Надежность тоже часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности к обычному двигателю — короче говоря, есть еще немало вещей, которые могут пойти не так.Это может значительно удорожать обслуживание турбин. По определению, турбонаддув — это получение большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к более быстрому выходу деталей из строя; вот почему, вообще говоря, двигатели с турбонаддувом служат не так долго. Даже вождение с турбонаддувом может отличаться: поскольку турбокомпрессор приводится в действие выхлопными газами, часто наблюдается значительная задержка («турбо-задержка») между тем, когда вы нажимаете ногу на акселератор, и моментом включения турбонаддува, и это может привести к турбо машины очень разные (а иногда и очень хитрые) в управлении.В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывают частично или полностью электрические турбокомпрессоры для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Борга — eBooster®.

    Кто изобрел турбокомпрессор?

    Кому мы благодарим за турбокомпрессоры? Альфред Дж. Бючи (1879–1959), автомобильный инженер, работавший в двигательной компании Gebrüder Sulzer в Винтертуре, Швейцария. Как и в случае с турбокомпрессором, который я проиллюстрировал выше, в его первоначальной конструкции использовался приводной от выхлопа вал турбины для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя.Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.

    Однако

    Бючи была не единственной важной фигурой в этой истории. Несколькими годами ранее сэр Дугалд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров. Это немного похоже на наддув, увеличивая как поток воздуха в цилиндр, так и количество топлива, которое может быть сожжено.Другие инженеры, включая Луи Рено, Готлиба Даймлера и Ли Чедвик также успешно экспериментировал с системами наддува.

    Изображение: один из проектов турбокомпрессора Альфреда Бючи конца 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопные газы из цилиндра проходят по трубе (зеленого цвета), приводящей в движение турбину.Он подключен к оранжевому «нагнетателю» (компрессору) и охладителю (синий ящик), который нагнетает воздух в цилиндр через синюю трубу. Есть множество других сложных деталей, но я не буду вдаваться во все детали; Если вам интересно, взгляните на патент США № 1,955,620: Двигатель внутреннего сгорания (обслуживается через Google Patents). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

    Рекламные ссылки

    Узнать больше

    На этом сайте

    Книги для старших читателей

    Книги для младших читателей

    • Car Science Ричард Хаммонд.Дорлинг Киндерсли, 2007. Объясняет, почему ваша машина работает (в возрасте 9–12 лет).

    Статьи

    • Garrett E-Turbo обещает большую мощность, лучшую эффективность и меньшее отставание от Аарона Терпена, New Atlas, 20 октября 2019 года. История новых электрических турбин Гарретта.
    • Прыжки с турбонаддувом с гоночной трассы до Кюль-де-Сак, автор Стивен Уильямс. The New York Times, 25 октября 2018 года. Как турбокомпрессоры стали неотъемлемой частью современного автомобильного двигателя.
    • Маленький вентилятор, решающий самую большую проблему турбокомпрессора. Автор Алекс Дэвис.Wired, 24 августа 2017 г. Краткий обзор eBooster от BorgWarner.
    • Как сделать турбодвигатели более эффективными? «Просто добавь воды» Ник Чап. The New York Times, 29 сентября 2016 г. Компания Bosch возрождает идею распыления воды на цилиндры с турбонаддувом, чтобы они работали более прохладно и менее беспорядочно.
    • Автопроизводители считают, что турбины — мощный путь к экономии топлива Лоуренс Ульрих. The New York Times, 26 февраля 2015 г. Почему такие производители, как Ford и BMW, так активно продвигают двигатели с турбонаддувом.
    • 50 лет назад Джим Коскс сделал турбонагнетатель революционной технологией. The New York Times, 19 декабря 2014 года. Как первые турбокомпрессоры в конечном итоге преодолели свои первые проблемы.
    • Чак Скватриглиа, «Если ты не водишь турбо», то скоро будешь. Wired, 24 сентября 2010 г. Ожидается, что к 2015 году количество автомобилей с установленными турбокомпрессорами удвоится, поскольку производители ищут новые способы повышения производительности от двигателей меньшего размера.
    • Turbo приветствует экологический сертификат Йорна Мадслиена.BBC News, 11 октября 2009 г. Турбины заставляют автомобили двигаться быстрее; они также могут сделать их более «зелеными» за счет снижения расхода топлива.

    Патенты

    Если вы ищете подробные технические описания того, как все работает, патенты — хорошее место для начала. Здесь Вот некоторые недавние патенты на турбокомпрессоры, которые стоит проверить:

    • Патент США № 1,955,620: Двигатель внутреннего сгорания Альфреда Дж. Бючи, выдан 17 апреля 1934 г. Первый турбодвигатель, разработанный самим изобретателем турбокомпрессоров.
    • Патент США №
    • № 2 309 968: Управление турбокомпрессором и метод, разработанный Ричардом Дж. Ллойдом, корпорация Garrett, выдан 1 февраля 1977 года. Основное внимание уделяется системе управления турбокомпрессором, которая эффективно работает при различных оборотах двигателя.
    • Патент США № 4083188: Система турбонагнетателя двигателя, выданная Emerson Kumm, The Garrett Corporation, 11 апреля 1978 года. Современный турбонагнетатель для дизельного двигателя с низкой степенью сжатия.
    • Патент США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдан 24 мая 2011 г.Новый метод охлаждения турбокомпрессора.

    Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

    статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

    Авторские права на текст © Chris Woodford 2010, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

    eBooster является зарегистрированным товарным знаком BorgWarner Inc. Corporation

    Следуйте за нами

    Сохранить или поделиться этой страницей

    Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

    Цитировать эту страницу

    Вудфорд, Крис. (2010/2020) Турбокомпрессоры. Получено с https://www.explainthatstuff.com/how-turbochargers-work.html. [Доступ (укажите дату здесь)]

    Подробнее на нашем сайте…

    Как работает турбокомпрессор | Cummins

    Существенная разница между дизельным двигателем с турбонаддувом и традиционным бензиновым двигателем без наддува состоит в том, что воздух, поступающий в дизельный двигатель, сжимается перед впрыском топлива . Именно здесь турбокомпрессор имеет решающее значение для выходной мощности и эффективности дизельного двигателя.

    Работа турбокомпрессора заключается в сжатии большего количества воздуха, поступающего в цилиндр двигателя.Когда воздух сжимается, молекулы кислорода собираются ближе друг к другу. Это увеличение количества воздуха означает, что для безнаддувного двигателя такого же размера можно добавить больше топлива. Это приводит к увеличению механической мощности и повышению общей эффективности процесса сгорания. Следовательно, размер двигателя может быть уменьшен для двигателя с турбонаддувом, что приведет к лучшей компоновке, преимуществам экономии веса и общей улучшенной экономии топлива.

    Как работает турбокомпрессор?

    Турбокомпрессор состоит из двух основных частей: турбины и компрессора.Турбина состоит из колеса турбины (1) и корпуса турбины (2) . Корпус турбины направляет выхлопной газ (3) в рабочее колесо турбины. Энергия выхлопного газа вращает турбинное колесо, и затем газ выходит из корпуса турбины через зону выхода выхлопных газов (4) .

    Компрессор также состоит из двух частей: колеса компрессора (5) и корпуса компрессора (6) . Принцип действия компрессора противоположен турбине.Колесо компрессора прикреплено к турбине валом из кованой стали (7) , и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его. Затем корпус компрессора преобразует высокоскоростной воздушный поток низкого давления в воздушный поток высокого давления и низкого давления посредством процесса, называемого диффузией. Сжатый воздух (8) проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.

    1. Колесо турбины
    2. Корпус турбины
    3. Выхлопные газы
    4. Площадь выхода выхлопных газов
    5. Колесо компрессора
    6. Корпус компрессора
    7. Вал из кованой стали
    8. Сжатый воздух

    Узнайте, как работает Turbo

    Основы турбокомпрессора

    Основы турбокомпрессора

    Ханну Яэскеляйнен, Магди К.Хаир

    Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
    Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

    Abstract : Турбокомпрессоры — это центробежные компрессоры, приводимые в действие турбиной выхлопного газа и используемые в двигателях для повышения давления наддувочного воздуха. Производительность турбокомпрессора влияет на все важные параметры двигателя, такие как экономия топлива, мощность и выбросы. Прежде чем переходить к более подробному обсуждению специфики турбокомпрессора, важно понять ряд фундаментальных концепций.

    Конструкция турбокомпрессора

    Турбокомпрессор состоит из колеса компрессора и колеса турбины выхлопного газа, соединенных сплошным валом и используемого для повышения давления всасываемого воздуха двигателя внутреннего сгорания. Турбина выхлопного газа извлекает энергию из выхлопного газа и использует ее для привода компрессора и преодоления трения. В большинстве автомобильных применений и компрессор, и турбинное колесо являются радиальными. В некоторых приложениях, таких как средне- и низкооборотные дизельные двигатели, можно использовать колесо турбины с осевым потоком вместо турбины с радиальным потоком.Поток газов через типичный турбокомпрессор с радиальным компрессором и турбинными колесами показан на Рисунке 1 [482] .

    Рисунок 1 . Конструкция турбокомпрессора и расход газов

    (Источник: Schwitzer)

    Центр-Жилье. Общий вал турбина-компрессор поддерживается системой подшипников в центральном корпусе (корпусе подшипника), расположенном между компрессором и турбиной (Рисунок 2). Узел колеса вала (SWA) относится к валу с прикрепленными колесами компрессора и турбины, т.е.е., вращающийся узел. Узел вращения центрального корпуса (CHRA) относится к SWA, установленному в центральном корпусе, но без корпусов компрессора и турбины. Центральный корпус обычно отлит из серого чугуна, но в некоторых случаях может использоваться и алюминий. Уплотнения предотвращают попадание масла в компрессор и турбину. Турбокомпрессоры для систем с высокой температурой выхлопных газов, таких как двигатели с искровым зажиганием, также могут иметь охлаждающие каналы в центральном корпусе.

    Рисунок 2 . Турбокомпрессор в разрезе

    Турбонагнетатель отработавших газов бензинового двигателя в разрезе, показывающий колесо компрессора (слева) и колесо турбины (справа). Подшипниковая система состоит из упорного подшипника и двух полностью плавающих опорных подшипников. Обратите внимание на охлаждающие каналы.

    (Источник: BorgWarner)

    Подшипники турбокомпрессора

    Подшипники. Система подшипников турбокомпрессора проста по конструкции, но играет ключевую роль в ряде важных функций.К наиболее важным из них относятся: контроль радиального и осевого движения вала и колес и минимизация потерь на трение в подшипниковой системе. Подшипниковым системам уделяется значительное внимание из-за их влияния на трение турбокомпрессора и его влияние на топливную экономичность двигателя.

    За исключением некоторых крупных турбонагнетателей для тихоходных двигателей, подшипники, поддерживающие вал, обычно расположены между колесами в выступе. Эта гибкая конструкция ротора гарантирует, что турбокомпрессор будет работать выше своей первой и, возможно, второй критических скоростей, и, следовательно, может подвергаться динамическим условиям ротора, таким как завихрение и синхронная вибрация.

    Уплотнения. Уплотнения расположены на обоих концах корпуса подшипника. Эти уплотнения представляют собой сложную конструктивную проблему из-за необходимости поддерживать низкие потери на трение, относительно больших перемещений вала из-за зазора в подшипниках и неблагоприятных градиентов давления в некоторых условиях.

    Эти уплотнения в первую очередь служат для предотвращения попадания всасываемого воздуха и выхлопных газов в центральный корпус. Давление во впускной и выпускной системах обычно выше, чем в центральном корпусе турбонагнетателя, который обычно находится на уровне давления в картере двигателя.По существу, они в первую очередь предназначены для уплотнения центрального корпуса, когда давление в центральном корпусе ниже, чем во впускной и выпускной системах. Эти уплотнения не предназначены для использования в качестве основного средства предотвращения утечки масла из центрального корпуса в выхлопную и воздушную системы. Попадание масла в контакт с этими уплотнениями обычно предотвращается другими средствами, такими как масляные дефлекторы и вращающиеся пальцы.

    Уплотнения турбокомпрессора отличаются от мягких манжетных уплотнений, которые обычно используются во вращающемся оборудовании, работающем при гораздо более низких скоростях и температурах.Уплотнение с поршневым кольцом — это один из наиболее часто используемых типов уплотнений. Он состоит из металлического кольца, внешне похожего на поршневое кольцо. Уплотнение остается неподвижным при вращении вала. Иногда используются уплотнения лабиринтного типа. Обычно уплотнения вала турбокомпрессора не предотвращают утечку масла, если перепад давления меняется на противоположный, так что давление в центральном корпусе выше, чем во впускной или выпускной системах.

    ###

    Как работают турбокомпрессоры: Изучите основные принципы турбонаддува

    Что такое турбонагнетатель?

    В судовом дизельном двигателе хорошее сгорание является результатом достаточного притока воздуха.Общая выходная мощность всего двигателя может быть значительно увеличена за счет увеличения плотности воздуха, поступающего в двигатель. Это достигается с помощью устройства, известного как турбокомпрессор, и в этой статье мы увидим, как работают турбокомпрессоры.

    В двигателе без турбонагнетателя, таком как автомобильные двигатели без наддува, воздух всасывается внутри двигателя областью низкого давления, создаваемой движением поршня вниз. Но эта система работает при постоянном давлении воздуха на входе, которое нельзя ни увеличивать, ни уменьшать, ни которого недостаточно для полного сгорания.(Вы можете проверить различные рабочие циклы здесь)

    Для решения этой проблемы используются турбонагнетатели, обеспечивающие более высокую плотность воздуха в двигателе. Таким образом, турбонагнетатель представляет собой механизм, обеспечивающий принудительную индукцию судовых дизельных двигателей. Эта принудительно индуцированная система сжимает воздух и выжимает его в цилиндр двигателя, позволяя большому количеству топлива попасть в двигатель. Это не только помогает получить больше мощности, но и улучшает удельную мощность двигателей.

    Зарядка, наддув и турбонаддув.

    Процесс подачи в цилиндры двигателя свежего воздуха под давлением с помощью турбонагнетателя или нагнетателя называется зарядкой.

    • Суперзаряд — это процесс, при котором сжатый воздух подается с помощью внешнего нагнетательного насоса.
    • Турбонаддув обеспечивает подачу сжатого воздуха за счет выхлопных газов двигателя.

    В настоящее время как 2-тактные, так и 4-тактные двигатели снабжены внешней системой зарядки.Четырехтактный двигатель обычно снабжен турбонагнетателем, тогда как в двухтактном двигателе в дополнение к турбонагнетателю также предусмотрен вспомогательный вентилятор с электрическим приводом, поскольку один турбонагнетатель не может обеспечить достаточно воздуха для низкооборотных двигателей.

    Турбокомпрессор против нагнетателя

    И турбокомпрессор, и нагнетатель представляют собой системы с принудительной индукцией, используемые для подачи большего количества воздуха в цилиндр двигателя. Разница между ними в том, что нагнетатель приводится в движение механически с помощью ремня и шестерен, прикрепленных к коленчатому валу двигателя.В то время как турбонагнетатель использует энергию выхлопного воздуха двигателя. Остальная часть механизма одинакова для обоих.

    Турбокомпрессор состоит из двух основных частей — турбины и компрессора, которые установлены на одном валу. Выхлопные газы двигателя вращают турбину, которая, в свою очередь, вращает компрессор. Компрессор забирает воздух из окружающей среды, сжимает его и направляет во впускной коллектор.

    Нагнетатель также работает по тому же принципу, с той лишь разницей, что вместо выхлопных газов он использует коленчатый вал двигателя для его привода.Преимущество использования нагнетателя заключается в том, что, поскольку он напрямую связан с двигателем, он обеспечивает лучший отклик дроссельной заслонки и мгновенное полное давление наддува. Также исключается проблема изменения скорости из-за колебаний давления выхлопного воздуха. Принимая во внимание, что использование турбонагнетателя увеличивает общий КПД двигателя, поскольку он использует энергию выхлопных газов, которая обычно тратится впустую, что также увеличивает мощность всего агрегата.

    В следующей статье мы узнаем о работе и конструкции турбонагнетателей с последующим явлением помпажа турбонагнетателя.

    Ссылки

    Введение в морскую технику, 2-е издание , Д.А. Тейлор

    Авторские права на изображения

    https://www.ecy.wa.gov/programs/spills/prevention/eom/eom10/eom10a .jpg

    https://product-image.tradeindia.com/00008057/b/0/Turbocharger.jpg

    https://www.monstermarinestore.com/images/productimages/000-bb_8-71_w_intercooler1.jpg

    Эта статья является частью серии: Турбокомпрессор: конструкция и работа

    В этой серии статей объясняется важность турбокомпрессора в судовом дизельном двигателе.Изучите конструкцию и работу турбокомпрессора, а также связанные с ним эксплуатационные трудности.

    1. Турбокомпрессоры: привод в движение двигателей
    2. Компоненты турбокомпрессора
    3. Турбокомпрессоры: что происходит?

    ТУРБОКОМПЕНСАТОР: КОМПОНЕНТЫ, ПРИНЦИПЫ РАБОТЫ И ТИПЫ

    Турбонагнетатель — это устройство, которое используется для увеличения мощности двигателя или, можно сказать, повышения эффективности двигателя за счет увеличения количества воздуха, поступающего в камеру сгорания.Больше воздуха в камеру сгорания означает, что в цилиндр будет поступать большее количество топлива, и, как следствие, вы получите больше мощности от того же двигателя, если в нем будет установлен турбонагнетатель.

    Проще говоря, турбокомпрессор — это своего рода воздушный насос, забирающий воздух с давлением окружающей среды (атмосферное давление), сжимающий до более высокого давления и пропускающий сжатый воздух в двигатель через впускные клапаны.

    В настоящее время турбины используются в основном в дизельных двигателях, но сейчас наблюдается тенденция к турбонаддувам в серийных бензиновых двигателях.

    Количество двигателя, которое фактически входит в цилиндр двигателя, по сравнению с теоретическим количеством, если двигатель может поддерживать атмосферное давление, называется объемным КПД, а цель турбокомпрессора — повысить объемный КПД двигателя за счет увеличения плотности впуска. газ.

    Турбокомпрессор всасывает воздух из атмосферы и сжимает его с помощью центробежного компрессора, прежде чем он попадет во впускной коллектор под повышенным давлением.Это приводит к тому, что большее количество воздуха поступает в цилиндры на каждом такте впуска. Центробежный компрессор получает энергию за счет кинетической энергии выхлопных газов двигателя.

    КОМПОНЕНТЫ ТУРБОКОМПЕНСАТОРА

    Турбокомпрессор состоит из трех основных компонентов.
    1. Турбина, которая почти представляет собой турбину с радиальным притоком.
    2. Компрессор представляет собой почти центробежный компрессор.
    3. Узел вращения центральной ступицы.

    Турбокомпрессор состоит из двух основных частей: турбины и компрессора.

    Турбина состоит из турбинного колеса и корпуса турбины. Корпус турбины направляет выхлопные газы в рабочее колесо турбины. Энергия выхлопного газа вращает колесо турбины, и затем газ выходит из корпуса турбины через зону выхода выхлопных газов.

    Компрессор также состоит из двух частей: крыльчатки компрессора и корпуса компрессора. Принцип действия компрессора противоположен турбине. Колесо компрессора прикреплено к турбине валом из кованой стали, и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его.Затем корпус компрессора преобразует высокоскоростной воздушный поток низкого давления в воздушный поток высокого давления и низкого давления посредством процесса, называемого диффузией. Сжатый воздух проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.

    ПРИНЦИП РАБОТЫ

    Турбокомпрессор в основном состоит из двух основных частей: турбины и компрессора. Турбина состоит из турбинного колеса и корпуса турбины, цель которого — направлять выхлопные газы в турбинное колесо.Кинетическая энергия выхлопных газов преобразуется в механическую после попадания их на лопатки турбины. Выхлопное отверстие помогает выхлопным газам выходить из турбины. Колесо компрессора в турбонагнетателе прикреплено к турбине с помощью стального вала, и когда турбина вращает колесо компрессора, оно втягивает высокоскоростной воздушный поток низкого давления и преобразует его в воздух высокого давления и низкой скорости. ручей. Этот сжатый воздух вдавливается в двигатель с большим количеством топлива и, следовательно, производит большую мощность.

    Отработанные выхлопные газы двигателя используются для привода турбинного колеса, которое валом соединено с колесом компрессора. Компрессор или воздушное колесо всасывает воздух через воздушные фильтры и направляет его в двигатель.
    По мере того, как отработанные газы удаляются из двигателя, они направляются в турбину или горячее колесо турбонагнетателя и, таким образом, завершают цикл.

    1. Захват

    Горячие газы, образующиеся при сгорании, не выходят через выхлопную трубу, а направляются в турбонагнетатель.Цилиндры внутри двигателя внутреннего сгорания срабатывают последовательно (не все сразу), поэтому выхлопные газы выходят из камеры сгорания нерегулярными импульсами.
    Обычные турбокомпрессоры с одной спиралью направляют эти нерегулярные импульсы выхлопных газов в турбину таким образом, что они сталкиваются и мешают друг другу, уменьшая силу потока. В отличие от этого, турбонагнетатель с двойной спиралью собирает выхлопные газы из пар цилиндров в чередующейся последовательности.

    2. Отжим

    Выхлоп ударяет по лопаткам турбины, вращая их со скоростью до 150 000 об / мин.Чередующиеся импульсы выхлопа помогают устранить турбо-лаг.

    3. Вентиляционное отверстие

    Выполнив свое предназначение, выхлопные газы проходят через выпускное отверстие в каталитический нейтрализатор, где они очищаются от оксида углерода, оксидов азота и других загрязняющих веществ перед выходом через выхлопную трубу.

    4. Сжать

    Между тем турбина приводит в действие воздушный компрессор, который собирает холодный чистый воздух из вентиляционного отверстия и сжимает его до давления на 30 процентов выше атмосферного, или почти 19 фунтов на квадратный дюйм.Плотный, богатый кислородом воздух поступает в камеру сгорания.

    Дополнительный кислород позволяет двигателю более полно сжигать бензин, обеспечивая большую производительность от меньшего двигателя. В результате двигатель Twin Power вырабатывает на 30 процентов больше мощности, чем двигатель такого же размера без турбонаддува.

    Это следует за следующим процессом

    1. Воздухозаборник двигателя всасывает холодный воздух и направляется в компрессор.
    2. Компрессор сжимает поступающий воздух и нагревает его.Затем он выдувает горячий воздух.
    3. Горячий воздух охлаждается при прохождении через теплообменник и поступает в воздухозаборник цилиндра.
    4. Холодный воздух горит внутри камеры сгорания быстрее из-за переноса большего количества кислорода.
    5. Из-за сжигания большего количества топлива выход энергии будет больше и быстрее, и двигатель сможет передавать больше мощности на колеса.
    6. Горячие отработанные газы покидают камеру и проходят мимо турбины на выходе выхлопных газов.
    7.Турбина вращается с высокой скоростью и раскручивает компрессор, поскольку оба установлены на одном валу.
    8. Выхлопные газы покидают автомобиль через выхлопную трубу. Они тратят меньше энергии, чем двигатель без турбонагнетателя.

    ВИДЫ ТУРБОКОМПЕНСАТОРОВ

    1. Однотурбо

    Одни только турбонагнетатели обладают безграничной вариативностью. Различие в размере крыльчатки компрессора и турбины приведет к совершенно разным характеристикам крутящего момента. Большие турбины обеспечат высокую максимальную мощность, но меньшие турбины обеспечат лучшее рычание на низких частотах, поскольку они быстрее вращаются.Есть также одиночные турбины на шарикоподшипниках и опорных подшипниках. Шарикоподшипники обеспечивают меньшее трение для вращения компрессора и турбины, поэтому их наматывать быстрее (при добавлении стоимости).

    Преимущества
    • Экономичный способ увеличения мощности и эффективности двигателя.
    • Простой, как правило, самый простой в установке вариант турбонаддува.
    • Позволяет использовать двигатели меньшего размера для выработки такой же мощности, как и более крупные безнаддувные двигатели, что часто позволяет снизить вес.

    Недостатки
    • Одиночные турбины обычно имеют довольно узкий эффективный диапазон оборотов. Это затрудняет определение размеров, так как вам придется выбирать между хорошим крутящим моментом на низких оборотах или лучшей мощностью на высоких оборотах.
    • Турбо-отклик может быть не таким быстрым, как альтернативные настройки турбо.

    2. Твин-турбо

    Как и одиночные турбокомпрессоры, при использовании двух турбокомпрессоров существует множество возможностей. У вас может быть один турбонагнетатель для каждого ряда цилиндров (V6, V8 и т. Д.). В качестве альтернативы можно использовать один турбонагнетатель для низких оборотов и байпас к более крупному турбокомпрессору для высоких оборотов (I4, I6 и т. Д.).У вас даже могут быть две турбины одинакового размера, одна из которых используется на низких оборотах, а обе — на более высоких. На BMW X5 M и X6 M используются турбины с двумя улитками, по одной с каждой стороны от V8.

    Преимущества
    • Для параллельных сдвоенных турбин на V-образных двигателях преимущества (и недостатки) очень похожи на установки с одним турбонаддувом.
    • Для последовательных турбин или использования одного турбонагнетателя на низких оборотах и ​​обоих на высоких оборотах, это позволяет получить гораздо более широкую и пологую кривую крутящего момента. Лучше крутящий момент на низких оборотах, но мощность не снижается на высоких оборотах, как у небольшого турбонаддува.

    Недостатки
    • Стоимость и сложность, поскольку вы почти вдвое увеличили количество компонентов турбонагнетателя.
    • Существуют более легкие и более эффективные способы достижения аналогичных результатов (как описано ниже).

    3. Twin-Scroll Turbo

    Турбина приводится в движение выхлопными газами, которые направляются на вращение лопаток турбины и нагнетание воздуха в двигатель. Теперь цилиндры двигателя срабатывают последовательно, а это означает, что выхлопные газы импульсами попадают в турбонагнетатель. Как вы, наверное, догадались, эти импульсы могут легко перекрываться и мешать друг другу при включении турбонагнетателя, и турбокомпрессор с двойной спиралью решает эту проблему, используя корпус турбины с разделенным впуском и специальный выпускной коллектор, который соединяет правые цилиндры с каждым. прокрутка.В четырехцилиндровом автомобиле первый и четвертый цилиндры могут приводить в действие одну спираль, а два и три — другую. Это означает меньшее перекрытие импульсов и меньшую задержку.

    Преимущества
    • На выхлопную турбину направляется больше энергии, а значит, больше мощности.
    • Более широкий диапазон эффективных оборотов наддува возможен на основе различных конструкций спиралей.
    • Возможно большее перекрытие клапанов без затруднения продувки выхлопных газов, что означает большую гибкость настройки.

    Недостатки
    • Требуется особая компоновка двигателя и конструкция выхлопа (например: I4 и V8, где 2 цилиндра могут подаваться на каждую спираль турбонагнетателя с равными интервалами).
    • Стоимость и сложность по сравнению с традиционными одинарными турбинами.

    4. Турбокомпрессор с изменяемой геометрией (VGT)

    Турбонагнетатель с изменяемой геометрией (VGT) — это дорогостоящее и сложное силовое решение, которое особенно распространено в дизельных двигателях. VGT имеет кольцо лопаток аэродинамической формы в корпусе турбины, которое может изменять отношение площади к радиусу в соответствии с оборотами двигателя. На низких оборотах отношение площади к радиусу создает большее давление и скорость для более эффективного раскрутки турбины.На более высоких оборотах соотношение увеличивается, чтобы впустить больше воздуха. Результат — более широкий диапазон усиления и меньшая задержка.

    Преимущества
    • Широкая плоская кривая крутящего момента. Эффективный турбонаддув в очень широком диапазоне оборотов.
    • Требуется только один турбо, что упрощает настройку последовательного турбонаддува в нечто более компактное.

    Недостатки
    • Обычно используется только в дизельных двигателях, где выхлопные газы ниже, поэтому лопатки не будут повреждены теплом.
    • Что касается бензиновых двигателей, то стоимость их обычно невысока, поскольку для обеспечения надежности необходимо использовать экзотические металлы.Эта технология была использована на Porsche 997, хотя бензиновых двигателей VGT существует очень мало из-за связанных с этим затрат.

    5. Регулируемый турбонагнетатель Twin-Scroll

    Регулируемый турбонаддув с двойной прокруткой сочетает в себе VGT с настройкой двойной прокрутки, поэтому на низких оборотах одна из спиралей полностью закрывается, выталкивая весь воздух в другую. Это приводит к хорошему турбо-отклику и низкой мощности. Когда вы ускоряетесь, открывается клапан, позволяя воздуху проникать в другую спираль (это полностью изменяемый процесс, то есть клапан открывается с небольшими приращениями), вы получаете хорошие высокие характеристики.Вы получаете такую ​​производительность от одного турбонаддува, которую обычно можно получить только от установки с двойным турбонаддувом.

    Преимущества
    • Значительно дешевле (теоретически), чем VGT, что делает приемлемый вариант для бензинового турбонаддува.
    • Обеспечивает широкую плоскую кривую крутящего момента.
    • Более прочная конструкция по сравнению с VGT, в зависимости от выбора материала.

    Недостатки
    • Стоимость и сложность по сравнению с использованием одинарного турбонаддува или традиционного двойного прокрутки.
    • Эта технология использовалась и раньше (например, быстродействующий золотниковый клапан), но, похоже, она не прижилась в производственном мире.Вероятно, есть дополнительные проблемы с технологиями.

    6. Электротурбокомпрессоры

    Самым недавним достижением является внедрение турбин с электрическими компрессорами. Примером может служить бустер BorgWarner, представляющий собой компрессор с электрическим приводом. Компрессор обеспечивает мгновенный наддув двигателя до тех пор, пока турбокомпрессор не наберет достаточную скорость. Похожую версию этого можно найти в Audi SQ7. С мгновенным ускорением отставание уходит в прошлое, но, опять же, система дорогая и сложная.Компрессор нуждается в двигателе, который, в свою очередь, должен быть запитан, поэтому реализовать эту систему непросто.

    Преимущества
    • При непосредственном подключении электродвигателя к крыльчатке компрессора турбо-задержка и недостаток выхлопных газов могут быть практически устранены путем вращения компрессора с помощью электроэнергии, когда это необходимо.
    • Подключив электродвигатель к выхлопной турбине, можно восстановить потерянную энергию (как это сделано в Формуле 1).
    • Очень широкий эффективный диапазон оборотов при равномерном крутящем моменте.

    Недостатки
    • Стоимость и сложность, поскольку теперь вы должны учитывать электродвигатель и следить за тем, чтобы он оставался холодным, чтобы предотвратить проблемы с надежностью. То же касается и добавленных контроллеров.
    • Упаковка и вес становятся проблемой, особенно с добавлением бортовой аккумуляторной батареи, которая будет необходима для обеспечения достаточной мощности турбонагнетателя, когда это необходимо.
    • VGT или двойные прокрутки могут предложить очень похожие преимущества (хотя и не на том же уровне) при значительно более низкой стоимости.

    Что такое турбокомпрессор и как он работает?

    Узнайте, как работает турбокомпрессор:

    Турбокомпрессор — это механическое устройство с принудительной индукцией с приводом от турбины. Он сжимает поступающий воздух и под высоким давлением нагнетает его в цилиндр двигателя. Таким образом, он увеличивает КПД двигателя и выходную мощность примерно на 30-40% по сравнению с двигателями без наддува.

    Конструкция турбокомпрессора

    И бензиновый, и дизельный двигатели используют турбонагнетатели для увеличения мощности.Однако они значительно различаются по ключевым параметрам, таким как рабочая температура, давление сгорания, объем воздуха и рабочий диапазон оборотов. Кроме того, Supercharger — это аналогичное устройство, которое работает по тому же принципу. Однако он использует мощность двигателя.

    Детали конструкции турбокомпрессора:

    Турбонагнетатель в основном состоит из двух колес. Он имеет турбинное колесо и компрессорное колесо, которые установлены на противоположных концах одного и того же вала. Выходящие выхлопные газы на выходе вращают турбинное колесо.Когда турбина прикреплена к валу, она вращает вал. Кроме того, крыльчатка компрессора, установленная на другом конце вала, также вращается вместе с валом и действует как всасывающий вентилятор. Вращающееся колесо компрессора всасывает поступающий воздух и затем нагнетает его в цилиндры двигателя. Фактически, типичный турбонагнетатель вращается с очень высокой скоростью, от 30 000 до 1,25 000 об / мин.

    Контур турбонагнетателя

    Компрессор нагнетает свежий воздух в цилиндры с давлением выше атмосферного, в результате чего цилиндры двигателя получают дополнительный воздух.По мере увеличения объема воздуха соответствующее количество топлива, подаваемого в двигатель, также пропорционально увеличивается, что увеличивает мощность. Когда вы сжимаете воздух, он нагревается. Таким образом, температура воздуха повышается, и он расширяется при уменьшении своей плотности.

    Следовательно, часто производители используют промежуточный охладитель или «теплообменник» для охлаждения воздуха перед его поступлением в цилиндры двигателя. Поэтому производители называют эти двигатели «Turbo-Charged Inter-Cooled» или «TCIC». Турбокомпрессоры разработаны и откалиброваны для двигателей различных размеров и конструкций, таких как технологии прямого впрыска, прямого впрыска и прямого впрыска Common Rail в дизельных двигателях, а также системы MPFi и GDI в бензиновых двигателях.Следовательно, их нельзя напрямую менять местами.

    Компоненты турбокомпрессора:

    1. Колесо турбины с радиальным притоком
    2. Центробежный компрессор
    3. Центральная ступица / вращающийся узел
    4. Корпус

    Детали турбонагнетателя

    Турбонагнетатели имеют две основные технологии:

    1. Фиксированная геометрия
    2. Переменная геометрия

    В наши дни современные дизельные двигатели оснащены турбонагнетателем с системой прямого впрыска Common Rail (CRDi), которая улучшает характеристики дизельных двигателей.Кроме того, некоторые усовершенствованные конструкции двигателей включают технологию «Bi-Turbo» или «Twin-turbo» в шестицилиндровом / восьмицилиндровом двигателе для обеспечения превосходных характеристик двигателя. В этой конструкции реализованы два отдельных блока, работающих последовательно или параллельно. Автомобиль Volvo S80 T6 оснащен таким двигателем, в котором используется технология Twin-Turbo. 3,0-литровый двигатель BMW 7 серии оснащен передовой технологией Triple-Turbo.

    Преимущества турбокомпрессора:

    1. Повышенная выходная мощность
    2. Улучшенное соотношение мощности к массе
    3.Низкие выбросы

    Разница между бензиновым и дизельным турбокомпрессором:

    Турбокомпрессор Дизель и бензин

    Для получения дополнительной информации нажмите здесь.

    Подробнее: Мощность двигателя в лошадиных силах >>

    О компании CarBikeTech

    CarBikeTech — технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

    Посмотреть все сообщения CarBikeTech

    Как работает турбокомпрессор?

    Для получения дополнительной информации о том, как работает турбо, вы можете прочитать более подробную информацию на этих других страницах ниже.

    Что такое турбокомпрессор?

    Проще говоря, турбокомпрессор — это своего рода воздушный насос, забирающий воздух с давлением окружающей среды (атмосферное давление), сжимающий до более высокого давления и пропускающий сжатый воздух в двигатель через впускные клапаны.

    В настоящее время турбины используются в основном в дизельных двигателях, но сейчас наблюдается переход к турбонаддувам в серийных бензиновых двигателях.

    Поскольку все двигатели зависят от воздуха и топлива, мы знаем, что увеличение любого из этих элементов в установленных пределах приведет к увеличению мощности двигателя, но если мы увеличим количество топлива, мы должны быть в состоянии сжечь его все.

    Для удовлетворения наших требований к мощности для этого требуется воздух; подача большего количества воздуха представляет гораздо больше проблем, чем заправка большего количества топлива. Воздух находится вокруг нас все время и находится под давлением (на уровне моря это давление составляет около 15 фунтов на квадратный дюйм). Именно это давление заставляет воздух поступать в цилиндры.

    Для увеличения расхода воздуха установлен воздушный насос (турбонагнетатель), в двигатель которого подается сжатый воздух.

    Этот воздух смешивается с впрыснутым топливом, позволяя топливу сгорать более эффективно, увеличивая выходную мощность двигателя.

    Еще одна сторона турбонаддува, которая может представлять интерес, — это двигатель, который регулярно работает на больших высотах, где воздух менее плотный и где турбонаддув восстанавливает большую часть потерянной мощности, вызванной падением давления воздуха. Мощность двигателя на высоте 8000 футов составляет всего 75% от его мощности на уровне моря.


    Как работает турбокомпрессор?

    Отработанные выхлопные газы двигателя используются для привода турбинного колеса, которое соединено валом с колесом компрессора.Компрессор или воздушное колесо всасывает воздух через воздушные фильтры и направляет его в двигатель.

    По мере того, как отработанные газы выпускаются из двигателя, они направляются в турбину или горячее колесо турбонагнетателя и, таким образом, завершают цикл.


    1. Захват

    Горячие газы, образующиеся при сгорании, не выходят через выхлопную трубу, а направляются в турбонагнетатель. Цилиндры внутри двигателя внутреннего сгорания срабатывают последовательно (не все сразу), поэтому выхлопные газы выходят из камеры сгорания нерегулярными импульсами.

    Обычные турбокомпрессоры с одной спиралью направляют эти нерегулярные импульсы выхлопных газов в турбину таким образом, что они сталкиваются и мешают друг другу, уменьшая силу потока. В отличие от этого, турбонагнетатель с двойной спиралью собирает выхлопные газы из пар цилиндров в чередующейся последовательности.

    2. Отжим

    Выхлоп ударяет по лопаткам турбины, вращая их со скоростью до 150 000 об / мин. Чередующиеся импульсы выхлопа помогают устранить турбо-лаг.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *